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ABSTRACT

Forecasting tasks using large datasets gathering thousands of heterogeneous time
series is a crucial statistical problem in numerous sectors. The main challenge is
to model a rich variety of time series, leverage any available external signals and
provide sharp predictions with statistical guarantees. In this work, we propose a
new forecasting model that combines discrete state space hidden Markov mod-
els with recent neural network architectures. We introduce a variational discrete
posterior distribution of the latent states given the observations and a two-stage
training procedure to alternatively train the parameters of the latent states and of
the emission distributions. By learning a collection of emission laws and tem-
porarily activating them depending on the hidden process dynamics, the proposed
method allows exploring large datasets, exploiting available external signals and
providing probabilistic predictions. We assess the performance of the proposed
method using several datasets and show that it outperforms other state-of-the-art
solutions.

1 INTRODUCTION

An increasingly common time series forecasting problem concerns the forecast of large datasets
gathering thousands of heterogeneous sequences, see Makridakis et al. (2018; 2022); Lai et al.
(2018); Zhou et al. (2021b); David et al. (2022a) and the references therein. One of the main diffi-
culties is to design mathematical models for a large variety of seasonal patterns, noise levels, trends
and non-stationary changes. Additionally, some time-series datasets provide external signals that
can be exploited to detect behaviors in the main time series that would otherwise be missed (David
et al., 2022a;b). Regarding this new type of forecasting use case, state-of-the-art solutions do not
provide satisfactory results yet.

Parametric statistical models have been largely studied during the past decades, see for instance Box
et al. (2015); Hyndman & Athanasopoulos (2018). Based on a sharp modeling of the time series
distribution, these models can compute accurate predictions along with confidence intervals that
make them largely used in numerous applications. Depending on the nature of the use case, many
approaches have been proposed. The exponential smoothing model (Brown & Meyer, 1961), the
Trigonometric Box-Cox transform, ARMA errors, Trend, and Seasonal components model (TBATS)
(Livera et al., 2011), or the ARIMA model with the Box-Jenkins approach (Box et al., 2015) are for
instance very popular parametric generative models. However, they cannot be used for large datasets
gathering thousands of time series. As a new model needs to be trained for each new time series, the
training process can take considerable time depending on the number of sequences. Furthermore,
much of the parametric models proposed cannot include external signals in their framework as the
exact dependencies between the additional signals and the main ones remain unknown.

Hidden Markov models are other widespread models that have been largely studied in the literature
(Särkkä, 2013; Douc et al., 2014; Chopin et al., 2020). Introduced in the late 1960s, these generative
models rely on hidden processes to describe the distribution of the target time series. Numerous
variations have been proposed to fit different use cases (Juang & Rabiner, 1985; Douc et al., 2004;
Touron, 2019). In addition to providing accurate predictions, these models are supported by solid
theoretical results on their identifiability and their consistency, see for instance Douc et al. (2011);
Gassiat & Rousseau (2016); Gassiat et al. (2020) and references therein. However, when large
datasets are considered, as a hidden state model has to be trained on each new time series, they are
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Figure 1: Illustration of the proposed framework with 3 hidden states. Given the past of a time series
yit−w+1:t and possible additional external signals wit−w+1:t (called z in the figure), a trajectory of
the hidden state x̂it+1:t+h is drawn using the law of the hidden states. Then, conditionally to the
values taken by the hidden process, one of the emission laws is activated and used to compute the
final prediction ŷit+1:t+h. The trajectory displayed for the hidden state is arbitrary and provided for
illustration purposes.

not well suited to forecast large samples gathering thousands of time series. Nevertheless, several
contributions introducing hidden Markov models able to leverage external signals have been pro-
posed, see Bengio & Frasconi (1994); Radenen & Artieres (2012); Gonzalez et al. (2005); David
et al. (2022b).

Finally, with recent improvements in speech processing and image recognition, neural-network-
based models have emerged as the new state-of-the-art in time series forecasting. Among them, re-
current neural networks or sequence to sequence deep learning architectures (Hochreiter & Schmid-
huber, 1997; Vaswani et al., 2017) offer very appealing alternatives to exploit large time series
dataset and leverage any kind of external signals. The DeepAR methods (Salinas et al., 2020),
N-HiTS and N-BEATS frameworks (Oreshkin et al., 2019; Challu et al., 2023) and the following
Transformer-based approaches Lim et al. (2021); Zhou et al. (2021b; 2022); Woo et al. (2022); Wu
et al. (2022); Liu et al. (2022); Woo et al. (2023); Wu et al. (2023); Nie et al. (2023) are examples of
neural-network-based models that have obtained unprecedented accuracy levels in various applica-
tions. However, predictions computed by these methods are not interpretable and only a handful of
theoretical results have been provided with these architectures.

In this paper, we introduce a new forecasting method combining hidden Markov models with re-
cent neural-networks-based models. In this framework, it is assumed that time series are ruled by
hidden Markov processes modeling the internal state of the time series. Depending on the hidden
states dynamics, several emission laws are learned and specialized at forecasting specific types of
behaviours. Maximum likelihood approaches cannot be used directly to train such a model and
Expectation-Maximization (EM) algorithm is commonly used in this case. However, this algorithm
is computationally costly, requires a fair amount of tuning and is very sensitive to the initialization.
Thus, inspired by ideas brought with the Vector quantized VAE model (van den Oord et al., 2018),
a training process based on the Evidence Lower BOund (ELBO) learning alternatively the parame-
ters of the emission distributions and of the latent states is introduced. On a collection of reference
datasets, our approach outperforms current state-of-the-art solutions while providing probabilistic
predictions. Furthermore, we show that the model can forecast non-stationary time series, espe-
cially when relevant external signals are included in the hidden states and the emission distributions.

The paper is organized as follows. The proposed model is presented in Section 2 along with the
training procedure. Then, a complete experimental study is provided in Section 3 where the pro-
posed framework is applied on several datasets, its accuracy assessed and evaluated in comparison
with a collection of other state-of-the-art methods. Finally, some research perspectives are given in
Section 4.
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2 MODEL AND TRAINING PROCEDURE

2.1 MODEL FORMULATION

Consider a dataset gatheringN ∈ N∗ time series. For i ∈ {1, · · · , N}, let (yit)t∈Z be the observation
of the sequence i and (wit)t∈Z a sequence of additional signals. These auxiliary variables may
account for the history of some additional time series, or any other available information. The aim
of the proposed model is to forecast, for all i ∈ {1, · · · , N}, the next h ≥ 1 values of yi based on
the past w ≥ 1 values of yi and wi, i.e. to estimate pθ(yit+1:t+h|yit−w+1:t, w

i
t−w+1:t) the probability

density function of the time series when the parameter value is θ. We assume the existence of an
additional discrete hidden process denoted by (xit)T+1≤t≤T+h taking value in X = {1, · · · ,K} and
that rules the density of yit+1:t+h. This discrete hidden signal can be interpreted as a state or a regime
in which is a sequence i is at a time t. Depending on the values taken, K different predictions can
be computed for a same time series, all representing behaviours linked to the hidden regime of the
time series. Thus, the previous density can be written as follows:

pθ(y
i
t+1:t+h|yit−w+1:t, w

i
t−w+1:t)

