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Abstract

This paper examines the exploration—exploitation trade-off in reinforcement learn-
ing with verifiable rewards (RLVR), a framework for improving the reasoning of
Large Language Models (LLMs). Recent studies suggest that RLVR can elicit
strong mathematical reasoning in LLMs through two seemingly paradoxical mech-
anisms: spurious rewards, which suppress exploitation by rewarding outcomes
unrelated to the ground truth, and entropy minimization, which suppresses ex-
ploration by pushing the model toward more confident and deterministic outputs,
highlighting a puzzling dynamic: both discouraging exploitation and discouraging
exploration improve reasoning performance, yet the underlying principles that
reconcile these effects remain poorly understood. We focus on two fundamental
questions: (i) how policy entropy relates to performance, and (ii) whether spu-
rious rewards yield gains, potentially through the interplay of clipping bias and
model contamination. Our results show that clipping bias under spurious rewards
reduces policy entropy, leading to more confident and deterministic outputs, while
entropy minimization alone is insufficient for improvement. We further propose a
reward-misalignment model explaining why spurious rewards can enhance perfor-
mance beyond contaminated settings. Our findings clarify the mechanisms behind
spurious-reward benefits and provide principles for more effective RLVR training.

1 Introduction

The recent emergence of Large Al Reasoning Models (e.g., Kimi-K2, OpenAl-ol, and DeepSeek-
R1[21,27,29]) has been driven by reinforcement learning with verifiable rewards (RLVR). In RLVR,
a verifier compares the model’s rollout against a deterministic ground-truth solution, especially in
mathematics and other STEM domains, providing outcome rewards. This verifiability has enabled
models to achieve competitive and human-level performance on challenging benchmarks [26].

In traditional reinforcement learning, the exploration—exploitation trade-off is framed within a
Markov decision process with per-step or shaped rewards. Exploration is typically promoted through
stochastic policies or explicit bonus terms for underexplored actions, while exploitation reinforces
high-return actions via accurate value estimation. RLVR for LLMs departs from this paradigm in
three respects: (i) rewards are outcome-level, extremely sparse, and verifiable only at the end of long
rollouts, rendering all intermediate token-level actions reward-equivalent; (ii) exploration unfolds in
sequence space and is governed by decoding temperature rather than state-local bonuses; and (iii)
policy updates rely on ratio clipping with group-normalized advantages, making them more sensitive
to importance ratios and relative ranks than to absolute reward values.

These properties give RLVR a distinctive exploration—exploitation regime. In classical RL, spuri-
ous rewards, which are misaligned with the true outcome reward (e.g., random noise), would be
expected to hinder exploitation by injecting randomness that encourages suboptimal actions. Yet in
RLVR, they have been observed to improve performance in Qwen-Math models [61], a phenomenon
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attributed to upper-clipping bias that disproportionately amplifies high-prior responses, consistent
with contamination effects reported on MATH500 [80]. Conversely, entropy minimization, which
reduces policy entropy to yield more deterministic, high-confidence rollouts, has been widely adopted
in RLVR and empirically linked to consistent gains [15, 18, 91, 95]. Notably, Agarwal et al. [2]
and Gao et al. [19] directly optimize entropy as an objective and report substantial improvements
even without verifiable feedback. These findings point to an RLVR-specific paradox: discouraging
exploitation through spurious rewards and discouraging exploration through entropy minimization
can both enhance validation accuracy, underscoring learning dynamics that depart from classical RL.

In this paper, we investigate how clipping, policy entropy, and spurious (random) rewards jointly shape
model performance in RLVR. We show, both theoretically and empirically, that under random rewards,
which discourage exploitation, clipping bias alone provides no meaningful learning signal and cannot
directly improve performance. Instead, we establish a direct connection between clipping and policy
entropy: clipping reduces entropy and drives the policy toward more deterministic, higher-confidence
outputs, thereby inducing an entropy-minimization effect. Importantly, reduced entropy by itself does
not guarantee performance gains. To clarify when spurious rewards can be beneficial, we introduce a
simple reward-misalignment model. Our analysis overturns the prevailing view that improvements
under spurious rewards are limited to potentially contaminated Qwen-Math models; similar gains
also arise in the L1ama and QwQ families, revealing a more nuanced exploration—exploitation dynamic
that cannot be explained by contamination alone.

Contributions. We focus on two fundamental questions: (i) how policy entropy relates to perfor-
mance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping
bias and model contamination. Our contributions can be summarized as follows: (1) We advance the
theoretical foundations of RLVR by deriving explicit bounds on clipping bias and showing, under
spurious rewards, this bias does not constitute a meaningful learning signal. To capture its effect
more precisely, we introduce a novel one-step policy-entropy shift formulation, which establishes a
deterministic link between clipping and policy entropy: clipping systematically reduces entropy and
drives the policy toward more deterministic, higher-confidence rollouts; (2) We conduct extensive
experiments across multiple model families (Qwen-Math, Llama, QwQ) and sizes (7B, 8B, 32B),
including both base and distilled variants. These results reconcile conflicting reports in the literature,
demonstrating that performance improvements under spurious rewards are robust and not tied to any
single model or dataset; (3) We show that these gains cannot be attributed to clipping bias or to causal
effects of policy entropy, thereby overturning the prevailing view that improvements under spurious
rewards are confined to potentially contaminated Qwen-Math models. Instead, our findings reveal a
broader and more nuanced exploration—exploitation dynamic unique to RLVR.

2 Main Results Overview

Given the rapid evolution of recent RLVR findings, we provide a technical review for preliminaries
and related works in Appendix A and Appendix B, respectively. We provide a detailed derivation and
proof for the theoretical results in Appendix D and present empirical evaluation in Appendix C.

2.1 Clipping and Model Performance

Upper-clipping bias under random reward. For the improvements observed in Qwen2.5-Math,
which are not present in other base model families (e.g., L1lama), Shao et al. [61] attribute this effect
to upper-clipping bias, a qualitative mechanism that favors higher-probability tokens (which may
correlate with the contaminated benchmark) under the old policy, as formalized in Remark 2.1.

Remark 2.1 (Clipping-induced up-bias for high-probability tokens). When the GRPO upper clip is
active (i.e. |r — 1| > ), the largest admissible increase of the probability ratio for a token'y is

Anrlax (Y) = € Told (Y)7

where Ap,.x denotes the threshold, or tolerance, of the clipping deactivation. Hence, if wo14(y1) >
To1d(Y2), then Apmax (Y1) = Amax(y2). That is, tokens that were already likely under the old policy
enjoy a wider tolerance before clipping, while low-probability tokens are clipped more aggressively,
implicitly reinforcing high-probability choices.

Surrogate decomposition for upper-clipping. To theoretically analyze the effect of clipping
bias, we decompose the upper-clipping surrogate and define raw (the raw gradient itself without



being affected by the clipping) and clipping-correction part as follows: N; := oAy, Ny =
71 A;. Then, given rollout y; with length L, the total clipping correction Ciot can be written as
Ciot = Zthl (NS — Ny) = Zthl (7¢ — r¢) A¢. Through the one-step exponential update derived in
Proposition D.1, we introduce the following theoretical results:

Theorem 2.2. Fix group rollout number G, rollout length L, clipping threshold ¢ > 0 and let
It = 14,514} be the activation indicator with activation rate B[I;] = p. Define Dy := (s — r¢)1;
and Ciop := Zthl D, /Alt,for all learning rate n > 0, we have

max max max . d)(R;]naX)
E[|Ciot]] < M\/QLRn ¢(Rn )p + M(Rn — 1)L min {\/]57 (b(l-i-éf)} ) (H
where R 1= e2Mn M = /G —1, and ¢(u) = ulogu — u + 1. Furthermore, for small 1,
E[|Cuotl] < O (VL + min{ny/BL, 7L} ) )

Theorem 2.3 (Law of Clipping). Under the same settings as Theorem 2.2, the lower bound on the
expected ratio between the magnitude of the raw surrogate | Nyay | and that of clipping bias |Ciot| is

E[|Neaw ] (1-2%) (1 - )

BlICwll = L1720, f2Rp<o(Ryp=)p + M Ry — 1) min { /5, 5705

In addition, E [|Nravv \] >E [|Ctot H under practical parameter settings (details in Remark C.2). In
Appendix C.1 and Figure 2, we provide extensive ablation analysis of clipping, which supports our
theoretical results showing that removing clipping still consistently improves the model performance.

2.2 Clipping and Policy Entropy

While clipping does not directly determine performance, we show a deterministic link between
clipping and policy entropy (see Definition D.3). The random-reward setting provides a clean testbed
to isolate this effect and its impact on validation performance. Recent work provides theoretical
results for estimating one-step policy entropy change in GRPO training. Cui et al. [15] show that

H(Tnew) — H(mola) = — CoVarrora(-|h) (log moa(a | h), A(a, h)) 3)

Under spurious rewards setup, Eq. (3) yields zero entropy change (see Appendix D.6 for Eq. (3)’s
theoretical limitation), deviating from the actual training results (see Appendix C.2). We therefore
provide Theorem 2.4 and Remark 2.5 to accurately analyze entropy dynamics under spurious rewards.

