
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

EXTENSION OF PHYSICS-INFORMED NEURAL NET-
WORKS TO SOLVING PARAMETERIZED PDES

Woojin Cho1,3, Minju Jo1,2, Haksoo Lim1,
Kookjin Lee3, Dongeun Lee4, Sanghyun Hong5, Noseong Park6

1Yonsei University, 2LG CNS, 3Arizona State University
4Texas A&M University-Commerce, 5Oregon State University, 6KAIST
{snowmoon, alflsowl12, limhaksoo96}@yonsei.ac.kr
kookjin.lee@asu.edu
eundong4@gmail.com
sanghyun.hong@oregonstate.edu
noseong@kaist.ac.kr

ABSTRACT

In this paper, we address PINNs’ problem of repetitive and time-consuming train-
ing by proposing a novel extension, parameterized physics-informed neural net-
works (P2INNs). P2INNs enable modeling the solutions of parameterized PDEs
via explicitly encoding a latent representation of PDE parameters. With the exten-
sive empirical evaluation, we demonstrate that P2INNs outperform the baselines
both in accuracy and parameter efficiency on benchmark 1D and 2D parameter-
ized PDEs and are also effective in overcoming the known “failure modes”.

1 INTRODUCTION

Scientific machine learning (SML) (Baker et al., 2019) has evolved rapidly, requiring exact satis-
faction of important physical laws. Among various deep-learning models that encode such physical
characteristics (Raissi et al., 2019; Lee & Carlberg, 2021; Cranmer et al., 2020b; Lee et al., 2021;
Satorras et al., 2021), physics-informed neural networks (PINNs) (Raissi et al., 2019) are gaining
traction in the research community. This is primarily due to their sound computational formalism,
which enforces governing physical laws to learn solutions.

PINNs parameterize the solution u(x, t) of partial differential equations (PDEs) using a neural net-
work uΘ(x, t) that takes the spatial and temporal coordinates (x, t) as input and has Θ as the model
parameters. During training, the neural network minimizes a PDE residual loss (cf. equation 11)
denoting the governing equation, at a set of collocation points, and a data matching loss (cf. equa-
tion 10 and equation 12), which enforce initial/boundary conditions, at another set of collocation
points sampled from initial/boundary conditions. This computational formalism enables to infuse
the physical laws, described by the governing equation F(x, t, u), into the solution model and, thus,
is denoted as “physics informed”. PINNs have shown to be effective in solving many different
PDEs, such as Navier–Stokes equations (Shukla et al., 2021; Jagtap & Karniadakis, 2020; Jagtap
et al., 2020). While powerful, PINNs suffer from several obvious weaknesses.

W1) PDE operators are highly nonlinear (making training extremely difficult);
W2) Repetitive trainings from scratch are needed when solutions to new PDEs are sought (even

for new PDEs arising from new PDE parameters in parameterized PDEs).

There have been various efforts to mitigate each of these issues: (For addressing W1) curriculum-
learning-type training algorithms that train PINNs from easy PDEs to hard PDEs1 (Krishnapriyan
et al., 2021), and (for addressing W2) meta-learning PINNs (Liu et al., 2022); or directly learning so-
lutions of parameterized PDEs such that uΘ(x, t;µµµ), where µµµ is a set of PDE parameters. However,
there has been a less focus on addressing both problems in a unified PINN framework.

1Following the notational conventions in curriculum learning, we use the terms, “easy” and “hard,” to
indicate data that are easy or hard for neural networks to learn.

1



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

C
on

ca
te

na
te

PDE parameters

Spatial / temporal coodrdinates

Governing equation

PDE residual loss

Data matching loss

Boundary condition

Figure 1: P2INNs architecture. The first two encoders gθp and gθc are added to generate better
representations for the PDE parameter and the spatial/temporal coordinate. We also carefully cus-
tomize the manifold network gθg . In this figure, we provide the CDR equation as an example.

To mitigate the both issues in W1 and W2 simultaneously, we propose a variant of PINNs for solving
parameterized PDEs, called parameterized physics-informed neural networks (P2INNs). P2INNs
approximate solutions as a neural network of a form uΘ(x, t;µµµ) (for resolving W2) and show rea-
sonable accuracy (cf. Table 1) even for harder PDEs (for resolving W1). A novel modification in
our approach is to explicitly extract a hidden representation of the PDE parameters by employing
a separate encoder network, hhhparam = gΘp

(µµµ), and uses this hidden representation to parameterize
the solution neural network, uΘ(x, t;hhhparam). Rather than simply treating µµµ as a coordinate in the
parameter domain, we infer useful information of PDEs from the PDE parameters µµµ, constructing
the latent manifold on which the hidden representation of each PDE lies.

To demonstrate the effectiveness of the proposed model, we demonstrate the performance of the
proposed model with well-known benchmarks (Krishnapriyan et al., 2021), i.e., parameterized CDR
equations. As studied in Krishnapriyan et al. (2021), certain choices of the PDE parameters (e.g.,
high convective or reaction term) make training PINNs very challenging (i.e., harder PDEs), and
our goal is to show that the proposed method is capable of producing approximate solutions with
reasonable accuracy for those harder PDEs.

2 PROPOSED METHODS

Now we introduce our parameterized physics-informed neural networks (P2INNs). In essence, our
goal is to design a neural network architecture that effectively emulates the action of the parameter-
ized PDE solution function, u(x, t;µµµ).

