
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REVISITING DATA CHALLENGES OF COMPUTATIONAL
PATHOLOGY: A PACK-BASED MULTIPLE INSTANCE
LEARNING FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Computational pathology (CPath) digitizes pathology slides into whole slide im-
ages (WSIs), enabling analysis for critical healthcare tasks such as cancer diagnosis
and prognosis. However, WSIs possess extremely long sequence lengths (up to
200K), significant length variations (from 200 to 200K), and limited supervision.
These extreme variations in sequence length lead to high data heterogeneity and
redundancy. Conventional methods often compromise on training efficiency and
optimization to preserve such heterogeneity under limited supervision. To compre-
hensively address these challenges, we propose a pack-based MIL framework. It
packs multiple sampled, variable-length feature sequences into fixed-length ones,
enabling batched training while preserving data heterogeneity. Moreover, we intro-
duce a residual branch that composes discarded features from multiple slides into a
hyperslide which is trained with tailored labels. It offers multi-slide supervision
while mitigating feature loss from sampling. Meanwhile, an attention-driven down-
sampler is introduced to compress features in both branches to reduce redundancy.
By alleviating these challenges, our approach achieves an accuracy improvement of
up to 8% while using only 12% of the training time in the PANDA(UNI). Extensive
experiments demonstrate that focusing data challenges in CPath holds significant
potential in the era of foundation models. The code is here.

1 INTRODUCTION

Computational pathology (CPath) Song et al. (2023); Cifci et al. (2023) represents a rapidly evolving
interdisciplinary research domain that integrates advanced computer vision techniques and pathology
to facilitate accurate and efficient interpretation of histopathological images. Central to CPath are
whole slide images (WSIs, slides), digitized pathology slides with gigapixel resolution often exceeding
billions of pixels. It enables comprehensive microscopic analysis to support critical healthcare tasks
such as cancer sub-typing Ilse et al. (2018); Zhang et al. (2022); Tu et al. (2022), grading Bulten
et al. (2022), and prognosis Wen et al. (2023); Yao et al. (2020). Patching strategies help researchers
effectively process these gigapixel images within hardware constraints. However, patches derived
from WSIs present following challenges: as shown in Fig.1, 1) they possess extremely long sequence
lengths (up to 200K) and significant sequence length variations (from 200 to 200K). Such extreme
distributions in sequence length, coupled with diverse morphological characteristics, contribute to
data heterogeneity, which is substantial for CPath tasks. 2) and introduce input redundancy challenges
for CPath algorithms. 3) Moreover, due to the gigapixel resolution and specialization, WSIs typically
have only slide-level annotations, lacking more supervision that matches the complex input.

Current two-stage multiple instance learning (MIL) Maron & Lozano-Pérez (1997) paradigm Lu
et al. (2021) is a compromise resulting from high data heterogeneity and limited supervision. This
paradigm employs a pre-trained encoder to extract offline patch (instance) features, and uses a MIL
model to produce slide-level (bag-level) results. Due to data challenges, it suffers from training
inefficiency and instability. Specifically, with significant variations in sequence length across slides,
mainstream methods typically process data with a batchsize of 1 during training Shao et al. (2021); Li
et al. (2024c). While these approaches preserve whole-slide heterogeneity, training with a batchsize
of 1 is inefficient (e.g., training TransMIL Shao et al. (2021) on the PANDA Bulten et al. (2022)
dataset requires over 50 RTX3090 GPU-hours) and may yield suboptimal performance Koga et al.
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Figure 1: (a, b): WSIs present significant data challenges, including high heterogeneity stemming
from highly variable sequence lengths and diverse morphology, massive data redundancy, and limited
supervision. (c): Conventional methods train with batchsize of 1 to preserve data heterogeneity,
suffering from training inefficiency and instability. (d): Our pack-based framework packs variable-
length sequences to preserve scale information. It further introduces a residual branch to model
inter-slide correlations, constructing a hyperslide that retains all morphological features and enrich
limited supervision. This approach maintains data heterogeneity while enabling batched training.

(2025). A few methods Campanella et al. (2019); Liu et al. (2024b) attempt to enable batched training
by sampling or padding all sequences to a uniform length; however, this approach can lead to a loss
of data heterogeneity and important features, especially affecting complex methods and tasks.

To comprehensively address three data challenges, we propose a novel pack-based MIL framework.
Inspired by recent advancements in large model Pouransari et al. (2024); Krell et al. (2021); Dehghani
et al. (2023); Wang et al. (2024a), it packs multiple variable-length sequences into a single fixed-
length sequence to enable batched training while preserving data heterogeneity. However, leveraging
packing strategies for effective batched training in CPath is far from straightforward. The excessive
length of packed sequences hinders training, necessitating patch sampling, which still leads to feature
loss. Therefore, we split the input features into main and residual branches, packing the retained
and discarded features, respectively, to minimize sampling-induced feature loss. In the main branch,
we employ masks to maintain the independence of different slides within a pack. Conversely, the
residual branch treats discarded features from multiple slides in the same pack as a single hyperslide.
To train this hyperslide effectively, we introduce task-specific hyperslide labels and loss functions.
Crucially, this approach effectively offers multi-slide supervision.

While some outstanding works have explored supplementary supervision Zhang et al. (2022); Shao
et al. (2023); Brussee et al. (2025); Fang et al. (2024), most focus on intra-slide modeling (e.g.,
instance-level or pseudo-bag), neglecting inter-slide relationships. Pathology slides from the same
spatial and tissue origin exhibit consistent morphological characteristics Lin et al. (2025); Chen
et al. (2022a); Kaczmarzyk et al. (2024). Learning inter-slide correlations allows the hyperslide
to provide the model with a more comprehensive perspective, enabling the discovery of more
generalizable pathological features. Furthermore, we propose an attention-driven downsampler to
compress features for reducing input redundancy within both branches. To validate our framework,
we conducted extensive experiments using features from foundation models. Results demonstrate that
our approach consistently improves multiple baselines by effectively mitigating the data challenges
inherent in CPath. Specifically, it delivers substantial performance gains (e.g., +11% accuracy on
PANDA) while improving training efficiency (∼ 8× speedup on PANDA). Our contributions are:

• We revisit the data challenges in CPath, like high heterogeneity, high redundancy, and limited
supervision. Considering these challenges, we propose an efficient and effective pack-based
MIL framework that enables reliable training while preserving data heterogeneity.

• We construct the hyperslide from discarded features during the packing. Corresponding task-
specific hyperslide labels and loss functions are designed. This strategy not only minimizes
sampling-induced feature loss but also introduces multi-slide supervision. It provides the
model with a more comprehensive perspective, thereby improving CPath performance.
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• We propose an attention-driven downsampler to compress redundant features during the
training process. With extensive experiments, we validate the effectiveness of the proposed
approach, summarize practical guidelines for batched CPath training, and highlight the
significant potential of addressing data challenges in the era of FM.

2 RELATED WORKS

Supervision in Computational Pathology. Recent CPath advancements leverage MIL to reduce
annotation burden. Using only slide labels, MIL has evolved with mechanisms like attention Ilse
et al. (2018); Tang et al. (2023), clustering Lin et al. (2023), Transformers Shao et al. (2021), and
GNNs Wang et al. (2021); Eastwood et al. (2023) to improve interpretability, localization, and
accuracy. Complementing pure MIL methods, pseudo-labeling strategies have emerged as powerful
auxiliary techniques, encompassing instance-level pseudo-labeling Qu et al. (2022a), knowledge dis-
tillation frameworks Zhang et al. (2022); Qu et al. (2022b), limited pathologist patch annotations Koga
et al. (2025), weak regional annotations Wang et al. (2022), and semi-supervised consistency regular-
ization Jiang et al. (2023). These hybrid strategies effectively generate additional supervision to refine
instance predictions and leverage unlabeled data, boosting performance and data efficiency. While
some studies Liu et al. (2024a); Ouyang et al. (2024) explore mixup-like data augmentation between
WSI pairs, supervision leveraging relationships across multiple slides is still largely unexplored.

Batchsize in Computational Pathology. Batchsize is a crucial hyperparameter in deep learning.
However, its exploration in CPath remains limited, primarily due to the computational demands of
gigapixel WSIs and the inherent data heterogeneity within each slide. Consequently, mainstream
slide-level MIL methods typically adopt a batchsize of 1 Jaume et al. (2024); Li et al. (2024a); Shi
et al. (2024); Li et al. (2024c); Song et al. (2024); Zhang et al. (2024b); Li et al. (2024b); Fourkioti
et al. (2023). For instance, RRTMIL Tang et al. (2024) utilizes slide-wise regional and cross-
region self-attention to capture patch ordinality and heterogeneity within each slide, necessitating a
batchsize of 1 to maintain intra-slide relationships. Despite its prevalence, this practice often results
in training instability and slow convergence, prompting methods such as gradient accumulation over
multiple slides Koga et al. (2025); Zhang et al. (2025) or instance-level sampling strategies that select
fixed-size subsets of patches per slide to mitigate computational overhead and improve learning
stability Campanella et al. (2019); Liu et al. (2024b). Current slide-level methods treat batched
inputs as an efficiency trade-off rather than a genuinely effective training strategy. In this paper, we
investigate the benefits of batched training for slide-level prediction and explore practical guidelines
for its implementation in CPath. Appendix E gives more discussion.

3 METHOD

3.1 PRELIMINARY: MIL-BASED COMPUTATIONAL PATHOLOGY
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Figure 2: Impact of data heterogeneity on CPath.