Theorem 2.4 (Entropy collapse under clipped training). Let 7o1q be a policy on a finite action set A,
fix a clipping ratio € € (0,1) and a small step size 1). Define the clipped-advantage reparameterization
A, (a) = (Clip{r(a)} — 1) /n, (see Lemma D.4 for proof). Then, under sufficiently small step size
n > 0, the one-step update admits the exact log form 10g Tyew (a) = log mo1a(a) +log(1+nA.(a)) —
log(1 + nps), with piy :=Eqrr,,i[As(a)]. Thus, the expected one-step entropy change is

E[H(Mhew) — H(moa)] = =3 n° E[Varaenr,,, (As(a))] + O(n*) < 0.

Remark 2.5 (Entropy increase under unclipped training). Using the same notation as in Theorem 2.4,
under the one-step unclipped GRPO update we have

E[H(Wnevv) - H(Wold)] = *é(l - 217G) q)(ﬁold) 772 + 0(773)7

where ®(-) is a third-order polynomial functional measuring the skewness of the policy T4 (coeffi-
cients given in Theorem D.8. Consequently, the one-step entropy change under unclipped training
depends on the initial policy distribution, in particular, more skewed policies can exhibit entropy
increases during training. We provide a detailed numerical example in Remark D.9 and validate
the result via simulations comparing more- and less-skewed policies in Figure 5, along with actual
training result in Appendix C.2. For a less-skewed policy (Figure 5, Left), spurious rewards do not
increase policy entropy even under unclipped training. For skewed policy (Figure 5, Right), policy
entropy can increase during training, which explains the entropy growth in Figure 3 (Left). Whereas
remedies from previous works merely slow early entropy collapse via regularization, we show it
can be deliberately increased under spurious rewards while validation performance also improves,
offering a complementary way to modulate entropy and to balance exploration—exploitation in RLVR.



Revisiting the role of clipping. Under random rewards, removing clipping drives policy en-
tropy upward (more exploration), whereas clipping keeps entropy controlled and typically decreas-
ing. Clipping acts as a trust-region-like regularizer: by capping per-token ratios, it limits step
size and prevents gradient explosion. Without it, oversize updates can destabilize training—e.g.,
for R1-Distill-Llama-8B, validation on MATH500 rises from 65.6% to 76.6% in 100 steps,
then collapses around step 150 due to exploding gradients (Figure 3, Right). Clipped results for
DeepSeek-R1-Distill-Llama-8B are shown in Figure 1.

Entropy and model performance. Under random rewards, entropy is the main quantity that
changes, largely controlled by whether clipping is applied. Both higher (more exploration) and lower
(more confident) entropy can coincide with better validation performance, but pushing entropy down
(i.e., entropy minimization)—effectively what clipping does—helps only in regimes where the initial
policy already concentrates on correct trajectories (strong model on easy data). On harder data or with
weaker models, entropy minimization can entrench wrong modes and stall or degrade performance.
We present further experiment results and discussions on entropy minimization in Appendix C.3.

2.3 Reward Misalignment: Who can Benefit from Random Rewards?

From empirical observations in this and prior work, we note two regularities under random-reward
training. First, consistent with Shao et al. [61], weaker models tend to improve less. Crucially, model
strength is training-dataset-dependent: a model that performs well on an easier benchmark may
perform poorly on a harder one. Second, shown in Figure 2, as baseline accuracy rises (e.g., toward
70%), training curves exhibit fewer oscillations and become more stable; at moderate accuracy (e.g.,
around 50%), they fluctuate markedly. To account for why a model may improve under random
rewards, we analyze the phenomenon from the reward misalignment perspective.

We develop a theoretical framework to analyze the varying degrees of damage to correct rollouts
under false-positive and false-negative reward misalignment schemes. A warm-up setup is provided in
Appendix D.9, and we formalize the notion of asymmetric damage to correct rollouts from strong and
weak base models in Definition D.10. Our theoretical results in Proposition D.11 and Theorem D.12
justify that correct rollouts from stronger models are more likely to benefit from random rewards,
leading to more stable training with reduced variance.

Beyond model contamination. Our theory indicates that the Clipped - R1-Distill-Llama-88
observed performance gains should not be attributed to clipping
bias or validation-set contamination. While prior work [61, 80]
reports improvements under random rewards for potentially con-
taminated Qwen-Math models, our results show that these gains
arise from a subtler interaction between policy entropy and reward
misalignment. As reported by Shao et al. [61], base L1ama mod-
els consistently degrade during training across trials. Under the aing st
reward-misalignment view, stronger models should be more likely
to benefit, tending to improve during training. We test this by using
a stronger distilled L1ama variant with long chain-of-thought rea-
soning; neither its base nor teacher model exhibits contamination
on MATH500. As shown in Figure 1, with a rollout length of 8192
tokens and all other hyperparameters matched to the Qwen-Math setup, we observe improvements
comparable to those in Figure 2. This suggests that contamination of the validation set is unlikely to
explain the gains under random rewards; moreover, the effect is not unique to Qwen-Math models, as
evidenced by both Figure 4 (Left) and Figure 1.

MATH500 pass@1

Figure 1: Distilled Llama
model’s  performance  on
MATH500 under random reward
with DeepScaleR for training.

3 Conclusion

In this work, we examine the learning dynamics of RLVR under random reward setup. We prove
that clipping bias is negligible under practical GRPO settings, reveal a link between clipping and
policy entropy, and provide insight into policy entropy and model performance. Experiments across
multiple model setup confirm that gains under random rewards arise from reward-entropy interplay
and model-data regime, not contamination alone. We hope our results will facilitate the community’s
understanding and further development of techniques for RLVR training.
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A Preliminaries

RLVR & GRPO. RLVR assigns a binary outcome-based reward r(x,y’) to a sampled response y’
from prompt x by comparing it against the ground-truth answer y. To learn an optimized policy via
these reward, policy—gradient methods [69, 79] aim to maximize

J(@) = ]EyN‘fre('Ix)[r(va) ]a

where p is the prompt distribution and 7y denotes the LLM policy. The parameter update at each
iteration is 6 < 6 + n VyJ(0). In practice, trajectories are generated by an older policy g, # 7o,...»
but we still wish to estimate the gradient for 7g. Using importance sampling, it can be rewritten as

mo(y | X)
J(0) = Ex~,, Yo (%) LW(Y|X) r(x, Y)} ‘

Importance sampling can suffer from large variance when 7y drifts from g
we instead optimize the clipped surrogate objective

f mo(y | %) . { mo(y | %) } H
J(0) =Exwp, yomp () |Ming ———1r(x,y), clipy ———, 1 —¢€, 1 + € r(x, .
O) =B yom i | i I r, cvip ZEELS, bey)

.- To stabilize training,

Within this framework, GRPO [62] and related variants [10, 13, 41, 85, 90] estimate policy gradients

using groups of samples. For each prompt x, GRPO draws a set {y1,...,yg} from 7y, and
maximizes
G
1 . mo(yi | %) mo(yi | x)
J(0) = —= mm{Ai, clip ————~,1—¢, 14+€p A4; ¢,
G ; TGoia (yi | X) T Goia (yi | X)

where € € (0, 1) is a hyperparameter and the advantage A, is computed from the group rewards as

I‘(X, Yi) - mean({r(xa Y1)7 s ,I‘(X, yG)})
std({r(x7 Y1)y r(x,yg)})

with r(x,y;) = 1 if y; matches the ground-truth final answer and r(x, y;) = 0 otherwise.

A = ; “

Random rewards for RLVR. Shao et al. [61] report striking gains on MATH500 for the Qwen-Math
family when models are fine-tuned with purely random rewards, a pattern not observed for several
other model families. Wu et al. [80] likewise find substantial contamination of Qwen-Math via overlap
with validation benchmarks such as MATH500, suggesting that RLVR may predominantly reinforce
memorized solutions. Shao et al. [61] attribute these gains to PPO-style upper-clipping bias, which
preferentially amplifies high-prior responses and thus exploits latent knowledge rather than teaching
new reasoning skills. Nevertheless, Oertell et al. [48] contest this account, attributing purported gains
to algorithmic heuristics and evaluation artifacts; in their experiments, random-reward fine-tuning
does not reliably improve reasoning and can even degrade it. These conflicting results underscore
how little is understood about RLVR learning dynamics and motivate two central questions: (i) Can
random rewards improve model performance, and under what conditions? (ii) Does clipping bias
furnish a genuine learning signal, and if not, what is its true role? Following prior work, our
empirical validation primarily focuses on MATH500. We also provide further discussion of broader
usage of random reward in classic RL in Appendix B.1.

Policy entropy. Recent studies on RLVR probe how policy entropy can be leveraged to improve
model performance. Intuitively, policy entropy measures the diversity of a policy’s action distribution:
a high-entropy policy spreads probability more evenly and samples a wider variety of responses,
whereas a low-entropy policy concentrates probability on fewer actions, yielding more deterministic
behavior. The prevailing view guards against “entropy collapse” to prevent premature convergence to
a suboptimal, low-diversity policy [85]; at the token level, Wang et al. [76] likewise emphasize that
minority high-entropy tokens are crucial for reasoning. Yet several papers report the opposite trend:
lower entropy can help. Agarwal et al. [2] optimize an explicit entropy-minimization objective and
observe gains, and Cui et al. [15] claim a monotonic law: better performance at lower entropy. These
conflicting results leave the core question unresolved: (iii) Is there a direct relationship between
policy entropy and policy performance?
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B Related Works

We provide a technical review to explain the difference across experiment setup and insight from the
recent advancements in RLVR for LLM post training.