2.1 MODEL ARCHITECTURE

For P2INNs, we propose a modularized design of the neural network uΘ(x, t;µµµ), which consists of
three parts, i.e., two separate encoders gθp and gθc , and a manifold network gθg such that

uΘ(x, t;µµµ) = gθg ([gθc(x, t); gθp(µµµ)]), (1)

where Θ = {θc, θp, θg} denotes the set of model parameters (cf. Figure 1). The two encoders, gθc
and gθp , take the spatiotemporal coordinate (x, t) and the PDE parameters µµµ as inputs and extract
hidden representations such that hhhcoord = gθc(x, t) and hhhparam = gθp(µµµ). The two extracted hidden
representations are then concatenated and fed into the manifold network to infer the solution of of
the PDE with the parameters µµµ at the coordinate (x, t), i.e., û(x, t;µµµ) = gθg ([hhhcoord;hhhparam]).

The important design choice here is that we explicitly encode the PDE parameters into a hidden
representation as opposed to treating the PDE parameters merely as a coordinate in the parameter
domain, e.g., (x, t,µµµ) is combined and directly fed into our ablation model, called PINN-P, for our
ablation study in Appendix. With the abuse of notation, P2INNs can be expressed as a function of
(x, t), parameterized by the hidden representation: uΘ(x, t;µµµ) = u{θc,θg}(x, t;hhhparam). This expres-
sion emphasizes our intention that we explicitly utilize the PDE model parameters to characterize
the behavior of the solution neural network.

2



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Exact

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) PINN

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) PINN-R

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) P2INN

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) Exact

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(f) PINN

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(g) PINN-R

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(h) P2INN

Figure 2: [2D Helmholtz equation] Exact so-
lutions and results of baselines and P2INN for
a=2.7 (seen) (a-d) and a=2.75 (unseen) (e-h).

Table 1: P2INNs greatly improve the quality of
CDR solutions. We also compare the average L2

absolute (Abs.) and relative (Rel.) errors of PINN
and P2INNs in six different CDR equations. IMP
is the improvement ratio of P2INNs to PINN.

PDE type
PINN P2INN IMP. (%)

Abs. Rel. Abs. Rel. Abs. Rel.

Convection 0.0496 0.0871 0.0159 0.0295 67.93 66.12

Diffusion 0.3611 0.6939 0.1878 0.3655 47.98 47.33

Reaction 0.5825 0.6431 0.0029 0.0049 99.50 99.24

Conv.-Diff. 0.1493 0.2793 0.0601 0.1177 59.74 57.86

Reac.-Diff. 0.4744 0.5614 0.1529 0.2306 67.78 58.92

Conv.-Diff.-Reac. 0.3231 0.3847 0.0360 0.0583 88.87 84.85

Encoder for equation input The equation encoder gθp reads the PDE parameters, and generates a
hidden representation of the equation, denoted as hhhparam. We employ the following fully-connected
(FC) structure for the encoder:

hhhparam = σ(FCDp · · · (σ(FC2(σ(FC1(µµµ)))))), (2)

where σ denotes a non-linear activation, such as ReLU and tanh, and FCi denotes the i-th FC layer
of the encoder. Dp means the number of FC layers of gθp . We note that hhhparam has a size larger than
that of µµµ in our design to encode the space and time-dependent characteristics of the parametrized
PDE. Since highly non-linear PDEs show different characteristics at different spatial and temporal
coordinates, we intentionally employ relatively high-dimensional encoding.

Encoder for spatial and temporal coordinate input The spatial and temporal coordinate encoder
gθc generates a hidden representation hhhcoord for (x, t). This encoder has the following structure:

hhhcoord = σ(FCDc · · · (σ(FC2(σ(FC1(x, t)))))), (3)

where FCi and Dc denote the i-th FC layer and the number of FC layers of gθc , respectively.

Manifold network The manifold network gθg reads the two hidden representations, hhhparam and
hhhcoord, and infer the input equation’s solution at (x, t), denoted as û(x, t;µµµ). With the inferred
solution û, we construct two losses, Lu and Lf . The manifold network can have various forms but
we use the following form:

û(x, t;µµµ) = σ(FCDg · · ·σ(FC1(hhhconcat))), where hhhconcat = hhhcoord ⊕ hhhparam. (4)

Here, ⊕ represents the concatenation of the two vectors; Dg denotes the number of FC layers of gθg .

2.2 TRAINING

Model training is performed by minimizing the regular PINN loss. With the prediction û produced
by P2INNs, our basic loss function consists of three terms as follows:

L(Θ) = w1Lu + w2Lf + w3Lb, , (5)

where Lu, Lb, and Lf enforces initial, boundary conditions, and physical laws in PDEs, respectively,
and w1, w2, w3 ∈ R are hyperparameters. In general, the overall training method follows the training
procedure of the original PINN (Raissi et al., 2019). The only exception is that the PDE residual
loss associated with multiple PDEs is minimized in a mini-batch whereas in the original PINN, the
residual of only one PDE is minimized. To be more specific, in each iteration, we create a mini-batch
of {µµµi, (xi, ti)}Bi=1, where B is a mini-batch size. We randomly sample the collocation points and,
thus, there can be multiple different PDEs, identified by µµµi, in a single mini-batch.

3



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0
0.0
0.2
0.4
0.6
0.8
1.0

L 2
 a

bs
ol

ut
e 

er
ro

r

PINN (seen)
P2INN (unseen)
P2INN (seen)

Figure 3: [Reaction equation] Interpolation and
extrapolation results for unseen ρ.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(a) Exact

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(b) PINN

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(c) P2INN

Figure 4: Failure modes in the convection equa-
tion of β = 30 (a-c). P2INNs much more accu-
rately predict reference solutions.

3 EVALUATION

In this section, we test the performance of P2INNs on the benchmark PDE problems, 1D CDR
equations and 2D Helmholtz equations (cf. Appendix A), both of which are known to suffer from
the failure modes. For 1D CDR equations, we employ 6 different equation types stemmed from CDR
equations with the varying parameters as listed in Table 2. The experimental results are summarized
in Table 1 and Figure 2. To evaluate the performance of the model, we measure the L2 relative and
absolute errors between the solution predicted by the model and the analytic solution. Due to space
reasons, we put detailed experimental setups and results are in Appendix.

