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ABSTRACT

In this paper, we address PINNs’ problem of repetitive and time-consuming train-
ing by proposing a novel extension, parameterized physics-informed neural net-
works (P?2INNs). P2INNs enable modeling the solutions of parameterized PDEs
via explicitly encoding a latent representation of PDE parameters. With the exten-
sive empirical evaluation, we demonstrate that P2INNs outperform the baselines
both in accuracy and parameter efficiency on benchmark 1D and 2D parameter-
ized PDEs and are also effective in overcoming the known “failure modes”.

1 INTRODUCTION

Scientific machine learning (SML) (Baker et all |2019) has evolved rapidly, requiring exact satis-
faction of important physical laws. Among various deep-learning models that encode such physical
characteristics (Raissi et al.l [2019; |Lee & Carlberg, 2021} Cranmer et al., |2020b; [Lee et al., 2021}
Satorras et al, 2021)), physics-informed neural networks (PINNs) (Raissi et all [2019) are gaining
traction in the research community. This is primarily due to their sound computational formalism,
which enforces governing physical laws to learn solutions.

PINNs parameterize the solution u(x,t) of partial differential equations (PDEs) using a neural net-
work ug(x,t) that takes the spatial and temporal coordinates (x, t) as input and has © as the model
parameters. During training, the neural network minimizes a PDE residual loss (cf. equation [TT))
denoting the governing equation, at a set of collocation points, and a data matching loss (cf. equa-
tion [I0] and equation [T2)), which enforce initial/boundary conditions, at another set of collocation
points sampled from initial/boundary conditions. This computational formalism enables to infuse
the physical laws, described by the governing equation F(z, ¢, u), into the solution model and, thus,
is denoted as “physics informed”. PINNs have shown to be effective in solving many different
PDEs, such as Navier—Stokes equations (Shukla et al.l 2021} Jagtap & Karniadakis} 2020; Jagtap
et al.,[2020). While powerful, PINNs suffer from several obvious weaknesses.

W1) PDE operators are highly nonlinear (making training extremely difficult);
W2) Repetitive trainings from scratch are needed when solutions to new PDEs are sought (even
for new PDE:s arising from new PDE parameters in parameterized PDEs).

There have been various efforts to mitigate each of these issues: (For addressing W1) curriculum-
learning-type training algorithms that train PINNs from easy PDEs to hard PDESEI (Krishnapriyan
et al.,|2021)), and (for addressing W2) meta-learning PINNs (Liu et al.|[2022)); or directly learning so-
lutions of parameterized PDEs such that ug (z, t; ), where p is a set of PDE parameters. However,
there has been a less focus on addressing both problems in a unified PINN framework.

"Following the notational conventions in curriculum learning, we use the terms, “easy” and “hard,” to
indicate data that are easy or hard for neural networks to learn.
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Figure 1: P?INNs architecture. The first two encoders g, and gp_ are added to generate better
representations for the PDE parameter and the spatial/temporal coordinate. We also carefully cus-
tomize the manifold network gp, . In this figure, we provide the CDR equation as an example.

To mitigate the both issues in W1 and W2 simultaneously, we propose a variant of PINNs for solving
parameterized PDEs, called parameterized physics-informed neural networks (P?INNs). P2INNs
approximate solutions as a neural network of a form ug (x,t; u) (for resolving W2) and show rea-
sonable accuracy (cf. Table[I)) even for harder PDEs (for resolving W1). A novel modification in
our approach is to explicitly extract a hidden representation of the PDE parameters by employing
a separate encoder network, hparam = go, (), and uses this hidden representation to parameterize
the solution neural network, ue (z, t; Bparam). Rather than simply treating g as a coordinate in the
parameter domain, we infer useful information of PDEs from the PDE parameters p, constructing
the latent manifold on which the hidden representation of each PDE lies.

To demonstrate the effectiveness of the proposed model, we demonstrate the performance of the
proposed model with well-known benchmarks (Krishnapriyan et al.,[2021)), i.e., parameterized CDR
equations. As studied in [Krishnapriyan et al.| (2021), certain choices of the PDE parameters (e.g.,
high convective or reaction term) make training PINNs very challenging (i.e., harder PDEs), and
our goal is to show that the proposed method is capable of producing approximate solutions with
reasonable accuracy for those harder PDEs.

2  PROPOSED METHODS

Now we introduce our parameterized physics-informed neural networks (P2INNs). In essence, our
goal is to design a neural network architecture that effectively emulates the action of the parameter-
ized PDE solution function, u(z, t; u).