B.1 Spurious Reward for Reinforcement Learning

Spurious reward in general reinforcement learning. In this section, we provide broader context
on how previous work in reinforcement learning for classic settings (non-LLM) used spurious
rewards to facilitate the training process. First, spurious reward signals are closely tied to issues of
generalization in RL, shown in [30, 31, 78, 89]. While the above works showed intentional uses of
such rewards, spurious signals can also arise unintentionally, leading to reward misspecification and
the phenomenon of reward hacking [51, 78], but note that such spurious-based reward hacking is
shown in LLM RLHF learning as well [71].

On the other hand, the design of deliberated misaligned reward shaping can be traced back to
potential-based reward shaping (PBRS) [47]. The key is to inject additional reward signals in
principled ways (like PBRS) or with careful tuning so that the intended behavior is still optimal. After
that, Random Network Distillation (RND) introduced by [5] became a state-of-the-art exploration
method, being extended in its follow-up work [43, 44]. [32, 54, 77, 92] also proposes spurious
rewards that encourage the agent or model to traverse state-space in ways that eventually uncover
actual rewards. Spurious reward is also largely applied to directly improve agent exploration. One
prominent theoretical idea is Posterior Sampling for Reinforcement Learning (PSRL) [49]. Chen et al.
[8, 11], Xu et al. [83] also extends the similar heuristic-driven search into broader areas to encourage
exploration.

Spurious reward for RLVR. In this section, we zoom into recent works on spurious rewards
for RLVR. Beyond the headline empirical findings, the experimental setups in prior work differ
in important ways. In Shao et al. [61]’s released code, the prompt does not include the usual
Qwen-style instruction to place the final answer in a box; as they note, Qwen-Math is sensitive to
prompt formatting, and the prompt composition will largely affect its baseline performance. In our
experiments, we instead follow verl [65]’s default Qwen prompt, which explicitly asks the model
to place the final answer in a boxed expression. This aligns with the RLVR verifier in verl, which
extracts the boxed answer for scoring and reward provision. Aside from the prompt, we match Shao
etal. [61] on all RLVR hyperparameters.

By contrast, Oertell et al. [48] use a different configuration: (i) a rollout-length cap of 1024 tokens
(well below Qwen-Math’s 4096-token context window), (ii) a different training set (MATH [23] rather
than DeepScaleR [42]), (iii) a substantially smaller learning rate (1 x 10~7 versus 5 x 107 in
Shao et al. [61]), and (iv) a reduced batch size (64 versus 128 in [61]). The smaller learning rate
changes the effective step size and can materially alter policy updates; the smaller batch size yields
noisier estimates of the underlying random reward provision distribution. Given these differences, the
reported experiment results in these two works are not directly comparable at least from empirical
level.

B.2 LLM Post-Training

LLM entropy. Agarwal et al. [2] show that simply minimizing token-level entropy can substantially
enhance an LLM’s reasoning ability without verifiable, labeled feedback. They argue that entropy
reduction makes models more confident in their highest-probability answers, thereby unlocking
latent reasoning capability. We note that this mechanism closely resembles clipped training under
random rewards, where updates primarily modulate entropy rather than exploit informative reward
signals. However, we show that entropy minimization alone can drive the policy to a low-entropy
yet suboptimal solution; thus, entropy should be treated as a stabilizing regularizer, and it should be
cautious when using as the substitute for genuine RLVR learning signal.

Similarly entropy-minimizing idea has also in relate to model confidence, Prabhudesai et al. [55]
connect lower policy entropy to higher model confidence and use the model’s own low-entropy (high-
confidence) rollouts as a reward signal, reporting notable gains across multiple benchmarks and base
model families. More surprisingly, Gao et al. [19] demonstrate that even a single unlabeled example
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can boost a model’s reasoning via entropy minimization. In a similar vein, Entropy-Minimized Policy
Optimization [91] and Zhao et al. [95] improve performance in an unsupervised setting by increasing
the model’s self-confidence. Relatedly, van Niekerk et al. [73] construct ranked preference datasets
from the model’s own confidence over answers and obtain comparable improvements without human
feedback or external verification, suggesting that self-confidence can serve as a weak training signal.

Cui et al. [15] claim a simple but insightful empirical relation between policy entropy H and model
performance R, with fitting coefficient a and b,

Rz—aexp(?-l)—i—b7 a >0,
estimated from extensive experiments. This fit suggests that performance increases monotonically
as entropy decreases, but also plateaus once entropy collapses early. Intuitively, as the model

overreinforces certain token sequences, its output distribution becomes overconfident and loses
exploratory capacity, creating a performance ceiling.

Still, multiple works propose different perspectives to avoid earlier-stage entropy collapse. [64]
examines why standard entropy regularization often provides little benefit in RLVR training of LLMs,
attributing it to the extremely large response space of LLMs and the sparsity of optimal outputs,
and proposes an adaptive entropy control technique that uses a clamped entropy bonus with an
automatically tuned coefficient. [68] shows that GRPO-style ORM yields strong accuracy gains but
induces a systematic drop in output entropy and diversity, evident in lower pass@n scores compared
to the base model. To counter this, a outcome-based exploration that introduces entropy-promoting
bonuses at the level of final outcomes is proposed. Similarly, previous works [12, 74, 84, 97] also
applied different techniques to control the entropy during RLVR training.

Reinforcement learning for LLM. Proximal Policy Optimization [59] has emerged as the founda-
tion for using reward-based policy updates to enhance LLM capabilities and serves as a key component
of RLHF. However, due to the computational and memory inefficiency of loading four models, many
lightweight and adapted policy gradient update methods have been proposed [3, 20, 33, 37, 62]. Along
with the development of verifiable reward methods [14, 25, 34, 60, 66, 72, 75, 88, 93], reinforcement
learning has greatly facilitated the reasoning capabilities of LLMs, especially in solving mathematical
problems.

Apart from training methods, recent works have also advanced post-processing and collaborative
approaches to improve reasoning effectiveness. Kay et al. [28], Zhao et al. [94] propose consensus-
and answer-aggregation-based methods to reinforce results under multi-model frameworks. Chen
et al. [7] introduce a novel self-questioning framework, while Park et al. [53] present a practical
framework for advancing online multi-agent collaborative reinforcement learning.

Further offline practices. Direct preference alignment approaches such as DPO [56] provide a
simple, stable offline alternative to online RLHF. Numerous variants extend DPO with different objec-
tives, including ranking formulations beyond pairwise comparisons [6, 16, 39, 67, 86] and lightweight
methods that remove the reference model [24, 45]. Because DPO avoids training a reward model, the
limited supply of human labels becomes a key bottleneck; to address this, subsequent work augments
preference data using an SFT policy [96] or a refined SFT policy with rejection sampling [38]. The
DPO loss has also been generalized to token-level MDPs with deterministic transitions—covering
standard LLM fine-tuning [57]—and to broader RL settings [4]. Complementary work elicits human
feedback online to mitigate distribution shift and over-parameterization [17, 82], improving perfor-
mance on complex reasoning tasks [52]. A parallel line studies unintentional alignment and proposes
remedies [9, 22, 40, 50, 58, 70, 81, 87]; for example, Razin et al. [58] introduce the CHES similarity
to filter near-duplicate preference pairs, and Chen et al. [9] leverage comparison oracles (ComPO),
showing that combining them with DPO alleviates unintentional alignment in practice. Attributed to
Gradient Descent-Ascent (GDA) scheme [35], many recent works over Nash Learning from Human
Feedback (NLHF) [46] arises along with RLHF.

C Empirical Evaluations and Further Discussions

C.1 Clipping and Model Performance

Setup. Following the exact same hyperparameter setup from Shao et al. [61], we apply random
rewards with Bernoulli %) for Qwen2.5-Math-7B on the DeepScaleR dataset [42], with a batch
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size of 128, group size of 16, decoding temperature of 1.0, clipping ratio of 0.2, learning rate of
5 x 10~7, and KL coefficient of 0.

We conduct multiple consecutive runs with and without clipping using the verl framework [65].
The resulting training trajectories on the MATH500 validation set, along with the clipping activation
fraction during training, are presented in Figure 2. We use the default training prompt from verl,
which instructs the model to enclose its final answer in a box for verifier validation (see further
discussions for this in Appendix B.1). Notably, for Qwen2.5-Math-7B, the clipping activation ratio
is far lower than typical levels in other base models:

Remark C.1 (Clipping activation frequency). Empirically, the clipping activation ratio is usually be-
low 1% for general GRPO training. For specific uen2.5-Math-7B training, the clipping activation
ratio never exceeds 0.2%, with expected activation probability E[I;] ~ 0.001.

Unclipped - Qwen2.5-Math-7B Clipped - Qwen2.5-Math-7B Ratio of clipping activation - Qwen2.5-Math-7B
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Figure 2: Training trajectories across multiple runs of MATH500 validation accuracy over unclipped
training (Left), clipped training (Middle), and clipping activation ratio during training (Right).

