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Abstract
Large language model (LLM) unlearning has
demonstrated its essential role in removing pri-
vacy and copyright-related responses, crucial for
their legal and safe applications. However, the
pursuit of complete unlearning often comes with
substantial costs due to its compromises in their
general functionality, leading to a notorious trade-
off between unlearning and retention. It moti-
vates this paper to explore enhanced unlearning
schemes that can mitigate this trade-off. Specifi-
cally, we propose Gradient Rectified Unlearning
(GRU), an improved framework that regulates
the directions of gradient updates during the un-
learning procedure such that their side impacts
on other, unrelated responses can be minimized.
GRU is easy and general to implement, demon-
strating practical effectiveness across a variety
of well-established unlearning benchmarks. Our
code is available at https://github.com/
tmlr-group/GRU.

1. Introduction
Large language models (LLMs) (Touvron et al., 2023a;
Achiam et al., 2023; Bai et al., 2023; Liu et al., 2024a)
have revolutionized the learning paradigms towards general-
purpose language generation and understanding. These
models employ architectures based on multi-head atten-
tion decoders with billions of learnable parameters and are
trained autoregressively on web-derived datasets containing
trillions of tokens (Brown et al., 2020; Radford et al., 2021;
Achiam et al., 2023). Such substantial scaling equips LLMs
to tackle a wide array of complex linguistic tasks, showing
remarkable capabilities across a diverse range of language
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tasks (Azerbayev et al., 2023; Roziere et al., 2023; Wu et al.,
2023; Thirunavukarasu et al., 2023).

While scaling offers remarkable benefits, it also introduces
substantial drawbacks. A primary concern is the propensity
of LLMs to memorize data (Petroni et al., 2019; Belrose
et al., 2023), potentially reproducing sensitive messages
encountered during its pre-training. It encompasses copy-
right and privacy-related issues (Yao et al., 2023a; Liu et al.,
2024b), highlighting concerns about the potential misuse
of LLMs for illicit activities as well as challenges in safe-
guarding individual rights (Zhang et al., 2023). To remove
these undesirable behaviors, it is essential to conduct regular
audits to identify sensitive content and subsequently adjust
the embedded knowledge within LLMs by removing them.
This process is crucial for ensuring that the usage of LLMs
complies with ethical and legal standards.

As the key technique to achieve this goal, LLM unlearn-
ing (Yao et al., 2023b; Liu et al., 2024b; Wang et al., 2024b)
explores strategies to directly remove parameterized knowl-
edge targeted to be unlearned. One of the foundational meth-
ods is gradient ascent (GA) (Yao et al., 2023b), which di-
rectly minimizes the log-likelihood for targeted data, thereby
reducing their probabilities of being generated to nearly zero.
However, GA has notably negative impacts on model re-
sponses for other, non-targeted data, spurring subsequent
works that regularize unlearning procedures to retain overall
model behaviors (Maini et al., 2024; Zhang et al., 2024;
Wang et al., 2024a). Nevertheless, there remains an inher-
ent trade-off between unlearning and retention, in which
preserving the common performance comes at the cost of
reducing the effectiveness of unlearning (Zhang et al., 2024;
Liu et al., 2024b; Wuerkaixi et al., 2025). It motivates us to
raise a pivotal research question:

How can we mitigate the trade-off between the process of
unlearning and the goal of retaining overall performance?

We first conduct observational experiments to better un-
derstand the model update dynamics during the unlearning
process. Specifically, we delve into the fundamental com-
ponent—model gradients. To do so, we separately compute
the gradients of the current model on retain (non-targeted)
and unlearning (targeted) data, and measure their directional
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(b) GA w/ GRU
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(d) NPO w/ GRU

Figure 1. Illustration of gradient dynamics during unlearning. We visualize the cosine similarity (cos) between gradients computed on
retain and unlearning data, together with the corresponding retention loss (risk), on the TOFU 5% setup. Panels (a) and (c) show GA
and NPO without gradient rectification, where cosine similarity drops sharply and retention risk rises. Panels (b) and (d) show the same
methods with GRU, where both curves remain stable, indicating mitigated conflict and better retention.

alignment using cosine similarity1. Additionally, we track
the corresponding retention performance to clearly illus-
trate how gradient alignment affects the model’s behavior
throughout unlearning. In Figure 1, we present two repre-
sentative pairs of visualizations, illustrating these gradient
dynamics and retention performance for the representative
unlearning methods GA and Negative Preference Optimiza-
tion (NPO) (Zhang et al., 2024). This empirical observation
motivated the design of our framework. In the following
sections, we further substantiate this motivation through a
formal and theoretical analysis.

To this end, we introduce the Gradient Rectified Unlearning
(GRU), a general framework to mitigate the trade-off be-
tween unlearning and retention with both optimisation and
geometry implications. The key insight of GRU lies in the
gradient rectification during model updates: The gradients
for unlearning are re-projected onto the orthogonal direc-
tions with respect to those that are detrimental to retention,
thereby ensuring the overall intact performance under a first-
order assumption (cf., Section 3.1). Accordingly, examples
illustrating the altered behavior of gradient dynamics are
shown in Figure 1(b) and (d). The directions that potentially
harm retention can be estimated by the gradients from a
set of data non-targeted for unlearning, which are readily
accessible for many well-established benchmarks (Maini
et al., 2024) or can be directly extracted from pre-trained
models (Carlini et al., 2021). Please refer to Figure 2 for a
conceptual illustration of our framework.

We further provide a detailed analysis to comprehend the
mechanisms behind GRU. For the goal of retention, we
demonstrate that GRU offers enhanced reliability over previ-
ous unlearning methods. Therein, an accurate estimation of
the retention direction is crucial for its success. For the goal
of unlearning, those original methods that possess gradi-
ent directions that are closer (i.e., smaller cosine similarity)
to that for retention lead to better effectiveness, thereby
allowing the rectified unlearning gradients to maintain a

1We refer to data that are not targeted for unlearning as “re-
tain data” and data targeted to be unlearned as “unlearning data,”
aligning with existing literature (Maini et al., 2024).

GRU method
Original method
Updating direction
Original direction

Deteriorating 
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Figure 2. Illustration of our unlearning method. Conventional
unlearning methods, such as GA, often suffer from declining re-
tention performance, leading to diminished model utility. GRU
mitigates this issue by rectifying the original gradients at each step,
ensuring reliable unlearning without compromising retention.

substantial magnitude after adjustment. Hence, a proper
choice for the basic unlearning methods is also important.

We conduct comprehensive experiments across a vari-
ety of well-established unlearning benchmarks, including
TOFU (Maini et al., 2024), WMDP (Li et al., 2024), and
MUSE (Shi et al., 2024). The integration of our GRU with
established baselines demonstrates its effectiveness, achiev-
ing powerful unlearning capabilities alongside enhanced
retention reliability. These results underscore the general-
ity and significant potential of our approach in effectively
mitigating the trade-off between unlearning and retention.

2. Preliminaries
We consider a pre-trained LLM that models an autoregres-
sive distribution over sequences of tokens. Specifically, for
an input sequence s = [s1, s2, . . . , s|s|], the probability
of the sequence is modeled as the product of conditional
probabilities of each token given all preceding tokens:

p(s;θ) =

|s|∏
i=1

p(si | s1:i−1;θ),
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where θ denotes model parameters, and s1:i−1 represents
the subsequence consisting of tokens s1 through si−1.
θ is typically learned by minimizing the negative log-
likelihood (NLL) loss over a large corpus of web-sourced
data Dt = {s1, s2, . . . , sm} of size m, which is given by
−1/m

∑
s∈Dt

log p(s;θ). Pre-trained LLMs have shown
their remarkable capabilities (Zhao et al., 2023). How-
ever, these models also face safety concerns due to their
reliance on web-sourced data, potentially leading to privacy
breaches (Das et al., 2024), copyright infringement (Eldan &
Russinovich, 2023), and potential misuse (Yao et al., 2024).

2.1. LLM Unlearning

These concerns motivate the emerging studies of LLM un-
learning recently, which aims to effectively remove undesir-
able data points or entire hazardous domains from the origi-
nal models. Formally speaking, let Du = {s1u, s2u, . . . , snu}
represents the unlearning dataset, typically a subset of the
training data Dt where n≪ m. The primary objectives of
LLM unlearning are twofold (Liu et al., 2024b):

a) Removal: The unlearned model, characterized by pa-
rameters θu, should eliminate the knowledge associ-
ated with Du, thereby reducing its capacity to recall or
reproduce any information targeted to be forgotten.

b) Retention: The model should also retain its perfor-
mance on the remaining data Dt \ Du, ensuring that
the capabilities on tasks and data unrelated to the un-
learning dataset can be preserved in reliable manner.

