
Algorithms and Hardness for Active Learning on Graphs

Vincent Cohen-Addad 1 Silvio Lattanzi 1 Simon Meierhans 2

Abstract
We study the offline active learning problem on
graphs. In this problem, one seeks to select k
vertices whose labels are best suited for predicting
the labels of all the other vertices in the graph.
Guillory and Bilmes (Guillory & Bilmes, 2009)
introduced a natural theoretical model motivated
by a label smoothness assumption. Prior to our
work, algorithms with theoretical guarantees were
only known for restricted graph types such as trees
(Cesa-Bianchi et al., 2010) despite the models
simplicity. We present the first O(log n)-resource
augmented algorithm for general weighted graphs.
To complement our algorithm, we show constant
hardness of approximation.

1. Introduction
Graph learning has a wide array of applications across vari-
ous domains spanning Web Spam detection, genomics, text
classification, face detection and many more (Chang & Ye-
ung, 2006; Goldberg & Zhu, 2006; Herbster & Lever, 2009;
Shin et al., 2009). In active learning, one is presented with
a large unlabeled data set and given the opportunity to un-
cover the labels of some small number of points. Obtain-
ing labeled data points is often costly, and therefore these
should be chosen carefully. Guillory and Bilmes (Guillory
& Bilmes, 2009) introduced a simple graph based abstrac-
tion where every vertex corresponds to a data point, and
edges encode similarities between data points. For vertex
labels y ∈ {0, 1}V , they assume that∑

(i,j)∈E

w(i, j) · |y(i)− y(j)|

is small and show that then in order to optimize label selec-
tion one can then focus on selecting a set of nodes L for the
objective

Ψ(L)
def
= min

C⊆V \L
w(C, V \ C)/|C|

1Google 2ETH Zurich, Switzerland. Correspondence to: Simon
Meierhans <mesimon@inf.ethz.ch>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

on the weighted similarity graph G = (V,E,w) where the
goal is to maximize Ψ(·) subject to a cardinality constraint
k

max
L⊂V :|L|≤k

Ψ(L).

Concretley, they show that for any consistent labeling ŷ , i.e.
y(v) = ŷ(v) for all v ∈ L, we have

∥y − ŷ∥2 ≤ 1

2Ψ(L)

(∑
(i,j)∈E

w(i, j) · |y(i)− y(j)|

+
∑

(i,j)∈E

w(i, j) · |ŷ(i)− ŷ(j)|
)

where the first sum is small by assumption and the second
sum is (approximately) minimized by a suitable prediction
algorithm (See Theorem 1 in (Guillory & Bilmes, 2009)).
We therefore focus on maximizing Ψ(L) in this article.

Intuitively, the objective asks to position the labeled data
points such that disconnecting a large chunk of unlabeled
data points cuts a lot of edge weight. (Guillory & Bilmes,
2009) present some evidence that solving this problem ex-
actly might be hard, and give practical heuristic algorithms.

Cesa-Bianchi, Gentile, Vitale and Zappella presented the
first algorithm with theoretical guarantees under the assump-
tion that G is an unweighted tree (Cesa-Bianchi et al., 2010).
Their algorithm introduces constant error. In the conclusion,
they speculate:

“We also believe that an extension to general
graphs of our algorithm does actually exist. How-
ever, the complexity of the methods employed
in (Guillory & Bilmes, 2009) suggests that tech-
niques based on minimizing Ψ(L) on general
graphs are computationally very expensive.”

(Cesa-Bianchi et al., 2010), page 17.

In the meantime, they suggest sampling a random spanning
tree as a plausible heuristic for applying their algorithm to
general unweighted graphs.

In this article, we show that an efficient and reasonably
simple resource augmented algorithm for maximizing Ψ(L)
on a general graphs exists.

1

Algorithms and Hardness for Active Learning on Graphs

Theorem 1.1. Given a graph G = (V,E,w) with polyno-
mially bounded1 integral edge weights and a budget k, there
exists an algorithm that returns a set L′ such that

• |L′| ≤ O(log |V |) · k and

• Ψ(L′) ≥ maxL⊂V :|L|≤k Ψ(L).

The algorithm runs in time k · |V | · (|V |+ |E|)1+o(1) where
o(1)→ 0 as |V | → ∞.

We point out that such resource augmented algorithms
are loosely competitive, i.e. our algorithm approxi-
mates max|L|<k Ψ(k) well for most budgets (Young, 2002;
Roughgarden, 2021).

To complement our algorithm, we also give the first hardness
result2 for maximizing Ψ(L).