Results. As shown in Figure 2, enabling clipping can still cause the validation curve to decline.
Instead, even without clipping, the validation performance still improves in most cases. These
results indicate that upper-clipping bias is not the factor driving model improvement under random
reward. We present a numerical instantiation of Theorem 2.3 using specific Qwen-Math training
hyperparameters:

Remark C.2. Numerically, we have n = 5 x 1077, ¢ = 0.2, p=0.001, G=16, M =G —1,
Ry™ ~ 1+ 3.87 x 1075, and P(R)™) ~ 7.5 x 10~1'2. With rollout length L = 4096, the off-
diagonal term becomes negligible compared to the diagonal term. Substituting the above values into
Theorem 2.3, we obtain

E[|Neawl] (129 (1 —n?)
—_— _ . ¢ anax
E[|Cuecl] ~ L1201 \ 2R O(Rp)p + M (R — 1) min {x/ﬁv T;(Tls)) }

This justifies that E[|Nraw\] > E[|C’tot|] in magnitude for hyperparameters used in practice.
Therefore, we argue that clipping bias does not provide a meaningful learning signal even under
the contaminated models and benchmarks, which is verified through both empirical results and
theoretical analysis.

~ 67.45.

C.2 Clipping and Policy Entropy

Unclipped - Policy Entropy Clipped - Policy Entropy Unclipped - R1-Distill-Llama-8B

Policy Entropy
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Figure 3: Policy entropy of Qwen2.5-Math-7B under random-reward training, with re-
sults for unclipped training (Left) and clipped training (Middle); Unclipped training with
R1-Distill-Llama-8B, an example that leads to the gradient explosion (Right).
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Clipping and entropy. Figure 3 (Left & Middle) shows that, under random rewards, disabling
clipping can cause the policy entropy to rise throughout training, indicating increased exploration.
Conversely, enabling clipping keeps the entropy in check and makes it decrease monotonically. This
behavior confirms that clipping serves primarily as a regularizer: by capping each per-token ratio it
restricts the effective step size, preventing abrupt updates that would otherwise push the policy far
from its previous distribution. Apart from serving as a regularizer, the original role of clipping is to
prevent gradient explosion, thereby providing additional stability during training.

Revisiting the role of clipping. When gradients grow large across different base-model trainings,
clipping helps protect learning by preventing sudden explosions that could otherwise lead to significant
drops in performance. When clipping is removed, this safeguard disappears; the optimizer can take
oversize steps, injecting excessive exploration and destabilizing training. Thus, clipping contributes
no additional learning signal, and its main purpose is to maintain optimization stability by enforcing
a local trust region. Models with relatively large single-step gradient norms can collapse. A typical
example is shown in Figure 3 (Right), training R1-Distill-Llama-8B without clipping initially
improves the MATH500 validation accuracy from 65.6% to 76.6% over the first 100 steps. Around
step 150, however, the gradients explode, producing a cliff-like drop in performance. We show the
clipped-training results for DeepSeek-R1-Distill-Llama-8B in Figure 1.

C.3 Policy Entropy and Model Performance
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Figure 4: Results on AIME series as training set on QwQ-32B (Left) and Qwen2.5-Math-7B (Middle).
With one specific example that shows entropy minimization would lead to sub-optimal policy under
noisier and more difficult training environment (Right).

Random rewards provide a clean setting to study the relationship between policy entropy and
performance: because rewards are independent of rollouts and have zero mean, there is no genuine
learning signal, leaving entropy as the primary quantity that changes during training, largely governed
by whether clipping is applied. Recall that in Figure 3, both higher and lower entropy can accompany
improved performance. In practice, higher entropy corresponds to stronger exploration: the policy
distribution is flatter and, from a general reinforcement learning perspective, better able to discover
new trajectories. Conversely, lower entropy reflects greater confidence: the policy becomes more
peaked and deterministic, concentrating probability mass on correct trajectories; in the RLVR
setting, such concentration can also improve performance. However, we challenge this latter claim:
convergence to a highly skewed, low-entropy policy does not necessarily improve performance,
as shown in Figure 4 (Right). Hence, methods that directly minimize policy entropy or explicitly
encourage a more confident policy should be cautiously applied.

Entropy minimization. Under random rewards, clipping effectively serves as a proxy for entropy
minimization, pushing the policy toward a more peaked distribution with probability mass con-
centrated on a few trajectories. The utility of this effect depends critically on the model’s initial
distribution and the training data. For a strong model on a relatively easy dataset, the initial policy is
already heavily concentrated on correct trajectories; further concentration can suffice, and entropy
minimization appears beneficial. We provide a simple theoretical treatment of this case in § 2.3.

By contrast, as the training data become more difficult, incorrect trajectories may occupy the peak
of the policy distribution. This yields noisy rollouts and updates and can drive convergence to
an erroneous low-entropy solution. To illustrate, for Qwen2.5-Math-7B, we replace the milder
DeepScaleR curriculum with the harder AIME Past series. Figure 4 (Middle) demonstrates results
after 20 epochs of training, with all other hyperparameters matched to Figure 3. The training
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result resembles a random walk with less meaningful improvement in validation accuracy relative
to Figure 3. By contrast, the stronger QwQ-32B model (with rollout length set to 8192, all other
hyperparameters match the 7B setup exactly) trained on the same AIME training set shows steady early-
epoch gains (Figure 4, Left). This finding suggests that entropy minimization is regime-dependent
and potentially risky given uncertainty in the initial policy distribution: it can help strong models on
easier data by further concentrating mass on correct trajectories, but on harder data or for weaker
models it may entrench incorrect modes and stall—or even degrade—performance. Accordingly,
entropy-minimizing procedures (including clipping under random rewards) should be treated as
regularizers rather than universal learning signals.

D Full Proofs and Technical Details

D.1 Proof Setup & Notations

One-step exponential gradient update. We note that such NPG-style update is recent used in
previous works for GRPO analysis (e.g., [15]) can be derived from Natural Policy Gradient (NPG)
[1], given objective with history denoted as s for past states:

(1s) € arg max B gy [Q7(5,0)] = ~ Dt (m(1s) mtal15).

which has been shown in [36] can be reformulated into the following exponential-step update:

mowd(a | ) exp{nA(s,a)}
Ea’wﬂ'old(-|5) [eXP{WA<37a/>}]

To further facilitate the analysis, we derive the following exponential-step update proposition:

m(a | s) x moa(a | ) exp{nA(s,a)} =

Proposition D.1 (Single-step exponentiated-gradient update). Let mo14(- | h) be a policy and let

A(a, h) denote the action (token)-level advantage from rollout y;. Define the new policy Tyey (- | )
by the NPG-style exponentiated-gradient step (see Appendix D.3 for proof):

Towd(a | h) exp (nA(a, h))
Z(h)

Thew (@ | ) =

. Z(h) = Zﬁold(a' | h)exp (nA(d’, b)),

for a small learning rate n > 0. Then, for each action a and context h, the following holds:
log Thew(a | h) = log meia(a | h) + 77/1((1, h) — %772 + (9(7]3).

Tnew (a|h)

can be written as
Tota(alh) W

Furthermore, the token-level importance ratio r(a | h) =
r(a | h) = exp (nA(a, h) = 37° + O(n*)). ®)

Because prior analyses of GRPO’s policy entropy largely use an NPG-style approximation, we first
provide a technical justification for its validity and then apply it to analyze GRPO’s clipping bias.

NPG-update for Clipping Analysis. Such NPG-update has widely used in previous works for
GRPO entropy analysis. As the first work to study the clipping effect in GRPO, we briefly review
technical details in GRPO that motivates our reduction to an NPG-style update for analyzing clipping.
Algorithm 1 summarizes the iterative procedure from Shao et al. [62]. In the outer loop (line 2), a
reference policy is set once per iteration (line 3), and the per-step objective may include a KL penalty
that constrains the updated policy 7y to stay close to 7.¢, thereby controlling step size and preventing
excessive drift.

Recent “zero-RL” setups (e.g., DAPO [85]), which is also adopted in the empirical evaluation setup
from Shao et al. [61], set the KL coefficient to zero, effectively removing the explicit KL term from
the objective. Matching this setting, we likewise drop the KL penalty in our analysis. In this regime,
the outer loop would not affect the following analysis.

In the middle loop (line 4), which is for standard GRPO training step, the model samples each
macro-batch from dataset, which is update-style agnostic. The key difference between exact-GRPO-
and NGP-style update happens in the inner loop (line 10). First, 4 is a constant hyperparameter
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Algorithm 1 Iterative Group Relative Policy Optimization

Require: initial policy model 7y, ,, ; reward models r,; task prompts D; hyperparameters €, 3, it

init >

1: mp < o,
2: for iteration=1,...,1 do > Quter loop: for KL penalty calculation
3: Tref < o
4 forstep=1,...,M do > Middle loop: for macro-batch sampling
5: Sample a batch Dy, from D
6: Update the old policy model 7y, < g
7 Sample G outputs {0;}¥ ; ~ mg,,, (- | ) for each question g € D,
8 Compute rewards {m}iG:1 for each sampled output o; by running 7,
9: Compute Ai,t for the t-th token of o; via group-relative advantage estimation
10: for GRPO iteration =1,..., u do > Inner loop: policy update via micro-batches
11: Update the policy model g by maximizing the GRPO objective
12: end for
13: end for
14: Update 7, through continuous training using a replay mechanism
15: end for

Ensure: my

for the number of actual updates per macro batch, used to improve sample efficiency and better
optimize the surrogate while clipping limits drift from m,4. Therefore, the statement for GRPO
iteration = 1, ..., pu performs p optimizer steps on the same mini-batch to maximize the clipped
GRPO surrogate. At each step, importance ratio 7; , = mg(y; ¢ | X)/Toa(¥i,¢ | X) are recomputed

and the loss é Zi’t min{ri,tfli’t, clip(r;,1 —¢e,1+¢)A;, } is backpropagated.