The objectives of removal and retention are both essential for
LLM unlearning, which can be interpreted as a bi-objective
learning problem (Liu et al., 2024b; Wang et al., 2024b).

2.2. Unlearning Methods

In the following, we present several representative methods
for unlearning, each addressing ways to remove or preserve
retention performance, while striving to mitigate the trade-
off between the two goals. We further discuss gradient
projection, a foundational strategy in machine learning, and
its recent advances in addressing competing objectives.

Gradient ascent (GA) is one of the most fundamental un-
learning methods, which minimizes the log-likelihood for
targeted data. The unlearning objective of GA is

min
θ
LGA(Du;θ) :=

1

n

∑
s∈Du

log p(s;θ), (1)

which directly reduces the probabilities of generating con-
tents resembling Du to approach zero, thereby leading
to effective knowledge removal. However, due to its ex-
tremely large strengths of gradient updates, the resulting

GA-unlearned models will suffer from excessive unlearn-
ing (Liu et al., 2024b), where the model responses for non-
targeted data will also be damaged, i.e., GA is not good
at retention. It motivates a series of subsequent works to
improve the retention performance for the resulting models.

Gradient Difference (GD) regularizes GA with a retain
dataset Dr of size m′, typically sampled from Dt \ Du and
m′ ≪ m. These data represent the knowledge that should
be preserved. The associated retain loss, which is given by

R(Dr;θ) = −
1

m′

∑
s∈Dr

log p(s;θ), (2)

serves as regularization in conjunction with GA, namely,

min
θ
LGD(Du,Dr;θ)

:= LGA(Du;θ) + λR(Dr;θ),
(3)

where λ is a trade-off hyper-parameter, typically set to 1.
However, many previous works (Maini et al., 2024) reveal
that the unlearning term, i.e.,LGA(Du;θ), tends to dominate
the dynamics of gradient updates. Therefore, GD may still
strongly impact retention performance negatively.

Negative Preference Optimization (NPO) (Zhang et al.,
2024) directly refines the objective of GA to mitigate ex-
cessive unlearning, of which the formulation is motivated
by direct preference optimization, a well-known preference
alignment method (Rafailov et al., 2024). NPO segregates
the dis-preferred part from DPO, heuristically employing it
as the unlearning objective, following the formulation of

min
θ
LNPO(Du;θ)

:=
1

n

∑
s∈Du

2

β
log

[
1 +

( p(s;θ)

p(s;θorg)

)β]
,

(4)

where β is the inverse temperature and θorg denotes model
parameters before unlearning. The effects of NPO in miti-
gating excessive unlearning can be understood through its
gradients, which are equivalent to GA with extra reweight-
ing (Zhang et al., 2024). This weighting mechanism pays
more attention to data that have small impacts on retention.
However, the strength of unlearning for NPO is weaker than
that for GA, which could lead to inadequate unlearning.

Unlearning with Control (UWC) (Wang et al., 2024a)
suggests a post-unlearning calibration framework. UWC
blends model parameters from before and after unlearning to
restore retention performance. With a meticulous-searched
controlling parameter α, we have the calibrated model of

αθu + (1− α)θorg, (5)

whose performance on Dt \ Df can approach that of θorg.
UWC is flexible in integration with various unlearning meth-
ods, while its ability to address excessive unlearning still
comes at the cost of compromising the effects of unlearning.
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Gradient Rectification for Conflicting Goals. The idea
of modifying gradient directions to resolve conflicts be-
tween competing objectives has been explored in various
domains, including continual learning and multi-task learn-
ing (Lopez-Paz & Ranzato, 2017; Yu et al., 2020). This idea
was formalized in continual learning by Gradient Episodic
Memory (GEM) (Lopez-Paz & Ranzato, 2017), which con-
strains the current task’s update so that it does not increase
the loss on past tasks, using a quadratic program to project
the update direction into the feasible region defined by gra-
dients of previous tasks. Subsequently, similar geometric
principles were adopted in multi-task learning, Gradient
Surgery for Multi-Task Learning (PCGrad) (Yu et al., 2020)
detects gradient conflicts between tasks and projects each
task’s gradient to reduce destructive interference. Our work
extends the reach of gradient projection methods, providing
a theoretical and practical framework tailored to the spe-
cific challenge, i.e., the trade-off between unlearning and
retention in LLMs.

3. Gradient Rectified Unlearning
As discussed above, many methods have been developed to
mitigate excessive unlearning. However, these achievements
often result in an inevitable trade-off between removal and
retention—improvements in maintaining the overall perfor-
mance typically occur at the expense of weakened strength
of unlearning. This trade-off is detrimental to practical
LLM unlearning, since both the goals of removal and reli-
able retention are essential: Compromising on removal risks
privacy breaches and harmful behaviors; compromising on
retention can adversely affect the overall utility of the model,
negatively affecting its commercial value.

In this paper, rather than developing new methods that can
better balance the trade-off between removal and retention,
we turn our focus toward directly breaking this dichotomy.
In other words, we aim to explore frameworks in which im-
proved unlearning does not compromise the overall utility.

3.1. Motivation and The Proposed Framework

In this section, we formalize our goal towards avoiding
trade-offs by studying a constrained gradient updating rule.

To begin with, considering any unlearning objective Ru

mentioned in Section 2, we recall the conventional stochas-
tic updating rule at the t-th step in the following:

θ(t+1) ← θ(t) − lr · g(t)
u . (6)

Therein, lr denotes the (un) learning rate and g
(t)
u =

∇θL(D̃(t)
u ;θ(t)) with D̃(t)

u the mini-batch of size b sam-
pled from Du and L being any unlearning loss mentioned in
Section 2, e.g., GA, GD, or NPO. This direct updating rule
has proven to be unreliable in terms of retention, leading

to the undesirable trade-off between retention and removal,
which is widely mentioned in many previous works (Wang
et al., 2024a; Liu et al., 2024b; Maini et al., 2024).

This notable drawback motivates us to replace g(t)
u in Eq. (6)

with its constrained version g̃
(t)
u : We incorporate the retain

lossR as in Eq. (2), along with the corresponding gradients
g
(t)
r = ∇θR(Dr;θ

(t)), typically estimated by random mini-
batch drawn from Dr. Then, we assert that the adjusted
gradients g̃(t)

u should meet the condition as

argmin
g̃
(t)
u

∥g̃(t)
u − g(t)

u ∥2

s.t. ⟨g̃(t)
u , g(t)

r ⟩ ≥ 0.

(7)

The objective min ∥g̃(t)
u − g

(t)
u ∥2 ensures that the con-

strained gradients remain close to their original values.
Meanwhile, the constraint ⟨g̃(t)

u , g
(t)
r ⟩ ≥ 0 guarantees that

the updates will not impair the model performance on retain
data. Overall, Eq. (7) encapsulates our principle that the
removal of targeted knowledge should occur under strict
conditions that ensure the retention of performance on non-
targeted data, thereby mitigating the inherent trade-off. As
we mitigate the trade-off by adjusting the gradient direc-
tion, we name the corresponding unlearning framework as
gradient rectified unlearning (GRU).

The rationale behind ⟨g̃(t)
u , g

(t)
r ⟩ ≥ 0 for retention is sim-

ple: Assuming the model is locally linear (Wortsman et al.,
2022), we can approximate the expected loss change for the
retain data asR(θ+lr·g̃u)−R(θ) ≈ −lr⟨g̃(t)

u , g
(t)
r ⟩. As

observed, a positive ⟨g̃(t)
u , g

(t)
r ⟩ implies that the lossR does

not deteriorate following gradient updates, thereby ensuring
the goal of retention. Later, we will show that the condition
expressed in Eq. (7) remains valid under some less stringent
assumptions, further highlighting its practical applicability.

3.2. Realizations

This section explores details to implement GRU, focusing
on its closed-form solution as well as additional strategies
to enhance its reliability in practice.