Methodology. We train PINN and PINN-R for each parameter configuration in each equation type
— in other words, there are as many models as the number of PDE parameter configurations for an
equation type. To train P2INNs, however, we train it with all the collocation points of the multi-
ple parameter configurations in each equation type, following the training method in Section 2.2.
Therefore, we have only one model in each equation type. See Appendix for detailed discussion.

Experimental results. The values for 6 CDR equations in Table 1 represent the averaged errors
for the coefficient ranges of 1 to 5, 1 to 10, and 1 to 20 (cf. Table 3). In Table 1, whereas PINNs
show fluctuating performance, our P2INNs show stable performance for all the equation types. The
most notable improvement ratios are observed for the reaction and the convection-diffusion-reaction
equations. For instance, PINN marks an absolute error of 0.5825 whereas P2INN achieves an error
of 0.0029 for the reaction equations, i.e., 200 time smaller error. Since large coefficients incur
equations difficult to solve, PINNs commonly fail in the range.

For 2D Helmholtz equations, we train models with a ∈ [2.5, 3.0] with interval 0.1, and then test them
with interval 0.05. Notably, as shown in Figure 2, P2INNs consistently shows good performance in
both cases where a is a seen parameter (a = 2.7) and an unseen (a = 2.75) parameter. However,
PINN and PINN-R struggle, despite the fact that both of these values are within the seen(trained)
parameter range for two models. This reaffirms the robustness and efficacy of our proposed P2INN
approach in higher-dimensional settings, where there are non-trivial boundary conditions.

Inferring Solutions of Unseen PDE Parameters We further evaluate our P2INNs in more chal-
lenging situations: testing trained models on PDE parameters that are unseen during training, which
can be considered as real-time multi-query scenarios. For reaction equations, we train P2INNs on
ρ ∈ [1, 10] with interval 1 and conduct interpolation on ρ ∈ [1.5, 9.5] with interval 1 and extrapola-
tion on ρ ∈ [10.5, 15] with interval 0.5. As shown in Figure 3, PINNs’ failure for ρ > 4 contrasts
P2INNs’ exceptional performance, demonstrating its resilience in extrapolation, not limited good
performance only for learned or closely aligned parameters.

P2INNs in PINN’s Failure Modes It is well known that PINNs have several failure cases. Among
the reported failure cases of PINN, one notable case is the convection equation with β = 30. In our
experimental settings, β = 30 corresponds to an extrapolation task after being trained for up to
β = 20, which is considered as one of the most challenging task. These two equations generate
signals sharply fluctuating over time. As shown in Figure 4 and Table 4, therefore, PINNs fail to
predict reference solutions whereas our method almost exactly reproduce them (cf. Appendix I).

4



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

4 RELATED WORK

In the recent literature, PINNs have evolved in many different ways to resolve issues inherent with
the vanilla PINNs. Some architectural enhancements have been made in Cho et al. (2024b) (a
low-rank extension PINNs for model efficiency and a hypernetwork for effective training) and in
Cho et al. (2024a) (a separable design of model parameters for efficient training). A systematic
assessment for PINNs and a new sample strategie have been investigated in PINNACLE Lau et al.
(2023). There have been some effort to combine PINNs with symbolic regression in universal PINNs
Podina et al. (2023) and to devise a preconditioner for PINNs from an PDE operator preconditioning
perspective De Ryck et al. (2023). Lastly, novel optimizers for effective training of PINNs have
been proposed in Yao et al. (2023) (MultiAdam) and Müller & Zeinhofer (2023) (based on natural
gradient descent).

5 CONCLUSION

PINN is a highly applicable and promising technology for many engineering and scientific domains.
However, due to the highly nonlinear characteristic of PDEs, PINNs show very poor performance
in certain parameterized PDE problems. In addition, there is a weakness that the model must be
re-trained from scratch to analyze a new PDE. To solve these chronic issues, we propose parame-
terized physics-informed neural networks (P2INNs), which can learn similar parameterized PDEs
simultaneously. Through this approach, it is possible to overcome the failure situation of PINNs that
could not be solved in previous studies. To ensure that it is effective in general cases, we use more
than thousands of CDR equations and show that P2INNs outperform baselines in almost all cases of
the benchmark PDEs.

ACKNOWLEDGMENTS

This work was supported by the Institute of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-01361, Artificial
Intelligence Graduate School Program ay Yonsei University)

5



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

REFERENCES

Nathan Baker, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib Najm, Man-
ish Parashar, Abani Patra, James Sethian, Stefan Wild, et al. Workshop report on basic research
needs for scientific machine learning: Core technologies for artificial intelligence. Technical
report, USDOE Office of Science (SC), Washington, DC (United States), 2019.

Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park.
Separable physics-informed neural networks. Advances in Neural Information Processing Sys-
tems, 36, 2024a.

Woojin Cho, Kookjin Lee, Donsub Rim, and Noseong Park. Hypernetwork-based meta-learning for
low-rank physics-informed neural networks. Advances in Neural Information Processing Systems,
36, 2024b.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks, 2020a. URL https://arxiv.org/abs/2003.04630.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. In ICLR 2020 Workshop, 2020b.

Salvatore Cuomo, Vincenzo Schiano di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics-informed neural networks:
Where we are and what’s next, 2022. URL https://arxiv.org/abs/2201.05624.

Tim De Ryck, Florent Bonnet, Siddhartha Mishra, and Emmanuel de Bezenac. An operator precon-
ditioning perspective on training in physics-informed machine learning. In The Twelfth Interna-
tional Conference on Learning Representations, 2023.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-
tial equations. Advances in Neural Information Processing Systems, 34, 2021.