Histopathological WSIs are often gi-
gapixel resolution, making direct pro-
cessing impractical. Current ap-
proaches typically use weakly super-
vised MIL, where a WSI is treated as
a bag B = {x1, . . . , xN} of instances.
During training, only a slide-level la-
bel y is available. Each instance xi is
encoded to an embedding hi = f(xi)
using a offline feature extractor f . An
aggregation function Γ(·) combines
instance embeddings {hi}Ni=1 into a bag-level representation z = Γθ(

∑N
i=1 hi). This representation

z is then used by a classifier gϕ to predict the slide label p(y | B) = gϕ(z). The significant variation in
instance count N across WSIs contribute to data heterogeneity. This heterogeneity along with its as-
sociated spatial and morphological context, is crucial for CPath, as shown in Fig.2. Specifically, when
all instances are randomly sampled to a fixed-length sequence, a latest method like RRTMIL Tang
et al. (2024) exhibits consistent performance degradation on multiple benchmarks, particularly for
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Figure 3: Left: Overview of the proposed pack-based MIL training framework. Right: llustration of
Attention-driven Downsampler (ADS).

complex tasks like survival analysis. To maintain data heterogeneity, current methods necessitates
training with a batchsize of 1, resulting in noisy gradient estimates and optimization instability.

3.2 PACK-BASED MIL FRAMEWORK

CPath poses significant data challenges, including high data heterogeneity, redundancy and limited
supervision, which hinder mainstream MIL method. To overcome these issues, we propose a pack-
based MIL framework, named PackMIL. As illustrated in Fig.3, the proposed method effectively
employs a packing operation to maintain data heterogeneity and allow batched input, and it further
provides multi-slide supervision, leading to more effective and stable training. Consider a mini-batch
of B bags, the b-th bag provides a set of instance embeddings Bb = {hbi}Nb

i=1 where hbi ∈ RD.
However, the feature sequences extracted from gigapixel WSIs can be prohibitively long, making
their direct inclusion into fixed-length packs impractical due to memory and computational limitations
during training. To address this, we employ stochastic instance-level sampling with ratio r ∈ (0, 1).
The subsets Rb and Db are formed as:

mbi ∼ Bernoulli(1− r), Rb = {hbi | mbi = 1 }, Db = {hbi | mbi = 0 }, (1)

We introduce the Residual Branch to mitigate feature loss during sampling and establish hyperslide
supervision. The retained set R is forwarded in main branch, while discarded set D is forwarded
in residual branch. For each bag b, the corresponding sets Rb and Db are processed to produce
downsampled feature sets, denoted as R̃b and D̃b, respectively. To maintain data heterogeneity for
batch training, instances from sampled sets of each bag are sequentially arranged into fixed-length
packs of size L. This packing operation PACK(·) processes all bags in the mini-batch to form:

Pmain = PACK
( B⋃
b=1

R̃b, L
)
∈ RB′×L×D, P res = PACK

( B⋃
b=1

D̃b, L
)
∈ RB′′×L×D, (2)

where ∪ denotes concatenation along the instance axis and B′ and B′′ are the number of packs
generated for the main and residual branches, respectively, calculated from the number of instances
and L. To ensure adequate representation of each slide, we enforce a minimum number of patches
per slide in each pack. Zero-padding is applied in each pack when it contains fewer than L patches.

We also incorporate an attention-driven downsampler (ADS) module for handling input redundancy
between the two branches. This module fuses features from instances in Rb and Db to generate more
compact and informative feature representations. Each set S ∈ {Rb,Db} is downsampled by a factor
k ∈ N using an ADS module, yielding S̃ = ADS(S; k) with size |S̃| = ⌈|S|/k⌉.

After packing, the main and residual branches are processed independently while sharing the same
MIL model weight. In the main branch, each pack contains instances originating from B distinct
bags. We use a mask Mp to identify the source bag for each instance within pack p. The embedding
for the b-th bag is then computed by selectively aggregating its instances from the pack: zmain

b =

Γθ

(
Mpb, P

main
p

)
. We compute the main loss Lmain over B slides, based on slide-level predictions

4
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Figure 4: Illustration of Task-specific Hyperslide Labels.

ŷb = gϕ(z
main
b ). For the residual branch, each pack p acts as a hyperslide, introducing high-

level supervision. We compute its embedding zresp = Γθ

(
P res
p

)
, obtain pack-level predictions

ŷhyperp = gϕ(z
res
p ), and compute the residual loss Lres over B′′ packs. The overall objective function

is a weighted sum of the two losses: L = Lmain + λLres.

Packing. The packing operation processes concatenated downsampled embeddings, denoted as
H =

⋃B
b=1 R̃b = {hn}Mn=1, where M is total number of features in the mini-batch and βn is original

bag index of feature hn. The operation sequentially fills packs of fixed length L. Let Pp ∈ RL×D

be the p-th pack, for p = 1, . . . , B′. Features {hn}Mn=1 are placed sequentially into P1, P2, . . . , PB′ .
When a pack Pp cannot accommodate the next feature without exceeding L tokens, or when all M
features have been placed, any remaining positions in Pp are filled with vectors 0 ∈ RD.

Isolated Mask. We employ auxiliary masks to process features within each pack Pp while preserving
original bag integrity. Based on the CPath pipeline above, masks are divided into aggregation-oriented
and classification-oriented. Aggregation masks constrain the feature aggregation stages, ensuring
that computations within each pack only involve instances from the corresponding source bag. For
example, in Transformer-based models like TransMIL Shao et al. (2021), this mask restricts Multi-
Head Self-Attention computations strictly to features originating from the same source bag within
the pack, preventing cross-bag attention and aggregation. Classification-oriented masks subsequently
select tokens relevant for prediction. This mask identifies source bag for each non-padding token,
enabling appropriate classification based on bag identity. These tailored masks enable efficient and
effective MIL within our pack-based framework. Detailed definition is provided in Appendix D.2.

Attention-driven Downsampler (ADS). WSIs exhibit significant redundancy Tang et al. (2023);
Zhang et al. (2024b), which can also manifest between the feature sets derived from Rb and Db. To
fuse these features while mitigating redundancy in dual branches, we designed the ADS module. This
module utilizes attention-driven downsampling to produce a compact and informative representation.
Given a set of N embeddings {hi}Ni=1, ADS first computes a per-instance attention score via a
shallow MLP and applies it as a residual weigh ui = hi + ai hi. Followed by a learnable linear
layer, we compute WL∈RD×D, vi = ui W

L. To facilitate structured downsampling that preserves
spatial relationships, we perform instance unshuffle, which rearranges the sequential features into a
group-based representation:

[v1, . . . , vN ] ∈ RN×D unshuffle by k−−−−−−−−→ U ∈ R⌈N/k⌉×k×D. (3)

where k is the downsampling factor. ADS poolings along the k dimension of each pack, followed by
a projection WP ∈RD×D. ADS takes the input features {hi} and a factor k, resulting in the output
sequence ADS({hi}; k) = {h̃j}⌈N/k⌉

j=1 ∈ R⌈N/k⌉×D. Each downsampled feature h̃j is computed as:

h̃j =
[
Pool(Uj , dim = 1)

]
WP , j = 1, . . . , ⌈N/k⌉. (4)

where Pool(·) is either random or max pooling, and WP ∈ RD×D is a projection matrix. By
weighting instances with attention scores ai and pooling across structured groups, ADS reduces
the instance count by a factor of k while prioritizing regions of high clinical relevance. ADS also
maintains interpretability at inference time. Additional details and a discussion on the applicable
boundaries of ADS are provided in Appendix B.3.

Inference Pipeline. For inference, we adopt a deterministic pipeline to ensure reproducible predic-
tions. The residual branch and stochastic sampling are bypassed. Each slide is processed individually
with batchsize of 1, feeding its complete sequence of instance embeddings into the main branch.
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3.3 TRAINING RECIPE

Task-specific Hyperslide Labels and Loss. Heterogeneous pathological data and diverse down-
stream clinical tasks necessitate specialized label generation strategies that preserve task-relevant
clinical characteristics and enable efficient learning from multiple WSIs, encouraging the design of
task-specific hyperslide labeling mechanisms. We divide downstream tasks into two classes: Morpho-
logical Categorical and Event-Driven. Based on pathological scenarios, we design three strategies to
generate a hyperslide label yhyper for higher-level supervision, illustrated in Fig.4. Appropriate loss
functions are selected for different tasks, as detailed in the Appendix D.1.

1) Grading. Let each pack contain S WSIs with pathologist-assigned scores or tumour-area ratios
gs and corresponding patch counts ns. We compute a pack-level statistic by g̃ =

∑S
s=1 ns gs∑S
s=1 ns

. The
weighted score (or ratio) is then mapped to the discrete grading rubric recommended by the pathology
guideline, yielding a single categorical hyperslide label yhyper ∈ {1, . . . , G}. Weighting by ns

ensures that the pack-level grading reflects the relative tissue coverage of each WSI, preventing
smaller tissue regions from being overrepresented in the final assessment.

2) Sub-typing. Sub-typing is cast as a multi-label problem in which a single pack may express several
subtypes simultaneously. For each subtype c ∈ {1, . . . , C} we first obtain a slide-level indicator

ts,c∈{0, 1} and aggregate groundtruth across the S slides by p̂c =
∑S

s=1 ns ts,c∑S
s=1 ns

, where ns denotes
the patch count of slide s. To capture the relative prevalence of co-occurring subtypes within pack, we
generate hyperslide soft label yhyper by normalizing aggregated values using maximum value across
all subtypes: yhyperc = p̂c

maxj∈{1,...,C} p̂j
, resulting in yhyper = [yhyper1 , . . . , yhyperC ]⊤ ∈ [0, 1]C .