Closed-form solution. Eq. (7) is a constrained optimization
problem that is not easy to be implemented. However, it
constitutes a quadratic programming problem with a linear
constraint, allowing us to derive its closed-form solution.
Specifically, the adjustment gradients can be written as:

g̃(t)
u =g(t)

u +
max(−⟨g(t)

u , g
(t)
r ⟩, 0)

∥g(t)
r ∥2

g(t)
r

=g(t)
u +

∥g(t)
u ∥max(− cos(g

(t)
u , g

(t)
r ), 0)

∥g(t)
r ∥

g(t)
r ,

(8)

where cos(g
(t)
u , g

(t)
r ) = ⟨g(t)

u , g
(t)
r ⟩/(∥g(t)

u ∥ · ∥g(t)
r ∥). For
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Figure 3. Illustration of GRU Updating Rule. Panels (a)-(b) dis-
play situations where the angles between the gradient vectors (red
dashed and blue dashed arrows) are obtuse, violating the constraint
in Eq. (7). In these cases, the gradients should be adjusted orthog-
onally. Panel (c) illustrates a scenario with an acute angle between
the gradient vectors, adhering to the constraint in Eq. (7) and
falling within the retention-safe feasible region (red half-circle),
thus requiring no further adjustment.

more detailed derivations, please refer to Appendix A.1.

Eq. (8) conveys a clear geometric interpretation, adjusting
the original gradients g

(t)
u onto the half-space defined by

the constraint ⟨g(t)
u , g

(t)
r ⟩ ≥ 0. If this constraint is already

satisfied, then g
(t)
u remains unchanged. Otherwise, g(t)

u will
be projected in the direction that is orthogonal to g(t)

r . Please
refer to Figure 3 for some visual illustrations. Moreover,
we present the implementation of our GRU in Algorithm 1,
further elaborating on several key details as follows.

Stable Estimation. In practice, we typically utilize stochas-
tic mini-batches of data to estimate the exact values of g(t)

r

outlined in Eq. (7). Specifically, as shown in Algorithm 1,
the mini-batches B(t)u and B(t)r serve as substitutes for the
complete datasets Du and Dr. However, this may introduce
stochastic errors, particularly when the batch size is small,
which is commonly the case in LLM unlearning. There-
fore, we employ the exponential moving average (EMA) to
mitigate the additional computation costs associated with
increasing batch sizes, namely,

ḡ(t)
r = (1− γ)ḡ(t−1)

r + γg(t)
r , (9)

where γ ∈ [0, 1) is the smoothing parameter, with smaller
values suggesting that a broader range of recent batches is
covered, indicating a large batch size implicitly. It is worth
noting that EMA is an approximation of using large batch
sizes, given that θ itself is also updated throughout the steps
t. Therefore, selecting the appropriate value for γ is crucial,

Algorithm 1 GRU Framework

1: Input: Initial parameters θorg, learning rate lr, num-
ber of iterations T , and hyperparameters γ, τ .

2: Initialize ḡ
(0)
r = 0;

3: for t = 0, 1, . . . , T − 1 do
4: sample the mini-batches of B(t)u and B(t)r from Du

and Dr, respectively;
5: g

(t)
u ← ∇θL(B(t)u ;θ(t));

6: g
(t)
r ← ∇θRr(B(t)r ;θ(t));

7: ḡ
(t)
r ← (1− γ)ḡ

(t−1)
r + γg

(t)
r ;

8: if ⟨g(t)
u , ḡ

(t)
r ⟩ < 0 then

9: g̃
(t)
u ← g

(t)
u − ⟨g(t)

u , ḡ(t)
r ⟩

∥ḡ(t)
r )∥2

ḡ
(t)
r ;

10: else
11: g̃

(t)
u ← g

(t)
u ;

12: end if
13: if ∥g̃(t)

u ∥ > τ then
14: g̃

(t)
u ← τ g̃

(t)
u /∥g̃(t)

u ∥;
15: end if
16: θ(t+1) ← θ(t) − lr(t)g̃

(t)
u ;

17: end for
18: Return θ(T ).

as it involves balancing the representation of a larger batch
size against minimizing the induced errors.

Gradient Clipping. Due to stochastic variations and low-
order approximations, the rectified gradients may inadver-
tently encroach upon regions that may decrease retention.
To further enhance the practical reliability of our GRU, we
further constrain the gradient norm via gradient clipping,
following many previous works such as (Wortsman et al.,
2022; Wang et al., 2024a). Specifically, the gradients are
scaled down to ensure it stays within a bounded range, i.e.,

g̃(t)
u ←

{
g̃
(t)
u , if ∥g̃(t)

u ∥ ≤ τ

τ g̃
(t)
u /∥g̃(t)

u ∥, if ∥g̃(t)
u ∥ > τ

, (10)

where τ is the predefined threshold for the maximal-allowed
value for the norm of the rectified gradients.

3.3. Theoretical Analysis

In this section, we present formal analyses to further sub-
stantiate the efficacy of our GRU, which focuses on two
main aspects: a) Efficacy in Removal: In Theorem 3.1, we
demonstrate the convergence of the GRU updating dynam-
ics for unlearning. b) Reliability in Retention: In Theo-
rem 3.2, we illustrate that our GRU is capable to preserve
overall model performance, surpassing the cases without
GRU. Overall, we formally verify that our GRU can miti-
gate the notorious trade-off between removal and retention,
thus ensuring overall superior unlearning efficacy.
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We begin by showing that unlearning with GRU ensures
convergence in lie with the original objective of unlearning.

Theorem 3.1. Assume the unlearning objective L is dif-
ferentiable, L-smooth, and lower bounded. Then, the
GRU update rule with the learning rate lr < 2/L will
converge to either a) a degenerate configuration where
cos

(
g
(t)
u , g

(t)
r

)
= −1 at a specific step t, or b) the locally

optimal solution θ∗ that minimizes L(Du;θ).

Remark. Overall, Theorem 3.1 demonstrates that, from a
convergence perspective, the GRU does not compromise
the original goal of unlearning. This is contingent upon
avoiding those cases where cos

(
g
(t)
u , g

(t)
r

)
= −1. More-

over, given that stochastic optimization is employed for
LLM unlearning, we can simply overcome this issue by
randomly selecting a new data batch from the unlearning
dataset, thereby allowing the unlearning process to continue.
Please refer to Appendix A.2 for the detailed proof.

Moreover, central to our motivation, we justify that our GRU
can better maintain model performance on non-targeted data
compared to original unlearning rules without GRU.

Theorem 3.2. Assume that the retain loss R is differen-
tiable and L-smooth, and the lr-curvature Hlr(R; g) for
R (cf., Definition A.1) satisfies Hlr(R; g) ≥ ℓ∥g∥2 for
any gradients g and some constant ℓ ≤ L. Let θ(t+1)

gru and
θ
(t+1)
u be the parameters after applying one step of gradient

updates for the original θ(t) with and without GRU, respec-
tively. Then, we can ensureR(Dr;θ

(t+1)
gru ) ≤ R(Dr;θ

(t+1)
u )

if a) ℓ ≥ L
(
1− ⟨g(t)

u , g
(t)
r ⟩2/(∥g(t)

u ∥2 ∥g(t)
r ∥2)

)
and b)

0 < lr ≤ 2
L .

Remark. In heuristics, 1−⟨g(t)
u , g

(t)
r ⟩2/(∥g(t)

u ∥2 ∥g(t)
r ∥2 =

sin2ϕ quantifies the degree of conflict between g
(t)
u and g

(t)
r ;

larger values (i.e., gradients closer to orthogonal) generally
indicate a greater potential to harm the retain performance.
Hence, condition a) implies that, when the conflict is more
severe, our requirement on the curvature ratio ℓ/L must
be correspondingly stronger. Condition b) is the classical
stability constraint 0 < lr ≤ 2/L for gradient descent on
an L-smooth function, ensuring the validity of the quadratic
bound adopted in GRU. Please refer to Appendix A.3 for
the detailed proof.

Overall, Theorem 3.1 ensures that GRU will not compro-
mise convergence for the original unlearning objective, and
Theorem 3.2 further characterizes its behaviors in preserv-
ing the overall model performance. Taken together, we
certify the efficacy of our GRU in mitigating the notorious
trade-off between removal and retention.

4. Go Beyond GRU
Most unlearning methods, including our GRU, rely on re-
tain data to preserve the overall performance. However,
the retain data adopted in current benchmarks can often
exhibit distributional bias. For example, in the TOFU setup,
specific author profiles are selectively unlearned while the
remaining profiles are retained. Yet, the broader objective
of retention is to preserve model capacity across a diverse
range of domains, such as the humanities, sciences, and
general knowledge. As a result, the current retain data may
not be fully representative, with bias arising from the distri-
butional shift between the adopted retain set and the broader
expected data distribution encountered in real-world appli-
cations (Huang et al., 2023). It motivates us to investigate a
challenging scenario where we need rely exclusively on the
unlearn data Du, without further access to the retain data
Dr. To adapt for this setup, we make several adjustments for
GRU and propose task vector rectified unlearning (TRU).