In GRPO, the p-step inner loop produces a chain of micro-updates whose importance ratios r evolve
across steps, making the expected contribution of clipping analytically intractable unless one specifies
the per-step clip-activation rate (the expected fraction of tokens/micro-batches with r ¢ [1—e, 14-¢)).
This rate is model- and dataset-dependent and is only available empirically. Conditioning on the
empirically measured activation rate, we collapse the  clipped micro-steps into a single NPG-update
with actual model-specific token-level expected clipping activation ratio. This surrogate preserves the
first-order effect of clipping and enables tractable bounds for our theoretical results. Comparing to
recent works that directly used NPG for GRPO analysis, our setup for clipping analysis is validly
justified, facilitating the later theoretical derivation and without unjustified oversimplification.

Notation. Throughout the proofs, we use several notational variants for the same underlying
quantities. The GRPO (action- or response-level) advantage is denoted by A, A;, or A(a,h),
following standard GRPO formulations. The token-level advantage is denoted by Ay or fl(a7 h) and
is used in the analysis of § 2.1. Note that both response level A and token level A are numerically
the same. However, the clipping-based, reparameterized advantage is denoted by A, and is used in
Theorem 2.4; it differs from the general GRPO advantage A as specified in Lemma D.4.

For policy notation in GRPO, we abbreviate 7y
following theoretical statements and proofs.

e and Ty to molq and ey, respectively, in the

D.2 GRPO Advantage Distribution under Random Rewards

In this subsection, we study the distribution of GRPO advantage and its basic statistics. Recall the
definition of GRPO advantage in Eq. (4), we notice that A; is not well-defined if all G samples in a
group receive the same reward because the standard deviation in the denominator is 0. In practice,
these two cases lead to zero gradient update. Based on this, we set A; = 0 if all samples receive the
same reward, which occurs with probability 21~¢.

Lemma D.2. Fix G > 2. Let (Ry,. .., R¢) be i.i.d. Bernoulli(3). Define

1

R,— R

G G
— 1 —
R = jil Rj) S = 5 ]5:1(RJ - R)Qa Az = g

Q
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Then the following holds:
(a) A, has symmetric distribution around 0 and thus E[A?kil] =0forallk € NT;

(b) |Ai] <M :=VG-1;
(c) E[A?*] > 1 — 2'17C for all k € N* with equality holding when k = 1.

Proof. We prove three statements one by one as follows.
(a) Let7:{0,1}¢ = {0,1}% be 7(r1,...,r¢) = (1 =r1,..., 1 =rg). I F = & 3" rj and
r’ =7(r),then# = 1 — ¥ and
=T =1—=r;) = (1=7)=—(r; — 7).

Hence S(r') = S(r) and A;(r’") = —(A;(r)). Since (Ry,..., R¢) is i.i.d. Bernoulli(3),

. o d _
its law is invariant under 7, so A; = —A; and thus E[A?* 1] = 0.

(b) Write z; := R; — R so that Z?’;l z;=0and 5? = & Zle 3. Since Y, v = —ai,
Cauchy-Schwarz gives

(G—l)Zw?E ij = 2.
J#i J#i

Therefore

and hence |4;| = |z;|/S < VG — 1.

(c) Let K := Zle R; ~ Binomial(G, 3) and p := K/G. On {1 < K < G — 1} we have

_ Emi R, =1
R CCE SR
G — /2 R, =0

b

Hence for m € N1,
E[A2" | K] = (> Y (1- <> = (D).
(A" | K] =p 5 (1-p) T fm (D)

Write 2 := {22 > 050 fi(p) = %ﬁn_l) Define h, () := 2™ + 2~ (M"Y — g — 1,
Then
B! (z) = m(m —1) 2™ 2 4 m(m — 1)z~ ™+ > 0, x>0,

and h,, (1) = b, (1) = 0. By convexity, h.,(z) > 0 for all z > 0, hence f,,(p) > 1 for all
p € (0,1). Taking expectations and using construction A; = 0 on {K € {0, G}} yields

B = 3 (D)o (5) = 5 (§)e=1-20.

k=1

For m = 1 we have f1(p) = 1, so equality holds. This completes the proof.
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D.3 Proposition D.1
Proof. By definition,
roala | ) erA@m) ) pye(natn)

Thew(a | ) = =

Zﬂ—old a | h)e nA(a h) Z(h)

Taking logarithms yields
108 Tnew (@ | h) = log woia(a | h) +n A(a, h) —log Z(h). (6)
It remains only to expand log Z (h) for small 7. We have

S e ),
Therefore, for small 1 we can expand each exponential to

e(" Ata'm) 1+nA(d,h) + n’[A A(a/, h)]2 +0O(n?).
Substituting into Z(h) gives

h) = Z moala | W[ 1+ A h) + S e h)? + O(ni")}

(Zﬂ'old a' ‘h)-i-?] Z’R’Old a |h 277 Zﬂold a |h )2+O(?73)

Hence
log Z(h) = 3 1* + O(n*).
Substituting back into Eq. (6) yields

log Thew (@ | h) = log mo1a (@ | h) + 7714(@; h) — %772 + 0(773)7

Combining log mo14(a | k) with log mhew (a | k) then yields Eq. (5). O

D.4 Theorem 2.2

Proof. First, expanding the second moment E[CZ,] = " tIE[DS/iS D, Ay, where Dy := (7, —r;) I
and A; = A; given the token-level advantage in the same rollout. We can then decompose it into
diagonal and off-diagonal parts:

L
E[C‘?ot} = ZE[D?AQ + ZE[DsAsDtAt} (7)
t=1 s#t

Diagonal terms. On the activation event I, = 1 we are in the upper-clip regime, so 7, > 1 4 € and
Dy =F—r)y=—(ri—1—¢)I4, |Dy| < (ry — D).
Because the indicator enforces 7, > 1 + € > 1, we may use the inequality valid for v > 1,
(u—1)* < 2ug¢(u), o(u) =ulogu —u+1,

to obtain
th < (Tt - 1)2It < 27"t¢(Tt)It (8)

By Lemma D.2, we have |42 < M? = G — 1 and r; < R = exp{2Mn}. Thus,
E[D} A?] < M?E[D7] < M*E[2re¢(re) 1] < 2M*Ry™¢(Ry™)p,

where the last inequality uses the fact that ¢ is strictly increasing on [1,00). Summing over ¢ =
., L yields the desired upper bound for the diagonal terms:

E[C] < 2LM*RyY™G(Ry™)p+ Y E[DA,DyAy).
s#£t
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Off-diagonal terms. Let X; := D, A,. Recall that when I; = 1, we have D] = (rs —1—¢) <
(re —1),and ry < Ry with |Ay] < M =+/G — 1, hence
1 Xi| < |Dy| |Ay| < M(RP™ — 1)1,
Therefore
> E[X X < MP(Ry™ - 1)* Y E[LL] < M? (Ry™ — 1)°E[J] )
s#t s#t
where J := Zle I;. Since ¢ is strictly increasing on [1, 00) and ¢(u) > 0 for u € (0, 00) with

equality holds only when u = 1, we have

o(ry) L Lo(Rm2x)

1
= teona S 505G = S g 400 S i

Notice that E[.J?] < LE[J] = L?p and E[J?] < L*¢(R}*)/¢(1 + €). Thus,

s . ¢(Rmax)2
;EHXth” §M2(Rn — 1)?L? min {p’gb(ln—i—a)Q}'

By Cauchy-Schwarz, E[|Ciot|] < /E[CZ,]. Using \/z +y < /x + /y forany 2,y > 0, we have
H(Rp™) }
p(l+e) )’

Finally, when n > 0 is small, we can directly see the order of magnitude of the above upper bound by
using Taylor expansion of R} =1+ 2Mn + O(n?) and P(RY™) = 2M?n? + O(n?). Therefore,
we obtain

E[|Cyor] < M\/2LR;7nax¢(anax)p + M(RI™ — 1)L min {\/;5,

2,3 4
E[|Ciot]] < M\/2Lp(2M2772 +0n3) + 2M?L min {\/;Bm 2]\/[77—1-(’)(77)}

o(1+¢)

This shows E[|Cye[] < O (nﬁ + min{y/pL, 773L}). 0

D.5 Theorem 2.3
Proof. Following from Proposition D.1, we have

= To+a0(0: | he) — (nAi=3n*+on*)) (10)
7T9(Ot | ht)

Insert Eq. (10) into Nyaw = Y, reAy:

L

]EHNrawH Z Z]E _Atenﬁt7%n2+o(n3):|

t=1
L E i : 7721212 - n A3
=1 L
L T ) .