Theorem 1.2 (Hardness of Approximation). It is NP-hard
to decide if

• maxL⊂V :|L|≤k Ψ(L) ≤ 2 or

• maxL⊂V :|L|≤k Ψ(L) ≥ 3

for general unweighted graphs and labelling budgets k.

We complement our theoretical results with proof-of-
concept experiments on both synthetic and real world graphs
showing that our algorithm has better experimental perfor-
mances than the heuristics presented in (Guillory & Bilmes,
2009; Cesa-Bianchi et al., 2010).

Technical overview. The most direct template algorithm
for approximating max|L|≤k Ψ(L) is to build the set L one
by one. Our algorithm and the previous algorithms of (Guil-
lory & Bilmes, 2009) and (Cesa-Bianchi et al., 2010) all
follow this approach. Because the Ψ(·) objective is nei-
ther submodular nor supermodular3, it is a priori unclear
how to choose the next vertex to add without resorting to
heuristics.4

To resolve this issue, we develop a new perspective moti-
vated by the densest subgraph problem. In this well-studied
problem, one seeks to find an induced subgraph with max-
imum average degree (Goldberg, 1984; Boob et al., 2020;
Chekuri et al., 2022). Given some target degree δ, (Gold-
berg, 1984) proposed a flow gadget for deciding if a sub-
graph of average degree δ exists. Intuitively, a dense sub-
graph is a cluster which has few connections to the rest of

1In the number of vertices |V |.
2To the best of our knowledge.
3See Appendix A.
4E.g. (Guillory & Bilmes, 2009) suggest adding a random ver-

tex from a current witness cut C minimizing minC⊆V \L w(C, V \
C)/|C|.

the graph compared to its size. This reveals some similarity
with our problem. Loosely speaking, we aim to select the
set L such that G[V \ L] does not contain a very dense sub-
graph. This motivates us to construct a similar flow gadget
for maximizing Ψ(·).

In our flow gadget, adding vertices to L corresponds to
adding new edges, which increases the maximum flow. This
yields a simple greedy rule we exploit in our algorithm:
Add the vertex whose edge increases the maximum flow the
most to L. This measure is submodular, and we are thus
able to give guarantees via standard submodular function
maximization.

Finally, our flow gadget still requires a guess for the value
max|L|≤k Ψ(L) similar to the guessed average degree δ for
densest subgraph. We use binary search to obtain our full
algorithm.

Related work. We restrict our attention to graph problems,
and point the reader to (Settles, 2009; Ren et al., 2021) for
surveys on classical and deep active learning.

Multiple classic approaches for the passive problem where
L is fixed have been proposed (Blum & Chawla, 2001; Blum
et al., 2004; Belkin et al., 2004; Bengio et al., 2006). These
introduce the use of smoothness assumptions on the labels.

The active case where the set L is not fixed has received
considerable attention (Zhu et al., 2003; Guillory & Bilmes,
2009; Cesa-Bianchi et al., 2010; Dasarathy et al., 2015) in
the case where the vertices are either selected one-by-one
or all at once. Recent approaches have incorporated deep
learning (Mac Aodha et al., 2014; Kushnir & Venturi, 2020;
Hu et al., 2020; Zhang et al., 2022b;a). In (Zhang et al.,
2022a), learned functions are combined with graph based
combinatorial techniques based on (Dasarathy et al., 2015),
showing that interesting synergies can emerge when classic
approaches are combined with deep learning. Unfortunately,
no previous work provides any theoretical guarantees on
general graphs.

Roadmap. In Section 2, we introduce some standard nota-
tion. Then, we formally introduce the graph label selection
problem in Section 3. In Section 4 we reduce the problem
to an equivalent problem involving flows, and in Section 5
we present a greedy approximation algorithm exploiting
that flow perspective. We show that the problem is hard to
approximate in Section 6, and present experiments on small
graphs in Section 7. Finally, in Section 8 we show that our
algorithm can be generalized to vertex importances.

2. Preliminaries
Graphs. We consider undirected weighted graphs G =
(V,E,w) where V denotes the vertex set and E ⊆ V × V

2

Algorithms and Hardness for Active Learning on Graphs

denotes the edge set. The vector w ∈ RE
≥0 contains integral

edge weights.

We associate an edge-vertex incidence matrix B ∈ RE×V

with the graph G. This matrix has exactly two nonzero
entries per row. For the edge e = (u, v), we have B(e, u) =
−1 and B(e, v) = 1. Because the edges of G are undirected,
we associate some arbitrary direction with the edges to
define the matrix B .