The key insight behind TRU is that unlearning typically
involves a series of data points rather than a single instance.
Thus, for each individual data point su ∈ Du targeted for
unlearning, the remaining data points within Du, i.e., Du \
{su}, can offer information for retention if used properly.
Here, we incorporate the so-called task vectors (Ilharco
et al., 2022), which is critical in our algorithmic design.

Task Vector. A task vector typically represents the neces-
sary adjustments for model parameters to incorporate new
knowledge. For example, when we want the model to learn
from a specific data point s, we initiate by fine-tuning the
current model parameterized, denoted by θorg. It can be
achieved through T iterations of gradient updates, following
θ(t+1) = θ(t)+lr ·∇θ log p(s;θ

(t)) with θ(0) = θorg and
θs = θ(T ). Obviously, Ts allows for the augmentation of
the original model with the knowledge acquired from s by
applying θorg + Ts. Conversely, to unlearn a data point su,
we can reverse this process by subtracting the task vector
via θorg − Tsu

(Barbulescu & Triantafillou, 2024).

Rectified Task Vector. However, the task vector Tsu
still

faces the trade-off between unlearning and retention. To
address this, we begin by considering a simple scenario to
remove a single data point su. Hence, a similar constrained
updating rule, as outlined in Eq. (7), can be adopted and
further adjusted as:

min
T̃su

∥T̃su
− Tsu

∥2

s.t. ⟨−T̃su
,∇θR(Du \ {su};θorg)⟩ ≥ 0.

(11)

It mandates that the task vector be rectified to have no nega-
tive impact on other data points. For this purpose, we utilize
the internal reference set for retention, Du \ {su}, to con-
struct a rectified task vector for su. Similar to Eq. (8), we
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have its closed-form solution as

T̃su
= Tsu

+
[⟨Tsu

, ∇θR(Du \ {su};θorg)⟩]−
∥∇θR(Du \ {su};θorg)∥2

Tsu
.

(12)

This mechanism naturally extends to multiple data points,
where we compute a rectified task vector T̃ su for each su ∈
Du. Moreover, to ensure standardised influence across data
points, these task vectors are further normalized so that their
magnitudes are equal to 1. The resulting normalized vectors
are denoted as T̄su , facilitating equitable integration across
data points. The final unlearning update is then formed by
aggregating (e.g., averaging) these rectified vectors across
all elements in Du:

θorg −
stg

n

∑
su∈Du

T̄su
, (13)

where we subtract the average of all normalized task vectors
from the original model and n represents the number of
data points withinDu and stg indicates the strength of task
vector-based unlearning. It ensures a reliable removal of
targeted data while mitigating the compromise to the overall
performance. Notably, because each rectified task vector is
constructed with respect to its own reference subset, they
remain mutually compatible, and their aggregation yields
a stable and robust overall unlearning direction. Moreover,
when the number of data points n is substantial, an effective
strategy involves randomly dividing the entire unlearning
set into several smaller batches. Each batch then serves
as a substitute for su in Eq. (11), reducing the demands
associated with calculating the task vectors.

5. Experiments
In this section, we conduct extensive experiments to verify
the effectiveness of our GRU in mitigating the trade-off
involved in LLM unlearning. To begin with, we first offer a
brief description of our experimental setups.

Benchmarks. Our evaluations adopt three representative
benchmarks: TOFU (Maini et al., 2024), WMDP (Li et al.,
2024), and MUSE (Shi et al., 2024). TOFU comprises
200 synthetic author profiles, totally 4,000 question-answer
pairs. It covers different unlearning setups with varying pro-
portions of data targeted to be unlearned, including 1%, 5%,
or 10% of the profiles as unlearning sets. WMDP collects a
set of sensitive knowledge encountered in practice, further
categorized into three areas as biosecurity, cybersecurity,
and chemical security. MUSE constructs their unlearning
sets using news articles and books, primarily focusing on
addressing copyright issues within existing LLMs.

Baselines and Backbones. For the baseline methods, we
focus on a set of objective-based approaches, including GA,

GD, NPO, weighted gradient ascent (WGA) (Wang et al.,
2024b). All of these methods have demonstrated their prac-
tical significance and are thus adopted in our experiments.
Moreover, for the backbone models, we adhere to the default
suggestions for each benchmarks. We use further fine-tuned
LLaMA2-7B-chat (Touvron et al., 2023b) and Phi-1.5 (Ab-
din et al., 2024) for TOFU; Zephyr-7B-beta (Tunstall et al.,
2023) for WMDP; ICLM-7B (Shi et al., 2023) for MUSE.

Hyper-parameters Configurations. In our experiments,
We employ the AdamW optimizer (Loshchilov & Hut-
ter, 2017) with the batch size of 32 and the learning
rates 2 × 10−5 for Phi-1.5 and 1 × 10−5 for LLaMA2-
7B-chat in TOFU; 1 × 10−5 in MUSE; 4 × 10−6 in
WMDP. Furthermore, the training steps are set to 5
epochs for TOFU, 1 epoch for MUSE, and 20 steps
for WMDP. For the hyperparameters within GRU, we
employ grid search on validation data to identify their
optimal values. The candidate values for γ include
{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99},
and that for τ are {0.001, 0.005, 0.01, 0.1, 1.0, 10, 100}.
Their specific choices and their impacts across different
baseline methods are detailed in Appendix D.

Metrics. We adhere to the suggested evaluation metrics
for each benchmark. TOFU adopts two metrics: FQ and
MU. FQ measures the extent of data removal by the statisti-
cal difference in responses between unlearned models and
ground-standard models, which are trained without targeted
data. Higher values of FQ are preferred, and we report the
logarithm of the original FQ values for enhanced readability.
MU assesses the overall performance of retention, which
is a combination of several foundational metrics. It can be
computed on the retain sets, real authors, and world facts,
where higher values indicate better retention.

WMDP performs QA evaluations on WMDP-Bio and
WMDP-Cyber to assess the efficacy of removal, where the
prompts are standardized following (Gao et al., 2024). For
retention, WMDP also utilizes QA evaluations, but conduct-
ing on the MMLU benchmark. Therein, smaller values of
QA evaluations are preferred for WMDP-Bio and WMDP-
Cyber, while larger values are desired for MMLU. Moreover,
MUSE proposes two metrics to assess the removal efficacy,
i.e., VerbMem and KnowMem, quantifying various aspects
of memorization and membership inference. MUSE also
uses KnowMem for assessing performance retention, where
larger values are preferred. To ease analysis, we use the
symbols ↑ and ↓ next to metric names to indicate that their
larger/smaller values are preferred.

Hardware Configurations. All our experiments are con-
ducted with a series of computation nodes powered by
NVIDIA-A100-80GB GPUs and Intel(R) Xeon(R) Gold
6248R CPUs. All our codes are implemented on Transform-
ers version 4.42.4 and CUDA version 12.1.
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Figure 4. Experimental results on the TOFU benchmarks: Evaluating 5% and 10% unlearning setups using Llama-2-7B (Llama) and
Phi-1.5 (Phi) backbones. We present metric scores—either FQ or MU— both without and with GRU, displayed in pairs and highlighted
the corresponding improvements after GRU (imp w/ GRU) with colored bars. For example, in (a), the FQ values of -16.93 (w/o GRU) and
-3.52 (w/ GRU) for GA are connected by a blue-colored bar, signifying the improvements attributed to GRU.

5.1. Main Results

GRU is a general framework compatible with a wide range
of objective-based unlearning methods. In this section, we
demonstrate its reliability by integrating it with various
unlearning approaches. Our goal is to show the universal
improvements achieved with GRU across different methods
in both removal and retention, thereby justifying the overall
efficacy of our GRU in mitigating their trade-off.

TOFU Benchmark. We consider five representative base-
line methods—GA, WGA, NPO, GD, and NPO+GD—to
validate their performance improvements after implement-
ing GRU in terms of both removal (FQ) and retention (MU)
metrics. We summarize our experimental results in Figure 4,
focusing on the challenging setups of 5% and 10% unlearn-
ing. Additional experimental setups and baseline methods
are detailed in Appendix B. We observe uniform improve-
ments in both FQ and MU metrics after applying GRU,
across various methods, unlearning setups, and backbone
models. Surprisingly, even for methods typically viewed as
less promising, such as GA, we observe significant enhance-
ments in both removal and retention after incorporating
GRU. The improvements observed in other methods, such
as WGA and GD, are also very impressive.