=
∑

xit+1:t+h∈Xh
pθ(y

i
t+1:t+h, x

i
t+1:t+h|yit−w+1:t, w

i
t−w+1:t)

=
∑

xit+1:t+h∈Xh

h∏
s=1

pθy (y
i
t+s|xit+1:t+s, y

i
t−w+1:t+s−1, w

i
t−w+1:t)

× pθx(xit+s|xit+1:t+s−1, y
i
t−w+1:t+s−1, w

i
t−w+1:t) ,

with the convention pθ(.|xit+1:t+s−1, y
i
t−w+1:t+s−1, w

i
t−w+1:t) = pθ(.|yit−w+1:t, w

i
t−w+1:t) for

s = 1. Note that we decomposed the unknown parameter θ = (θx, θy) with i) the parameters
corresponding to the distribution of the hidden states denoted by θx and ii) the parameters corre-
sponding to the distribution of the main signal conditionally to the hidden states denoted by θy . We
consider the following assumptions.

• For all i ∈ {1, · · · , H} and all s ∈ {1, · · · , h}, we assume that the conditional distri-
bution of yit+s depends on the current value of the external signal xit+s and the window
(yit−w+1:t, w

i
t−w+1:t).

• For all i ∈ {1, · · · , H} and all s ∈ {1, · · · , h}, we assume that the conditional distribution
of xit+s depends on the previous xit+s−1 and the window (yit−w+1:t, w

i
t−w+1:t).

Thus, the predictive distribution can be written as follows.

pθ(y
i
t+1:t+h|yit−w+1:t, w

i
t−w+1:t)

=
∑

xit+1:t+h∈Xh

h∏
s=1

pθy (y
i
t+s|xit+s, yit−w+1:t, w

i
t−w+1:t)pθx(x

i
t+s|xit+s−1, yit−w+1:t, w

i
t−w+1:t) .

(1)

The proposed framework is therefore a generative model composed of two parts: the distribution of
the hidden process and the conditional emission distributions of the main signal. An illustration of
the proposed model is presented in Figure 1.

2.2 TRAINING

As (xit)t∈Z is never observed, the loglikelihood cannot be computed. In this setting, Expectation
Maximization (EM)-based algorithms could for instance be used to train the model, see Dempster
et al. (1977). However, the models used in this paper are inspired by recent deep architectures
such as DeepAR, see Salinas et al. (2020), and training these models wtih EM-based procedures is
computationally very intense. A relevant approach is to substitute the loglikelihood by the Evidence
Lower BOund (ELBO). For greater clarity, we omit the dependencies to yit−w+1:t, w

i
t−w+1:t. For
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all i ∈ {1, · · · , N}, note that

log pθ(y
i
t+1:t+h) ≥ Ex∼qφ

[
log

pθ(y
i
t+1:t+h, x

i
t+1:t+h)

qφ(xit+1:t+h|yit+1:t+h)

]
,

where the right hand side term defines the ELBO and qφ(x
i
t+1:t+h|yit+1:t+h) the posterior vari-

ational probability of the hidden sequence xit+1:t+h conditionally to the observed sequence
yit+1:t+h.Therefore, the proposed loss function L(φ, θx, θy) used to train the model is given by

L(φ, θx, θy) =
1

N

N∑
i=1

Li(φ, θx, θy)

=
1

N

N∑
i=1

Ex∼qφ

[
log

pθ(y
i
t+1:t+h, x

i
t+1:t+h|yit−w+1:t, w

i
t−w+1:t)

qφ(xit+1:t+h|yit−w+1:t+h, w
i
t−w+1:t)

]

=
1

N

N∑
i=1

{
Li1(φ, θy)− Li2(φ) + Li3(φ, θx)

}
,

with

Li1(φ, θy) = Ex∼qφ

[
h∑
s=1

log pθy (y
i
t+s|xit+s, yit−w+1:t, w

i
t−w+1:t)

]

Li2(φ) = Ex∼qφ

[
h∑
s=1

log qφ(x
i
t+s|yit−w+1:t+h, w

i
t−w+1:t)

]

Li3(φ, θx) = Ex∼qφ

[
h∑
s=1

log pθx(x
i
t+s|xit+s−1, yit−w+1:t, w

i
t−w+1:t)

]
.

Two-step training. Inspired by ideas brought by the Vector quantized VAE model (van den Oord
et al., 2018), the ELBO loss is decomposed into three components that are used to train the unknown
distributions. The two first terms correspond to a reconstruction loss and are used to train jointly the
decoder and the encoder. The last term θx 7→ Li3(φ, θx) is used to train the prior distribution , i.e.
the distribution of the discrete latent states.

Following (van den Oord et al., 2018), the prior distribution is first initialized as a uniform distribu-
tion i.e. pθx(x

i
t+s|xit+s−1, yit−w+1:t, w

i
t−w+1:t), 1 ≤ s ≤ h, is a uniform distribution and only φ and

θy are trained by optimizing Li1(φ, θy) and Li2(φ). This means that only the emission distributions
and the posterior variational distributions are first trained. This allows to use yit−w+1:t, w

i
t−w+1:t

as inputs which are passed through deep encoder architectures fθy and fφ which can be trained to
produce outputs which are used to design the emission distributions and the posterior variational
distributions distributions. After the convergence of the emission distributions, they are frozen and
the prior model is trained, guided by the learned posterior variational distribution. This allows to
train an arbitrarily complex categorical prior distribution by only optimizing θx 7→ Li3(φ, θx). See
Appendix A for ablation studies on the proposed training process as well as some choices made in
the model formulation and implementation.

2.3 IMPLEMENTATION

For all i ∈ {1, · · · , N} and s ∈ {1, · · · , h} consider the following assumptions.

• Inspired by the DeepAR method introduced in Salinas et al. (2020), we assume that the
K emission distributions (pθy (y

i
t+s|xit+s = k, yit−w+1:t, w

i
t−w+1:t))1≤k≤K are Gaussian

distributions parameterized by K different neural networks components. In fact, for each
hidden state k ∈ {1, · · · ,K}, a neural-network-based model denoted fkθy is trained to
predict h couples of parameters for the Gaussian emission distributions linked to the hidden
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regime k: ((µk,it+s, σ
k,i
t+s))1≤s≤h with µ the mean and σ the standard deviation.

pθy (y
i
t+s|xit+s = k, yit−w+1:t, w

i
t−w+1:t) = N (yit+s;µ

k,i
t+s, σ

k,i
t+s)

(µ̂k,it+s, σ̂
k,i
t+s) = fkθy (y

i
t−w+1:t, w

i
t−w+1:t)s

Note that the output of fkθy is a vector of Gaussian parameters. Thus, for all
s, s′ ∈ {1, · · · , h}, the Gaussian parameters used to sample pθy (y

i
t+s|xit+s = k,

yit−w+1:t, w
i
t−w+1:t) and pθy (y

i
t+s′ |xit+s′ = k, yit−w+1:t, w

i
t−w+1:t) are calculated by the

same neural-network-based model.
• The prior distribution of the hidden states is provided by a neural network component called
fθx . Based on yit−w+:t+s−1, w

i
−t−w+1:t, fθx returns the initial distribution and transition

matrices of the hidden process:

pθx(x
i
t+s = k|xit+s−1 = j, yit−w+:t, w

i
−t−w+1:t) = αi,j,ks ,

α̂i,j,ks = fθx(y
i
t−w+1:t, w

i
t−w+1:t)s,j,k .