- ZE Ay | nAr—n* A+ . + O
t=1 L
L [A4]

= |2 [nBLAZ) +o* | ~ELAR + =55 )|+ 00r")
t=1

D LEIAZ + 3L [ —E1A2 E[A}] oL

- A1+ [AF] + 5 +0(*L),
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where the second equality uses E[fltzk*l] =0 forall k € NT from Lemma D.2. In addition, using
the lower bound E[A?¥] > 1 — 21~ for all k € N* from Lemma D.2, we have

1291

BN > (1= 270001 17 + L2520 4 0D 2 (1= 2Ot = ).
(1D

for all n > 0 small enough. Therefore, we have the following lower bound

E[|Nrawe ] (1—27)n(1 - n*)

Ef[Ciol] = 1172 g ' in { p, 2RI

ol T pmveng Ry oy -+ MRy~ 1min {5, G |

: E[| Nraw ] 1’ i
If » > 0 is small enough, Bl >0 (W’W) ‘We named this lower bound as the
Law of Clipping between the magnitude of raw and clipped part. O

We present a numerical evaluation from actual parameter setup from the experiment of the derived
bound in Remark C.2.

D.6 Detail for Eq. (3) under Random Rewards

Note that the policy entropy () is defined as
Definition D.3 (Policy entropy). For a policy 7, its entropy over action set a € A is defined as

H(m) := —Eqron(|s)[logm (a | h)] = —Zﬂ(a | h)logm (a | h).

a

We first demonstrate why Eq. (3) fails under random reward:

CoVammou(-|s) (log Toa(a | s), A(s, a)) =E, [log Toala | s) A(s, a)] —E, [log Told(a | s)] E.[A(s,a)]
=0

= E, [log mola(a | s)] Eq[A(s,a)] = 0.
=0

However, this prediction deviates from our empirical results, which show a clear relationship between
clipping and policy entropy. Therefore, it is incorrect to apply Eq. (3) directly to entropy analysis for
random-reward setup. The key limitation lies in the fact that Eq. (3) considers only first-order terms
in the policy expansion while neglecting higher-order terms, and most importantly, under unclipped
formulation. Our subsequent theoretical results then reveal a more comprehensive understanding of
the effect of clipping and policy entropy.

D.7 Theorem 2.4

To establish the proof for Theorem 2.4, we first introduce the Lemma D.4 for advantage parameteri-
zation along with its proof:

Lemma D.4. Consider action space A with current policy ) . 4 mg(a) = 1, under PPO/GRPO-
style clipping with clipping ratio € € [0, 1] and small step size n > 0. Denote the response-level

71'nevv(a)
ol (a)
unclipped advantage: r(a) ~ 1+nA(a)+ O(n?). We assume that there exists a function A : A — R
and a constant C' < oo such that

r(a) = 1+nA(a) +(a),  |5(a)] <Oy forallac A,

for sufficiently small 1. Moreover, let

importance ratio r(a) =

, we have following reparameterization of ratio in respect to the

_ Clip.(r(a)) — 1
, .
With an O(n) remainder that is uniform in a, fixing clipping threshold e, we then have

As(a) = clip(A(a), —e/n,e/n) + O(n).

Clip,(z) := min{max{xz,1 — ¢},1 + ¢}, Ayl(a) :
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We introduce following Lemmas before establish the proof.

Lemma D.5 (Clipping as 1-Lipschitz projection). The map x — Clip_(z) is the metric projection
onto the closed interval [1 — €, 1 + €|. In particular,

|Clip.(z) — Clip.(y) | < [z —y|  forallz,y €R.
Proof. Clip,(-) is the Euclidean projection onto a convex closed set, hence non-expansive with
Lipschitz constant 1. O
Lemma D.6 (Exact centering and scaling identity). For any n > 0 and any y € R,

Clip,(14+ny) —1
n

= clip(y, —¢/n,¢/n) .

Proof. We check the three following cases: (i) y < —e/n gives Clip.(1 +ny) = 1 — ¢ and the
quotient —e/n; (ii) —e/n < y < ¢/ yields no clipping and the quotient y; (iii) y > &/n gives +¢ / 7.
These coincide with the definition of clip(y, —¢/n, /7).

In Lemma D.4, we assumed that 7(a) = 1 + nA(a) + 6(a); we elaborate it in Remark D.7:
Remark D.7. Ifr(a) = expgn (a) + n?Ra(a)} with LRg(a)| < C uniformly, then r(a) = 1 +
nA(a) + 6(a) with 6(a) = A(a)? + 772R2( ) + O(n°), so the assumption holds.

Now, we establish the proof for Lemma D.4:
Proof of Lemma D.4. We consider the single-step GRPO update in logits-scale. Let the logits under
old policy 7y be w(a) = log my(a), we have
wer (a) = we(a) +nA(a),
which implies the unclipped policy update:

mgr(a) o mg(a)em @),

Thus the unclipped ratio is:
r(a) = A,
Using the approximation e* ~ 1 + z + O(x?):
r(a) = 1+nA(a) + O(n*)

This gives the reparameterization of importance ratio. By Lemma D.5,

[reip(a) = Clip. (1 +1A(a)) | < |r(a) = (1+nA(a)| = [6(a)| < Cr.
Divide both sides by 1 and subtract 1/7 inside the absolute value, we have
Clip, (1 + nA(a)) —

U]

1
‘A*(a) — ’ < Chn, for all a.

Following from Lemma D.6, we then have
’A*(a) — clip(A(a), —e/n,e/n) ‘ <Cp for all a.

This establish the reparameterization of clipped advantage in terms of raw advantage surrogate
A(a). O

Proof of Theorem 2.4. Let ((a) = log (1+nA.(a)) and ¢ = log(Er,,,[¢*]) = log(1 +nu.), then
the clipped one-step update satisfies Tew (@) = Tola(a) €$(@ =¥ Notice that

Told(@) (1 + nA.(a)) n(A.(a) — p)
L+ np Lt

Tnew (@) — Tola(a) = — Told(a) = Tola(a)
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For convenience, we define a matrix J := diag(mo1q) — Woldonld, where we treat the policy 7,14 as a
vector of length equal to the size of action space Then we have the above relation in compact form

new ~— /lo J A - J A O
™ Told = 7 + =nJ A+ O(1).
where we also regard A, as a vector of length equal to the size of action space. In addition,

7Tnew - Zﬂ-new IOg |:7T01d( ) {(a)—¢:|

:—Zﬂ'new (log mo1a (@) + ¢(a) — 1)

- _<7Tnew7 IOg 7Told> - <7Tnew7 C> + ¢
Therefore, we have

H(ﬂ-new) - H(Wold) = _<7Tnew — Told, log 7"-old> - <7Tnew7 C> +
2
= —n(JA,,log Toia) — %<A*, JAL) + P (J Ay Jog o) + O(1P).

where we use the Taylor expansion ( = nA, — n?A42/2+ O(n3) and ¥ = nu. — n*u2/2 + O(n?).
Therefore, by taking E[] on both sides, we have

2
E[H(Tuew) — H(Toia)] =~ ElVars,,,(A)] + O0),

where we use the fact that E[u, (J A, log mo1a)] = O(n?). O

D.8 Remark 2.5
D.8.1 GRPO in the Context of SGD

In § 2.2, we consider a special case of GRPO algorithm [63, Algorithm 1] under the setting of
stochastic gradient descent. Since we study the algorithm without KL regularization, the outermost
loop disappears. Now we consider the middle loop, to simplify the analysis, we assume batch size is
1 and the length of each sample is 1. In this case, we will simply call the middle loop the outer loop
and the innermost loop the inner loop.

Under our simplification, for each outer loop, we generate G' samples y1,...,Yq ~ Told = Mo >
where each sample is essentially a token, or we can call it an action. Now for each sample y;
we generate an independent reward r; ~ Bernoulli(%). Then we compute A; according to our
convention in Appendix D.2. We run p inner steps by using the update:
1 &
9t+1 - ot + ngt’ gt = 5 Z TEt)Ail{(AiEO/\TEt)§1+e)\/(Az'<0/\T§f’)21—e)} VQ 1Og o, (y7)’
i=1

where rz(t) =g, (Yi) /70, (Yi), 0o = bo1a and Oycy, := 6,,. For convenience, we can also use the ab-

breviation Tyeyw = 7y, ., and w41 := 7y,. Taking into account that we use softmax parameterization
of the policy, we have

Abi(a) := 0;41(a) — 04(a)
G

= %Zf]t

i=1

Q

1 ()
-a Z i Ai 1{(Ai20/\r§”§1+e)\/(Ai<O/\r§t)2175)}(1{yi:a} —me(a)).

1=1

To help the analysis, we write the update rule in policy space as

ree1(a) = me(a) exp(Ab:(a)) .
" > (D) exp(A0: (D))

We first consider the special case when i = 1, in this case, r( ) = 1 and the clipping will never be
activated for any € > 0. Therefore, we don’t need to dlstmgulsh clipped or unclipped case.
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D.8.2 Entropy Analysis for Unclipped Training

Theorem D.8. Define the per-action advantage A(a) = é Zil Ailyy.—ay. Then, for small
enough n > 0, we have

H(”HCW) - H(Wold) = —nk, 14[(14 Eroa [A]) log 7rold}
2

- % [Va’rﬂ'old (4) + Covr,yg (A - Er. [A])27 log '/Told)} + 0(773)'

Furthermore, define s, := Y, mo1a(a)?, hy := >, Tora(a)? log moia(a) for all p € N*, and
q)(’/T) = (383 — S92 — 2Sg)h1 + (]. + 282)h2 - 3h3 + 82 — 283 + Sg.