On the other side, with the integration of GRU, it remains
difficult to identify a single baseline method that always
outperforms others across different unlearning scenarios

GA
WGA GD NPO

NPO+GD

0.25

0.26

0.27

0.25 0.25 0.25

0.27 0.27

0.25 0.25 0.25

0.26 0.26
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(a) Bio Unlearning (↓)
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0.25 0.25 0.26 0.30

0.47

0.29 0.26
0.30

0.37

0.50imp w/ GRU

(b) MMLU Retention (↑)

Figure 5. Experimental results on the WMDP benchmarks with QA
accuracies evaluated on Bio unlearning and MMLU, quantifying
the efficacy of removal and retention, respectively.

and setups. For example, with Phi-1.5, WGA and NPO
are more effective than others. When coming to Llama-
2-7B, GA and WGA tend to be more suitable under the
5% unlearning setup, whereas NPO and NPO+GD show
greater efficacy under a 10% unlearning setup. Thus, while
GRU uniformly enhances the overall efficacy of unlearning,
the selection of baseline methods remains a task-dependent
consideration that requires careful selection.

WMDP and MUSE Benchmarks. To further substantiate
the general efficacy and reliability of our GRU, we con-
duct additional experiments using the WMDP and MUSE
benchmarks, of which the results are detailed in Figure 5
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Table 1. Experimental results on the TOFU benchmarks within the
retain-data-free settings are presented. We compare our TRU with
representative baseline models, across different unlearning setups
and backbone architectures. The top-performing results in each
column are highlighted in bold to ease reference.

Phi-1.5 Llama2-7B

Method 5% 10% 5% 10%

FQ↑ MU↑ FQ↑ MU↑ FQ↑ MU↑ FQ↑ MU↑

original -28.84 0.52 -40.52 0.52 -32.13 0.63 -48.59 0.63
retrain 0.00 0.52 0.00 0.53 0.00 0.60 0.00 0.61

TV -46.18 0.00 -36.06 0.00 -22.13 0.00 -9.06 0.00
GA -28.06 0.00 -28.57 0.00 -16.93 0.00 -14.37 0.00
WGA -12.42 0.03 -29.86 0.01 -7.75 0.44 -28.57 0.12
NPO -11.91 0.36 -15.76 0.33 -10.91 0.49 -8.70 0.29
TRU -9.04 0.40 -13.04 0.36 -7.34 0.53 -4.92 0.47

and Figure 6, respectively. Note that the minimum values
for QA accuracy and KnowMem are 0.25 and 0, and thus
the results shown for GA and GD in Figure 5(a) and for all
methods in Figure 6 cannot decrease further.

Overall, our results demonstrate that GRU remains reli-
able across various baseline methods and unlearning setups,
enhancing the overall efficacy of unlearning with notable
improvements or maintenance in both the goals of data
removal and retention. Additionally, it is evident that the
NPO-based methods generally deliver superior performance.
Given these observations, which can be recommended as
our default choices for effective unlearning.

5.2. Retain Data Free

We further consider the retain-data-free settings, where we
have no retain data at hand as mentioned in Section 4. As a
case study, we test the efficacy of various methods that do
not rely on retain data and our TRU. We further include the
baseline of task vector (TV) (Ilharco et al., 2022) for fair
comparison, which is also the key technique that is adopted
in our TRU. The experimental results are summarized in
Table 1, where we also report metric scores for the model
before unlearning (original) as well as for the gold standard
model (retrain), which is fine-tuned from scratch without
the targeted data. Across baseline methods, it can be ob-
served that the retain-data-free settings is challenging. Only
WGA and NPO can demonstrate some ability of reliable
unlearning. In contrast, other methods, such as TV and
GA, can render the unlearned models completely useless.
Furthermore, our TRU exhibits notable improvements over
these baselines in both removal and retention, showcasing
the broad applications of our unlearning schemes suggested
in Eq. (7) even in some more restricted unlearning setups.
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Figure 6. Experimental results on the MUSE benchmarks with
KnowMem, assessing the efficacy of removal and retention on
targeted and non-targeted data, respectively.

5.3. More Results in Appendices

Due to space limit, we leave more detailed experimental
results and additional analyses to the appendices. For con-
venience, this section provides a brief overview of these
contents: In Appendix B, we offer more comprehensive
results for our main experiments on varying benchmarks
and metrics, further covering other baselines such as Sim-
NPO (Fan et al., 2024) and NPO+KL. Additionally, we
include a comparison with RMU, the method proposed
alongside WMDP, specifically evaluated on the WMDP
benchmark together with its combination with GRU (see
Appendix C for results and discussion). In Appendix D, we
perform a hyper-parameter sensitivity analysis and outline
their recommended setups. Finally, in Appendix E, we in-
clude our ablation studies and other experimental analyses.
Finally, we provide a more practically Meaningful and fairer
comparative analysis in Section F.

6. Conclusion
This paper introduces GRU, a novel and general framework
designed to mitigate the inherent trade-off between data
removal and retention for LLM unlearning, a critical chal-
lenge in this field. Our key insight involves regulating the
gradients used for unlearning by projecting them onto the
orthogonal complement of directions that negatively affect
retention. Thereby, GRU ensures that the unlearning up-
dates minimize their adverse impact on the overall model
performance. We offer both theoretical analyses and empiri-
cal evidence to demonstrate the effectiveness of our method
in mitigating the trade-off between removal and retention,
resulting in overall efficacy of unlearning. However, our
method critically relies on the quality of retain data. While
TRU can mitigate this issue to some extent, potential biases
and distribution shifts therein may still be detrimental. In
the future, we will explore ways to pursue reliable LLM
unlearning without relying on retain data or their surrogates.
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A. Derivations and Proofs
To begin with, we present our derivations regarding the closed-form solutions for Eq. (7) as well as detailed proofs for
theoretical analyses in Section 3.3.

A.1. The Closed-form Solution of Eq. (7)

Recalling the original optimization problem of

argmin
g̃
(t)
u

∥g̃(t)
u − g(t)

u ∥2

s.t. ⟨g̃(t)
u , g(t)

r ⟩ ≥ 0

,

We construct the Lagrangian equation following

1

2
∥g̃(t)

u − g(t)
u ∥2 − κ⟨g̃(t)

u , g(t)
r ⟩ (14)

with κ ≥ 0 the Lagrange multiplier. Then, setting the gradients Eq. (14) with respect to g̃
(t)
u to zero, we have

g̃(t)
u − g(t)

u − κg(t)
r = 0. (15)

It indicates that we have the solution of
g̃(t)
u = g(t)

u + κg(t)
r .

Substituting it back into the constraint:

⟨g̃(t)
u , g(t)

r ⟩ = ⟨g(t)
u + κg(t)

r , g(t)
r ⟩ = ⟨g(t)

u , g(t)
r )⟩+ κ∥g(t)

r ∥2 ≥ 0

and solving for κ, we have

κ ≥ −⟨g
(t)
u , g

(t)
r ⟩

∥g(t)
r ∥2

.

Since κ ≥ 0, we can further derive

κ =
[−⟨g(t)

u , g
(t)
r ⟩]+

∥g(t)
r ∥2

=
[⟨g(t)

u , g
(t)
r ⟩]−

∥g(t)
r ∥2

.

Then, we can obtain the closed-form for the adjusted gradients as

g̃(t)
u = g(t)

u +
[⟨g(t)

u , g
(t)
r ⟩]−

∥g(t)
r ∥2

g(t)
r

Thus, we complete our derivation for Eq. (7).

We further demonstrate that the GRU causes the magnitudes of the rectified gradients to decrease. To this end, we first
decompose the original gradients g(t)

u into two orthogonal components that are parallel and perpendicular to g
(t)
r , which are

g(t)
u = g⊥ + g∥ and g⊥ ⊥ g(t)

r .

with g∥ parallel to g
(t)
r . In this decomposition, g∥ represents the component of g(t)

u that aligns with g
(t)
r , whereas g⊥ is

orthogonal to g
(t)
r . Then, if ⟨g(t)

u , g
(t)
r ⟩ ≥ 0, no adjustment is needed and we keep g̃

(t)
u = g

(t)
u . In this case, the norm

remains the same as ∥g̃(t)
u ∥ = ∥g(t)

u ∥. However, when ⟨g(t)
u , g

(t)
r ⟩ < 0, g∥ represents a negatively aligned component with

respect to g
(t)
r . The correction term in Eq. (8) removes this negative parallel portion, thereby setting g̃

(t)
u = g⊥. Since

g
(t)
u = g⊥ + g∥, we have ∥g(t)

u ∥2 = ∥g⊥∥2 + ∥g∥∥2. When the parallel component is negative relative to g
(t)
r , its removal

decreases the overall norm. Thus, it is easy to conclude that, after rectification, we have

∥g̃(t)
u ∥ = ∥g⊥∥ < ∥g(t)

u ∥.