• Finally, the posterior variational distribution of the hidden states
qφ(x

i
t+s|yit−w+1:t+h, w

i
t−w+1:t) is learnt by a neural-network-based model named

fφ. Based on yit−w+:t+s−1 and wi−t−w+1:t, fφ returns a matrix with K × h hidden state
probabilities :

qφ(x
i
t+s = k|yit−w+:t+h, w

i
−t−w+1:t) = βi,ks ,

β̂i,ks = fφ(y
i
t−w+1:t, w

i
t−w+1:t)k,s .

Architectures used for (fkθy )1≤k≤K , fθx and fφ can be adjusted depending on the nature of the
time series, the forecast horizon, if external signals are available, etc. Architectures used in the
experiments section are detailed in Appendix A.2 and Appendix B.2. For completeness, a complete
code base gathering the model implementation as well as the training process is publicly provided
with this work1.

3 EXPERIMENTS

In this section, we assess the performance of the proposed model on several datasets. The first
experiment uses the dataset gathering 10000 fashion time series firstly introduced in David et al.
(2022a). In this first experiment, the performance of our algorithm is evaluated and compared with
several state-of-the-art methods. Moreover, as external signals are available, we show that the model
can correctly leverage them to improve predictions. The proposed method is also evaluated with
a collection of 8 reference datasets. This second application shows that the model can be easily
applied to a wide variety of forecasting tasks and provide accurate predictions, rivaling state-of-the-
art Transformer-based approaches.

3.1 FASHION DATASET

3.1.1 FASHION TIME SERIES FORECASTING

A first application of the proposed approach is done on the fashion dataset2 introduced in David et al.
(2022a). This dataset gathers a collection of 10000 weekly time series representing the evolution
of the visibility of garments on social media. In addition, each sequence is linked with an external
signal representing the visibility of the same garment on a sub sample of influencer users. The
intuition is that influencers can adopt fashion items in advance and thus help forecasting methods
to better predict the evolution of clothing on mainstream users. This dataset turned out to be well
suited to our framework as it shows several specific features.

• The fashion dataset contains numerous time series, showing thousands of different patterns
of seasonality, trends, and noise levels. Some of the fashion time series are non-stationary.

1https://anonymous.4open.science/r/next-302C/
2https://github.com/etidav/HERMES/
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Figure 2: Predictions on the fashion dataset. (Top Left) Prediction of the two emission distri-
butions when the hidden state is 0 or 1. (Top Right) Empirical distributions of the hidden states.
(Bottom) Simulated predictions with our model using external signals.

• In some examples, early signals announcing the emergence of a new fashion item (which
can also be considered as a change of regime) can be perceived in the external signals.
Properly exploiting these additional signals could prove decisive in order to accurately
detect and predict sudden changes present in the main time series.

3.1.2 BASELINE MODELS AND OUR MODEL VARIANTS

The following methods are tested on the fashion dataset as baseline approaches: Snaive, Thetam
(Hyndman et al., 2020), Ets (Brown & Meyer, 1961; Holt, 2004), Tbats (Livera et al., 2011), HER-
MES (David et al., 2022a), Prophet (Taylor & Letham, 2017), N-BEATS (Oreshkin et al., 2019),
N-HiTS (Challu et al., 2023), DeepAR (Salinas et al., 2020), Informer (Zhou et al., 2021b), TimesNet
(Wu et al., 2023) and PathTST (Nie et al., 2023). All these methods are reviewed in Appendix A.1.
Against these methods, 2 variations of our approach with 2 hidden states are presented: i) a varia-
tion (mentioned as Ours) that does not have access to the influencers external signals. ii) a variation
having access to the external signals (mentioned as Ours-es with ’-es’ for external signals). For the
second method, external signals are included as input in the hidden state distribution and in only
one of the two emission distributions. Further information concerning parameters selection and the
training process of the proposed approaches and some of the benchmark methods are reviewed in
Appendix A.4.

3.1.3 ACCURACY METRICS

The fashion forecasting task is to predict the last year (52 values) of the 10000 time series. Evalu-
ation of the tested methods accuracy is done using the Mean Absolute Scaled Error (MASE) as the
fashion time series have different volumes:

MASE =
T −m
h

∑h
j=1 |YT+j − ŶT+j |∑T−m
i=1 |Yi − Yi−m|

,

where T stands for the time series length, h the forecast horizon and m the seasonality (for the
fashion dataset, T = 209, h = 52 and m = 52). In addition to assessing the MASE on the whole
dataset, the MASE is also evaluated on 2 sub samples of time series representing stationary and
non-stationary time series. The following methodology is used to create these 2 samples.

• non-stationary time series. As a main challenge of the fashion forecasting use case is
to correctly anticipate sudden evolution, a sub sample of time series showing strong non-
stationary behaviours is studied. To create this sub sample of time series, the snaive model
is used to predict the last year of the fashion time series and the associated MASE are
calculated. The non-stationary time series are defined as the 1000 time series where the
snaive prediction obtained the highest MASE.
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Table 1: Fashion dataset accuracy results. The Average MASE of each tested method is assessed
on the whole dataset and 2 sub samples. For approaches using neural networks, 10 models are
trained with different seeds. The mean and standard deviation of the 10 results computed with the
10 replicates are displayed.

Non-stationary Stationary
Fashion dataset time series time series

MASE seed std MASE seed std MASE seed std

Snaive 0.881 - 1.455 - 0.536 -
Thetam 0.844 - 1.314 - 0.615 -
Arima 0.826 - 1.256 - 0.565 -
Ets 0.807 - 1.270 - 0.611 -
Prophet 0.786 - 1.193 - 0.629 -
Stlm 0.770 - 1.198 - 0.513 -
Tbats 0.745 - 1.229 - 0.501 -
DeepAR 0.731 0.006 1.158 0.031 0.508 0.017
Informer 0.723 0.005 1.188 0.016 0.473 0.005
Hermes-ws 0.713 0.005 1.092 0.007 0.477 0.008
TimesNet 0.709 0.005 1.161 0.025 0.450 0.007
PatchTST 0.706 0.004 1.149 0.001 0.448 0.003
N-HiTS 0.701 0.003 1.151 0.014 0.449 0.005
N-BEATS 0.700 0.003 1.146 0.014 0.451 0.003
Ours 0.692 0.001 1.116 0.006 0.440 0.001
Ours-es 0.684 0.001 1.030 0.006 0.449 0.002

• stationary time series. By contrast, a group of stationary time series is presented. To
define them, the same methodology as the previous group is used. We define them as the
1000 time series where the snaive prediction reached the lowest MASE.