2.1 MODEL ARCHITECTURE

For P2INNs, we propose a modularized design of the neural network ue (7, t; ), which consists of
three parts, i.e., two separate encoders gg, and gy, , and a manifold network gy such that

ue(w,t;p) = go,([90.(7,1); 9o, ()]), (1)

where © = {0.,0,,6,} denotes the set of model parameters (cf. Figure . The two encoders, gg,
and gy, , take the spatiotemporal coordinate (z,?) and the PDE parameters u as inputs and extract
hidden representations such that hcoora = 9o, (@, %) and hparam = go, (). The two extracted hidden
representations are then concatenated and fed into the manifold network to infer the solution of of
the PDE with the parameters p at the coordinate (z, 1), i.e., @(x, t; ) = go, ([Peoord; Pparam])-

The important design choice here is that we explicitly encode the PDE parameters into a hidden
representation as opposed to treating the PDE parameters merely as a coordinate in the parameter
domain, e.g., (z,t, p) is combined and directly fed into our ablation model, called PINN-P, for our
ablation study in Appendix. With the abuse of notation, PZINNs can be expressed as a function of
(z,t), parameterized by the hidden representation: ue (z,t; ) = ugo, 0,3 (%, t; Bparam ). This expres-
sion emphasizes our intention that we explicitly utilize the PDE model parameters to characterize
the behavior of the solution neural network.
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Table 1: P2INNs greatly improve the quality of
CDR solutions. We also compare the average Lo
absolute (Abs.) and relative (Rel.) errors of PINN
and P2INNs in six different CDR equations. IMP
is the improvement ratio of P?2INNs to PINN.

- ) PINN P2INN IMP. (%)

: PDE type Abs. Rel. Abs. Rel. Abs. Rel

mams ‘ n rmsmasl®  Convection 0.0496 0.0871 0.0159 0.0295 67.93 66.12
© éxact ® I;INN ® PfNN-R M) P;INN Diffusion 03611 0.6939 0.1878 0.3655 47.98 47.33

Reaction 05825 0.6431 0.0029 0.0049 99.50 99.24

Figure 2: [2D Helmholtz equation] Exact so- _Com=Dift 0.1493 02793 0.0601 0.1177 59.74 57.86
lutions and results of baselines and P2INN for ~ Reac.Diff. 04744 05614 0.1529 0.2306 67.78 5892
a=2.7 (seen) (a-d) and a=2.75 (unseen) (e-h),  _Comv-Diff-Reac. 03231 03847 0.0360 00583 8887 8485

Encoder for equation input The equation encoder gp, reads the PDE parameters, and generates a
hidden representation of the equation, denoted as hparam. We employ the following fully-connected
(FC) structure for the encoder:

hparam = J(FCDp e (U(FCQ(O-(FCl(/‘I‘))))))v (2)

where o denotes a non-linear activation, such as ReLLU and tanh, and F'C}; denotes the i-th FC layer
of the encoder. D, means the number of FC layers of g,. We note that hp,ram has a size larger than
that of g in our design to encode the space and time-dependent characteristics of the parametrized
PDE. Since highly non-linear PDEs show different characteristics at different spatial and temporal
coordinates, we intentionally employ relatively high-dimensional encoding.

Encoder for spatial and temporal coordinate input The spatial and temporal coordinate encoder
go, generates a hidden representation heoora for (2, t). This encoder has the following structure:

hcoord == U(FCDC et (J(FCQ(U(Fcl(x7t))))))a (3)

where F'C; and D, denote the i-th FC layer and the number of FC layers of gy, respectively.

Manifold network The manifold network gp, reads the two hidden representations, hparam and
heooras and infer the input equation’s solution at (x,t), denoted as @(x,t; ). With the inferred
solution %, we construct two losses, L,, and L. The manifold network can have various forms but
we use the following form:

ﬁ(m, t; /l,) = J(FCDQ e U(Fcl (hconcat)))a where heoncat = Reoora © hparam~ 4)

Here, ® represents the concatenation of the two vectors; D, denotes the number of FC layers of 9,

2.2 TRAINING

Model training is performed by minimizing the regular PINN loss. With the prediction 4 produced
by P2INNS, our basic loss function consists of three terms as follows:

L(©) = wi Ly +waLf 4+ w3Ly,, )

where L,,, Ly, and L enforces initial, boundary conditions, and physical laws in PDEs, respectively,
and wy, wa, w3 € R are hyperparameters. In general, the overall training method follows the training
procedure of the original PINN (Raissi et al.l |2019). The only exception is that the PDE residual
loss associated with multiple PDEs is minimized in a mini-batch whereas in the original PINN, the
residual of only one PDE is minimized. To be more specific, in each iteration, we create a mini-batch
of {u;, (zi,t;)}2 1, where B is a mini-batch size. We randomly sample the collocation points and,
thus, there can be multiple different PDEs, identified by p;, in a single mini-batch.
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Figure 4: Failure modes in the convection equa-

Figure 3: [Reaction equation] Interpolation and tion of 5 = 30 (a-c). PQINNS much more accu-
extrapolation results for unseen p. rately predict reference solutions.