This difference in magnitudes is influenced by the angles between g
(t)
u and g

(t)
r . Overall, as these angles widen beyond 90◦,

the magnitudes of the negative component g∥ increases. It indicates that a greater portion of this components should be
removed to fulfill the constraint specified in Eq. (7). In an extreme case where the angles approach 180◦, nearly the entire
g
(t)
u is inverted relative to g

(t)
r . It implies a substantial reduction in magnitudes of g(t)

u to approach 0 after adjustment.
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A.2. Proof of Theorem 3.1

Proof. To simply our symbology, we use L(θ) andR(θ) to replace L(Du;θ) andR(Dr;θ) if raising no confusion.

By the L-smoothness of L, we have

L(θ(t) − lr g̃(t)
u ) ≤ L(θ(t)) − lr g(t)⊤

u g̃(t)
u +

Llr2

2
∥g̃(t)

u ∥2.

If we further define

∆(t) := −lr g(t)⊤
u g̃(t)

u +
Llr2

2
∥g̃(t)

u ∥2.

Then, if ∆(t) < 0, we have a strict decrease, i.e., L(θ(t+1)) < L(θ(t)), and thus we can complete our proof. As observed,
∆(t) consists of two terms:

• Linear term: Since g̃
(t)
u is a projection of g(t)

u that does not invert the direction, we have g
(t)⊤
u g̃

(t)
u ≥ 0.

• Quadratic term: Since the norm of g̃(t)
u is bounded by ∥g(t)

u ∥, we have Llr2

2 ∥g̃(t)
u ∥2 ≤ Llr2

2 ∥g(t)
u ∥2.

Hence the sign of ∆(t) depends on the term of −lr + L lr2

2 , where we need to ensure

−lr+ Llr2/2 < 0 =⇒ lr < 2/L.

Under the above condition, the negative linear term dominates the quadratic penalty term, so we have ∆(t) < 0 and

L(θ(t+1)) < L(θ(t)).

Thus, we obtain a strict descent unless we encounter a degenerate scenario. Specifically, if g(t)
u happens to be exactly

reversed with respect to the retain gradients g(t)
r , i.e. their angle is 180◦ and cos(g

(t)
u , g

(t)
r ) = −1, then, after rectification,

one obtains g̃
(t)
u = 0. In this case, we have θ(t+1) = θ(t), which makes no further decrease. Thus, we complete the

proof.

A.3. Proof of Theorem 3.2

Proof. Before giving the detailed proof, we first provide the following definition of the q-curvature.

Definition A.1 (q-Curvature). For any smooth and differentiable lossR, its q-Curvature with respect to some gradients g is
defined as

Hq(R; g) =

∫ 1

0

(1− a)
[
g⊤∇2R

(
θ(t) − a q g

)
g
]
da. (16)

which quantifies the curvature of the local optimization landscape, with larger values indicating a sharper loss landscape.

Recall that at the t-th iteration, the original updating rule without GRU is θ(t+1)
u = θ

(t)
u − lr g(t)

u . Additionally, according
to the integral form of Taylor theorem, for any α ∈ [0, 1], we have

R(θ(t) − lr g(t)
u ) = R(θ(t)) +

∫ 1

0

∇R(θ(t) − alr g(t)
u )⊤[−lr g(t)

u ] da.

Separating the first-order (linear) portion and the second-order (Hessian) portion, one can write:

R(θ(t+1)
u ) = R(θ(t)) − lr ⟨g(t)

r , g(t)
u ⟩ +

1

2

∫ 1

0

[−lr g(t)
u ]⊤∇2R

(
θ(t) − alr g(t)

u

)
[−lr g(t)

u ] da.

Since we assume Hlr(R; g(t)
u ) ≥ ℓ ∥g(t)

u ∥2, we have∫ 1

0

[−lr g(t)
u ]⊤∇2R(θ(t) − alr g(t)

u )[−lr g(t)
u ] da ≥ ℓlr2 ∥g(t)

u ∥2,
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and thus

R(θ(t) − lr g(t)
u ) ≥ R(θ(t)) − lr ⟨g(t)

r , g(t)
u ⟩ +

ℓlr2

2
∥g(t)

u ∥2, (17)

which establishes the lower bound forR(θ(t+1)
u ) = R(θ(t) − lr g(t)

u ). For the rectified updating rule with GRU, due to the
L-smoothness, we have

R(θ(t+1)
gru ) ≤ R(θ(t)) − lr ⟨g(t)

r , g̃(t)
u ⟩ +

Llr2

2
∥g̃(t)

u ∥2. (18)

Combining Eq. (17) and Eq. (18), we have

∆ = R(θ(t+1)
u ) − R(θ(t+1)

gru )

≥
[
R(θ(t)) − lr ⟨g(t)

r , g(t)
u ⟩ +

ℓlr2

2
∥g(t)

u ∥2︸ ︷︷ ︸
Lower bound for R(θ

(t+1)
u )

]
−

[
R(θ(t)) − lr ⟨g(t)

r , g̃(t)
u ⟩ +

Llr2

2
∥g̃(t)

u ∥2︸ ︷︷ ︸
Upper bound for R(θ

(t+1)
gru )

]
.

After organizing, we have

∆ ≥
[
−lr ⟨g(t)

r , g(t)
u ⟩ + ℓ lr2

2 ∥g
(t)
u ∥2

]
−

[
−lr ⟨g(t)

r , g̃(t)
u ⟩ + L lr2

2 ∥g̃(t)
u ∥2

]
= −lr ⟨g(t)

r , g(t)
u ⟩ + lr ⟨g(t)

r , g̃(t)
u ⟩︸ ︷︷ ︸

(linear-difference term)

+
ℓlr2

2
∥g(t)

u ∥2 −
Llr2

2
∥g̃(t)

u ∥2︸ ︷︷ ︸
(quadratic-difference term)

.

Now, we show that the formulations inside each bracket is non-negative:

1. Rectification Nonnegativity. Since g̃
(t)
u is formed from g

(t)
u by removing negatively aligned components with respect

to g
(t)
r , we have ⟨g(t)

r , g̃
(t)
u ⟩ ≥ ⟨g(t)

r , g
(t)
u ⟩, and thus−⟨g(t)

r , g
(t)
u ⟩ + ⟨g(t)

r , g̃
(t)
u ⟩ ≥ 0. Multiplication by lr preserves

non-negativity, ensuring that the expression inside the first bracket remains non-negative.

2. Curvature condition. By construction ∥g̃(t)
u ∥ = ∥g(t)

u ∥ sinϕ, where ϕ is the angle between g
(t)
u and g

(t)
r . Condition a)

of the theorem states ℓ ≥ L
(
1− cos2 ϕ

)
= L sin2 ϕ. Therefore

ℓ∥g(t)
u ∥2 − L∥g̃(t)

u ∥2 = ∥g(t)
u ∥2

(
ℓ− L sin2 ϕ

)
≥ 0,

implying the quadratic-difference term is non–negative for every 0 < lr ≤ 2/L (condition b)).

Since both terms are non–negative, we have ∆ ≥ 0, i.e.,R(θ(t+1)
gru ) ≤ R(θ(t+1)

u ).
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B. Detailed Results
This section provides comprehensive results that echo our main experiments discussed in Section 5.1. It encompasses TOFU,
WMDP, and MUSE benchmarks, further incorporating additional baseline methods like SimNPO, and other metrics, such as
PrivLeak for MUSE. These results are summarized in Tables 2-4.

Overall, we still conclude that GRU is capable to reliably mitigate the trade-off between removal and retention, typically
showing improvements for all the metrics that align with each goal. Note that, we also observe that in some situations, the
enhancements in preserving overall model performance occur at the expense of decreased strength of removal, particularly
for those results on WMDP and MUSE. Fortunately, this scenario occurs only for certain specific metrics, and the decrease
in the efficacy of removal appears to be negligible when compared to the substantial improvements in retention. Therefore,
we still consider our GRU as an effective solution to mitigate the trade-off and enhance the overall unlearning efficacy.