Ameya D Jagtap and George Em Karniadakis. Extended physics-informed neural networks (xpinns):
A generalized space-time domain decomposition based deep learning framework for nonlin-
ear partial differential equations. Communications in Computational Physics, 28(5):2002–2041,
2020.

Ameya D Jagtap, Ehsan Kharazmi, and George Em Karniadakis. Conservative physics-informed
neural networks on discrete domains for conservation laws: Applications to forward and inverse
problems. Computer Methods in Applied Mechanics and Engineering, 365:113028, 2020.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7482–7491, 2018.

Jungeun Kim, Kookjin Lee, Dongeun Lee, Sheo Yon Jhin, and Noseong Park. DPM: A novel
training method for physics-informed neural networks in extrapolation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 8146–8154, 2021.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural In-
formation Processing Systems, 34, 2021.

Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan Kian Hsiang Low. PIN-
NACLE: Pinn adaptive collocation and experimental points selection. In The Twelfth International
Conference on Learning Representations, 2023.

Kookjin Lee and Kevin T Carlberg. Deep conservation: A latent-dynamics model for exact sat-
isfaction of physical conservation laws. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 277–285, 2021.

6

https://arxiv.org/abs/2003.04630
https://arxiv.org/abs/2201.05624


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Kookjin Lee, Nathaniel Trask, and Panos Stinis. Machine learning structure preserving brackets for
forecasting irreversible processes. Advances in Neural Information Processing Systems, 34, 2021.

Long-yuan Li and Peter Bettess. Adaptive finite element methods: a review. 1997.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Xu Liu, Xiaoya Zhang, Wei Peng, Weien Zhou, and Wen Yao. A novel meta-learning initialization
method for physics-informed neural networks. Neural Computing and Applications, pp. 1–24,
2022.

Levi McClenny and Ulisses Braga-Neto. Self-adaptive physics-informed neural networks using a
soft attention mechanism. arXiv preprint arXiv:2009.04544, 2020.

Johannes Müller and Marius Zeinhofer. Achieving high accuracy with pinns via energy natural
gradient descent. In International Conference on Machine Learning, pp. 25471–25485. PMLR,
2023.

Kailash C Patidar. Nonstandard finite difference methods: recent trends and further developments.
Journal of Difference Equations and Applications, 22(6):817–849, 2016.

Lena Podina, Brydon Eastman, and Mohammad Kohandel. Universal physics-informed neural net-
works: symbolic differential operator discovery with sparse data. In International Conference on
Machine Learning, pp. 27948–27956. PMLR, 2023.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Confer-
ence on Machine Learning, pp. 5301–5310. PMLR, 2019.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Keith Rudd and Silvia Ferrari. A constrained integration (cint) approach to solving partial differen-
tial equations using artificial neural networks. Neurocomputing, 155:277–285, 2015.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural net-
works. In International Conference on Machine Learning, pp. 9323–9332. PMLR, 2021.

Khemraj Shukla, Ameya D Jagtap, and George Em Karniadakis. Parallel physics-informed neural
networks via domain decomposition. Journal of Computational Physics, 447:110683, 2021.

A Srirekha, Kusum Bashetty, et al. Infinite to finite: an overview of finite element analysis. Indian
Journal of Dental Research, 21(3):425, 2010.

Gilbert Strang. On the construction and comparison of difference schemes. SIAM journal on nu-
merical analysis, 5(3):506–517, 1968.

Jiachen Yao, Chang Su, Zhongkai Hao, Songming Liu, Hang Su, and Jun Zhu. Multiadam:
Parameter-wise scale-invariant optimizer for multiscale training of physics-informed neural net-
works. In International Conference on Machine Learning, pp. 39702–39721. PMLR, 2023.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

7



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

A DATASETS

For simplicity but without loss of generality, we assume the parameterized 1D CDR equations and
2D Helmholtz equations (cf. equation 6 and equation 7). To generate the ground-truth data, we
use either analytic or numerical solutions. In case of 1D CDR equations, we analyze the target
equations with three types of initial conditions u(x, 0): two Gaussian distributions of N(π, (π/2)2)
and N(π, (π/4)2), and a sinusoidal function of 1 + sin(x). To solve the equation, we use the
Strang splitting method (Strang, 1968). For 2D Helmholtz equations, we obtain the exact solution
by calculating it directly.

A.1 1D CONVECTION-DIFFUSION-REACTION EQUATIONS

We consider parameterized CDR equations:

∂u

∂t
+β

∂u

∂x
−ν

∂2u

∂x2
−ρu(1−u)=0, x ∈ Ω, t ∈ [0, T ]. (6)

The equation describes how the state variable u changes over time with the existence of convective
(the second term), diffusive (the third term), and reactive (the fourth term) phenomena. Here, β is
a coefficient about how fast transportable the equation is, ν is a diffusivity for the diffusion phase,
and ρ is a scaling parameter about spreading velocity. Note that we choose the well-known Fisher’s
form ρu(1− u), which was used in Krishnapriyan et al. (2021), as our reaction term.

Each of these individual PDEs has their own importance and has been studied extensively:

1. Convection-diffusion equations are used in fluid dynamics, particle chemistry, computa-
tional finance, and so on,

2. Reaction-diffusion equations are popular in the domain of biophysics and mathematical
biology,

3. Convection equations, diffusion equations, and reaction equations are for describing trans-
port, diffusive, and reactive phenomena, respectively in simplified settings.

In total, there are six classes of Convection-Diffusion-Reaction equations, each of which has its own
importance in science. For each dataset, we select 1,000 collocation points, 256 initial points, 100
boundary points, and 1,000 test points.