3 EVALUATION

In this section, we test the performance of P2INNs on the benchmark PDE problems, 1D CDR
equations and 2D Helmholtz equations (cf. Appendix [A), both of which are known to suffer from
the failure modes. For 1D CDR equations, we employ 6 different equation types stemmed from CDR
equations with the varying parameters as listed in Table[2] The experimental results are summarized
in Table [T] and Figure 2] To evaluate the performance of the model, we measure the L, relative and
absolute errors between the solution predicted by the model and the analytic solution. Due to space
reasons, we put detailed experimental setups and results are in Appendix.

Methodology. We train PINN and PINN-R for each parameter configuration in each equation type
— in other words, there are as many models as the number of PDE parameter configurations for an
equation type. To train P2INNs, however, we train it with all the collocation points of the multi-
ple parameter configurations in each equation type, following the training method in Section 2.2}
Therefore, we have only one model in each equation type. See Appendix for detailed discussion.

Experimental results. The values for 6 CDR equations in Table |l| represent the averaged errors
for the coefficient ranges of 1 to 5, 1 to 10, and 1 to 20 (cf. Table g In Table m whereas PINNs
show fluctuating performance, our P2INNs show stable performance for all the equation types. The
most notable improvement ratios are observed for the reaction and the convection-diffusion-reaction
equations. For instance, PINN marks an absolute error of 0.5825 whereas P2INN achieves an error
of 0.0029 for the reaction equations, i.e., 200 time smaller error. Since large coefficients incur
equations difficult to solve, PINNs commonly fail in the range.

For 2D Helmholtz equations, we train models with a € [2.5, 3.0] with interval 0.1, and then test them
with interval 0.05. Notably, as shown in Figure P2INNs consistently shows good performance in
both cases where a is a seen parameter (¢ = 2.7) and an unseen (a = 2.75) parameter. However,
PINN and PINN-R struggle, despite the fact that both of these values are within the seen(trained)
parameter range for two models. This reaffirms the robustness and efficacy of our proposed P2INN
approach in higher-dimensional settings, where there are non-trivial boundary conditions.

Inferring Solutions of Unseen PDE Parameters We further evaluate our PZINNs in more chal-
lenging situations: testing trained models on PDE parameters that are unseen during training, which
can be considered as real-time multi-query scenarios. For reaction equations, we train P2INNs on
p € [1,10] with interval 1 and conduct interpolation on p € [1.5,9.5] with interval 1 and extrapola-
tion on p € [10.5,15] with interval 0.5. As shown in Figure |3 PINNs’ failure for p > 4 contrasts
P2INNs’ exceptional performance, demonstrating its resilience in extrapolation, not limited good
performance only for learned or closely aligned parameters.

P2INNs in PINN’s Failure Modes It is well known that PINNs have several failure cases. Among
the reported failure cases of PINN, one notable case is the convection equation with 5 = 30. In our
experimental settings, 5 = 30 corresponds to an extrapolation task after being trained for up to
B = 20, which is considered as one of the most challenging task. These two equations generate
signals sharply fluctuating over time. As shown in Figure [4] and Table ] therefore, PINNS fail to
predict reference solutions whereas our method almost exactly reproduce them (cf. Appendix [I).
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4 RELATED WORK

In the recent literature, PINNs have evolved in many different ways to resolve issues inherent with
the vanilla PINNs. Some architectural enhancements have been made in |Cho et al.| (2024b) (a
low-rank extension PINNs for model efficiency and a hypernetwork for effective training) and in
Cho et al.| (2024a) (a separable design of model parameters for efficient training). A systematic
assessment for PINNs and a new sample strategie have been investigated in PINNACLE |Lau et al.
(2023). There have been some effort to combine PINNs with symbolic regression in universal PINNs
Podina et al.[(2023)) and to devise a preconditioner for PINNs from an PDE operator preconditioning
perspective De Ryck et al.| (2023). Lastly, novel optimizers for effective training of PINNs have
been proposed in|Yao et al.|(2023) (MultiAdam) and Miiller & Zeinhofer| (2023) (based on natural
gradient descent).