3) Survival Analysis and Detection. These tasks are inherently event-driven: labels correspond to
clinical events with an intrinsic priority (e.g., tumor overrides normal). We preserve this hierarchy by
scanning the slides in descending priority order and assigning the first event observed:

yhyper = argmax
e∈E

[
max

s
1{ e occurs in slide s }

]
, (5)
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where E is the ordered event set. This strategy ensures that each
bag is uniquely associated with the most clinically significant
event, aligning label semantics closely with clinically practice.

Practical Guidelines for Batched Training. Selecting an ap-
propriate batchsize (bs) across various CPath tasks remains an
underexplored yet critical problem for effective model training.
To establish an batched training protocol, we conduct a series
of preliminary experiments. The results from these experiments
inform the practical guidelines discussed below, which are subse-
quently adopted in our main experimental setup. We find that the
specifics of these guidelines vary significantly across benchmarks
and are strongly correlated with dataset scale.

On conventional CPath datasets (e.g., TCGA), which typically
contain a limited number of gigapixel WSIs , resource constraints
often force a trade-off between the bs and the number of patches
sampled per WSI (NP), as shown in the right figure(b). The opti-
mal choice of bs usually requires empirical tuning. Additionally,
regular rules for scaling the learning rate do not apply and also
necessitate empirical tuning, as depicted in the right figure(c).

On large-scale CPath datasets (e.g., PANDA Bulten et al. (2022)),
the

√
bs learning rate scaling rule often proves effective. However,

performance does not monotonically increase with bs; excessively
large values can degrade performance, as illustrated in the right
figure(a). Moreover, we found that 1D Batch Normalization Ioffe
& Szegedy (2015) can effectively facilitate convergence on bench-
marks with sufficient data scale. In contrast, normalization does
not provide significant improvements on conventional CPath datasets, which we attribute to their
limited data volume.
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Table 1: Comparison of ISUP Grading (Acc.) on PANDA and Sub-typing (AUC) on BRCA.

Method Grading (Acc.↑) Sub-typing (AUC↑)

CHIEF (27M) UNI (307M) GIGAP (1134M) CHIEF UNI GIGAP

ABMIL Ilse et al. (2018) 65.48±0.70 73.21±0.61 72.91±0.62 89.58±5.15 93.58±3.92 94.13±3.88

DSMIL Li et al. (2021) 71.95±0.72 71.41±0.68 70.84±0.73 90.68±4.91 93.89±3.79 93.70±4.14

CLAM Lu et al. (2021) 66.91±0.73 74.76±0.61 74.99±0.60 89.61±5.05 93.90±3.86 93.73±3.75

TransMIL Shao et al. (2021) 68.53±0.79 72.59±0.75 71.91±0.74 91.91±4.34 94.09±3.79 93.57±3.84

DTFD Zhang et al. (2022) 63.57±0.71 72.19±0.66 71.93±0.65 91.07±4.59 93.86±3.93 93.88±3.81

WiKG Li et al. (2024c) 72.37±0.72 76.68±0.68 74.91±0.68 91.93±4.65 93.81±4.25 94.06±3.92

RRTMIL Tang et al. (2024) 69.99±0.69 72.18±0.67 72.34±0.63 91.67±4.77 94.10±3.65 94.04±3.86

2DMamba Zhang et al. (2024a) 71.59±0.73 74.97±0.68 75.36±0.66 90.96±3.85 93.59±3.14 93.33±3.25

ABMIL+RS 74.72 +9.2 77.91 +4.7 78.97 +6.1 88.72 –0.9 93.89 +0.4 93.78 -0.4
ABMIL+PackMIL (Ours) 76.46 +11.0 80.19 +7.0 80.41 +7.5 92.38 +2.8 94.86 +1.3 94.86 +0.7

DSMIL+RS 75.00 +3.1 78.59 +7.2 78.60 +7.8 91.62 +0.9 93.29 –0.6 94.04 +0.3
DSMIL+PackMIL (Ours) 75.84 +3.9 79.68 +8.3 79.10 +8.3 93.01 +2.3 94.62 +0.7 94.65 +1.0

TransMIL+RS 73.68 +5.2 76.94 +4.4 76.15 +4.2 90.75 –1.2 94.07 –0.0 93.95 +0.4
TransMIL+PackMIL (Ours) 74.75 +6.2 78.87 +6.3 78.88 +7.0 92.31 +1.0 94.37 +0.3 94.12 +0.6

RRTMIL+RS 70.32 +0.3 75.04 +2.9 75.13 +2.8 91.55 –0.1 94.02 -0.1 93.70 -0.3
RRTMIL+PackMIL (Ours) 74.63 +4.6 78.46 +6.3 78.43 +6.1 92.43 +0.9 94.54 +0.4 94.47 +0.4

4 EXPERIMENT

4.1 DATASETS AND EVALUATION METRICS

For cancer diagnosis, we evaluate performance on cancer grading and sub-typing tasks using the
PANDA Bulten et al. (2022) and TCGA-BRCA datasets. For cancer prognosis, we evaluate survival
analysis performance using TCGA-LUAD and TCGA-BRCA. We report macro accuracy (Acc.) for
cancer grading and the area under the ROC curve (AUC) for sub-typing. For survival analysis, we
report the concordance index (C-index) Harrell Jr et al. (1996). To ensure statistical robustness, we
perform 1000 bootstrap iterations and repeat experiments across multiple random seeds. We report
the mean and 95% confidence interval for all metrics. Appendix A gives further details.

4.2 MAIN RESULTS

Comparison Methods. We compare several established and recent MIL aggregators Ilse et al.
(2018); Lu et al. (2021); Shao et al. (2021); Li et al. (2021; 2024c); Tang et al. (2024); Zhang
et al. (2024a; 2022) using three SOTA pathology encoders: UNI Chen et al. (2024), CHIEF Wang
et al. (2024b), and GigaPath (GIGAP) Xu et al. (2024). To comprehensively evaluate the proposed
framework, we select four widely-used MIL models as baselines. Additionally, we compare PackMIL
against a standard random sampling (RS) strategy (i.e., sampling all inputs to a fixed length for
batched training) to assess its effectiveness.

Focusing on Data Challenges in the FM Era. Although MIL architectures have advanced signifi-
cantly, their performance improvements become marginal when using offline features extracted by
foundation models (FMs). The quality of the FM primarily determines the final performance, and
the latest or more complex MIL methods have reached a performance bottleneck. In this context,
we observe that addressing the inherent data challenges in CPath is an effective way to achieve
significant performance gains. Specifically, batched training based on random sampling (RS) achieves
substantial improvements on grading tasks (Tab. 1), especially on large datasets such as PANDA
(∼10,000 slides). We attribute this primarily to the advantages of batched training on large-scale data
and its effectiveness in reducing input redundancy. However, this RS strategy performs inconsistently
on benchmarks like TCGA-BRCA-subtyping, which exhibits greater data heterogeneity (e.g., a
sequence length variation of 60,000 compared to 1,000 in the PANDA dataset). It provides only
marginal gains on some benchmarks while degrading performance on others in this task. As shown
in Tab. 2, this issue becomes more pronounced in survival analysis, where sequence length variation
are even larger. This sensitivity to heterogeneity is further reflected in its performance on complex
methods like RRTMIL, where RS shows a significant performance gap across all benchmarks. These
results indicate that RS compromises the WSI heterogeneity preserved during traditional training
(batchsize = 1) and suffers from feature loss due to sampling.
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Table 2: Comparison of Survival Analysis (C-index Harrell Jr et al. (1996)) on BRCA and LUAD.
OOM denotes Out-of-Memory in 24GB-RTX3090.

Method Survival-BRCA (C-index↑) Survival-LUAD (C-index↑)

CHIEF (27M) UNI (307M) GIGAP (1134M) CHIEF UNI GIGAP

ABMIL Ilse et al. (2018) 65.36±9.00 65.87±9.43 65.72±8.86 61.99±8.70 60.54±8.83 59.88±8.60

DSMIL Li et al. (2021) 65.81±9.17 65.87±9.98 64.94±9.22 62.38±8.50 61.44±8.76 61.35±8.20

CLAM Lu et al. (2021) 65.03±9.38 65.45±10.0 63.91±9.70 61.78±8.84 59.71±8.48 60.70±8.68

TransMIL Shao et al. (2021) 65.75±8.87 65.34±9.44 65.35±9.18 63.68±8.66 62.63±8.70 62.53±8.53

DTFD Zhang et al. (2022) 67.22±8.91 65.05±10.3 65.54±9.08 62.87±8.56 60.83±8.64 60.88±8.67

WIKG Li et al. (2024c) 65.55±9.14 65.77±9.21 65.79±9.62 OOM OOM OOM
RRTMIL Tang et al. (2024) 67.13±8.77 66.71±9.95 66.31±9.48 63.51±8.76 61.32±8.73 62.41±8.41

Mamba2D Zhang et al. (2024a) 66.01±7.06 65.73±8.15 65.96±7.69 63.23±6.70 60.69±6.97 62.19±6.73