3.1.4 RESULTS

An example of model prediction on a fashion time series is displayed in Figure 2. Hidden states
trajectories, emission distributions predictions and the final simulations are presented. In this ex-
ample, the second emission distribution (that has access to the external signal) catches the regime
shift in the time series. This information is also correctly learnt by the hidden states distribution as
the empirical probability to be in this regime is close to one. Additional examples are provided in
Appendix A.9.

The final accuracy results are provided in Table 1. For each method, a prediction and the associated
MASE are computed for the 10000 time series and the average is computed on the whole dataset,
the non-stationary sample and the stationary sample. Among methods that do not have access to the
external signal, the proposed method (Ours) has the highest accuracy on the whole dataset as well
as on the 2 sub samples and outperforms other state-of-the-art models. The best results are provided
by Ours-es, the proposed method with the external signals. It outperforms all the other methods and
shows a significant improvement, especially on the non-stationary time series.

3.1.5 PROBABILISTIC FORECAST

Compared to many recent Transformer-based methods, the proposed generative model allows sam-
pling trajectories to assess the confidence of the forecast, see Figure 2 for an illustration. So as
to evaluate the proposed approach on this specific point, 100 trajectories are computed with the
method for each time series. Then, the MASE is computed for each trajectories and the average
and standard deviation is displayed in Table 2. As a benchmark, the DeepAR method is used be-
cause it also provides probabilistic forecasts allowing sampling of prediction trajectories. We can
see that the proposed model outperforms DeepAR and improves its probabilistic predictions when
the influencers external signals are used.
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Table 2: Fashion dataset probabilistic forecast accuracy results. Final accuracy of methods
providing probabilistic forecasts. For each method, 100 trajectories and their associated MASEs are
computed for each time series. The average and standard deviation is then calculated on the whole
dataset and 2 sub samples.

Non-stationary Stationary
Fashion dataset time series time series

MASE MASE MASE
Mean Std Mean Std Mean Std

DeepAR 0.969 0.339 1.407 0.519 0.708 0.262
Ours 0.951 0.273 1.364 0.394 0.655 0.153
Ours-es 0.943 0.268 1.319 0.362 0.656 0.166

3.2 REFERENCE DATASET

3.2.1 DATASET PRESENTATION, BASELINE MODELS AND THE PROPOSED APPROACH

The presented model is also evaluated with a collection of 8 reference datasets used in many recent
contribution dealing with time series forecasting, see Li et al. (2019); Zhou et al. (2021b; 2022); Woo
et al. (2022); Wu et al. (2022); Liu et al. (2022); Zeng et al. (2022); Wu et al. (2023); Challu et al.
(2023); Woo et al. (2023); Nie et al. (2023). A review of these datasets is given in Appendix B.1.

As benchmark against the proposed models, methods and results presented in the two following
recent papers are used Wu et al. (2023); Nie et al. (2023): the two best Transformer-based methods
on the 8 datasets named PatchTST (Nie et al., 2023) and TimesNet (Wu et al., 2023), a neural
network called Dlinear that, as our approach, only relies and fully connected layers (Zeng et al.,
2022) and 5 Transformer-based methods called FEDformer (Zhou et al., 2022), Autoformer (Wu
et al., 2022), Informer (Zhou et al., 2021b), Pyraformer (Liu et al., 2022) and LogTrans (Li et al.,
2019).

Concerning the proposed approach, recurrent neural networks used in the fashion use case are re-
placed by fully connected networks as they are too computationally intensive for the long-term
forecasting tasks (H=720). For all the reference datasets, the number of hidden states was set to
3 and the same architecture was used. Only a small grid search was run on each dataset for the
shortest forecasting task to fix the length of the method inputs. Additional information concerning
the proposed model on the reference dataset can be found in Appendix B and a code base is released
to reproduce the results3.

3.2.2 ACCURACY METRICS

On the reference datasets, forecasting methods are evaluated on several horizons (lying between 24
to 720 time steps) and with 2 errors metrics, the Mean Square Error (MSE) and the Mean Absolute
Error (MAE):

MSE =
1

h

h∑
j=1

(YT+j − ŶT+j)
2 , MAE =

1

h

h∑
j=1

|YT+j − ŶT+j | ,

with h the forecast horizon. The last 20% of each time series is kept hidden and used as a test set.

3.2.3 RESULTS

Table 3 displays the accuracy results of the benchmark models along with the proposed method on
the 8 reference datasets. We can see that depending on the dataset and the horizon, the proposed
method and the Transformer-based method PatchTST outperform all alternatives. These results
illustrate two important features of the presented approach:

• The proposed method can be used for a large variety of time series forecasting tasks.

3https://anonymous.4open.science/r/next-302C/
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Table 3: Reference datasets accuracy results. The best methods are highlighted in bold and the
second best results with an underline.

Ours PatchTST/64 TimesNet DLinear FEDformer Autoformer Informer Pyraformer LogTrans
H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.154 0.199 0.149 0.198 0.172 0.220 0.176 0.237 0.217 0.296 0.266 0.336 0.300 0.384 0.896 0.556 0.458 0.490
192 0.198 0.242 0.194 0.241 0.219 0.261 0.220 0.282 0.276 0.336 0.307 0.367 0.598 0.544 0.622 0.624 0.658 0.589
336 0.252 0.286 0.245 0.282 0.280 0.306 0.265 0.319 0.339 0.38 0.359 0.395 0.578 0.523 0.739 0.753 0.797 0.652
720 0.316 0.332 0.314 0.334 0.365 0.359 0.323 0.362 0.403 0.428 0.419 0.428 1.059 0.741 1.004 0.934 0.869 0.675

Tr
af

fic

96 0.396 0.282 0.360 0.249 0.593 0.321 0.410 0.282 0.562 0.349 0.613 0.388 0.719 0.391 2.085 0.468 0.684 0.384
192 0.423 0.301 0.379 0.256 0.617 0.336 0.423 0.287 0.562 0.346 0.616 0.382 0.696 0.379 0.867 0.467 0.685 0.390
336 0.437 0.306 0.392 0.264 0.629 0.336 0.436 0.296 0.570 0.323 0.622 0.337 0.777 0.420 0.869 0.469 0.733 0.408
720 0.480 0.328 0.432 0.286 0.640 0.350 0.466 0.315 0.596 0.368 0.660 0.408 0.864 0.472 0.881 0.473 0.717 0.396

E
C

L

96 0.140 0.240 0.129 0.222 0.168 0.272 0.140 0.237 0.183 0.297 0.201 0.317 0.274 0.368 0.386 0.449 0.258 0.357
192 0.158 0.256 0.147 0.240 0.184 0.289 0.153 0.249 0.195 0.308 0.222 0.334 0.296 0.386 0.386 0.443 0.266 0.368
336 0.176 0.274 0.163 0.259 0.198 0.300 0.169 0.267 0.212 0.313 0.231 0.338 0.300 0.394 0.378 0.443 0.280 0.380
720 0.217 0.307 0.197 0.290 0.220 0.320 0.203 0.301 0.231 0.343 0.254 0.361 0.373 0.439 0.376 0.445 0.283 0.376