5 CONCLUSION

PINN is a highly applicable and promising technology for many engineering and scientific domains.
However, due to the highly nonlinear characteristic of PDEs, PINNs show very poor performance
in certain parameterized PDE problems. In addition, there is a weakness that the model must be
re-trained from scratch to analyze a new PDE. To solve these chronic issues, we propose parame-
terized physics-informed neural networks (P?INNs), which can learn similar parameterized PDEs
simultaneously. Through this approach, it is possible to overcome the failure situation of PINNs that
could not be solved in previous studies. To ensure that it is effective in general cases, we use more
than thousands of CDR equations and show that P2INNs outperform baselines in almost all cases of
the benchmark PDE:s.
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A  DATASETS

For simplicity but without loss of generality, we assume the parameterized 1D CDR equations and
2D Helmholtz equations (cf. equation [ and equation [7). To generate the ground-truth data, we
use either analytic or numerical solutions. In case of 1D CDR equations, we analyze the target
equations with three types of initial conditions u(z, 0): two Gaussian distributions of N (, (7/2)?)
and N(r,(m/4)?), and a sinusoidal function of 1 + sin(z). To solve the equation, we use the
Strang splitting method (Strang}, |1968). For 2D Helmholtz equations, we obtain the exact solution
by calculating it directly.

A.1 1D CONVECTION-DIFFUSION-REACTION EQUATIONS

We consider parameterized CDR equations:
ou v 5 ou  0%*u
—+pf——v—=—pu
ot “or oz2

The equation describes how the state variable u changes over time with the existence of convective

(the second term), diffusive (the third term), and reactive (the fourth term) phenomena. Here, /3 is

a coefficient about how fast transportable the equation is, v is a diffusivity for the diffusion phase,

and p is a scaling parameter about spreading velocity. Note that we choose the well-known Fisher’s

form pu(1 — w), which was used in Krishnapriyan et al.[(2021), as our reaction term.

(1—u)=0, z€Q, t€[0,T]. (6)

Each of these individual PDEs has their own importance and has been studied extensively:

1. Convection-diffusion equations are used in fluid dynamics, particle chemistry, computa-
tional finance, and so on,

2. Reaction-diffusion equations are popular in the domain of biophysics and mathematical
biology,

3. Convection equations, diffusion equations, and reaction equations are for describing trans-
port, diffusive, and reactive phenomena, respectively in simplified settings.

In total, there are six classes of Convection-Diffusion-Reaction equations, each of which has its own
importance in science. For each dataset, we select 1,000 collocation points, 256 initial points, 100
boundary points, and 1,000 test points.

A.2 2D HELMHOLTZ EQUATIONS

D*u(z,y) N O*u(z,y)

+ K u(z,y) — q(z,y) =0

Ox2 Oy? @)
q(z,y) = (—(a17)? — (agm)? + k?) sin(a; 7z sin(agmy)
u(z,y) = k? sin(amx) sin(agmy). (8)

We employ the specific Helmholtz equations which were used in McClenny & Braga-Neto| (2020)
as benchmark PDEs (cf. equation [7), and it can be directly solved as equation [§] The Helmholtz
equations describe the behavior of state variable u(x,y) in a 2D space, accounting for the effects of
wave propagation, and a source term represented by ¢(x,y). Here k is a parameter related to wave
frequency, while a; and a2 control the spatial variations of the source term. In our experiments, we
set k to 1 and the parameters a; and as to a common value a. For each dataset, we select 1,000
collocation points, 400 boundary points, and 100 test points.

B MOTIVATION

Our goal is to develop a method to solve parameterized PDEs via the computational formalism of
PINNSs’ overcoming W1 and W2. With this in mind, we first attempt to obtain intuitions from the
visual inspection of solution snapshots displayed on the (z, t)-coordinate space (Figures [5|and @)

The first set of the examples is shown in Figure 5} The ground-truth solutions of convection equa-
tions (top row) and reaction equations (bottom row) with varying parameters 5 and p, respectively.
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Figure 5: The ground-truth solutions of various convection equations with an initial condition of 1+
sin(z) (Figure (a)-(c)) and reaction equations with an initial condition of a Gaussian distribution
N(m, (7 /2)?) (Figure[5| (d)~(f)). We note that varied solutions are made (with similar architectures)

depending on changes in coefficient.
2.00 6 2.00
1.75 1.75
1.50 1.50
1.25 4 1.25
100 X 1.00
0.75 > 0.75

0.50 0.50

(b) Diff. (c) Conv.-Diff.
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(d) Reac. (e) Diff. (f) Reac.-Diff.

Figure 6: The ground-truth solutions of various CDR equations with an initial condition of 1+sin(z)
(Figure El (a)-(c)) or a Gaussian distribution N (7, (7/2)?) (Figure @ (d)-(f)). We note that the
solution in the last column reflects the first two columns’ solutions. Therefore, there also exist
similarities across different equation types.