ABMIL+RS 64.02 –1.3 65.71 –0.2 63.88 –1.8 61.98 -0.1 60.34 –0.2 61.01 +1.0
ABMIL+PackMIL (Ours) 68.30 +2.9 68.14 +2.3 67.04 +1.3 63.72 +1.8 62.60 +1.0 61.58 +1.7

DSMIL+RS 65.00 –0.8 64.72 –1.1 65.69 +0.8 63.28 +0.9 61.53 +0.1 61.00 –0.4
DSMIL+PackMIL (Ours) 69.76 +2.9 70.00 +4.1 68.03 +3.1 64.10 +1.7 62.18 +0.7 62.44 +1.1

TransMIL+RS 66.39 +0.6 65.14 –0.2 65.52 +0.2 63.53 –0.2 62.12 –0.5 61.03 –1.5
TransMIL+PackMIL (Ours) 68.08 +2.3 68.44 +3.1 66.80 +1.5 64.01 +0.3 63.61 +1.0 63.04 +0.5

RRTMIL+RS 66.11 –1.0 64.68 –2.0 65.19 –1.1 62.52 –1.0 61.44 +0.1 61.35 –1.1
RRTMIL+PackMIL (Ours) 68.15 +1.0 68.73 +2.0 67.62 +1.3 64.37 +0.9 62.01 +0.7 62.79 +0.4

PackMIL More Comprehensively Alleviates Data Challenges. Compared with RS, PackMIL
more comprehensively alleviates the various data challenges in CPath, achieving more substantial and
consistent performance gains. For example, its superior performance in survival analysis demonstrates
its ability to handle data heterogeneity. Moreover, PackMIL yields significant further improvements
even on grading tasks where RS already performed well. We attribute this gain to PackMIL’s ability
to mitigate challenges of insufficient supervision. Notably, by comprehensively addressing these data
challenges, PackMIL enables models to achieve performance comparable to higher-quality features
with lower-cost offline features. Furthermore, it achieves consistent improvements when paired with
better features, demonstrating its generalizability. In summary, results demonstrate the significant
impact of inherent data challenges on CPath performance and validate the effectiveness of PackMIL.

4.3 ABLATION STUDY

In this subsection, we systematically ablate the components of PackMIL. By default, we use ABMIL
as the baseline model and UNI as the offline feature extractor. For the survival analysis task, we
utilize the larger BRCA dataset. Appendix B gives extra discussions.

Batched Training and Packing Strategy. The results at the middle of Tab. 3 show that Random
Sampling (RS) achieves significant improvements on the grading task, but its performance degrades
on the other two tasks. This is attributed to its effective mitigation of input redundancy. However, this
approach compromises data heterogeneity and leads to feature loss. Furthermore, batched training
yields consistent performance improvements (row 7). Importantly, it leads to significant gains in
training stability and efficiency. Specifically, while maintaining faster and more stable convergence
(Tab. 3(a)), it also alleviates overfitting on the test set. With the pack-based batched training scheme,
PackMIL retains data heterogeneity. This allows PackMIL to benefit from batch processing while
preserving the performance advantages of traditional training (batchsize=1).

Hyperslide. We constructs a hyperslide using discarded features in the residual branch and task-
relevant hyperslide labels, aiming to offer multi-slide supervision while mitigating feature loss from
sampling. Tab. 3(b) confirms that the hyperslide learns effectively when guided by the proposed
task-relevant labels. Furthermore, during joint training with the task loss, we find that optimizing the
hyperslide also helps mitigate the rapid overfitting (i.e., the model rapid convergence of the training
loss to near-zero on the training data within early epochs) of the model to the task loss on the FM
features (Tab. 3(c)). This issue hinders the model from benefiting from the task loss, consequently
reducing training quality. The results in row 8 and row 10 of Tab. 3 demonstrate the performance
improvements achieved by multi-slide supervision and minimizing feature loss.

Attention-driven Downsampler. The Attention-driven Downsampler (ADS) is designed to mitigate
potential input redundancy via feature fusion. Since the PANDA dataset contains fewer patches per
WSI, we do not employ ADS on this task. However, for the sub-typing and survival tasks, which
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Table 3: Top: Ablation of PackMIL and computational cost on PANDA. TTime (RTX 3090 GPU-
hours) denotes Train Time. Memory is the GPU memory which evaluated during training. FPS stands
for frames per second. ADS module is disabled by default on PANDA; we detail its computational
cost in Appendix B.3. Bottom: Loss curves of main and hyperslide loss under different settings.

Method Batched Training TTime Memory FPS Grad. Sub. Surv.

ABMIL Ilse et al. (2018) ✗ 12h 0.6G 2056 73.21 93.58 65.87
PackMIL(AB.) (Ours) ✓ 4h 2.8G 1984 80.19 94.86 68.14
TransMIL Shao et al. (2021) ✗ 55h 1.1G 142 72.59 94.09 65.34
PackMIL(Trans.) (Ours) ✓ 6.5h 4.4G 731 78.87 94.37 68.44

ABMIL (Baseline) ✗ 12h 0.6G 2056 73.21 93.58 65.87
+ Random Sampling ✗ 12h 0.5G 2056 77.62 93.39 65.33
+ Random Sampling ✓ 2h 1.3G 2056 77.91 93.89 65.71
+ Random Sampling + HyperSlide ✓ 2.5h 2.5G 2056 79.93 94.37 67.15

+ Pack ✓ 2.5h 2.2G 1984 79.02 94.06 66.15
+ Pack + HyperSlide ✓ 4h 2.8G 1984 80.19 94.21 67.50
+ Pack + HyperSlide + ADS ✓ - - - - 94.86 68.14

(a) Main loss in train set.
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(b) Hyperslide Loss during training. (c) Hyperslide impact main Loss.
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(a) Training loss convergence. Batched training (orange) exhibits faster and more stable conver-
gence compared to the baseline with a batchsize of one (blue). (b) Auxiliary hyperslide loss. The
decreasing loss curve for the auxiliary hyperslide task demonstrates that the model effectively
learns from the proposed multi-slide supervision. (c) Impact of hyperslide on task loss. The
hyperslide (orange) acts as a regularizer, mitigating the rapid overfitting (i.e., loss approaching
zero in early epochs) observed when training with the task loss alone (blue).

involve longer input sequences, the results indicate that ADS effectively reduces input redundancy.
More important, through attention weighting and feature fusion, ADS preserves the discriminative
information of the original features. Appendix B.3 gives further discussion.

Training Cost Analysis. On traditional small-scale datasets, CPath algorithms based on offline
features rarely face significant efficiency challenges. However, this issue becomes increasingly
prominent with the advent of large-scale datasets, such as PANDA. Due to the non-batched training,
we observe that training even a simple baseline like ABMIL on PANDA using offline features
consumes 12 RTX3090 GPU-hours, while a more complex model like TransMIL requires 55 GPU-
hours (top of Tab. 3). These results highlight how non-batched training severely hinders the scalability
of CPath algorithms to larger datasets. By enabling batched training, training time is significantly
reduced (-6∼9x), and accompanied by performance improvements. Notably, PackMIL achieves
further significant performance gains with only a minor increase in computational overhead. It still
maintaining a substantial efficiency advantage over non-batched training (∼12% training time).

5 CONCLUSION

In CPath, gigapixel WSIs exhibit extremely long sequences, significant length variations, high
redundancy, and limited supervision. Existing methods typically address only individual aspects
of these challenges, lacking systematic exploration. Our work reveals that these challenges lead to
training inefficiency, instability, and high redundancy on both large-scale and conventional datasets.
To comprehensively tackle these issues, we propose the pack-based MIL framework. It enables batch
training while preserving data heterogeneity, enhancing both training efficiency and quality by a
large margin. We incorporates a residual branch that utilizes hyperslides to supplements the limited
supervision while mitigating feature loss from packing. Moreover, a attention-driven downsampler is
integrated to compress feature redundancy within both branches. We also systematically evaluated a
simple random sampling training strategy, which demonstrated considerable improvements on the
PANDA. With extensive experiments, we summarize practical guidelines for batched CPath training
and highlight the significant potential of focusing on data challenges in the era of FM.
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A DATASETS AND IMPLEMENTATION DETAILS

A.1 DATASETS

We validate our method on various computational pathology tasks and challenging benchmarks in
the ear of foundation models, including cancer grading (PANDA Bulten et al. (2022)), subtyping
(TCGA-BRCA), survival analysis (TCGA-LUAD, TCGA-BRCA).

PANDA Bulten et al. (2022) is a large-scale, multi-center dataset dedicated to prostate cancer detection
and grading. It comprises 10,202 digitized H&E-stained whole-slide images, making it one of the
most extensive public resources for prostate cancer histopathology. Each slide is annotated according
to the Gleason grading system and subsequently assigned an International Society of Urological
Pathology (ISUP) grade, enabling both cancer detection and severity assessment. Specifically, ISUP
Grade 1 corresponds to Gleason 3+3, Grade 2 to 3+4, Grade 3 to 4+3, Grade 4 to Gleason score 8,
and Grade 5 to Gleason score 9 or 10, while Grade 0 represents benign samples. The dataset includes
a diverse distribution of ISUP grades, with 2,724 slides classified as grade 0 (benign), 2,602 as grade
1, 1,321 as grade 2, 1,205 as grade 3, 1,187 as grade 4, and 1,163 as grade 5. Spanning multiple
clinical centers, PANDA ensures a broad range of samples, mitigating center-specific biases.