IL
I

24 1.985 0.825 1.319 0.754 2.317 0.934 2.215 1.081 2.203 0.963 3.483 1.287 5.764 1.677 1.420 2.012 4.480 1.444
36 1.746 0.783 1.579 0.870 1.972 0.920 1.963 0.963 2.272 0.976 3.103 1.148 4.755 1.467 7.394 2.031 4.799 1.467
48 1.722 0.790 1.553 0.815 2.238 0.940 2.130 1.024 2.209 0.981 2.669 1.085 4.763 1.469 7.551 2.057 4.800 1.468
60 1.684 0.792 1.470 0.788 2.027 0.928 2.368 1.096 2.545 1.061 2.770 1.125 5.264 1.564 7.662 2.100 5.278 1.560

E
TT

h1

96 0.379 0.389 0.370 0.400 0.384 0.402 0.375 0.399 0.376 0.419 0.449 0.459 0.865 0.713 0.664 0.612 0.878 0.740
192 0.440 0.424 0.413 0.429 0.436 0.429 0.405 0.416 0.420 0.448 0.500 0.482 1.008 0.792 0.790 0.681 1.037 0.824
336 0.483 0.445 0.422 0.440 0.491 0.469 0.439 0.443 0.459 0.465 0.521 0.496 1.107 0.809 0.891 0.738 1.238 0.932
720 0.570 0.524 0.447 0.468 0.521 0.500 0.472 0.490 0.506 0.507 0.514 0.512 1.181 0.865 0.963 0.782 1.135 0.852

E
TT

h2

96 0.271 0.332 0.274 0.337 0.340 0.374 0.289 0.353 0.346 0.388 0.358 0.397 3.755 1.525 0.645 0.597 2.116 1.197
192 0.347 0.382 0.341 0.382 0.402 0.414 0.383 0.418 0.429 0.439 0.456 0.452 5.602 1.931 0.788 0.683 4.315 1.635
336 0.380 0.409 0.329 0.384 0.452 0.452 0.448 0.465 0.496 0.487 0.482 0.486 4.721 1.835 0.907 0.747 1.124 1.604
720 0.420 0.446 0.379 0.422 0.462 0.468 0.605 0.551 0.463 0.474 0.515 0.511 3.647 1.625 0.963 0.783 3.188 1.540

E
TT

m
1

96 0.288 0.335 0.293 0.346 0.338 0.375 0.299 0.343 0.379 0.419 0.505 0.475 0.672 0.571 0.543 0.510 0.600 0.546
192 0.331 0.363 0.333 0.370 0.374 0.387 0.335 0.365 0.426 0.441 0.553 0.496 0.795 0.669 0.557 0.537 0.837 0.700
336 0.364 0.385 0.369 0.392 0.410 0.411 0.369 0.386 0.445 0.459 0.621 0.537 1.212 0.871 0.754 0.655 1.124 0.832
720 0.429 0.426 0.416 0.420 0.478 0.450 0.425 0.421 0.543 0.490 0.671 0.561 1.166 0.823 0.908 0.724 1.153 0.820

E
TT

m
2

96 0.162 0.249 0.166 0.256 0.187 0.267 0.167 0.260 0.203 0.287 0.255 0.339 0.365 0.453 0.435 0.507 0.768 0.642
192 0.218 0.288 0.223 0.296 0.249 0.309 0.224 0.303 0.269 0.328 0.281 0.340 0.533 0.563 0.730 0.673 0.989 0.757
336 0.271 0.325 0.274 0.329 0.321 0.351 0.281 0.342 0.325 0.366 0.339 0.372 1.363 0.887 1.201 0.845 1.334 0.872
720 0.355 0.380 0.362 0.385 0.408 0.403 0.397 0.421 0.421 0.415 0.422 0.419 3.379 1.388 3.625 1.451 3.048 1.328

• By combining elementary neural networks components with hidden processes and a com-
putationally efficient training procedure, our approach reaches state-of-the-art standards
while providing uncertainty quantification.

However, we can see that the Transformer-based model PatchTST outperforms the proposed model
on some reference datasets such as Traffic or ECL. A main reason is that these two datasets gather
similar time series with long term evolution. In this context, the interest in introducing hidden states
is low and the models used in the emission distributions do not manage to outperform complex and
high dimensional models such as PatchTST. Future work could focus on understanding how to over-
come this issue, by refining the training process and/or introducing Transformer-based architectures
into the proposed model and variational approximation. Additional numerical results on the refer-
ence datasets can be found in Appendix B along with examples of predictions for each reference
dataset.

4 CONCLUSION

In this paper, we introduced a new time series forecasting model combining discrete hidden Markov
models and deep architectures. We proposed a two-stage training procedure, based on the ELBO
and inspired by recent variational quantization approaches. Our model outperformed state-of-the-
art methods in particular when using external signals on fashion time series. Then, its performance
were assessed on 8 reference datasets with similar performance as other state-of-the-art methods.

The numerical performance of our method makes it a solid alternative to recent Tansformer-based
models. Furthermore, unlike many other state-of-the-art methods, it allows an estimation of the
predictive distribution of future observations. Finally, we want to highlight that several parts of
our approach can be further investigated to improve the performance presented such as providing
an automatic selection of the number of hidden states, or extending recent results on variational
learning of hidden Markov models to obtain theoretical guarantees on the variational distribution.
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A FASHION DATASET

A.1 BENCHMARK MODELS

We present in this section the baseline methods tested on the fashion dataset against the proposed
approach:

• Snaive: A method that only repeats the last past period of historical data.

• Thetam: A parametric model that decomposes the original signal in θ-lines, predicts each
one separately and recomposes them to produce the final forecast (Hyndman et al., 2020).

• Ets: The exponential smoothing method (Brown & Meyer, 1961; Holt, 2004).

• Tbats: A parametric model presented in (Livera et al., 2011).

• Stlm: A parametric model that uses a multiplicative decomposition and models the sea-
sonally adjusted time series with an exponential smoothing model (Hyndman et al., 2020).

• HERMES: a hybrid method mixing per-time-series TBATS predictors and a recurrent neu-
ral network global corrector (David et al., 2022a).

• Prophet: a parametric model introduced in Taylor & Letham (2017) and widely used in
the industry.

• N-BEATS: a full-neural-network-based method that shows striking results on numerous
datasets of the literature (Oreshkin et al., 2019).

• N-HiTS: The evolution of N-BEATS (Challu et al., 2023).

• DeepAR: a full-neural-network-based method used at Amazon that provided sharp proba-
bilistic forecasts (Salinas et al., 2020).

• Informer: A Transformer-based model proposing a new self-attention mechanism reduc-
ing the Transformers’ high memory usage (Zhou et al., 2021b).