As we vary the PDE parameter, e.g., increasing 3, we obtain gradually changing solutions (i.e., be-
coming more oscillatory, as we go left from Figure [5(a)| to Figure [5(c)). This suggests that model
parameters of PINNs for varying PDE parameters could have similar values and this can be lever-
aged in the training of PINNs.

This observation indeed has been investigated in [Krishnapriyan et al| (2021)) to solve hard PDEs for
PINNs. With a higher convective term (large (3), the PDE becomes a hard problem for PINNs to
solve due to the spectral bias (Rahaman et al.,[2019) (i.e., the solution is highly oscillatory in time).
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Thus, [Krishnapriyan et al.|(2021)) proposed a curriculum-learning algorithm which starts to feed an
easier PDE and gradually increases 3 until it reaches the target value. This approach, however, drops
all the intermediate model parameters obtained in the course of training. Instead, in our approach,
we utilize all PDE information to train a single model for the solutions of parameterized PDEs.

The second set of examples (Figure [f] the solutions of different types of PDEs) provide a similar
observation as above: even for different classes of PDEs (e.g., convection, diffusion, and convection-
diffusion equations), the solutions gradually change, which can be leveraged in training PINNs.

Motivation #1: a latent space of parameterized PDEs may exist. Since PDEs with similar pa-
rameter settings share common characteristics, we conjecture that solutions of parameterized PDEs
can be embedded onto a latent space and reconstructed by using a shared decoder network.

Motivation #2: it will be more effective to solve similar problems simultaneously. Considering
the similarities between solutions parameterized by similar PDE parameters, we conjecture that
training can be improved by attempting to solve all those similar problems together — multi-task
learning approaches are also based on the same intuition (Kendall et al., 2018; Ruder, [2017)).

Motivated by the observations, we develop a new approach that alleviates the two known weaknesses
W1 and W2 (cf. Section ).

C RELATED WORK

There is plenty of literature dealing with PDEs. We briefly introduce related work mostly used in
this work.

Machine Learning Methods for Solving Partial Differential Equations. Traditional numerical
methods such as finite element methods and finite difference methods have clear pros and cons
(Patidar, 2016; [L1 & Bettess, [1997; Srirekha et al., 2010). The more accurate the results, the more
expensive the calculation of numerically approximated formulas. It means that to earn more accurate
solutions, it needs to use finer grids, which implies more cost. To alleviate those cons, researchers
were attracted to machine learning approaches (Karniadakis et al.|[2021; (Cuomo et al.| [2022). After
various trials like using the Galerkin or Ritz method (Rudd & Ferraril, 2015), PINNs proposed a
transformative way of using deep learning for solving general governing PDEs in a physically sound
and easy-to-formulate computational formalism (Raissi et al., [2019). As elaborated above, PINNs,
however, possess weaknesses which must be addressed (Krishnapriyan et al., 2021): (1) there are
classes of PDEs that it is difficult for PINNSs to learn (e.g., PDEs exhibiting high oscillation or sharp
transitions in spatial and/or temporal domains) and (2) gradient-based training often converges to a
local optimum of models. Another line of research for solving PDE:s is to analyze operator learning
for differential equation or deep Ritz methods (Yu et al., 2018 Li et al.,|2020; |Gupta et al., 2021)) but
PINN:Ss still have its potential for mainly focusing on governing equations which describe physical
phenomena.

Physics as Inductive Biases. There have been various strategies to impose physical constraints on
neural networks (Cranmer et al.| [2020a; Rudd & Ferrari, 2015} |Lee et al.,|[2021)). Most of them focus
on imposing constraints for outputs or injecting specific physical conditions into neural networks.
As a simple but effective solution, PINNs directly impose physical conditions into neural networks
by using a governing equation itself as a loss (Raissi et al.,[2019). This loss function is called L. In
this way, PINNs can learn the residual error of the governing equation. If initial conditions are given,
we can add an initial error loss term L,,. Furthermore, if there are specific boundary conditions, we
can specify boundary conditions in L.

10
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D MORE DETAILS ON EXPERIMENTAL SETUP

D.1 Loss

With the prediction @ produced by P?INNs, our basic loss function consists of three terms as follows:

L(@) =wi1L, + ngf + ws Ly, ©)]

and L., Ly and L, are defined as follows:

L, = NL > (ﬂ(%o;u) — u(w, 0;#))27 (10)
u N,

L= (Flatisw) ()
'

Ly = Nib %: (a(o,t;ﬂ) - ﬁ(27r,t;#)>27 (12)

where Ny, Ny, and Ny are the cardinalities of the sets of initial conditions, collocation points, and
boundary conditions; w1, ws, w3 € R are hyperparameters. The first and the second terms denote
the data matching loss L,, and the PDE residual loss Ly, respectively. In addition, we separately
add the boundary condition term L;, forcing their values equal at both top and bottom parts (see