A.2 2D HELMHOLTZ EQUATIONS

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
+ k2u(x, y)− q(x, y) = 0

q(x, y) = (−(a1π)
2 − (a2π)

2 + k2) sin(a1πx) sin(a2πy)

(7)

u(x, y) = k2 sin(a1πx) sin(a2πy). (8)

We employ the specific Helmholtz equations which were used in McClenny & Braga-Neto (2020)
as benchmark PDEs (cf. equation 7), and it can be directly solved as equation 8. The Helmholtz
equations describe the behavior of state variable u(x, y) in a 2D space, accounting for the effects of
wave propagation, and a source term represented by q(x, y). Here k is a parameter related to wave
frequency, while a1 and a2 control the spatial variations of the source term. In our experiments, we
set k to 1 and the parameters a1 and a2 to a common value a. For each dataset, we select 1,000
collocation points, 400 boundary points, and 100 test points.

B MOTIVATION

Our goal is to develop a method to solve parameterized PDEs via the computational formalism of
PINNs’ overcoming W1 and W2. With this in mind, we first attempt to obtain intuitions from the
visual inspection of solution snapshots displayed on the (x, t)-coordinate space (Figures 5 and 6).

The first set of the examples is shown in Figure 5: The ground-truth solutions of convection equa-
tions (top row) and reaction equations (bottom row) with varying parameters β and ρ, respectively.

8



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(a) Conv. (β = 5)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(b) Conv. (β = 10)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(c) Conv. (β = 15)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(d) Reac. (ρ = 1)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(e) Reac. (ρ = 4)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(f) Reac. (ρ = 7)

Figure 5: The ground-truth solutions of various convection equations with an initial condition of 1+
sin(x) (Figure 5. (a)-(c)) and reaction equations with an initial condition of a Gaussian distribution
N(π, (π/2)2) (Figure 5. (d)-(f)). We note that varied solutions are made (with similar architectures)
depending on changes in coefficient.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(a) Conv.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(b) Diff.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6
x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(c) Conv.-Diff.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(d) Reac.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(e) Diff.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(f) Reac.-Diff.

Figure 6: The ground-truth solutions of various CDR equations with an initial condition of 1+sin(x)
(Figure 6. (a)-(c)) or a Gaussian distribution N(π, (π/2)2) (Figure 6. (d)-(f)). We note that the
solution in the last column reflects the first two columns’ solutions. Therefore, there also exist
similarities across different equation types.

As we vary the PDE parameter, e.g., increasing β, we obtain gradually changing solutions (i.e., be-
coming more oscillatory, as we go left from Figure 5(a) to Figure 5(c)). This suggests that model
parameters of PINNs for varying PDE parameters could have similar values and this can be lever-
aged in the training of PINNs.

This observation indeed has been investigated in Krishnapriyan et al. (2021) to solve hard PDEs for
PINNs. With a higher convective term (large β), the PDE becomes a hard problem for PINNs to
solve due to the spectral bias (Rahaman et al., 2019) (i.e., the solution is highly oscillatory in time).

9



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Thus, Krishnapriyan et al. (2021) proposed a curriculum-learning algorithm which starts to feed an
easier PDE and gradually increases β until it reaches the target value. This approach, however, drops
all the intermediate model parameters obtained in the course of training. Instead, in our approach,
we utilize all PDE information to train a single model for the solutions of parameterized PDEs.

The second set of examples (Figure 6, the solutions of different types of PDEs) provide a similar
observation as above: even for different classes of PDEs (e.g., convection, diffusion, and convection-
diffusion equations), the solutions gradually change, which can be leveraged in training PINNs.

Motivation #1: a latent space of parameterized PDEs may exist. Since PDEs with similar pa-
rameter settings share common characteristics, we conjecture that solutions of parameterized PDEs
can be embedded onto a latent space and reconstructed by using a shared decoder network.

Motivation #2: it will be more effective to solve similar problems simultaneously. Considering
the similarities between solutions parameterized by similar PDE parameters, we conjecture that
training can be improved by attempting to solve all those similar problems together — multi-task
learning approaches are also based on the same intuition (Kendall et al., 2018; Ruder, 2017).

Motivated by the observations, we develop a new approach that alleviates the two known weaknesses
W1 and W2 (cf. Section 1).

C RELATED WORK

There is plenty of literature dealing with PDEs. We briefly introduce related work mostly used in
this work.

Machine Learning Methods for Solving Partial Differential Equations. Traditional numerical
methods such as finite element methods and finite difference methods have clear pros and cons
(Patidar, 2016; Li & Bettess, 1997; Srirekha et al., 2010). The more accurate the results, the more
expensive the calculation of numerically approximated formulas. It means that to earn more accurate
solutions, it needs to use finer grids, which implies more cost. To alleviate those cons, researchers
were attracted to machine learning approaches (Karniadakis et al., 2021; Cuomo et al., 2022). After
various trials like using the Galerkin or Ritz method (Rudd & Ferrari, 2015), PINNs proposed a
transformative way of using deep learning for solving general governing PDEs in a physically sound
and easy-to-formulate computational formalism (Raissi et al., 2019). As elaborated above, PINNs,
however, possess weaknesses which must be addressed (Krishnapriyan et al., 2021): (1) there are
classes of PDEs that it is difficult for PINNs to learn (e.g., PDEs exhibiting high oscillation or sharp
transitions in spatial and/or temporal domains) and (2) gradient-based training often converges to a
local optimum of models. Another line of research for solving PDEs is to analyze operator learning
for differential equation or deep Ritz methods (Yu et al., 2018; Li et al., 2020; Gupta et al., 2021) but
PINNs still have its potential for mainly focusing on governing equations which describe physical
phenomena.

Physics as Inductive Biases. There have been various strategies to impose physical constraints on
neural networks (Cranmer et al., 2020a; Rudd & Ferrari, 2015; Lee et al., 2021). Most of them focus
on imposing constraints for outputs or injecting specific physical conditions into neural networks.
As a simple but effective solution, PINNs directly impose physical conditions into neural networks
by using a governing equation itself as a loss (Raissi et al., 2019). This loss function is called Lf . In
this way, PINNs can learn the residual error of the governing equation. If initial conditions are given,
we can add an initial error loss term Lu. Furthermore, if there are specific boundary conditions, we
can specify boundary conditions in Lb.