• TimesNet: One of the most recent Transformer-based models (Wu et al., 2023).
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Figure 3: Example of model architecture. Example of architecture used for the proposed approach
on the Fashion dataset. (Left) Model used to compute parameters of the k-th emission distribution.
(Middle) Model used to compute the hidden state probabilities. (Right) Model used to approximate
the posterior distribution of the hidden states.

• PatchTST: A Transformer-based model that emerged as the best method using Transform-
ers on several datasets of the literature (Nie et al., 2023).

For the methods DeepAR, N-BEATS, N-HiTS, Informer, TimesNet and PatchTST, the package
”neuralforecast” was used to train them (Olivares et al., 2022).

A.2 ARCHITECTURE USED FOR HIDDEN STATES AND EMISSION DISTRIBUTIONS

We detail in this section the architecture used for the proposed model on the Fashion dataset. For
the emission distributions, a LSTM layer is first used to process the past of the main signal and
external signals. Then, Fully Connected (FC) layers are used to compute the different parameters
of the emission distributions. For the standard deviation of the Gaussian emission distributions, a
”softplus” activation is applied on the last layer to ensure that the model outputs remain positive.
Concerning the hidden state prior distribution, two LSTM layers are used to process the past inputs
(main signals plus external signals) and some outputs of the emission distributions. Outputs are
concatenated and fed to two Fully Connected layers followed by a ”softmax” activation to compute
the initial distribution and transition matrices of the hidden state processes. Finally, for the posterior
distribution of the hidden states, past and future windows of the main signal are first provided to
two LSTM layers. Outputs are concatenated and fed to a Fully Connected layer and a ”softmax”
activation to compute the posterior variational probabilities. See Figure 3 for an illustration of the
different components.

A.3 FIXING THE NUMBER OF HIDDEN STATES

Table 4 displays results of several variations of the proposed model with a number of hidden states
between 2 and 4. We see that the variation achieving the best accuracy is the method with two
hidden states and that increasing the number of hidden states does not always lead to an increase
in final accuracy. Indeed, we notice that the more the model has hidden states, the more difficult
it is to differentiate them, which leads to redundant emission distributions. See Appendix A.9 for
prediction examples of the variation with 4 hidden states. Future works will focus on providing an
automatic selection of K.
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Table 4: Hidden states grid search. Average MASE of the proposed model with a number of
hidden states lying between 2 and 4 are assessed on the Fashion dataset. For each model, 10 models
are trained with different seeds. The mean and standard deviation of the 10 results computed with
the 10 replicates are displayed.

Non-stationary Stationary
Fashion dataset time series time series

MASE seed std MASE seed std MASE seed std

Ours 3hs 0.693 0.001 1.118 0.006 0.441 0.002
Ours 4hs 0.693 0.001 1.113 0.004 0.442 0.001
Ours 2hs 0.692 0.001 1.116 0.006 0.44 0.001
Ours-es 3hs 0.685 0.001 1.031 0.005 0.452 0.002
Ours-es 4hs 0.685 0.001 1.029 0.005 0.452 0.002
Ours-es 2hs 0.684 0.001 1.03 0.006 0.449 0.002

Table 5: Fashion dataset benchmarks grid search Grid searches run on the Fashion dataset for
the following benchmark methods: DeepAR, PatchTST, N-HiTS, N-BEATS and our method. The
metrics displayed are the final MASE of each model variation on the test set.

DeepAR
Learning rate

0.005 0.0005 0.00005

B
at

ch
si

ze

8 0.76 0.791 0.874
64 0.733 0.736 0.831
256 0.774 0.771 0.772
1024 0.754 0.75 0.754
2048 0.727 0.745 0.752

PatchTST
Learning rate

0.005 0.0005 0.00005

B
at

ch
si

ze

8 0.85 0.714 0.717
64 0.881 0.705 0.707
256 0.913 0.705 0.708
1024 0.818 0.704 0.709
2048 0.947 0.709 0.709

Ours
Learning rate

0.005 0.0005 0.00005

B
at

ch
si

ze 64 0.714 0.713 0.727
256 0.703 0.700 0.714
1024 0.694 0.696 0.709
2048 0.694 0.693 0.702

N-HiTS
Learning rate

0.005 0.0005 0.00005

B
at

ch
si

ze

8 0.733 0.709 0.701
64 0.716 0.733 0.702
256 0.719 0.733 0.702
1024 0.715 0.734 0.702
2048 0.717 0.734 0.703

N-BEATS
Learning rate

0.005 0.0005 0.00005

B
at

ch
si

ze

8 0.740 0.709 0.700
64 0.713 0.734 0.702
256 0.719 0.738 0.703
1024 0.718 0.737 0.704
2048 0.876 0.741 0.704

Informer
Learning rate

0.005 0.0005 0.00005

B
at

ch
si

ze

8 0.786 0.747 0.752
64 0.752 0.727 0.734
256 0.736 0.719 0.735
1024 0.746 0.722 0.727
2048 0.735 0.719 0.727

A.4 GRID SEARCH

So as to produce the final results of the benchmark methods and the proposed model on the Fash-
ion dataset, several grid searches were run to fix the different hyper parameters. For the methods
PatchTST, Informer, N-HiTS, N-BEATS, DeepAR and our method, a grid search was run on the
learning rate and the batch size. Table 5 summarizes the grid search results for these 5 models. The
best configuration in terms of MASE on the test set was selected and used to produce the final results
displayed in Section 3.1.

A.5 IMPACT OF MODEL SIZE

In addition to the learning rate and the batch size, we also tested different sizes for our approach
on the Fashion dataset. Figure 4 displays the evolution of the MASE of our model depending on
its size (number of parameters, from 150 thousand parameters to 1.5 millions). We can see that
the best MASE is reached by a model with 700 thousand parameters: 2 × 110000 parameters for
the two emission distributions, 160000 parameters for the hidden states posterior model and 320000
parameters for the hidden states prior model. For comparison, Table 6 displays the size of several
other methods used on the fashion dataset (architecture where the horizon is set to 52 and the input
size is set to 104.)
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Figure 4: Accuracy depending on the model size Evolution of the accuracy of the proposed model
on the Fashion dataset depending on its size.

Table 6: Models size on the Fashion dataset: A comparison of the size of different methods on the
mode dataset in the configuration where the horizon is set to 52 and the input size is set to 104.