Induced subgraphs. Given some set A ⊂ V , we let G[A]
denote the induced subgraph on A, i.e. the graph obtained
when restricting to the set of vertices in A.

Cuts. For a set C ⊂ V sometimes referred to as a cut, we
let E(C, V \ C) denote the subset of E that only contains
edges with exactly one endpoint in C, i.e. the set of edges
that cross the cut. Furthermore, we let w(C, V \ C)

def
=∑

e∈E(C,V \C) w(e) denote the sum of the weights of the
edges going across the cut.

Flows. For a graph G = (V,E,w) with edge vertex
incidence matrix B , we call a flow f ∈ RE feasible if
−w ≤ f ≤ w . We say such a flow routes the demand
d = B⊤f . In this article, we are interested in flows that
route s-t demands, i.e. demand vectors d = α(1t − 1s).
Maximizing the amount of flow α > 0 such that a feasible
flow routing d exists is called the maximum flow problem.
Due to recent progress on the more general min-cost flow
problem (Chen et al., 2023; van den Brand et al., 2023; Chen
et al., 2024; van den Brand et al., 2024), this problem can
be solved in time m · eO(log3/4 m log logm) logU where U is
an upper bound on the edge weights of G (van den Brand
et al., 2024).

Every s-t flow can be decomposed into a set of s-t paths and
cycles, and removing all cycles does not change feasibility
and the routed demands. By duality, the maximum amount
of flow that can be sent from s to t with a feasible flow is
equal to the min-cut minC∈V \{t}:s∈C w(C, V \ C).

3. The Graph Label Selection Problem
In this section, we formally define the graph label selection
problem. We first define the sparsity of a cut.
Definition 3.1 (Sparsity). For a graph G = (V,E,w) and
a cut ∅ ⊂ C ⊂ V , we let

ΨC
def
=

w(C, V \ C)

|C|

Furthermore, we let Ψ∅
def
= ∞, and ΨV

def
= 0.

Notice that in Definition 3.1 the cardinality of C is not
bounded by |V |/2 in contrast to the usual definition of spar-
sity in the context of vertex expansion. We let the empty

cut and the cut containing all vertices have sparsity∞ and
0 respectively for notational convenience.

We then define the graph label selection objective as intro-
duced in (Guillory & Bilmes, 2009), and introduce a slack
parameter on the cardinality of the set of selected vertices
similar to (Cesa-Bianchi et al., 2010).

Definition 3.2 (Graph Label Selection (GLS)). Given a
graph G = (V,E,w) and a budget k ≤ |V |, we let

Ψ(L)
def
= min

C⊆V \L
ΨC

denote the minimum sparsity ΨG
C obtained by a cut C that

does not include any vertex in L. The learning set selection
objective is then given by

max
L⊆V :|L|≤k

Ψ(L).

We call any solution L′ such that |L′| ≤ s · k and

(1 + ϵ)Ψ(L′) ≥ max
L⊆V :|L|≤k

Ψ(L)

a solution with slack s ∈ R≥0 and error ϵ.

We then define the associated decision problem.

Definition 3.3 (Thresholded Graph Label Selection
(T-GLS)). Given a graph G = (V,E,w), a budget k ≤ |V |
and a threshold τ ∈ R>0, the thresholded graph label selec-
tion problem with slack s is to either

• certify that maxL⊆V :|L|≤k Ψ(L) < τ or

• output a set L with |L| ≤ s · k such that Ψ(L) ≥ τ .

Solving GLS and weight range compression. Given a
(slack s) solution to the T-GLS problem, a (slack s) solution
to the graph label selection problem can be obtained in a
straightforward fashion via binary search.

Lemma 3.4. Assume to be given an algorithm
T-GLS(G, τ, k) that solves the T-GLS problem with
slack s. Then, there exists an algorithm that solves the GLS
problem for a graph G with slack s using O(log nU) calls
to T-GLS(G, τ, k) where U is an upper bound on the edge
weights in G.

Proof. The smallest non-trivial threshold is 1/n and the
largest is n ·U . Furthermore, all thresholds are representable
as fractions α/β where α ∈ [nU] and β ∈ [n]. Therefore, a
binary search is guaranteed to find a solution L′ of slack s
after O(log nU) steps.

Given Lemma 3.4, we focus on obtaining an algorithm for
solving the T-GLS problem.