Figures [5]and[6).
D.2 BASELINE AND ABLATION METHODS

We compare P?INNs with three baselines. PINN is the original design based on fully-connected
layers with non-linear activations in [Raissi et al|(2019), and PINN-R is its enhancement by using
residual connections, which was used in |Kim et al. (2021). PINN-seq2seq (Krishnapriyan et al.,
2021) is a model that applies the seq2seq learning method to the PINN model, sequentially learning
data over time. We divided the entire time into 10 steps. In addition, we define one ablation model for
our method, called PINN-P, which has the same structure as original PINN, but the PDE parameters
 is treated as a coordinate in the parameter space, i.e., (x, ¢, ).

Each baseline and ablation model is trained in the following way:

1. PINN, PINN-R, and PINN-seq2seq do not read PDE parameters, such as 3, v, p and a, but
are trained separately for each of the coefficient settings.

2. PINN-P, an ablation model of P2INNss, is able to process PDE parameters and is trained for
all coefficient settings in each equation type.

3. Therefore, PINN, PINN-R, and PINN-seq2seq require many trained models for solving
parameterized PDEs whereas PINN-P and our method require a single trained model to
solve them.

Metrics. The relative error and the absolute error of the i-th equation are defined as the averages
of ||&; —u;l|y / ||uslly and |ju; — u;||,, where @ € {1,...,N.} and N, is the number of equations
used for the task. At this time, the errors are measured for each test points and the average value is
used. We test with 3 seed numbers and report their mean.

D.3 IMPLEMENTATION

We implement PZINNs with PYTHON 3.7.11 and PYTORCH 1.10.2 that supports CUDA 11.4. We
run our evaluation on a machine equipped with Intel Core-i9 CPUs and NVIDIA RTX A6000 and
RTX 2080 T1 GPUs.

11
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E MODEL CONFIGURATION AND EFFICIENCY
E.1 DATASET STATISTICS

Table 2: Dataset statistics. For each equation type, we test three different coefficient ranges. In
Conv.-Diff.-Reac., 3, v, p are non-zeros.

Coefficient range Convection Diffusion Reaction Conv.-Diff. Reac.-Diff. Conv.-Diff.-Reac.

1~5 5 5 5 25 25 125
1~10 10 10 10 100 100 1,000
1~20 20 20 20 400 400 8,000

Table [2) represents dataset statistics, and our dataset generation source code is mainly based on Kr-
ishnapriyan et al.|(2021).

E.2 MODEL EFFICIENCY AND HYPERPARAMETERS

Our baselines, PINN, PINN-R, and PINN-seq2seq, are designed with 6 layers, and the dimension of
hidden vector is 50. For training, we employ Adam optimizers with learning rate of 1e — 3. For our
method, we set Dy, D, and D, to 4, 3, and 5 respectively. In the loss function in Eq. equation [5}
we set wy, wa, and w3 to 1. We use a hidden vector dimension of 50 for gg. and gy, and 150 for
gs,- For gg,. Considering that our method is able to solve multiple equations with one model, the
total model size for our method is much smaller than other baselines (see Appendix [K).

F ARCHITECTURAL DETAILS OF PINN-P

8~

oX |
'
v

(@t ) > S —>

Figure 7: PINN-P architecture.

We propose PINN-P as an ablation model of our P2INN. Unlike P2INN, PINN-P does not have a
separate encoder for PDE parameters, so that PDE parameters enter the model with coordinates. As
shown in Figure[7| PINN-P consists of [-stacked fully-connected layers. For a fair comparison with
P2INNSs, we set size of hidden vector to 150 and [ to 6, making the model size similar to P2INNE.

G REPRODUCIBILITY STATEMENT

To benefit the community, the code will be posted online. The source code for our proposed method
and the dataset used in this paper are attached.
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H EXPERIMENTAL RESULTS ON 1D CDR EQUATION

Table 3: The relative and absolute Ly errors over all the equations. Our P?INNs surpass baselines in
all but one cases, even without fine-tuning. IMP. denotes the rate of improvement of our model over
the best baseline.