Model size
number of parameters

DeepAR 199565
Informer 341985
PatchTST 487863
Ours 703598
Ours-es 703598
N-HiTS 2678675
N-BEATS 2729322
TimesNet 4704125

A.6 JOINT TRAINING INSTABILITIES

In this section, we investigate the impact of the two-steps training process proposed with our ap-
proach. This process inspired by ideas brought with Vector quantized VAE model (van den Oord
et al., 2018) reveals to be central in the case of time series forecasting. To illustrate this point, we
tested variants of our model on the Fashion dataset where all the components were jointly trained.
Table 7 presents results of these variants (called Ours (one-step training) and Ours-es (one-step
training)) and highlights that these variants underperform our approaches optimized with a two-step
process. In this use case, the hidden state posterior and prior distributions converged to the same
deteriorated deterministic distributions, i.e hidden states trajectories are all the same, for every time
series. Consequently, the emission distributions are always activated to predict the same parts of
the forecasting horizon, for every time series and can not be specialized at forecasting specific be-
haviours. In addition of Table 7, the ELBO was also evaluated on the eval set and compared between
the two training processes. We found that the final ELBO on the evaluation set was always better
at the end of the two-stage training than that obtained with the single-stage training. Finally, we
tested to repeat several times the two-steps training to improve even more the ELBO. We found that
repeating the two-steps training did not lead to an improvement in terms of ELBO and MASE and
has an important cost in terms of computational time.
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Table 7: One-step versus two-steps training. Evaluation of the proposed method on the fashion
dataset where a one-step training process versus a two-steps training is used. The Average MASE
of each tested method is assessed on the whole dataset and 2 sub samples. For all the variants, 10
models are trained with different seeds. The mean and standard deviation of the 10 results computed
with the 10 replicates are displayed.

Non-stationary Stationary
Fashion dataset time series time series

MASE seed std MASE seed std MASE seed std

Ours (one-step-training) 0.701 0.001 1.13 0.005 0.447 0.002
Ours-es (one-step-training) 0.698 0.003 1.084 0.017 0.456 0.002
Ours 0.692 0.001 1.116 0.006 0.440 0.001
Ours-es 0.684 0.001 1.030 0.006 0.449 0.002

Table 8: Leant versus fixed standard deviation. Evaluation of the proposed method on the fashion
dataset where the standard deviation of the emission distributions is not learnt and fixed to 1. The
Average MASE of each tested method is assessed on the whole dataset and 2 sub samples. For all
the variants, 10 models are trained with different seeds. The mean and standard deviation of the 10
results computed with the 10 replicates are displayed.

Non-stationary Stationary
Fashion dataset time series time series

MASE seed std MASE seed std MASE seed std

Ours (fix std) 0.716 0.003 1.141 0.006 0.462 0.005
Ours-es (fix std) 0.710 0.002 1.084 0.012 0.468 0.003
Ours 0.692 0.001 1.116 0.006 0.440 0.001
Ours-es 0.684 0.001 1.030 0.006 0.449 0.002

A.7 LEARN OR FIX THE EMISSION DISTRIBUTIONS VARIANCES

Compared to several recent forecasting methods, the proposed approach learns emission distribu-
tions allowing an estimation of the predictive distribution of the future observations. In this section,
we evaluate if learning the emission distributions (mean and standard deviation in the Gaussian case)
can have an impact on the final accuracy of the model. To do so, we trained a variant of the proposed
approach where we fixed the standard deviation of the emission distributions to 1 and only learned
the mean parameters. Table 8 displays results of these alternatives (called Ours (fix std) and Ours-es
(fix std)) alongside the models where the standard deviations are learnt. We can see that freezing the
standard deviations has a negative impact on the final accuracy of our approach and it reduces only
marginally the model complexity and the learning process time.

A.8 THE IMPORTANCE OF TEMPORAL HIDDEN STATES

As a last ablation study on the proposed approach, we evaluate the impact of using temporal hidden
states, able to switch during the prediction period. To do so, a variant of the proposed approach
where the transition matrices of the hidden state are fixed to identity matrices is trained. Thus,
for each prediction, the hidden state is only determined by the initial distribution of the hidden
states and remains constant during the whole predictive time frame. Table 9 displays results of
these alternatives (called Ours (fix hidden states) and Ours-es (fix hidden states)) alongside our
models with moving hidden states. We can see that the Markov dynamics enabling our approach to
switch from a hidden state to another during the predictive period have a positive impact on the final
accuracy, allowing our approach to capture finer details and better leverage external signals.
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Table 9: Constant versus temporal hidden states. Evaluation of the proposed method on the
fashion dataset where the hidden states are forced to stay constant during the whole forecasting
period. The Average MASE of each tested method is assessed on the whole dataset and 2 sub
samples. For all the variants, 10 models are trained with different seeds. The mean and standard
deviation of the 10 results computed with the 10 replicates are displayed.

Non-stationary Stationary
Fashion dataset time series time series

MASE seed std MASE seed std MASE seed std

Ours (fix hidden states) 0.700 0.001 1.135 0.004 0.446 0.001
Ours-es (fix hidden states) 0.696 0.002 1.051 0.008 0.462 0.003
Ours 0.692 0.001 1.116 0.006 0.440 0.001
Ours-es 0.684 0.001 1.030 0.006 0.449 0.002

A.9 EXAMPLE OF PREDICTIONS

Finally, we display additional examples of predictions of our proposed model on the Fashion dataset.
First, Figure 5 displays a comparison between predictions of the model having access to the influ-
encers external signals and without having access to them. We can see that in some examples, the
inclusion of the external signals greatly helps one of the emission distributions to explore new dis-
tributions and accurately catch non-stationary evolution. Then, Figure 6 shows the prediction of the
presented model with 4 hidden states and illustrates that adding hidden states does not necessarily
lead to a better exploration of the dataset but may lead to redundant regimes. Finally, Figure 7 dis-
plays examples of prediction of the proposed model along with some of the best benchmark models.

B REFERENCE DATASET

B.1 REFERENCE DATASETS

We present in this section the 8 references dataset used in Section 3.2.

• ETTm2 (Electricity Transformer Temperature): a dataset gathering time series following
characteristics of an electricity transformer in China from July 2016 to July 2018 with
values measured every 15 minutes Zhou et al. (2021a).

• ECL(Electricity): time series representing the evolution of the electricity consumption of
370 clients from 2012 to 2014 Trindade (2015).

• Exchange-Rate: a dataset gathering 8 time series representing the evolution from 1990
to 2016 of the daily exchange rates of the following countries: Australia, British, Canada,
Switzerland, China, Japan, New Zealand and Singapore Lai et al. (2018).

• Traffic (San Francisco Bay Area Highway Traffic): 862 time series representing road oc-
cupancy measured by 862 sensors spread over the State of California from January 2015 to
December 2016.

• Weather: dataset gathering the evolution of 21 meteorological variables in Germany during
the year 2020.

• ILI(Influenza-like illness): time series representing the weekly evolution of the number of
influenza-like illness patients in The United States, from January 2002 to July 2020.