The Breast Invasive Carcinoma (TCGA-BRCA) project is the sub-typing dataset we used. TCGA-
BRCA includes two subtypes: Invasive Ductal Carcinoma (IDC) and Invasive Lobular Carcinoma
(ILC). It contains 787 IDC slides and 198 ILC slides from 985 cases.

The primary goal of survival analysis is to estimate the survival probability or survival time of patients
over a specific period. Therefore, we used the TCGA-LUAD and TCGA-BRCA projects to evaluate
the model performance for survival analysis tasks. Unlike the diagnosis and sub-typing tasks, the
survival analysis datasets are case-based rather than WSI-based. The WSIs of TCGA-BRCA are
identical to those used in the sub-typing task but with different annotations. The TCGA-LUAD
dataset includes 541 slides from 478 primarily Lung Adenocarcinoma cases.

We randomly split the PANDA dataset into training, validation, and testing sets with a ratio of 7:1:2.
Due to the limited data size, the remaining datasets are divided into training and testing sets with
a ratio of 7:3. The grading and subtyping tasks use 5 different random seeds to ensure the stability
of the results. And because the survival analysis task is more affected by data partitioning, we use
3-fold cross-validation with 3 different random seeds to conduct the experiments.

A.2 PREPROCESS

Following prior works Lu et al. (2021); Shao et al. (2021); Zhang et al. (2022); Tang et al. (2024), we
cropped each WSI into non-overlapping 256x256 patches at 20× magnification. As in CLAM Lu
et al. (2021), background regions, including holes, were discarded. The average number of patches is
approximately 10,000 for TCGA and 500 for PANDA. To efficiently process the large number of
patches, we adopted a traditional two-stage paradigm, employing pre-trained offline models for patch
feature extraction. We utilized three state-of-the-art foundation models of varying sizes, pre-trained
on WSIs: CHIEF Wang et al. (2024b) (27M), UNI Chen et al. (2024) (307M), and GigaPath Xu et al.
(2024) (1134M). Their respective feature dimensions are 768, 1024, and 1536.

A.3 IMPLEMENTATION DETAILS

For our experiments conducted with a batchsize of 1, which is a conventional approach for methods
handling variable sequence lengths like the two-stage methods investigated Lu et al. (2021); Shao
et al. (2021); Tang et al. (2024), we consistently employed the Adam optimizer Kingma & Ba (2014).
An initial learning rate of 1× 10−4 was used, and this rate was dynamically adjusted during training
using the Cosine annealing strategy. To mitigate potential overfitting and ensure robust optimization,
we incorporated an early stopping mechanism across all experiments, selecting the model checkpoint
that achieved the best performance on the validation metric for final evaluation. For grading tasks,
training ran for a maximum of 100 epochs with a patience of 20 (starting from epoch 75). For
subtyping, the maximum was 75 epochs with a patience of 20 (starting from epoch 30). For survival
analysis, the maximum was 100 epochs with a patience of 10 (starting from epoch 30). To ensure a
fair comparison, all baseline methods were tuned following their official guidelines and recommended
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hyperparameter search spaces. For experiments involving a batchsize greater than 1, the learning
rate was dynamically adjusted to an empirically determined value to achieve optimal performance.
Notably, specific models encountered memory limitations on the 3090 GPU when applied to certain
large datasets. For instance, training the WiKG aggregator Li et al. (2024c) on the BRCA(Subtyping)
dataset required sampling the number of patches down to 1024 per instance to fit into memory. Except
for the aforementioned cases, all experiments were performed on NVIDIA 3090 GPUs using unified
hyperparameters where applicable.

B ADDITIONAL QUANTITATIVE RESULTS

B.1 MORE DISCUSSION ABOUT HYPERSLIDE

Table 4: Impact of HyperSlide supervision.

Method / Task Grading Subtyping Survival

Random Sampling (RS) 77.91 93.89 65.71
RS + HyperSlide 79.93 94.37 67.15

Pack (Ours) 79.02 94.06 66.15
Pack + HyperSlide (Ours) 80.19 94.21 67.50

Effectiveness of the HyperSlide Supervi-
sion Signal. To isolate the contribution of
our multi-WSI supervision mechanism, we
conducted an ablation study, the results of
which are presented in Tab.4. The study
demonstrates that the introduction of Hy-
perSlide labels provides a consistent and
significant performance uplift across all
three downstream tasks. This improvement
holds true for both the baseline random sampling (RS) packing strategy and our proposed adaptive
packing method. For instance, adding HyperSlide to our adaptive packing improved Grading AUC
by 1.17, Subtyping AUC by 0.15, and Survival C-Index by 1.35. This underscores the efficacy of
using a higher-level, clinically-informed supervision signal to guide the model’s learning process on
aggregated WSI data.

Table 5: Comparison of task-specific HyperSlide labels and
mixed soft-labels.

Labeling Strategy / Task Grading Subtyping Survival

Mixed Soft Label 75.50 91.31 N/A
Task-specific Label (Ours) 80.19 94.21 67.50

Superiority over Soft Labeling. The
design of the HyperSlide label is crit-
ical to its success. We further com-
pared our task-specific labeling strate-
gies against a more naive ‘mixed soft
label‘ baseline, which simply aver-
ages slide-level information without
considering task-specific clinical nu-
ances. As shown in Tab.5, our carefully designed labels significantly outperform this simpler approach.
The naive method not only yields substantially lower performance on categorical tasks but is also
incompatible with event-driven tasks like survival analysis, where label priority is paramount. This re-
sult validates our core hypothesis: to effectively learn from multiple WSIs, the generated supervision
signal must preserve the essential, task-relevant clinical characteristics of the slide ensemble.

B.2 MORE DISCUSSION ABOUT BATCHED TRAINING

Table 6: Extended comparison between batched training and gradient accumulation. Batched training
not only accelerates training but is essential for the effectiveness of subsequent modules.

Strategy Grad. Sub. Surv. TTime

— Without Batched Training —
Baseline 73.21 93.58 65.87 12h
Accumulation 72.12 93.02 64.28 12h
Accumulation + patch drop 77.58 93.61 64.53 12h
Accumulation + ADS - 94.25 66.98 -

— With Batched Training —
Batched (RS) + patch drop 77.91 93.89 65.71 2h
Batched (RS) + ADS - 94.27 67.04 -
Batched (RS) + HyperSlide 79.93 94.37 67.15 2.5h
OURS 80.19 94.86 68.14 4h
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Batched training is superior to gradient accumulation. Gradient accumulation is often considered
an alternative to batched learning, aiming to simulate larger batch sizes while preserving data
heterogeneity. However, our experiments demonstrate its inferiority in CPath tasks that utilize features
from foundation models. As detailed in Tab.6, the standard gradient accumulation strategy not only
failed to improve training efficiency (maintaining a 12-hour training time) but also consistently
underperformed the simple batched training baseline. More importantly, we found that batched
training is a crucial prerequisite for unlocking the performance gains from subsequent optimization
modules. When combined with techniques like patch dropout or ADS, the batched training approach
consistently outperforms its gradient accumulation counterpart. This suggests that the batch-level
feature interaction is vital for these modules to function effectively. Furthermore, batched training
provides a significant training speedup (up to 8×), reducing training time from 12 hours to under
3 hours in most configurations. This efficiency is critical for iterative research and large-scale
experimentation. This evidence underscores that the dual benefits of batched training, namely its
efficiency and its role as a foundation for advanced modeling, are difficult to replace. In contrast, our
proposed packing strategy builds upon the efficiency of batched training. It further enhances data
heterogeneity and enables the crucial multi-slide modeling with HyperSlides, achieving the most
significant performance gains while maintaining a practical training time.

Table 7: Comparison of adaptive and fixed-size packing
strategies.

Strategy Grad. Sub. Surv. Pad. Ratio

Fixed-size (n=2) 79.48 94.54 67.78 54.9%
Ours (Adaptive) 80.19 94.86 68.14 18.5%

Adaptive Packing. Within our batched
training framework, we utilize an adaptive
packing strategy. One might consider a sim-
pler approach of packing a fixed number
of slides (e.g., pairs) to form each hyper-
slide. However, our investigation reveals
that such a fixed-size strategy is subopti-
mal. As shown in Tab.7, fixing the pack
size to two slides results in a significantly higher padding ratio (54.9% vs. 18.5%). This inefficiency
arises because incomplete packs must be padded to a uniform length, leading to wasted computation
on uninformative tokens. In contrast, our adaptive packing dynamically fills each hyperslide to its
maximum capacity, thereby maximizing token utilization, improving computational efficiency, and
yielding superior performance.

Table 8: Performance comparison with slide-level
mixup augmentation.

Strategy Grad. Sub. Surv.

Slide-level Mixup 76.25 93.23 N/A
Ours (HyperSlide) 80.19 94.86 67.50

Distinction from Mixup-based Augmentation.
Our HyperSlide methodology is fundamentally
distinct from conventional mixup-based data
augmentation. The primary distinction lies in
the motivation and mechanism. Mixup serves
as a regularization technique by creating inter-
polated training instances and soft labels. In
contrast, our goal is to compensate for weak su-
pervision by explicitly modeling inter-slide relationships. We achieve this by constructing clinically
meaningful training instances with task-specific macro-labels and a corresponding loss function. This
design guides the model to learn from slide ensembles in a clinically relevant manner rather than a
purely augmentative one. Furthermore, our approach is length-adaptive, integrating a variable number
of slides per pack, unlike typical mixup strategies that operate on fixed pairs. The empirical results in
Tab.8 corroborate this conceptual difference, showing that a standard mixup approach fails to match
the performance of our purpose-built HyperSlide framework.