10



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

D MORE DETAILS ON EXPERIMENTAL SETUP

D.1 LOSS

With the prediction û produced by P2INNs, our basic loss function consists of three terms as follows:

L(Θ) = w1Lu + w2Lf + w3Lb, (9)

and Lu, Lf and Lb are defined as follows:

Lu =
1

Nu

∑
Nu

(
û(x, 0;µµµ)− u(x, 0;µµµ)

)2

, (10)

Lf =
1

Nf

∑
Nf

(
F(x, t, û;µµµ)

)2

, (11)

Lb =
1

Nb

∑
Nb

(
û(0, t;µµµ)− û(2π, t;µµµ)

)2

, (12)

where Nu, Nf , and Nb are the cardinalities of the sets of initial conditions, collocation points, and
boundary conditions; w1, w2, w3 ∈ R are hyperparameters. The first and the second terms denote
the data matching loss Lu and the PDE residual loss Lf , respectively. In addition, we separately
add the boundary condition term Lb, forcing their values equal at both top and bottom parts (see
Figures 5 and 6).

D.2 BASELINE AND ABLATION METHODS

We compare P2INNs with three baselines. PINN is the original design based on fully-connected
layers with non-linear activations in Raissi et al. (2019), and PINN-R is its enhancement by using
residual connections, which was used in Kim et al. (2021). PINN-seq2seq (Krishnapriyan et al.,
2021) is a model that applies the seq2seq learning method to the PINN model, sequentially learning
data over time. We divided the entire time into 10 steps. In addition, we define one ablation model for
our method, called PINN-P, which has the same structure as original PINN, but the PDE parameters
µµµ is treated as a coordinate in the parameter space, i.e., (x, t,µµµ).

Each baseline and ablation model is trained in the following way:

1. PINN, PINN-R, and PINN-seq2seq do not read PDE parameters, such as β, ν, ρ and a, but
are trained separately for each of the coefficient settings.

2. PINN-P, an ablation model of P2INNs, is able to process PDE parameters and is trained for
all coefficient settings in each equation type.

3. Therefore, PINN, PINN-R, and PINN-seq2seq require many trained models for solving
parameterized PDEs whereas PINN-P and our method require a single trained model to
solve them.

Metrics. The relative error and the absolute error of the i-th equation are defined as the averages
of ∥ûi − ui∥2 / ∥ui∥2 and ∥ûi − ui∥2, where i ∈ {1, ..., Ne} and Ne is the number of equations
used for the task. At this time, the errors are measured for each test points and the average value is
used. We test with 3 seed numbers and report their mean.

D.3 IMPLEMENTATION

We implement P2INNs with PYTHON 3.7.11 and PYTORCH 1.10.2 that supports CUDA 11.4. We
run our evaluation on a machine equipped with Intel Core-i9 CPUs and NVIDIA RTX A6000 and
RTX 2080 TI GPUs.

11



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

E MODEL CONFIGURATION AND EFFICIENCY

E.1 DATASET STATISTICS

Table 2: Dataset statistics. For each equation type, we test three different coefficient ranges. In
Conv.-Diff.-Reac., β, ν, ρ are non-zeros.

Coefficient range Convection Diffusion Reaction Conv.-Diff. Reac.-Diff. Conv.-Diff.-Reac.
1∼ 5 5 5 5 25 25 125

1∼10 10 10 10 100 100 1,000

1∼20 20 20 20 400 400 8,000

Table 2 represents dataset statistics, and our dataset generation source code is mainly based on Kr-
ishnapriyan et al. (2021).

E.2 MODEL EFFICIENCY AND HYPERPARAMETERS

Our baselines, PINN, PINN-R, and PINN-seq2seq, are designed with 6 layers, and the dimension of
hidden vector is 50. For training, we employ Adam optimizers with learning rate of 1e− 3. For our
method, we set Dp, Dc, and Dg to 4, 3, and 5 respectively. In the loss function in Eq. equation 5,
we set w1, w2, and w3 to 1. We use a hidden vector dimension of 50 for gθc and gθg , and 150 for
gθp . For gθg . Considering that our method is able to solve multiple equations with one model, the
total model size for our method is much smaller than other baselines (see Appendix K).

F ARCHITECTURAL DETAILS OF PINN-P

...

Figure 7: PINN-P architecture.

We propose PINN-P as an ablation model of our P2INN. Unlike P2INN, PINN-P does not have a
separate encoder for PDE parameters, so that PDE parameters enter the model with coordinates. As
shown in Figure 7, PINN-P consists of l-stacked fully-connected layers. For a fair comparison with
P2INNs, we set size of hidden vector to 150 and l to 6, making the model size similar to P2INNs.

G REPRODUCIBILITY STATEMENT

To benefit the community, the code will be posted online. The source code for our proposed method
and the dataset used in this paper are attached.

12



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

H EXPERIMENTAL RESULTS ON 1D CDR EQUATION

Table 3: The relative and absolute L2 errors over all the equations. Our P2INNs surpass baselines in
all but one cases, even without fine-tuning. IMP. denotes the rate of improvement of our model over
the best baseline.