B.2 ARCHITECTURE USED FOR HIDDEN STATES AND EMISSION DISTRIBUTIONS

An overview of the architecture used for the proposed model on the 8 reference dataset is displayed
in Figure 8. As recurrent neural layers considerably slow down the model for some of the long-term
forecasting tasks (especially where horizon=720), they are all replaced by fully connected layers.
Except for this modification, the architecture used with the reference datasets is similar to that used
on the Fashion dataset.
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Figure 5: Ours vs Ours-es predictions. Ours and Ours-es model predictions on three fash-
ion time series: (Top) ”br female shoes 262”, (Middle) ”eu female outerwear 177”, (Bottom)
”eu female texture 80”. On several fashion time series, Ours-es correctly leverages the influencers
external signal and capture sudden non-stationary evolution impossible to forecast without them.
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Figure 6: Proposed method with 4 hidden states predictions. Emission distributions pre-
dictions of the proposed model with 4 hidden states on three fashion time series: (Top)
”br female shoes 262”, (Middle) ”eu female outerwear 177”, (Bottom) ”eu female texture 80”.
For this model, the influencers external signal was only given to the third and the fourth emis-
sion distributions. The third and the fourth emission distributions learned different distributions but
the first and the second ones seem to be redundant.
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Figure 7: Presented method and benchmark models predictions. Final prediction of the
presented model and some of the benchmark methods on three fashion time series (Top)
”br female shoes 262”, (Middle) ”eu female outerwear 177”, (Bottom) ”eu female texture 80”.
The model Ours seems to compute more accurate predictions than benchmark methods on these
examples but the best forecasts are provided by the model Ours-es with the use of the influencers
external signal.
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Figure 8: Example of model architecture. Example of architecture used for the proposed approach
on the 8 reference datasets. (Left) Model used to compute parameters of the k-th emission dis-
tribution. (Middle) Model used to compute the hidden state probabilities. (Right) Model used to
approximate the posterior variational distribution of the hidden states.

Table 10: Hidden state parameter Analysis of the importance of the number of hidden states on 3
of the 8 reference datasets. We test a number of hidden states from 1 to 4. The metrics displayed are
the final MSE and MAE on the validation and test set.

hidden states 1 hidden state 2 hidden states 3 hidden states 4 hidden states
Eval Test Eval Test Eval Test Eval Test

dataset H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Weather 96 0.399 0.280 0.155 0.201 0.397 0.278 0.154 0.200 0.398 0.276 0.153 0.199 0.399 0.277 0.154 0.200
Traffic 96 0.329 0.244 0.399 0.287 0.330 0.243 0.400 0.286 0.330 0.242 0.399 0.284 0.330 0.242 0.399 0.285
ETTh2 96 0.236 0.316 0.273 0.334 0.239 0.313 0.276 0.332 0.238 0.311 0.273 0.331 0.236 0.310 0.272 0.331

B.3 THE IMPORTANCE OF HIDDEN STATES

On all the 8 benchmark datasets, we fix the number of hidden states to 3 for the proposed model.
However, as for the past dependency parameter, a gridsearch can be done to find the optimal number
of hidden states. On three reference datasets (Traffic, Weather and ETTh2) and for the forecasting
task where horizon is fixed to 96, we train 4 variations of the proposed method with a number of
hidden states lying between 1 to 4. Results are displayed in Figure 10. We can see that the optimal
number of hidden states can change depending on the use case but the difference in terms of accuracy
remains low between 2 and 4 hidden states.

B.4 MINMAXSCALER VERSUS STANDARDSCALER

On the 8 reference datasets, we investigate the potential impact of the preprocessing step on the
proposed model. Consequently, on 4 of the 8 reference datasets (ETTh1, ETTh2, ETTm1 and
ETTm2) and for the forecasting task where horizon is fixed to 96, the two normalization included
by the proposed model (Minmaxscaler and StandardScaler) are tested. Table 11 displays results
of the different trainings and we can see that accuracy results can be strongly impacted by the
preprocessing. As the Minmaxscaler normalization seems to be more robust than the Standardscaler,
it was selected for the proposed architecture on the 8 reference datasets.
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Table 11: Preprocessing analysis Analysis of the impact of the preprocessing on the proposed
method. The Minmaxscaler (scale the inputs between 0 and 1) and the Standardscaler (scale the
inputs to have mean 0 and a variance of 1) approach are tested. The metrics displayed are the final
MSE and MAE on the validation and test set.

preprocess name MinMaxscaler Standardscaler
Eval Test Eval Test

dataset H MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 96 0.487 0.451 0.379 0.389 0.494 0.458 0.380 0.394
ETTh2 96 0.239 0.315 0.271 0.332 0.271 0.348 0.306 0.362
ETTm1 96 0.303 0.354 0.288 0.336 0.304 0.355 0.292 0.340
ETTm2 96 0.124 0.233 0.162 0.249 0.134 0.241 0.167 0.253

Table 12: Past dependency grid search Grid searches run on the 8 reference datasets to fix the
optimal past dependency parameter for the proposed model. We tested a range of values between
the half of the seasonality to 8 times the seasonality. The metrics displayed are the final MSE and
MAE on the validation set.

Past dependency 0.5*seasonality 1*seasonality 2*seasonality 3*seasonality 4*seasonality 5*seasonality
dataset H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Weather 96 0.639 0.346 0.470 0.290 0.433 0.277 0.423 0.276 0.409 0.276 0.400 0.276
Traffic 96 0.537 0.333 0.366 0.254 0.337 0.243 0.329 0.241 0.328 0.240 0.324 0.239
ECL 96 0.183 0.256 0.132 0.225 0.122 0.217 0.119 0.215 0.118 0.215 0.118 0.216
ILI 96 0.322 0.405 0.146 0.232 0.296 0.317 0.237 0.276 0.217 0.314 0.263 0.373
ETTh1 96 0.485 0.450 0.500 0.465 0.498 0.476 0.512 0.490 0.512 0.490 0.520 0.499
ETTh2 96 0.244 0.319 0.234 0.309 0.239 0.312 0.239 0.312 0.237 0.313 0.242 0.320
ETTm1 96 0.463 0.439 0.345 0.375 0.314 0.360 0.309 0.360 0.306 0.356 0.308 0.357
ETTm2 96 0.141 0.250 0.134 0.242 0.131 0.239 0.125 0.234 0.129 0.237 0.126 0.234

B.5 PAST DEPENDENCY GRID SEARCH

On the 8 reference datasets presented in Section 3.2, a gridsearch was run to set the best past de-
pendency length for the proposed approach. For each dataset, several input sizes were tested from
half of the seasonally to 8 times the seasonality. The best one was selected based on the MSE of the
resulting model on the validation set. Table 12 summarizes the results of each gridsearch.

B.6 EXAMPLE OF PREDICTIONS

Finally, we provide examples of predictions on the 8 reference datasets. Figure 9 and 10 display
for each dataset a prediction of the proposed approach along with the prediction of the emission
distributions when the hidden state is fixed to 0, 1 or 2.
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Figure 9: Predictions on reference datasets. Example of final prediction of the proposed model
on the reference datasets Traffic, Weather, ECL and ILI. (Left) 100 simulations along with the mean
prediction of the model (Right) 100 simulations and mean prediction of the three emission distribu-
tions when the hidden state is fixed to 0, 1 or 2.
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Figure 10: Predictions on reference datasets. Example of final prediction of the proposed model
on the reference datasets ETTh1, ETTh2, ETTm1 and ETTm2. (Left) 100 simulations along with
the mean prediction of the model (Right) 100 simulations and mean prediction of the three emission
distributions when the hidden state is fixed to 0, 1 or 2.
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