B.3 MORE DISCUSSION ABOUT ADS

While the Attention-driven Downsampler (ADS) module offers benefits in handling redundancy and
improving efficiency, its applicability and optimal configuration are subject to certain conditions and
data characteristics.

ADS Behavior at Inference. For maintaining interpretability at inference time, the ADS module is
configured to preserve per-instance information. This is achieved by disabling the pooling operation
along the pack dimension (k). However, the learned transformations, including the attention score
computation via the shallow MLP, the residual weighting (ui = hi + ai hi), and the subsequent
linear projection (vi = ui W

L), are still applied to each instance. This allows for the analysis of
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per-instance attention scores (ai) and transformed features (vi), facilitating post-hoc interpretation of
model decisions without reducing the instance count.

Table 9: Performance of ADS on PANDA.

Strategy CHIEF UNI GIGAP

w/ ADS 76.79 78.84 77.92
w/o ADS 76.46 80.19 80.41

Dependence on Data Redundancy. The effective-
ness of the ADS module is significantly influenced by
the inherent redundancy of the input WSI data. For
datasets characterized by high tile redundancy, such
as TCGA, ADS performs favorably. By reducing the
instance count by a factor of k, it effectively com-
presses the representation while discarding redundant
or less informative features, leading to computational efficiency and potentially improved signal-
to-noise ratio. Conversely, on datasets with intrinsically lower redundancy, like PANDA, applying
ADS can be detrimental. In such cases, where a larger proportion of instances may contain clinically
relevant information, downsampling can inadvertently discard crucial features, leading to information
loss and degraded performance, as shown in Tab. 9. This highlights that the benefits of ADS are most
pronounced when applied to data exhibiting substantial spatial redundancy.

Table 10: Performance of ADS on BRCA.

Strategy CHIEF UNI GIGAP

before 90.60 94.54 94.18
after 92.38 94.86 94.86

Position of the ADS Module. The position of the
ADS module is a key impact of its efficacy. As shown
in Tab. 10, applying the ADS module to the branched
feature sets Rb and Db independently (after) yields
superior performance over applying it to the com-
bined feature set prior to branching (before). We
hypothesize that this is because operating on distinct
branches enables the ADS module to learn more specialized attention mechanisms. Such specializa-
tion allows the module to better capture the unique characteristics and relevant information within
each feature set (Rb and Db), which might otherwise be obscured or averaged out in a combined
representation.

Table 11: Computational Cost of ADS on BRCA.

Method TTime Memory FLOPs AUC

w/o ADS 1h 7G 49.4G 94.21
w/ ADS 1.5h 13G 142.1G 94.86

Computational Cost of the ADS Module.
We evaluate the computational cost and
performance impact of incorporating the
ADS module. Tab. 11 presents a compari-
son of computational resources and perfor-
mance metrics for the model trained with
and without the ADS component on the
BRCA(Subtyping) dataset. The results show that integrating the ADS module requires additional
computational resources. Specifically, training time increases from 1 hour to 1.5 hours, memory usage
rises from 7GB to 13GB. Importantly, this investment in computational resources is accompanied by a
notable improvement in model performance. The model enhanced with the ADS module achieves an
AUC of 94.86%, surpassing the 94.21% obtained by the baseline model. These findings indicate that
while the ADS module introduces additional computational requirements, it effectively contributes to
a tangible performance gain.

Attention Mechanism. The attention mechanism is a critical component of the ADS module.
In its absence, the downsampling operation would treat all instances uniformly, assigning equal
importance to each. The core contribution of the attention is to compute instance-specific weights,

Table 12: Performance of attention mechanism for subtyping
and survival prediction.

Method Subtyping (AUC) Survival (C-Index)

w/o Attention 94.56 67.71
w/ Attention 94.86 68.14

making the feature aggregation
process both attention-driven and
instance-dependent. This enables
the model to selectively focus on
and amplify features from the most
clinically salient regions. To em-
pirically validate its contribution,
we conducted an ablation study by
removing the attention component. As shown in Tab. 12, this resulted in a distinct performance
degradation across both subtyping and survival prediction tasks, underscoring the mechanism’s
importance in learning a meaningful data-driven downsampling policy.
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Table 13: Ablation studies on various components of our method. Default settings are marked in
gray .

Sub. Surv.

2 93.87 67.03
3 94.40 68.14
4 94.86 66.89
5 94.32 65.74
6 94.60 66.03

(a) Downsample ratio k of
ADS.

Grad. Sub. Surv.

0.05 79.95 94.71 65.97
0.1 80.15 94.78 66.42
0.2 80.19 94.86 67.28
0.5 79.85 94.67 68.14
1.0 79.94 94.56 69.31
(b) hyperslide-loss weight λ.

Grad. Sub. Surv.

30% 80.01 94.58 65.94
40% 80.19 94.86 66.69
50% 79.52 94.77 68.14
60% 79.04 94.86 68.23

(c) Branch split ratio of main branch.

B.4 ABLATION OF HYPERPARAMETERS

We conduct ablation studies on the hyperparameters related to our method in Tab. 13 and provide the
following analysis.

Dowansmple Ratio of ADS. The ADS downsampling ratio determines the final number of input
instance, demonstrating different characteristics across tasks. For sub-typing tasks, a moderate or
smaller number of instances (500–1500) is found to be feasible or even optimal. Consequently, larger
downsampling ratios (which result in fewer instances) yielded good performance. However, for the
more challenging survival analysis, the number of instances have a more significant impact, with a
larger number of instances (> 2000) often leading to better performance.

Weight of Hyperslide Loss. The influence of varying hyperslide-loss weight on overall optimization
is examined. We observe that parameter choices within a certain range consistently provide substantial
performance gains, indicating that this parameter is relatively stable. Furthermore, larger ratios are
observed to yield better results specifically on the survival analysis task. This improved performance
is likely due to the nature of the survival analysis task itself. Given its data volume and inherent
difficulty compared to other tasks, the main loss function is more susceptible to overfitting on the
training set, making the hyperslide optimization play a more critical role.

Branch Split Ratio. The Split ratio controls the proportion of instances in different branches. It is
hypothesized that a relatively even distribution would be more conducive to the overall optimization
of the dual-branch architecture. Experimental results support this hypothesis, as more uneven division
ratios do not yield significant performance gains.

B.5 ADDITIONAL BENCHMARKING EXPERIMENTS

Additional Dataset. To further substantiate the robustness and generalizability of our proposed
PackMIL, we extended its evaluation to two additional, widely recognized benchmarks: a com-
putational pathology task for cancer metastasis detection and a medical imaging task outside of
pathology for diabetic retinopathy grading. The cancer metastasis detection benchmark integrates
the CAMELYON-16 and CAMELYON-17 datasets Litjens et al. (2018). These datasets consist
of whole-slide images (WSIs) of hematoxylin and eosin (H&E) stained lymph node sections from
breast cancer patients. The primary task is to identify the presence of metastatic cancerous tissue
within these lymph nodes, a critical step in cancer staging. For the non-pathology benchmark, we
utilized a standard Diabetic Retinopathy (DR) Grading dataset Li et al. (2019). This dataset
contains retinal fundus images and the objective is to classify them into different severity levels of
diabetic retinopathy. This task serves to evaluate the model’s applicability to broader medical image
classification challenges beyond histopathology. We compared PackMIL with several state-of-the-art
Multiple Instance Learning (MIL) methods. As shown in Tab. 14, PackMIL demonstrates superior
performance on both benchmarks. Specifically, on the CAMELYON cancer metastasis detection task,
PackMIL (AB.) achieved an accuracy of 98.42%, outperforming all other methods. Similarly, in the
Diabetic Retinopathy Grading task, PackMIL (AB.) obtained the highest score of 61.34%. These
results underscore the effectiveness and versatility of our approach across different medical imaging
domains.
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Table 14: Performance comparison on additional benchmark datasets.

Method CAMELYON (UNI) Diabetic Retinopathy Grading (R50)

ABMIL 96.58 58.26
DSMIL 96.44 58.03
TransMIL 96.63 60.28
WiKG 97.08 55.84
PackMIL (AB.) 98.42 61.34
PackMIL (DS.) 97.81 60.27

Additional Encoders. To further assess the versatility and effectiveness of PackMIL, we conducted
additional experiments by integrating it with more advanced feature extractors and comparing its
performance against , powerful slide-level encoders. We utilized CONCHv1.5 Lu et al. (2024a) as a
feature extractor and compared our model with state-of-the-art slide encoders including HIPT Chen
et al. (2022b), GigaPath Xu et al. (2024), CHIEF Wang et al. (2024b), and TITAN Ding et al. (2024)
on downstream tasks of tumor grading, subtyping, and survival prediction. We reported the training
time (TTime) of all methods on PANDA. The results, detailed in Tab. 15, demonstrate that PackMIL
consistently enhances performance while maintaining remarkable efficiency. Notably, PackMIL
significantly reduces the training time, requiring only 2-3 hours, which is a substantial improvement
over the 15 to 75 hours required by other encoders. This highlights PackMIL’s ability to effectively
aggregate features from various powerful backbones, achieving superior predictive performance with
significantly lower computational overhead.

Table 15: Comparative experiments with advanced feature extractors and slide encoders.