PDE type Coefficient Metric PINN PINN-R PINN-seq2seq P2INN IMP. (%)range

Class 1

Convection

1∼5 Abs. err. 0.0183 0.0222 0.1281 0.0039 78.44
Rel. err. 0.0327 0.0381 0.2160 0.0079 75.82

1∼10 Abs. err. 0.0164 0.0666 0.1924 0.0093 43.62
Rel. err. 0.0307 0.1195 0.3276 0.0179 41.78

1∼20 Abs. err. 0.1140 0.1624 0.2252 0.0198 82.64
Rel. err. 0.1978 0.2779 0.3819 0.0464 76.55

Diffusion

1∼5 Abs. err. 0.1335 0.1665 0.1987 0.1322 0.97
Rel. err. 0.2733 0.3462 0.4050 0.2710 0.84

1∼10 Abs. err. 0.2716 0.3175 0.3149 0.1539 43.34
Rel. err. 0.5259 0.6206 0.6174 0.3116 40.75

1∼20 Abs. err. 0.6782 0.7054 0.3346 0.1916 42.74
Rel. err. 1.2825 1.3401 0.6442 0.3745 41.87

Reaction

1∼5 Abs. err. 0.3341 0.3336 0.4714 0.0015 99.54
Rel. err. 0.3907 0.3907 0.5907 0.0027 99.31

1∼10 Abs. err. 0.6232 0.3619 0.6924 0.0065 98.19
Rel. err. 0.6926 0.4190 0.7931 0.0089 97.88

1∼20 Abs. err. 0.7902 0.4320 0.8246 0.0042 99.02
Rel. err. 0.8460 0.4932 0.8960 0.0092 98.14

Class 2

Conv.-Diff.

1∼5 Abs. err. 0.0610 0.0654 0.0979 0.0399 34.61
Rel. err. 0.1175 0.1289 0.1950 0.0892 24.05

1∼10 Abs. err. 0.1133 0.1313 0.0917 0.0576 37.25
Rel. err. 0.2098 0.2510 0.1959 0.1320 32.62

1∼20 Abs. err. 0.2735 0.2118 0.0645 0.0622 3.51
Rel. err. 0.5106 0.4154 0.1504 0.1485 1.28

Reac.-Diff.

1∼5 Abs. err. 0.1900 0.1876 0.4201 0.1225 34.70
Rel. err. 0.2702 0.2777 0.5346 0.1856 31.31

1∼10 Abs. err. 0.5166 0.3809 0.6288 0.1833 51.88
Rel. err. 0.6141 0.4790 0.7274 0.2756 42.46

1∼20 Abs. err. 0.7167 0.7210 0.7663 0.0898 81.03
Rel. err. 0.7998 0.8105 0.8337 0.1411 74.68

Class 3 Conv.-Diff.-Reac.

1∼5 Abs. err. 0.1663 0.0865 0.4943 0.0311 64.02
Rel. err. 0.2057 0.1415 0.6104 0.0525 62.88

1∼10 Abs. err. 0.5321 0.3170 0.7051 0.0508 83.98
Rel. err. 0.5928 0.3772 0.8027 0.0939 75.10

1∼20 Abs. err. 0.7450 0.4080 0.7136 0.0353 91.94
Rel. err. 0.7960 0.4645 0.8100 0.0812 82.88

I FINE-TUNING P2INNS

In general, our P2INNs outperform other baselines in most of the tested equations. We can fine-tune
the pre-trained model to further increase the accuracy and in this section, we show the efficacy of
the fine-tuning step with intuitive visualizations.

I.1 EXPERIMENTS WITH GAUSSIAN DISTRIBUTION AS AN INITIAL CONDITION

Experiments summarized in Table 3 use the initial condition of the Gaussian distribution
N(π, (π/2)2). We fine-tune P2INN from Table 3 on two PDEs: a convection equation with β = 10,
and a reaction equation with ρ = 5. For the coefficient range used in pre-training, we select
β ∈ [1, 20] and ρ ∈ [1, 10], respectively. We compare our fine-tuned model with vanilla PINN
and results are summarized in Figure 8.

For the additional study, we show how the results of pre-trained P2INNs are affected by varying the
PDE parameters. Figures 9(a-c)/(d-f) are the results of convection/reaction equations. As shown in
Figure 9, our P2INNs effectively learn the differences among the various coefficient settings.

13



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) Exact solution

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(b) Result of PINN

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(c) Result of P2INNs

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(d) Exact solution

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6
x

0.0

0.2

0.4

0.6

0.8

1.0

(e) Result of PINN

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(f) Result of P2INNs

Figure 8: Experimental results of fine-tuning P2INN. Convection equation of β = 30 (Figure 8.
(a)-(c)). Reaction equation of ρ = 5 (Figure 8. (d)-(f)). Figures 8 (c) and (f) are the results after
fine-tuning, and the results before fine-tuning can be checked in Figure 9.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(a) β = 10

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(b) β = 15

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(c) β = 20

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(d) ρ = 5

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(e) ρ = 7

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(f) ρ = 9

Figure 9: Results of P2INNs on convection equation and reaction equation without fine-tuning.

14



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

I.2 FAILURE MODE

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6
x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(a) Before fine-tuning

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(b) After fine-tuning

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(c) Before fine-tuning

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(d) After fine-tuning

Figure 10: Experimental results of P2INN in Section 3. Figures (a) and (b) are the results of con-
vection equation β = 30, and Figures (c) and (d) are reaction equation ρ = 5.

Table 4: Results of P2INNs for the failure mode. We use a convection equation with 1 + sin(x) as
an initial condition and a reaction equation with the Gaussian distribution N(π, (π/4)2).

Failure PINN P2INN
mode Abs. err. Rel. err. Abs. err. Rel. err.

β = 30 0.6132 0.5734 0.0910 0.0916

ρ = 5 0.5490 0.9844 0.0058 0.0173

Figure 4 is the result of P2INN for the failure mode, and Figure 10 is a comparison between before
and after fine-tuning on the results of P2INN. Figures 10 (a) and (b) are the results on convection
equation of β = 30, and Figures 10 (c) and (d) are the results on reaction equation of ρ = 5. As
shown in Table 4, P2INN significantly improves the performance compared to PINN.