Table 2. Full experimental results on the TOFU benchmarks: Evaluating 5% and 10% unlearning setups across different backbones and
baseline methods. The results are presented in two adjacent rows for each method, one row (original baseline method name) showing the
original results and the other (w/ GRU) displaying the results combined with GRU. The superior results between configurations with and
without GRU for each baseline method are highlighted in bold.

Phi-1.5 LLaMA2-7B

Method 5% 10% 5% 10%

FQ↑ MU↑ FQ↑ MU↑ FQ↑ MU↑ FQ↑ MU↑

Original -28.8476 0.5200 -40.5243 0.5200 -32.1330 0.6332 -48.5895 0.6332
Retrain 0.0000 0.5250 0.0000 0.5320 0.0000 0.6006 0.0000 0.6137

GA -28.0555 0.0000 -28.5669 0.0000 -16.9281 0.0000 -14.3716 0.0000
w/ GRU -5.1004 0.3587 -11.3678 0.2482 -3.5161 0.5190 -12.1912 0.3108

WGA -12.4230 0.0284 -29.8615 0.0063 -7.7503 0.4447 -28.5669 0.1154
w/ GRU -1.9514 0.4431 -6.6882 0.4184 -5.1004 0.5698 -19.7868 0.5107

NPO -11.9082 0.3565 -15.7638 0.3267 -10.9105 0.4919 -8.7037 0.2876
w/ GRU -0.9326 0.3935 -3.1620 0.3714 -9.9550 0.5408 -2.5106 0.4570

GD -6.5526 0.4061 -50.2968 0.2999 -13.4847 0.5549 -13.9215 0.3930
w/ GRU -5.8059 0.4138 -13.4785 0.4096 -12.4230 0.5637 -11.7760 0.5407

NPO+KL -11.9082 0.3634 -17.2193 0.3444 -10.4275 0.5094 -9.4304 0.3109
w/ GRU -0.0360 0.3833 -3.1620 0.3654 -10.4275 0.5585 -2.1101 0.4480

NPO+GD -12.4230 0.4002 -19.7868 0.4026 -11.9082 0.5256 -12.6133 0.4750
w/ GRU -9.4931 0.4514 -7.6651 0.4122 -8.1703 0.5673 -2.9381 0.5000

SimNPO+GD -12.9485 0.4428 -26.6801 0.4523 -9.0417 0.5073 -9.8040 0.5527
w/ GRU -12.9485 0.4862 -25.4588 0.4934 -9.0417 0.5516 -9.4304 0.6168
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Table 3. Detailed experimental results on the WMDP benchmarks with QA accuracies evaluated on Bio unlearning and MMLU using
the ZEPHYR-7B-BETA backbone. The results are presented in two adjacent rows for each method, one row (original baseline method
name) showing the original results and the other (w/ GRU) displaying the results combined with GRU. The superior results between
configurations with and without GRU for each baseline method are highlighted in bold.

Method
Unlearning Retention

Bio ↓ Cyber ↓ MMLU ↑

Original 0.6371 0.4383 0.5814

GA 0.2474 0.2431 0.2465
w/ GRU 0.2474 0.2446 0.2852

WGA 0.2476 0.2647 0.2454
w/ GRU 0.2474 0.2587 0.2604

GD 0.2474 0.2441 0.2589
w/ GRU 0.2474 0.2511 0.2995

NPO 0.2655 0.2793 0.3033
w/ GRU 0.2561 0.2793 0.3704

NPO+GD 0.2710 0.3493 0.4724
w/ GRU 0.2639 0.3524 0.5033

Table 4. Detailed experimental results on the MUSE benchmarks with KnowMem, assessing the efficacy of removal and retention on
targeted and non-targeted data, respectively. The results are presented in two adjacent rows for each method, one row (original baseline
method name) showing the original results and the other (w/ GRU) displaying the results combined with GRU. The superior results
between configurations with and without GRU for each baseline method are highlighted in bold.

Method VerbMem ↓ KnowMem-U ↓ KnowMem-R ↑

Original 99.7016 45.8791 69.4009
Retrain 13.8896 30.1380 69.0496

GA 0.0000 0.0000 0.0000
w/ GRU 0.0000 0.0000 6.7006

WGA 0.2284 0.0000 0.0000
w/ GRU 0.0198 0.0000 18.4555

GD 0.0000 0.0000 8.6971
w/ GRU 0.0000 0.0000 9.8586

NPO 0.0000 0.0000 0.0000
w/ GRU 0.0000 0.0000 9.5913

NPO+GD 0.0000 0.0000 23.5565
w/ GRU 0.0000 0.0000 30.7492
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C. Comparison with RMU on WMDP
For completeness, we compare our approach with RMU, the method proposed alongside WMDP. Due to sensitivity issues
noted in the official implementation, we set the hyperparameter α to 100 (instead of the default 1200) to ensure stable
optimization. Table 5 reports the results for both RMU and its combination with GRU.

Table 5. Comparison of RMU and RMU with GRU on the WMDP benchmark (Bio and Cyber: accuracy ↓; MMLU: accuracy ↑).

Method Bio ↓ Cyber ↓ MMLU ↑

RMU 0.26 0.31 0.41
w/ GRU 0.26 0.28 0.44

As shown, GRU consistently improves both unlearning and retention over the RMU baseline.

D. Hyper-parameter Analyses
In addition to our main results, we further discuss about our hyper-parameter configurations as well as conduct additional
analyses on hyper-parameter sensitivity.

D.1. Hyper-parameter Configurations

We employ grid search on validation data to select proper hyper-parameters for GRU and TRU. For GRU,
the candidate values for γ include {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}, and that for τ are
{0.001, 0.005, 0.01, 0.1, 1.0, 10, 100}. For TRU, we select stg from the space {0.50, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85}
while fix lr = 1e−4. We further summarize their detailed configurations across different setups as follows.

GRU. For TOFU with Phi-1.5, we default to set τ = 0.001, while adjusting τ = 0.01 for the 5% setup and without using
gradient clipping for GD. For TOFU with Llama-2-7B, we do not use gradient clipping for GA, GD, NPO, and SimNPO
under the 5% setup, while setting τ = 1.0 for all other methods. In the 10% setup, τ = 1.0 for GA, WGA, GD, SimNPO,
and NPO+GD; τ = 0.5 for NPO; τ = 0.1 for NPO+KL. For WMDP, τ = 1.0 for GA; τ = 0.01 for NPO and NPO+GD;
τ = 0.001 for GD and WGA. For MUSE, τ = 1.0 for GA, GD and WGA; τ = 100 for NPO and NPO+GD.

For TOFU, we by default set γ = 0.8, while setting γ = 0.05 with Llama-2-7B and and γ = 0.1 with Phi. Also, we set
γ = 0.5 for SimNPO. Moreover, we set γ = 0.8 for MUSE and γ = 0.99 for WMDP.

TRU. With the backbone of Phi-1.5, we set stg = 0.7 under the 5% setup and stg = 0.75 under the 10% setup. Also,
with the backbone of Llama-2-7B, we set stg = 0.65 under the 5% setup and stg = 0.85 under the 10% setup.

D.2. Sensitivity Analyses

As a case study, we conduct sensitivity analyses on TOFU with Llama-2-7B as the backbone, under the 5% unlearning setup.

Gradient Clipping. We first present the results across various values of τ , summarized in Table 6. The results show that,
across different baselines, the effects of altering τ have a smooth control over the performance metrics of FQ and MU. This
observation indicates that our GRU exhibits robustness with respective to different choices of τ .

Exponential Moving Average. We further display the results across different γ in Table 7. As with the gradient clipping,
we observe a smooth control on the overall efficacy of unlearning, further indicating that our GRU method demonstrates
robustness against variations in its two hyper-parameters.

E. Ablation Studies and Other Analyses
We provide more analyses to further show the respective effects of different components involved in our algorithm design.

Ablation Studies. Previous works, such as (Zhang et al., 2024), also use gradient clipping (GC) to improve the overall
efficacy of unlearning, raising us to ask if our rectification mechanism plays a key role to mitigate the trade-off between
removal and retention. In Table 8, we conduct ablation studies on TOFU using Llama-2-7B as the backbone, focusing on the
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Table 6. Hyper-parameter turning of τ on TOFU with Llama-2-7B, under the 5% unlearning setup.