Feature Extractor Slide Encoder Grading Subtyping Survival TTime

HIPT Chen et al. (2022b) HIPT 62.10 ± 1.06 86.93 ± 4.86 67.82 ± 9.61 32h
GigaPath Xu et al. (2024) GigaPath 65.86 ± 0.77 93.72 ± 3.42 62.64 ± 9.33 50h
GigaPath Xu et al. (2024) PackMIL 80.41 ± 0.53 94.86 ± 3.68 68.03 ± 9.10 3h
CHIEF Wang et al. (2024b) CHIEF 67.67 ± 0.84 91.43 ± 4.51 67.95 ± 8.46 15h
CONCHv1.5 Lu et al. (2024b) ABMIL 66.90 ± 0.74 95.14 ± 2.92 68.65 ± 9.17 14h
CONCHv1.5 Lu et al. (2024b) TITAN 63.72 ± 0.76 95.20 ± 2.92 - 75h
CONCHv1.5 Lu et al. (2024b) PackMIL 71.72 ± 0.65 95.43 ± 2.63 70.74 ± 7.70 2h

B.6 INFERENCE TIME COMPARISON

Tab. 16 presents the inference time with feature input. Since PackMIL only adds the ADS module
during inference and retains the simplest MIL inference pipeline, its inference time is nearly identical
to the baseline, with less than a 4% loss in inference speed.

Table 16: Performance comparison of various Multiple Instance Learning (MIL) methods, restructured
for improved readability on narrower page widths.

Method Inference Time (per slide) FPS

ABMIL 0.48625 ms 2056 fps
DSMIL 1.04138 ms 960 fps
TransMIL 7.05402 ms 142 fps
DTFD 3.97953 ms 251 fps
RRT-MIL 2.43291 ms 411 fps
WIKG 1.84916 ms 541 fps

PackMIL(ABMIL) 0.50414 ms 1984 fps (-4%)
PackMIL(DSMIL) 1.07524 ms 930 fps (-3%)
PackMIL(VITMIL) 1.36654 ms 731 fps
PackMIL(RRT) 2.52792 ms 396 fps (-4%)
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(a)  GroundTruth (b)  ABMIL (c)  RS- ABMIL (d)   PackMIL- ABMIL

Figure 5: Attention visualization on the PANDA dataset Bulten et al. (2022). The RS strategy, due to
its sampling, exhibits limited global attention. With multi-slide supervision via hyperslides and the
supplementation of key features, PackMIL demonstrates a more accuracy and comprehensive focus
on tumor areas.

B.7 SUPPLEMENTARY CONFIDENCE INTERVALS

We provide the detailed confidence intervals (CI) for our PackMIL-enhanced methods in Tab. 17,
corresponding to the aggregated results presented in the main manuscript.

Table 17: Detailed CI for PackMIL-enhanced methods on all downstream tasks.

Method Benchmark CHIEF UNI GIGAP

ABMIL
+PackMIL

Grading (Acc.) 76.46±0.61 80.19±0.53 80.41±0.53
Sub-typing (AUC) 92.38±4.12 94.86±3.91 94.86±3.68
Survival-BRCA (C-index) 68.30±8.8 68.14±9.8 67.04±9.1
Survival-LUAD (C-index) 63.72±8.6 62.60±8.5 61.58±8.7

DSMIL
+PackMIL

Grading (Acc.) 75.84±0.57 79.68±0.50 79.10±0.55
Sub-typing (AUC) 93.01±3.92 94.62±3.72 94.65±3.14
Survival-BRCA (C-index) 69.76±8.5 70.00±8.6 68.03±9.1
Survival-LUAD (C-index) 64.10±8.6 62.18±8.7 62.44±8.4

TransMIL
+PackMIL

Grading (Acc.) 74.75±0.66 78.87±0.57 78.88±0.58
Sub-typing (AUC) 92.31±4.23 94.37±3.83 94.12±3.92
Survival-BRCA (C-index) 68.08±8.6 68.44±8.9 66.80±9.1
Survival-LUAD (C-index) 64.01±9.1 63.61±8.5 63.04±8.3

RRTMIL
+PackMIL

Grading (Acc.) 74.63±0.69 78.46±0.59 78.43±0.60
Sub-typing (AUC) 92.43±3.92 94.54±3.79 94.47±4.01
Survival-BRCA (C-index) 68.15±9.1 68.73±9.4 67.62±9.0
Survival-LUAD (C-index) 64.37±8.4 62.01±8.6 62.79±8.2

C QUALITATIVE ANALYSIS

Here, Fig.5 visualizes the attention scores of different MILs on the PANDA. We suggest that: 1) Due
to the data challenges, traditional non-batched training often struggle to achieve efficient and optimal
convergence. As a result, the baseline model (ABMIL) exhibits insufficient discriminability and
fails to capture some key pathological details. 2) While the simple random sampling (RS) strategy
benefits from improved discriminability through batched training, it suffers from feature loss due to
sampling and insufficient supervision, resulting in a lack of global attention. 3) In contrast, PackMIL,
leveraging pack-based batched training and multi-slide supervision from hyperslides, demonstrates a
more accurate and comprehensive focus on tumor areas.
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D ADDITIONAL METHODOLOGY DESCRIPTION

D.1 TASK-SPECIFIC HYPERSLIDE LOSS

Table 18: Hyperslide loss ablation on
PANDA.

Strategy CHIEF UNI GIGAP

CE 76.46 80.16 80.09
ASL 76.10 80.19 80.41

Grading task. This task is modeled as single-
label classification, we employ Asymmetric Loss
(ASLLoss) Ridnik et al. (2021). This loss function
is chosen to effectively address potential class imbal-
ance and encourage the model to focus on correctly
identifying positive classes while being less sensitive
to negative misclassifications. Given the predicted
probability distribution p = [p1, . . . , pG] for G classes and the corresponding one-hot encoded
ground truth labels yhyper, the loss is computed as:

Lgrade(p,y
hyper) = −

G∑
i=1

yhyper
i (1− pi)

γp log(pi)−
G∑
i=1

(1− yhyper
i )pγn

i log(1− pi), (6)

where γp ≥ 0 and γn ≥ 0 are the focusing parameters for positive and negative samples, respectively.

Table 19: Hyperslide loss ablation on BRCA.

Strategy CHIEF UNI GIGAP

BCE 90.89 94.20 93.91
FL 92.38 94.86 94.86

Subtyping task. This task is modeled as multi-
label classification with soft targets, we use multi-
label Focal Loss Lin et al. (2017). This loss helps
mitigate the issue of imbalanced subtype frequen-
cies and focuses the model’s attention on harder-
to-classify samples. Given the predicted probabil-
ity vector p = [p1, . . . , pC ]

⊤ for C subtypes (typ-
ically obtained via Sigmoid activation) and the corresponding soft ground truth label vector
yhyper = [yhyper1 , . . . , yhyperC ]⊤, the loss is computed as the sum of binary Focal Loss for each
class:

Lsub(p,y
hyper) =

C∑
c=1

FL(pc, y
hyper
c ), (7)

where, for class c, the binary Focal Loss FL(pc, yhyperc ) is defined as:

FL(p, y) = −αy(1− p)γ log(p)− (1− y)(1− α)pγ log(1− p). (8)

Here, α ∈ [0, 1] is a weighting factor, and γ ≥ 0 is the focusing parameter.

Survival analysis task. The model predicts the hazard of event occurrence over discrete time
intervals based on hyper-slice features. The training process employs a custom discrete-time Negative
Log-Likelihood (NLL) loss function. Let the follow-up horizon be partitioned into T contiguous,
non-overlapping intervals {1, . . . , T}. For individual i the model outputs a hazard sequence hi =
(hi,1, . . . , hi,T ) with hi,t = P (Ti = t | Ti ≥ t,xi). The corresponding discrete survival function is:

Si,t =

t∏
j=1

(1− hi,j), t = 1, . . . , T. (9)

Denote by δi ∈ {0, 1} the event indicator (δi = 1 if the event is observed, 0 if right-censored). Let ki
be the observed event interval if δi = 1 and let kci be the last interval in which the subject is known to
be at risk when δi = 0. We minimise the following per-sample negative log-likelihood

Li = δi
[
− log hi,ki

− logSi,ki

]︸ ︷︷ ︸
Levent,i

+ (1− δi)(1− α)
[
− logSi,kc

i

]︸ ︷︷ ︸
Lcens,i

, (10)

where α ∈ [0, 1] down-weights the censored component. The mini-batch loss is

L =
1

B

B∑
i=1

Li. (11)

Hazards are produced by a sigmoid layer, and survival probabilities are obtained by the cumulative
product Si,t =

∏
j≤t(1− hi,j). When indices are stored in a 1-based convention, the hazard of the

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

k-th interval must be accessed at position k − 1 of the zero-based tensor, whereas survival Si,k is
accessed at position k after prefix-padding with an initial 1. For censored observations an optional
indicator 1ki=kc

i
can be applied if the censoring interval exactly coincides with a potential event

interval; otherwise every censored instance contributes its survival term.

D.2 CONSTRUCTION OF ISOLATED MASK

As described in the method section, all auxiliary masks fall into two functional groups: aggregation-
oriented masks, which constrain feature interaction inside each pack, and classification-oriented
masks, which identify the source bag of every valid token for the downstream classifier. We first
introduce the shared primitives and then derive both groups. Let Pp = {hk}k∈Ip

be the p-th pack,
padded to length L and assembled from B bags. For positions j = 1, . . . , L we define

(mp)j = I{j indexes a real feature}, mp ∈ {0, 1}L, (12)

(bp)j =

{
βk, j contains hk,

0, j is padding,
bp ∈ {0, . . . , B}L, (13)

where βk ∈ {1, . . . , B} is the global bag index of feature hk. By construction (mp)j = 1 iff
(p− 1)L+ j ≤ M , with M the total number of tokens before packing.