PDE type Coefficient  Metric  PINN PINN-R  PINN-seq2seq  P2INN  IMP. (%)

Abs.err.  0.0183  0.0222 0.1281 0.0039 78.44
1~5 Rel. err.  0.0327 0.0381 0.2160 0.0079 75.82
: Abs.err.  0.0164  0.0666 0.1924 0.0093 43.62
Convection 1~10 Rel &r 00307 01193 03276 00179 4178
Abs.err.  0.1140  0.1624 0.2252 0.0198 82.64

1~20 Rel. err.  0.1978 0.2779 0.3819 0.0464 76.55

Abs.err. 01335 0.1665 0.1987 0.1322 0.97

1~5 Rel. err. 02733 0.3462 0.4050 0.2710 0.84
Class 1 o Abs.err. 02716 03175 0.3149 0.1539 4334
Diffusion 1~10 Rel. err. 05259  0.6206 0.6174 0.3116 4075
Abs.err.  0.6782  0.7054 0.3346 0.1916 4274

1~20 Rel. err.  1.2825 1.3401 0.6442 0.3745 41.87
Abs. err.  0.3341 0.3336 0.4714 0.0015 99.54

1~5 Rel. err.  0.3907 0.3907 0.5907 0.0027 9931
: Abs.err.  0.6232  0.3619 0.6924 0.0065 98.19
Reaction 1~10 Rel. err. 06926 04190 0.7931 0.0089 97.88
Abs.err. 07902  0.4320 0.8246 0.0042 99.02
1~20 Rel err.  0.8460  0.4932 0.8960 0.0092 98.14

Abs.err.  0.0610  0.0654 0.0979 0.0399 34.61

1~5 Rel. err.  0.1175 0.1289 0.1950 0.0892 24.05

; Abs.err. 01133 0.1313 0.0917 0.0576 37.25
Conv.-Diff. 1~10 Re &r 02098 02510 0.1959 01320 2
Abs.err. 02735 02118 0.0645 0.0622 3.51

Class 2 1~20 Rel. err. 05106  0.4154 0.1504 0.1485 128
Abs.err.  0.1900  0.1876 0.4201 0.1225 34.70

1~5 Rel.err. 02702 02777 0.5346 0.1856 31.31

: Abs.err. 05166 0.3809 0.6288 0.1833 51.88
Reac.-Diff. 1~10 Rel &r 09141 04790 07774 0273 42146
120 Abs.err. 07167  0.7210 0.7663 0.0898 81.03

~ Rel.err.  0.7998  0.8105 0.8337 0.1411 74.68
Abs.err.  0.1663  0.0865 0.4943 0.0311 64.02

1~5 Rel. err.  0.2057 0.1415 0.6104 0.0525 62.88

_Diff.- Abs.err. 05321 03170 0.7051 0.0508 83.98
Class3  Conv.-Diff.-Reac. 1~10 Rel er 03938 03772 0.8027 00930 7510
Abs.err. 07450  0.4080 0.7136 0.0353 91.94

1~20 Rel.err. 07960  0.4645 0.8100 0.0812 82.88

I FINE-TUNING P?INNSs

In general, our P2INNs outperform other baselines in most of the tested equations. We can fine-tune
the pre-trained model to further increase the accuracy and in this section, we show the efficacy of
the fine-tuning step with intuitive visualizations.

I.1 EXPERIMENTS WITH GAUSSIAN DISTRIBUTION AS AN INITIAL CONDITION

Experiments summarized in Table [3] use the initial condition of the Gaussian distribution
N (, (m/2)?%). We fine-tune PZINN from Table[3|on two PDEs: a convection equation with 3 = 10,
and a reaction equation with p = 5. For the coefficient range used in pre-training, we select
B8 € [1,20] and p € [1,10], respectively. We compare our fine-tuned model with vanilla PINN
and results are summarized in Figure|[§]

For the additional study, we show how the results of pre-trained P?2INNs are affected by varying the
PDE parameters. Figures[J[a-c)/(d-f) are the results of convection/reaction equations. As shown in
Figure @ our P2INNs effectively learn the differences among the various coefficient settings.
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Figure 8: Experimental results of fine-tuning PZINN. Convection equation of 3 = 30 (Figure
(a)-(c)). Reaction equation of p = 5 (Figure@ (d)-(f)). Figures B] (c) and (f) are the results after
fine-tuning, and the results before fine-tuning can be checked in FigureEl
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Figure 9: Results of P?2INNs on convection equation and reaction equation without fine-tuning.
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1.2 FAILURE MODE

o 200 op
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1.0 O . . . . . 1.0 00 B . . . 10 20
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(a) Before fine-tuning (b) After fine-tuning (c) Before fine-tuning (d) After fine-tuning

Figure 10: Experimental results of P2INN in Section Figures (a) and (b) are the results of con-
vection equation 3 = 30, and Figures (c) and (d) are reaction equation p = 5.

Table 4: Results of PZINNs for the failure mode. We use a convection equation with 1 + sin(x) as
an initial condition and a reaction equation with the Gaussian distribution N (7, (7/4)?).