Then we have G
1-2""9)®(m,
R ]

Proof. The update rule can be simplified as

 mola(a)en @) _ nA(b)
Tnew (@) = = 2 Z(n) =" moa(b)e"®).

Let ¢(n) :=log Z(n) and u(a) := nA(a) — 1p(1)). Then Tpew (a) = Tora(a)e™® and
Eroal ZW ()@= = 1.
The entropy change can be computed as

AH = H(mnew) — H(mod) = —Enyyy [e" (log To1a + u)] + Bz [log o1

Using Taylor expansion of cumulant generating function log E [e"4], we have

G(n) = B [A] + T Var (4) + O(P).
u(a) = n(A(a) = Ex[A]) = - Vare(4) + O(r").
Also using e* = 1 + u + u?/2 + O(u?), we have

) = 14 A(a) ~ B[]~ TVars (4) + L (Ale) B [4)? + 007",

u(a)e"@ =n(A(a) — E-[A]) %Varw(A) +1*(A(a) — Eq[A])* + O(1°).

Combining the above expansion, we have

2
AH = _n]Eﬂ'old [(A - Eﬂold [A]) log 71—Old] - % Told [(A Eﬂold [A])Q log Wold]
2
— - Varn,, (A) (1 = Eqallog Toia)] + O(r")

2
= _n]Eﬂ'old [(A - Eﬂold [A]) IOg 71-Old] - % [Varﬂ'old (A) + COVﬂ'old ((A - Eﬂold [A])Z’ IOg 7T01d)] + 0(773)'

Notice that E[E_,[(A — Er_, [A]) log Towa]] = Er,, [(E[A] — Er, ., [E[A]]) log mo1a] = 0. We then
compute E[Var,_,, (A)]. Consider

Var,_, (A Z Told ( (Z Told ( >
1 1 & ’
— Zwm) (G > Ail{yi_a}> - (Z m(a)a Z Az-l{yi_a}>

G2 Z A A Z 7T01d 1{y17a}1{u] =a} — G2 Z A, AJT(Old (yz)ﬂ-OId (yj)

4,J
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By independence of A; and y;, we have

1 G
E[Vary, ,(4)] = 5 D E[47) (E

Zﬂ-old(a)l{yi:a} —E [Fold(yi)2]>

1
+ ZE[AiAj] (E lz Told (@) Ly, =y, =a}

i#]

G
= é ZE[Af] (Z 7T'old(CL)Z - Z ﬂ'old(a)3>
2
+ % D OEMAA] D maala)’ - (Z ﬂold(a)2>

i

- E? [Wold(yi)}>

Notice that by construction, Zlel A; = 0, so we have chzl A2 ==, +; AiA;. Furthermore,
E[A2] =1 — 217¢ by Lemma D.2, thus,

_sl-C 2
E[Varg,, (4)] = % D moa(a)? =2 wouala)® + (Z 7T01d(a)2>

1—21-¢
= T(SQ — 2s3 + s%)

We next compute E[Cov,._,, (A — E,_,[A])?,1og To1q)]. Similarly, consider

Covr,, (A —E, [A)? log moq) = Z Towd (@) log mo1d (a) A(a)?
— 2By [A] D Tora(a) log mola (a) A(a)
+E2_ . [4] Z Tola(a) log moia (@)
— Var,,,, (A) Z Tola(a) log moia(a).

Taking E[-] on both sides, similarly, we have

1— 21—G

G (353 — 89 — 253)H1 + (1 + 2s2)Ha — 3Ha).

E [Covr (A — En,[A])?, log mola)| =

In conclusion,

_91-G\p(n
(1 2 G)(I’( 01d)772+0(773).

E[H(Tnew) — H(mola)] = —
O

Remark D.9. Theorem D.8 shows how the entropy changes after taking one inner step of GRPO
starting from a given policy To1q. The sign of n? term depends on how skewed the given policy 4.
For example, we can consider the case when there are only two actions, namely, woq = (p,1 — p)
where p € (0,1). In this case we can easily compute ® () := 2p>(1 — p)?[2 — log®(p/(1 — p))]
and we know ®(7) > 0 if and only if p € [(1+ eV2)™1, (1 — e~ V2)~1] & [0.196,0.804]. Thus, we
can conclude that, in expectation, the entropy decreases when p € [0.196,0.804] (not very skewed)
and increases if p > 0.804 or p < 0.196 (very skewed). The numerical simulation results in Figure 5
also show that entropy has very different evolution patterns under different initial policy.

Specifically, the policy entropy growth pattern only occurs at the relatively skewed policy initialization.
This further highlights the applicability of injecting spurious reward without clipping into GRPO
training to protect entropy, typically when the entropy already collapsed or degraded to a relatively
skewed distribution.
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Flat Policy Initializati Skewed Policy Initializati

ssssssssss

Figure 5: Simulation of policy entropy evolution over unclipped GRPO training. Each panel includes
the result with 10 independent trails. Flat (relatively less-skewed) policy = initialization (Left);
Skewed policy 7 initialization (Right).

D.9 Reward Misalignment: Setup and Theoretical Results

Consider binary outcome reward scheme (ORM), we establish the following reward misalignment
setup:

Setup. For a prompt x, draw G rollouts {y1, ...,y } from current policy 7. Partition the indices
into correct and incorrect sets C, I C {1,...,G} with |C| = n, |I| = n;, and n. + n; = G. We
analyze two label errors:

* (i) False positives (FP): R; = 1 for j € I (an incorrect rollout is rewarded).

* (ii) False negatives (FN): R; = 0 for k£ € C (a correct rollout is not rewarded).
Specifically, we aim to explain:

* Why validation curves exhibit smaller fluctuations at higher accuracy and are more unstable
at lower accuracy?

* Why stronger models are more likely to improve under random reward?

We first quantify reward misalignment as the loss of advantage mass that ought to accrue to correct
rollouts but is diverted by random-reward mislabels:

Definition D.10 (Correct-response advantage loss). Let {R,; }]G:1 be i.i.d. rewards with R; ~

Bernoulli(4 ), independent of correctness. Define the event counts f := #FP = 3 jer HR; =1}
and g := #FN =3, - 1{R; = 0},and let T := Zle R; = f + (n. — g) be the total number of
+1 rewards. Write R := T/G for the group-averaged reward. The GRPO class-wise centered reward

sum over C'is
nd

o

Sc(f,9) =Y (Rk—R) = (nc—g) —

keC

As an “ideal” reference with no mislabels ( f = g = 0), we have
ideal __ N _ &
s (1) o1 %),
keC

Define the damage (advantage loss) as

A(f,g) =B = Zc(f, 9)- (12)
Proposition D.11 (Unconditional global loss and variance). For any n.,n; > 1 and G = n. + n;,
let f ~ Binom(n;, %), g ~ Binom(n,, %) be independent, and A := A(f, g) be defined in Eq. (12).
Under i.i.d. Bernoulli($) rewards,

ne(G — nc).

Var(A) = e

(13)
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The expected damage decreases as the number of correct rollouts n. increases, and the variance
likewise decreases with n., indicating reduced variability for stronger models. Fluctuations are
largest near the symmetric regime n. ~ n;, which aligns with our empirical observation in Figure 2.
See Appendix D.10 for proof details. We next refine this picture by decomposing the damage via
conditional means in Theorem D.12.

Theorem D.12. Let f ~ Binom(n;, %) and g ~ Binom(n,, %) be independent, and let A be defined
in Eq. (12). For policy with more correct rollouts (n. > n;), we have

EALg] < E[ALygpyl.
Moreover, as n. increases on [G/2, G|, E[A 1y~ 4] will monotonically account for a smaller
portion of E[A].

D.10 Proposition D.11

Proof. Since f ~ Binom(n;, ) and g ~ Binom(n,, 3), we have E[f] = n;/2 and E[g] = n./2.
Plugging these into Eq. (12) yields the expectation:
neni  Nine  ne(G—ne)

EAl=G3+te2 "¢

For the variance notice that Var(Binom(n, 1)) = n/4 and use independence of f and g:
Ne\2
Var(A) = (5) Var(f ( ) Var(g)
(3 5+ (@) T
B 4 4
NNy ~ n(G —n)
age et = e
This completes the proof. O

D.11 Theorem D.12

We first provide a conceptual analysis to under the counterintuitive results in Theorem D.12.

D.11.1 Conceptual proof through probabilistic method
Write X := fandY := #{+1in C}. Then Y ~ Binom(n,, 3), g = n. — Y, and

A_ax Ggféx+%(nc ngch%Xf%Y. (14)

Let Z := X +Y be the total number of +1’s over all G items; then Z ~ Binom(G, 1 ). Note that
{f>9} = {X>n.-Y)} < {Z>n.}, (15)

{9 > f} = {Z<n.} (16)

~Y)=

We now compute E[A | Z]. Condition on Z = z. Given Z = z, exactly z of the G positions carry a
+1; by exchangeability, for each j € C' we have

Pr(positionjisﬂ\zzz):é.
Hence .
EY |Z==z= j i =2) =N,
Y| z] ZPI‘(]IS—I—1|Z z) Me &
jecC
and similarly
z
E[X|Z:z]:ni5.
Taking conditional expectations in Eq. (14) gives
nn n n;
EA|Z=2]=—"“+Z"E[X|Z=2-—=E[Y|Z=
A|Z=2="0+ ZBIX | 7= 2] - LEY | Z =]

n;ne Ne Nz n; MNez o nine

G '¢d 6 & G G
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which is constant in z.
Therefore, by the tower property and Eq. (15)-Eq. (16),

niNe

pe=E[A|f> g =E[E[A|2)| 2 > nd = "5,

niNe

o =EA|g> f]=E[E[A]2)| 7 <n]="2¢

Re-writing it into conditional expectation:
E[ALypsg)| =E[A|f > g]Pr(f >9g),  E[Alg<s] =E[A]g> f]Pr(g > f).