Aggregation-oriented masks. These masks guarantee that feature aggregation never crosses bag
boundaries or attends to padding. We construct a binary feature mask and an attention mask for each
pack. Binary feature mask Mp ∈ {0, 1}L×B , indicating which bag each feature belongs to:

(Mp)j,b = (mp)j · I{(bp)j = b}, for j = 1, . . . , L, b = 1, . . . , B. (14)

An attention mask Ap ∈ {−∞, 0}L×L to enforce intra-bag attention and prevent attention to padding:

Ap = −∞
[
1L×L − (mp m

⊤
p ) ⊙ Ep

]
, (Ep)ij = I{(bp)i = (bp)j}. (15)

Here, 1 is the all-ones matrix, ⊙ denotes element-wise multiplication, and Ep checks if features i and
j belong to the same original bag. Equivalently, Ap can be visualized in explicit L× L block-matrix
form:

Ap =



0n1×n1
−∞1n1×n2

· · · −∞1n1×nB
−∞1n1×n0

−∞1n2×n1 0n2×n2 · · · −∞1n2×nB
−∞1n2×n0

...
...

. . .
...

...

−∞1nB×n1
−∞1nB×n2

· · · 0nB×nB
−∞1nB×n0

−∞1n0×n1
−∞1n0×n2

· · · −∞1n0×nB
−∞1n0×n0


, (16)

where

nb =

L∑
j=1

I{(bp)j = b}, b = 1, . . . , B, n0 = L−
B∑

b=1

nb

counts tokens from bag b (and n0 counts padding tokens) within pack p. 0a×a is the zero matrix, and
1a×b is the all-ones matrix.

Classification-oriented masks. After aggregation, we must (i) keep only valid tokens and (ii) reveal
their bag labels to the classifier. Both goals are achieved with

vp = mp, (valid-token indicator), (17)
cp = bp, (bag-label vector). (18)

Here vp filters out padding positions before the prediction head, whereas cp routes each remaining
token to the correct bag-level logit.

Aggregation-oriented masks act inside the encoder to enforce intra-bag interactions, while
classification-oriented masks operate at the output stage to attach each valid token to its original bag.
Together they preserve bag integrity and enable efficient batched processing without introducing extra
parameters.
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D.3 DYNAMIC PACK LENGTH ADAPTATION

Table 20: Ablation on Dynamic Pack Length.

Strategy Grad. Sub. Surv.

Fixed Length 79.69 94.42 67.72
Dynamic Length 80.19 94.86 68.14

While the pack operation utilizes a fixed length L
for efficient batch processing, the actual number of
instances sampled from each bag (|R̃b| and |D̃b|) can
vary significantly due to stochastic sampling and the
diverse sizes of original WSIs. To accommodate this
inherent variability, particularly when a mini-batch
contains bags that yield a large number of sampled instances, we incorporate a dynamic pack length
adaptation mechanism. Before packing the instances for a given branch (main or residual) within
a mini-batch, we assess the maximum sampled sequence length from any single bag in that batch.
Specifically, we check if maxb |R̃b| (for the main branch) or maxb |D̃b| (for the residual branch)
exceeds the current pack length L. If this condition is met, the pack length for that specific branch
and mini-batch is dynamically doubled to 2L. This dynamic doubling occurs at most once per branch
per mini-batch processing step, effectively setting an upper bound of 2L on the pack length. This
adaptation ensures that sampled instances from bags with particularly large retained or discarded
sets are less likely to be fragmented across numerous packs, leading to more efficient packing and
potentially better representation within packs for such cases.

E ADDITIONAL RELATED WORKS

E.1 PACK-BASED BATCHED TRAINING

Training on variable-length sequences has traditionally relied on padding shorter sequences and
applying masks to ignore padded tokens, ensuring uniform batch shapes at the cost of wasted
computation Krell et al. (2021). To reduce this overhead, dynamic batching (length-based bucketing)
groups sequences of similar lengths per batch, greatly minimizing padding requirements Żelasko
et al. (2025). Modern transformer architectures further exploit attention masks to handle padding, and
recent work goes beyond simple padding by packing multiple sequences into one longer sequence
with special separators and adjusted position indices Krell et al. (2021). Such sequence packing
techniques, originally used in large-scale NLP pre-training, can double throughput by eliminating
pad tokens Kosec et al. (2021) while maintaining model fidelity via careful masking to prevent cross-
sequence attention. For example, packing algorithms in BERT pre-training combine several short
sentences into a single 512-token input, yielding 2× speedups with negligible accuracy loss Kosec
et al. (2021). In computer vision, analogous ideas enable variable-resolution training. NaViT avoids
fixed-size resizing by treating images as sequences of patches and packing arbitrary-resolution inputs,
improving efficiency in large-scale image–text pre-training without sacrificing performance Dehghani
et al. (2023). Other works dynamically reduce sequence length during processing, such as Token
Merging (ToMe) merges redundant tokens in ViTs to halve the token count on the fly, boosting
throughput 2× for large models with minimal accuracy drop Bolya et al. (2022). RNN-based systems
commonly use packed sequences to skip computation on padded timesteps, and Transformer-based
LLMs and vision models use padding masks or adaptive token pruning to similar effect. In CPath,
where WSI yields a bag of thousands of instances, efficient batching is critical. However, the data
characteristics in CPath render the direct application of the aforementioned strategies non-trivial.
Approaches focused on packing short sequences provide limited benefits, while sampling long
sequences risks significant information loss. Effectively adapting these efficient training paradigms to
CPath is thus a key challenge. Our proposed pack-based framework addresses this by incorporating a
residual branch to more effectively packing these variable-length long sequences, aiming to mitigate
these limitations.

E.2 MORE ABOUT BATCHSIZE IN COMPUTATIONAL PATHOLOGY

As elaborated in the Related Work section, current slide-level MIL methods often train with batchsize
of 1. Conversely, when explicit patch-level annotations are available for segmentation or detection
tasks, researchers commonly employ moderate to large batch sizes by independently processing
uniformly-sized patches extracted from WSIs, enabling stable training and efficient convergence Ciga
et al. (2021); Graham et al. (2019). These models independently process uniformly-sized patches
extracted from WSIs, leveraging moderate to large batch sizes to facilitate stable training and
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efficient convergence Ciga et al. (2021); Graham et al. (2019). Conversely, when explicit patch-level
annotations are available for segmentation or detection tasks, researchers typically form batches at
the patch level. They independently process uniformly-sized patches from WSIs using moderate to
large batchsizes, facilitating stable training and efficient convergence Ciga et al. (2021); Graham
et al. (2019). Such patch-centric batching, however, presents a discrepancy with the holistic slide
assessment in clinical workflows.

F LIMITATION & BROADER IMPACTS

This work revisiting data challenges in computational pathology and, by considering these challenges,
proposes a pack-based MIL training framework. However, the primary limitation of this method is
the significant challenge in implementing batched training of complex MIL models based on packs.
While we have implemented with commonly used models such as ABMIL, TransMIL, and DSMIL,
constructing the required masks for some more complex model structures remains challenging.
Furthermore, the current hyperslide training is highly specific to downstream tasks. Designing a
more general training objective is a key focus of our future work. Beyond these limitations, this work
holds significant potential to advance key healthcare tasks such as cancer diagnosis and prognosis.
The significant performance improvements demonstrated in this work, particularly when leveraging
foundation model features, hold potential to benefit and inspire the development of more accurate
state-of-the-art algorithms in the clinical scenario.

G STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

Throughout the preparation of this manuscript, we utilized large language models to enhance the
quality of the text. Specifically, we employed Google’s Gemini for tasks related to language re-
finement, including correcting grammar and spelling, improving sentence clarity, and ensuring a
consistent academic tone. The core scientific contributions, including the formulation of the problem,
the proposed methodology, the design and execution of experiments, and the interpretation of results,
are entirely the work of the authors. All text generated or modified by the LLM was meticulously
reviewed, edited, and revised by the authors to ensure it accurately reflects our original ideas and
findings. The authors bear full and final responsibility for all content presented in this paper.

H REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a comprehensive set of resources. The
complete source code for our proposed framework, along with the implementations of all baseline
models used for comparison, is available in an anonymous repository at https://anonymous.
4open.science/r/PackMIL-A320. To further facilitate direct replication of our experimental
results, we will make the pre-extracted features for all datasets publicly available upon acceptance.
Furthermore, a complete Docker container specifying the full computational environment and all de-
pendencies will be released to eliminate any potential for environment-related discrepancies. Detailed
descriptions of our data preprocessing pipeline, from whole-slide images to feature extraction, are
provided in Appendix A. All hyperparameters and experimental configurations are fully documented
in Appendix B.4. We believe these resources will enable the community to readily verify our findings
and build upon our work.

I DATA AVAILABILITY STATEMENT

The PANDA dataset (CC-BY-4.0) is available at https://panda.grand-challenge.org/.

All TCGA datasets can be found at https://portal.gdc.cancer.gov/.

The CAMELYON dataset is available at https://camelyon17.grand-challenge.org/.

The Diabetic Retinopathy Grading dataset is available at https://github.com/nkicsl/
DDR-dataset.
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