15



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

J EXPERIMENTAL RESULTS ON 2D HELMHOLTZ EQUATION

We undertake an evaluation by training our P2INN model on a 2D Helmholtz equation and subse-
quently comparing its performance with that of PINNs. In the case of a = {2.50, 2.70, 2.80, 3.00},
performance is evaluated on the seen PDEs utilized for training, while for a = {2.65, 2.75, 2.85},
performance is assessed on the unseen PDEs not used during training phase. All test datasets consist
of data that is not employed in the training, and the experimental results are reported in Table 5 and
Figure 11.

Table 5: Comparision with PINN, PINN-R and P2INN on 2D Helmholtz equations

Model Metrics a = 2.50 a = 2.65 a = 2.70 a = 2.75 a = 2.80 a = 2.85 a = 3.00

PINN Abs. err. 0.1484 0.9077 1.9105 1.8942 1.5689 0.9077 2.4981
Rel. err. 0.4817 2.0937 4.9264 4.7584 3.3739 2.0937 6.1532

PINN-R Abs. err. 0.1107 0.2916 1.1590 1.4000 1.1095 1.5789 1.8800
Rel. err. 0.3830 0.7239 2.8633 3.6641 2.6792 3.8059 4.7755

P2INN Abs. err. 0.0240 0.0259 0.0257 0.0263 0.0321 0.0232 0.0315
Rel. err. 0.0718 0.0767 0.0788 0.0840 0.0975 0.0642 0.0973

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Exact (a = 2.5)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Exact (a = 2.65)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) Exact (a = 2.75)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) Exact (a = 2.85)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) Exact (a = 3.0)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(f) PINN(a = 2.5)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(g) PINN(a = 2.65)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(h) PINN(a = 2.75)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(i) PINN(a = 2.85)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0
y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(j) PINN(a = 3.0)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(k) PINN-R(a=2.5)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(l) PINN-R(a=2.65)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(m)PINN-R(a=2.75)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(n) PINN-R(a=2.85)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(o) PINN-R(a=3.0)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(p) P2INN(a=2.5)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(q) P2INN(a=2.65)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(r) P2INN(a=2.75)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(s) P2INN(a=2.85)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(t) P2INN(a=3.0)

Figure 11: [2D-Helmholtz equation] Exact solutions and results of PINN, PINN-R and P2INN for
various a

16



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 6: Number of model parameters.

PINN PINN-R PINN-seq2seq LargePINN PINN-P P2INN
#params 10,401 10,401 10,401 82,941 91,651 76,851

Table 7: The relative and absolute L2 errors over all the equations. Our P2INNs surpass LargePINN
and PINN-P in all but one cases, even without fine-tuning.

PDE type Metric PINN LargePINN PINN-P P2INN

Class 1

Convection Abs. err. 0.1140 0.1191 0.0209 0.0198
Rel. err. 0.1978 0.2084 0.0410 0.0464

Diffusion Abs. err. 0.6782 0.5868 0.3800 0.1916
Rel. err. 1.2825 1.0994 0.7912 0.3745

Reaction Abs. err. 0.7902 0.7910 0.8975 0.0042
Rel. err. 0.8460 0.8469 0.9908 0.0092

Class 2
Conv.-Diff. Abs. err. 0.2735 0.1626 0.1253 0.0622

Rel. err. 0.5106 0.3189 0.3009 0.1495

Reac.-Diff. Abs. err. 0.7167 0.7399 0.1756 0.0898
Rel. err. 0.7998 0.8186 0.2632 0.1411

Class 3 Conv.-Diff.-Reac. Abs. err. 0.7450 0.7415 0.8590 0.0353
Rel. err. 0.7960 0.7915 0.9532 0.0812

K ABLATION STUDIES ON PINN-P AND LARGEPINN

For more comprehensive evaluation, we conduct additional ablation studies following the experi-
mental settings of Table 3 with the coefficient range of 1 ∼ 20 using PINN-P (cf. Appendix D.2)
and LargePINN, which is PINN with bigger network size. As shown in Table 6, since the model size
of our proposed P2INN is larger than original PINN, we conduct experiments using a LargePINN
model. The LargePINN has the same MLP architecture as the original PINN but with increased
hidden dimensions, resulting in a model size of 82,941.

The experimental results of LargePINN, PINN-P, and P2INN are summarized in Table 7. In all
scenarios, as indicated by Table 7, the LargePINN model consistently performs inferiorly compared
to P2INNs, and P2INNs outperforms PINN-P in all cases except one. That is, while the baselines
struggles when learning the equations encompassing wide coefficient ranges, i.e., 1 ∼ 20. For in-
stance, considering Conv.-Reac.-Diff. equation, the L2 absolute error exhibited by P2INN is 0.0353
whereas LargePINN and PINN-P have errors of 0.7415 and 0.8590, respectively. Note that this
collective outcome underscores that P2INN’s separation of PDE parameters and spatial/temporal
coordinates during the learning process significantly enhances both generalization capabilities and
scalability.

17


	Introduction
	Proposed Methods
	Model Architecture
	Training

	Evaluation
	Related Work
	Conclusion
	Datasets
	1D Convection-Diffusion-Reaction Equations
	2D Helmholtz Equations

	Motivation
	Related Work
	More Details on Experimental Setup
	Loss
	Baseline and Ablation Methods
	Implementation

	Model Configuration and Efficiency
	Dataset Statistics
	Model Efficiency and Hyperparameters

	Architectural Details of PINN-P
	Reproducibility Statement
	Experimental Results on 1D CDR Equation
	Fine-tuning P2INNs
	Experiments with Gaussian Distribution as an Initial Condition
	Failure Mode

	Experimental Results on 2D Helmholtz Equation
	Ablation Studies on PINN-P and LargePINN