Method Metric
τ

0.001 0.01 0.1 1.0 2.0 3.0 10 100 N/A

GA w/ GRU
FQ ↑ -29.6514 -15.7370 -7.7503 -8.6008 -4.7631 -4.4360 -2.9534 -3.2299 -3.5161
MU ↑ 0.6326 0.5824 0.5761 0.5810 0.5684 0.5550 0.5121 0.5149 0.5190

NPO w/ GRU
FQ ↑ -27.2750 -18.7967 -12.9485 -9.0417 -9.4931 -9.9550 -9.9550 -10.4275 -9.9550
MU ↑ 0.6268 0.5796 0.5574 0.5220 0.5519 0.5318 0.5312 0.5373 0.5408

GD w/ GRU
FQ ↑ -27.2750 -18.7967 14.0316 -15.1577 -14.5893 -14.5893 -15.7370 -12.4230 -12.4230
MU ↑ 0.6200 0.5395 0.5442 0.5434 0.5467 0.5467 0.5484 0.5637 0.5637

Table 7. Hyper-parameter turning of γ on TOFU with Llama-2-7B, under the 5% unlearning setup. The notation “–” indicates that the
associated result is same to those without GRU.

Method Metric
γ

0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 0.99 N/A

GA w/ GRU
FQ ↑ -6.9414 -5.8059 -6.9414 -7.3407 -8.1703 -7.3407 -6.5526 -7.7503 -6.5526 -8.6008 -6.5526 -8.6008 -8.1703
MU ↑ 0.4528 0.4418 0.4715 0.4994 0.5247 0.5504 0.5601 0.5677 0.5739 0.5810 0.5827 0.5847 0.5829

NPO w/ GRU
FQ ↑ -11.9082 -11.4040 -9.9550 -9.9550 -9.4931 -8.6008 -8.1703 -9.0417 -9.0417 -9.0417 -10.4275 -10.9105 -9.0417
MU ↑ 0.4736 0.4773 0.4865 0.4952 0.5108 0.5144 0.5159 0.5178 0.5222 0.5220 0.5425 0.5358 0.5656

GD w/ GRU
FQ ↑ -12.9485 -12.4230 -12.4230 -14.0316 -12.9485 -11.9082 -14.0316 -14.0316 -13.4847 – – – –
MU ↑ 0.5642 0.5640 0.5637 0.5615 0.5604 0.5585 0.5586 0.5592 0.5582 – – – –

5% unlearning setup. We compare three scenarios: the original unlearning method without GRU (w/o GRU), the original
method enhanced with GC (w/ GC), and the unlearning method that incorporates GRU (w/ GRU). As evident from the
results, GRU demonstrates superior scores in terms of both FQ and MU, showing its efficacy in mitigating the trade-off
between removal and retention.

Table 8. Ablation studies on TOFU with Llama-2-7B, under the 5% unlearning setup.

Method Component FQ ↑ MU ↑

GA
w/o GRU -16.9281 0.0000

w/ GC -20.7646 0.0000
w/ GRU -3.2299 0.5149

NPO
w/o GRU -10.9105 0.4919

w/ GC -10.9105 0.4970
w/ GRU -10.4275 0.5373

Visualization of Rectification. We further examine the angles between g
(t)
u and g

(t)
r , along with those results after being

rectified via GRU. We monitor the dynamics of these angles throughout the unlearning processes for various baseline
methods, as well as the changes after applying GRU for rectification. As a case study, Figure 7 shows these results on TOFU
5% unlearning with Llama-2-7B as the backbone. Without the use of GRU, the cosine similarity between g

(t)
u and g

(t)
r

keeps negative throughout unlearning, suggesting potential adverse effects on the overall performance of the model. In
comparison, within the unlearning dynamics facilitated by GRU, it is observed that although the angles initially continue to
be negative (dotted lines), our rigorous method of gradient rectification will adjust the resulting cosine similarity to exactly 0.
This adjustment ensures that the gradient direction associated with unlearning is completely orthogonal to that of retention,
thereby effectively maintaining the overall model performance.
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Figure 7. Angles between g
(t)
u and g

(t)
r (labeled ‘Orig.’ for the original baseline and ‘Pre-rect.’ for the GRU-enhanced baseline) and

between g̃
(t)
u and g

(t)
r (labeled ‘Post-rect.’ for the GRU-enhanced baseline) across various unlearning steps. We evaluate the baseline

methods NPO, GA, and WGA in a 5% TOFU setup using the Llama-2-7B model.

F. Aligning Unlearning with Retention: A Practically Meaningful Evaluation
Recalling the dual goals of LLM unlearning, a meaningful evaluation requires not only improvements in the forget set,
but also that the retention utility of the model remains well aligned with its original capabilities. A substantial decline in
utility performance would render the resulting model ineffective, making the process of LLM unlearning itself meaningless.
This concern, often overlooked in recent unlearning studies, can be addressed by Unlearning with Control (UWC) (Wang
et al., 2024a), as discussed in Section 2.2. UWC provides a post-unlearning calibration framework that restores retention
performance by interpolating the model parameters before and after unlearning via a tunable parameter α. Leveraging
UWC calibration, we systematically evaluate our approach under explicit retention thresholds (e.g., 85%, 90%, and 95%)
to investigate whether strong unlearning performance can be achieved without sacrificing essential retention utility, thus
aligning unlearning objectives with practical deployment needs. Given the similarity of our findings across multiple
benchmarks, we focus here on representative results obtained from the challenging Phi setup on TOFU. Specifically, we
present GA and NPO as baseline methods to illustrate the flexibility of UWC calibration and highlight the effectiveness of
our GRU approach in attaining superior unlearning results while rigorously maintaining retention utility. The results in
Tables 9 and 10 clearly demonstrate that, under each retention constraint, incorporating GRU consistently yields substantial
improvements in forget quality (FQ) compared to the calibrated baselines, while perfectly maintaining the prescribed model
utility (MU). This pattern holds for both GA and NPO methods, across all retention targets and unlearning setups. These
findings validate the practical value of our approach: by leveraging UWC calibration in combination with GRU, practitioners
can achieve strong, controllable unlearning effects without sacrificing the essential utility of large language models, thereby
ensuring that unlearning objectives remain aligned with real-world deployment requirements.

Table 9. GA on the TOFU Phi-1.5 setup with UWC calibration. We report FQ (forget quality, ↑) and MU (model utility, ↑) for 5% and
10% unlearning under three retention targets (85%, 90%, 95%). Each retention target is shown in two adjacent rows: the first row gives
the calibrated GA result, and the second (w/ GRU) shows the result after incorporating GRU. The better score within each GA–GRU pair
is in bold.

Method
5% Unlearning 10% Unlearning

FQ↑ MU↑ FQ↑ MU↑

Original -28.8 0.52 -40.5 0.52

GA (85%) -22.0 0.44 -35.3 0.44
w/ GRU (85%) -8.6 0.44 -20.8 0.44

GA (90%) -28.1 0.47 -36.8 0.47
w/ GRU (90%) -15.2 0.47 -28.8 0.47

GA (95%) -28.1 0.49 -39.8 0.49
w/ GRU (95%) -18.8 0.49 -33.9 0.49
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Table 10. NPO on the TOFU Phi-1.5 setup with UWC calibration. Layout and notation follow Table 9.

Method
5% Unlearning 10% Unlearning

FQ↑ MU↑ FQ↑ MU↑

Original -28.8 0.52 -40.5 0.52

NPO (85%) -15.7 0.44 -31.9 0.44
w/ GRU (85%) -9.5 0.44 -15.2 0.44

NPO (90%) -20.1 0.47 -35.3 0.47
w/ GRU (90%) -12.9 0.47 -18.2 0.47

NPO (95%) -25.0 0.49 -38.2 0.49
w/ GRU (95%) -14.0 0.49 -20.8 0.49

G. Comparison with Gradient Direction Rectification (GDR)
Closely related is Gradient Direction Rectification (GDR) (Lin et al., 2024), as it similarly employs gradient projection to
resolve conflicts between forgetting and retention objectives. However, GDR relies on caching gradients across epochs,
resulting in substantial memory overhead that limits its scalability for large language models, where parameter sizes are
massive and training typically involves only a few epochs. In contrast, GRU dynamically estimates retention gradients using
an exponential moving average, greatly reducing memory cost and enabling practical unlearning at scale. Furthermore,
while GDR merges retention gradients directly into parameter updates, potentially increasing the risk of overfitting to the
retention set, our GRU approach leverages retention gradients solely as constraints for rectification. Finally, TRU extension
addresses the challenge of biased retain data, a scenario unique to LLM unlearning and not considered in GDR.

21