. PINN P2INN
Failure
mode  Abs.err. Rel err.  Abs. err. Rel. err.
6 =30 0.6132 0.5734 0.0910 0.0916
p=>5 0.5490 0.9844 0.0058 0.0173

Figure El is the result of PZINN for the failure mode, and Figure is a comparison between before
and after fine-tuning on the results of PZINN. Figures [10|(a) and (b) are the results on convection
equation of 8 = 30, and Figures [10] (c) and (d) are the results on reaction equation of p = 5. As
shown in Table@ P2INN significantly improves the performance compared to PINN.
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J EXPERIMENTAL RESULTS ON 2D HELMHOLTZ EQUATION

We undertake an evaluation by training our P2ZINN model on a 2D Helmholtz equation and subse-
quently comparing its performance with that of PINNs. In the case of a = {2.50,2.70,2.80, 3.00},
performance is evaluated on the seen PDEs utilized for training, while for a = {2.65,2.75,2.85},
performance is assessed on the unseen PDEs not used during training phase. All test datasets consist
of data that is not employed in the training, and the experimental results are reported in Table[5]and

Figure[TT]

Table 5: Comparision with PINN, PINN-R and P?INN on 2D Helmholtz equations

Model Metrics a=2.50 a=265 a=270 a=27 a=280 a=285 a=3.00

PINN Abs.em 0.1434 0.9077 1.9105 1.8942 1.5689 0.9077 2.4981
Rel. err.  0.4817 2.0937 4.9264 4.7584 3.3739 2.0937 6.1532

PINN-R Abs.err.  0.1107 0.2916 1.1590 1.4000 1.1095 1.5789 1.8800
Rel. err.  0.3830 0.7239 2.8633 3.6641 2.6792 3.8059 4.7755

P2INN Abs. e 0.0240 0.0259 0.0257 0.0263 0.0321 0.0232 0.0315
Rel. err.  0.0718 0.0767 0.0788 0.0840 0.0975 0.0642 0.0973
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Figure 11: [2D-Helmholtz equation] Exact solutions and results of PINN, PINN-R and P2INN for
various a
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Table 6: Number of model parameters.

PINN PINN-R PINN-seq2seq LargePINN PINN-P P?INN
#params 10,401 10,401 10,401 82,941 91,651 76,851

Table 7: The relative and absolute Ly errors over all the equations. Our P2INNs surpass LargePINN
and PINN-P in all but one cases, even without fine-tuning.

PDE type Metric  PINN LargePINN PINN-P P2INN
Convection Abs. err.  0.1140 0.1191 0.0209  0.0198
Rel. err.  0.1978 0.2084 0.0410  0.0464
Class 1 Diffusion Abs. err.  0.6782 0.5868 0.3800  0.1916
u Rel. err.  1.2825 1.0994 0.7912  0.3745
Reaction Abs. err.  0.7902 0.7910 0.8975  0.0042
Rel. err.  0.8460 0.8469 0.9908  0.0092
Conv.-Diff Abs. err.  0.2735 0.1626 0.1253  0.0622
’ ’ Rel. err.  0.5106 0.3189 0.3009  0.1495
Class 2
Reac.-Diff. Abs. err.  0.7167 0.7399 0.1756  0.0898
S Rel. err.  0.7998 0.8186 0.2632  0.1411
Abs. err.  0.7450 0.7415 0.8590  0.0353

Class 3 Conv.-Diff.-Reac.  po1" " 07060 0.7915 0.9532  0.0812

K ABLATION STUDIES ON PINN-P AND LARGEPINN

For more comprehensive evaluation, we conduct additional ablation studies following the experi-
mental settings of Table [3] with the coefficient range of 1 ~ 20 using PINN-P (cf. Appendix
and LargePINN, which is PINN with bigger network size. As shown in Table[] since the model size
of our proposed P?INN is larger than original PINN, we conduct experiments using a LargePINN
model. The LargePINN has the same MLP architecture as the original PINN but with increased
hidden dimensions, resulting in a model size of 82,941.

The experimental results of LargePINN, PINN-P, and P2INN are summarized in Table In all
scenarios, as indicated by Table[7] the LargePINN model consistently performs inferiorly compared
to P2INNs, and P2INNs outperforms PINN-P in all cases except one. That is, while the baselines
struggles when learning the equations encompassing wide coefficient ranges, i.e., 1 ~ 20. For in-
stance, considering Conv.-Reac.-Diff. equation, the L, absolute error exhibited by P2INN is 0.0353
whereas LargePINN and PINN-P have errors of 0.7415 and 0.8590, respectively. Note that this
collective outcome underscores that P?2INN’s separation of PDE parameters and spatial/temporal
coordinates during the learning process significantly enhances both generalization capabilities and
scalability.
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