Given a strong model that generates more correct rollouts than incorrect ones, i.e., n. > n;, it is
easy to see that Pr(f > g) < Pr(f < g). We provide the proof below. First, consider the following
combinatorial lemma:

Lemma D.13. Fix integers k > ¢ > 0. The map

n
G
is strictly increasing in n. In particular, if n, > n; > k, then

(%)
(%)

U(n) =

<7

Proof. Using falling factorials (") =

ok o M ,
: ©iZo

The product has k — ¢ > 1 strictly increasing linear factors in 7, hence Psi(n) is strictly increasing
inn. O

Therefore, we have

Proposition D.14. Let f ~ Binom(n;, 3) and g ~ Binom(n,, 3) be independent with n. > n;.
Then

Pr(f >g) < Pr(g> f).

Proof. Write the probabilities in wedge form:

Pr(f > g) =2 (400 Y (TZ) (%)7 Pr(g > f) =2 (03 (7;;) <ngc)_

k>t >k

Pair terms (k, £) with k& > ¢ against the swapped pair (¢, k) and compare weights
Uz e ng Ne
h = h = .
" (k)(é)’ “ <€>(k>

e _ (0)/ (%)
hae— (5) /(%)

80 he < hgy, for every admissible pair. Summing over all k > ¢ gives Pr(f > g) < Pr(g > f). O

By Theorem D.13,

<1, as k> {l,n.>n,,

This completes the proof for Theorem D.12. We further present the conditional variance analysis in
Theorem D.15 to understand the accuracy oscillation during the training:
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Remark D.15 (Conditional variance of damage and slice asymmetry). Let G = n. + n; and let
f ~ Binom(n;, 1), g ~ Binom(n,, 1) be independent. Write X := f, Y := #{+1in C} so that
g=n.—Y,andlet Z := X +Y ~ Binom(G, %) For the damage A defined in Eq. (14), we have

the exact identities

L nine o ni(G=ny) 2(G—=z)
EA|Z=2]= e and Var(A | Z =z) = o1 R
Consequently, with C' := M and h(z) := z(G — 2),

Var(A | f > g) =CE[MZ) | Z > n.], Var(A | g > f)=CE[MZ) | Z < n.].
Moreover, if n. > n; (equivalently n. > G/2), then
Var(A | f >g) < Var(A|g> f).
Proof. Define X := f (false positives in I), Y := #{+1inC}sog=n.—Y,and Z := X +Y.

Since f ~ Binom(n;, 3) and Y ~ Binom(n, 3) are independent, we have Z ~ Binom(G, 3) with
G =ne+n;.

Conditional on Z = z, the z positive labels are uniformly scattered among G positions. The count X
of positives falling inside the n; indices of [ is therefore

X|Z=2z~ Hypergeometric(G, z, ni),

SO
n;iz z z\ G—n;
EIX|Z=z2=22  Var(X|Z=2z) = i7(1_7> .
(X | =7 ar(X | ) =ni g ) G-
Using Eq. (14)and Y = 7 — X,
A=X+Z2n.-Y)=X-22Z e,
cXtghe=Y) c’ta
Hence, conditioned on Z = z,
n; ninc_ninc

E[A\Z:z}:E[X|Z:z]—az+ el

which is constant in z, and

ni(G—n;) 2(G- z)

Var(A | Z=z2)=Var(X | Z =2) = o1 ez

L nZ(G — ni)

LetC := G-1e
and the constancy of E[A | Z],

Var(A | A) = E[Var(A | Z) | A] = CE[W(Z) | A].

Since {f > g} < {Z >n.tand{g > f} < {Z < n.} (Egs. (15) and (16)), the displayed
slice formulas follow.

and h(z) := z(G — z). By total variance on any event A measurable w.r.t. Z

The binomial Z ~ Binom(G, 3) is symmetric about G/2, and h(z) = z(G — z) is symmetric
h(G — z) = h(z) and strictly increasing on {0, 1,...,[G/2]}. Symmetry gives

E[R(Z)| Z > n] =EhZ) | Z < G —n.l.

When n, > G/2,wehave 0 < G —n, < n. < G and G —n. < G/2. Forintegers 0 < a < b <
|G/2] and strictly increasing h on {0, ..., |G/2]},

E[h(Z)| Z < a] < E[M(Z)]| Z < b],

which follows from the convex combination decomposition of the latter and monotonicity on [a, ).
Taking a := G — n. and b := n, yields

Eh(Z)| Z >n]=E[h(Z)|Z<G—n.] <Eh(Z)|Z<n.
Multiplying by C' > 0 proves Var(A | f > g) < Var(A | g > f). Finally, unconditioning with
E[h(Z)] = G(G — 1) /4 recovers Var(A) = %&"C) in agreement with Theorem D.11. O
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D.11.2 Algebraic verification

Specifically, for the conditional expected damage part, we provide a rigorous algebraic derivation to

verify the equivalence conclusion drawn from Appendix D.11.1.

First note that, writing X := f and Y := n. — g (the number of +1 in C),
niNe

n n; n n,;
Aoy (Mg Moy (T yy_
taY tghe-Y)="a+%

G G G G
Define the wedge weights

hw;:2*(m>c%> 0<k<ni, 0<l<n,).

k Y4
Then
p+:th€7 p—- = th%
k>¢ >k
S, = Z(nck‘ +nil) hre = GE[A 155 ],
k>t
S_ = Z(nck +nil) he = GE[A 1{g>f}] :
o>k
Therefore
_ Sk _
Bt = Gpy' p- = Gp_’

We claim the following wedge proportionality identities:

St ena(3)() -+ EG)()

k>L
Sk 0 () (7) = (2)(7)

Proof of Eq. (17). Set A := ('}’) and By := (")), and write

T

r
Agr = ZAk, Bgr = ZB[, Bg_l =
k=0

=0
Two elementary transforms on the strict wedge {k > ¢} are

Z ApBy = Z Ay B,

k>0 k>0

D UABy =Y UB Y Ag=) (B (2" - Ay).

k> 0>1 k>0+1 0>1

Using k(}) = n(}~7) and £(7) = n(}_}), we compute

k—1
c kDe = Tl k 1 <k—1,

k>0 k>1

Zn-fAkBgzn-n Z TLC—]. (2ni—A<g).
() 1lte E 1 <

k>¢ >1

Summing Eq. (21)-Eq. (22) gives

1

nz_l Ne — N
Z(nck-ﬁ-nif)AkBe = NN Z (k‘ 1>B<k1 +Z (E 1 ) (2™ = A<o) |-

k>t k>1

>1
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(18)

(19)

(20)

2n

(22)
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We now show the bracket equals > k>0 Ak B<k—1 (the right-hand side of Eq. (19)). By Pascal’s rule,
Ay = (”ik_l) + (’;;:11), hence

ZAkng—l = Z (mk— 1) B<p—1+ Z (7:__11) B<j—1. (24)

k>0 k>0 k>1
Thus it suffices to prove
n; —1 ne—1
! B<p-1 = N 2™ — A<y). 25
Z( i > <h-1 Z<£_1>( <) (25)
k>0 >1
Expanding the right-hand side and swapping sums in the double sum,

S (o)) e a2 () -2 (v A

£>1 £>1 >1 k<t

—omret N Y (”;_11) (26)

k>0 ¢>max{1,k}

Using the finite-tail identity 3,5, (" 7)!) = 2771 — 3702 (" 1), we get

m=0 m

ne — 1 2 e —1
c _ one—1 c
> (i) () 7
¢>max{1,k} m=0

Insert Eq. (27) into Eq. (26) and simplify:

Ne — 1) ‘ h2 ne — 1
E (2m — Age) = E Ay, E ( > (28)
>1 ( t-1 k>0  m=0 m

Finally, by another Pascal telescoping, Zk_2 ("Cfl) = ("Fl), so Eq. (28) equals

m=0 m k—1
D k>0 (”ikfl)BSk_l, proving Eq. (25). Tracing back through Eq. (23)-Eq. (24)-Eq. (19) yields
Eq. (17).

Proof of Eq. (18). The same argument applies on the strict wedge {¢ > k}, merely interchanging
the roles of (n;, Ax) and (n.., By). This gives Eq. (18).

This indicates that for a stronger model—one that produces more correct than incorrect rollouts—the
asymmetry between false-positive and false-negative rewards can, by chance, still yield net improve-
ment: because false positives are infrequent, most of the random mass transfer occurs within the
correct set itself, so the advantage largely remains with correct trajectories.

By contrast, weaker models do not benefit from random rewards: when most rollouts are incorrect, the
bulk of the mass transfer occurs within the incorrect set, making the model more likely to reinforce
erroneous trajectories through randomly assigned rewards.
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