3

Algorithms and Hardness for Active Learning on Graphs

Figure 1. On the left hand side, the best vertex to select into L
given budget k = 1 is labeled in red. On the right hand side, the
best vertices to select given a budget of k = 3 are labeled in red.
For this simple graph, selecting the initially best vertex can turn
out to be a mistake. The amount of error can be increased by
increasing the size of the star. See also Appendix A.

4. Graph Label Selection: A Flow Problem in
Disguise

In this section, we take on a flow perspective of the T-GLS
problem (Definition 3.3). This yields a new and powerful
way to evaluate the usefulness of vertices in conjunction
with an existing label set L. Although the GLS problem
(Definition 3.2) is neither submodular nor supermodular,
this new measure of usefulness of vertices with respect to a
particular threshold is submodular. We refer the interested
reader to Figure 1 for a simple example illustrating some
pitfalls and to Appendix A for a more thorough explanation
of submodularity.

Our approach is inspired by Goldbergs reduction from dens-
est subgraph to maximum flow (Goldberg, 1984). The dens-
est subgraph problem asks to find a set C ⊂ V such that∑

e∈EG[C]
w(e)

|C| is maximized, which corresponds to the in-
duced subgraph with largest average degree. If the graph
is ∆-regular, i.e. degG(v) = ∆, then the density of the
subgraph G[C] is directly related to the sparsity of the cut
C

max
C⊂V

∑
e∈EG[C]]

w(e)

|C|︸ ︷︷ ︸
density

= ∆− min
C⊂V

w(C, V \ C)

|C|︸ ︷︷ ︸
sparsity

.

We next present a flow gadget which captures the sparsity
of cuts directly (See also Figure 2).
Definition 4.1 (Flow Graph). Assume to be given an undi-
rected graph G = (V,E,w), a set L and a threshold τ .
Let W denote the sum of the edge weights of G. We then
construct a graph ĜL,τ as follows.

• (Vertex set). The vertex set of ĜL,τ is V ∪ {s, t}.

• (Copy). Every edge e ∈ E is present in ĜL,τ with the
same weight.

• (Source). For every vertex v ∈ V , the graph ĜL,τ

contains an edge (s, v) with weight τ .

• (Sink). For every vertex l ∈ L, the graph ĜL,τ contains
an edge (l, t) with weight W + τ + 1.

Observation 4.2. We observe that ĜL′,τ is a subgraph of
ĜL,τ if L′ ⊆ L.

We recall the definition of min-cuts from the preliminaries.

Definition 4.3 (s-t min-cut). Given a graph G = (V,E,w)
and two vertices s, t, the s-t min-cut is given by

mincutG(s, t)
def
= min

C⊂V \{t}:s∈C
w(C, V \ C).

Next, we relate min-cuts in graphs ĜL,τ to the T-GLS prob-
lem. We first state a simple observation.

Observation 4.4. mincutĜL,τ
(s, t) ≤ n · τ

Proof. The cut {s} achieves this value regardless of L.

Claim 4.5. If mincutĜL,τ
(s, t) < n · τ , then Ψ(L) < τ .

Proof. Fix a cut S ⊆ V that achieves the minimum value
w(S, VĜL,τ

\S) = mincutĜL,τ
(s, t). Then, let C = S ∩V .

We first show that L ∩ C = ∅. Assume for the sake of a
contradiction that v ∈ L ∩ C. Then, the edge (v, t) is in
the cut with value W + τ + 1. But removing the vertex v
from the cut merely adds edges of weight degG(v) + τ to
the cut while removing an edge of weight W + τ +1. Since
degG(v) + τ < W + τ + 1, this contradicts the minimality
of S.

We then have

w(C, V \ C)︸ ︷︷ ︸
graph cut

+(|V | − |C|) · τ︸ ︷︷ ︸
source cut

= mincutĜL,τ
(s, t)

< τ · |V |

by Definition 4.1 and our assumption on the value of the
min-cut. We directly obtain

w(C, V \ C) < τ · |C|

by canceling terms. Thus, C is a sparser than τ cut that
does not contain any vertex in L, and Ψ(L) ≤ w(C, V \
C)/|C| < τ by Definition 3.2.

Claim 4.6. If Ψ(L) < τ , then mincutĜL,τ
(s, t) < n · τ .

Proof. Consider a set C ⊆ V that certifies Ψ(L) < τ , i.e. a
set C such that w(C, V \C) < τ · |C|. Then the cut {s}∪C
has value n · τ +w(C, V \ C)− τ · |C| < n · τ .

Together, Claim 4.5 and Claim 4.6 show an equivalence
between s-t min-cuts in ĜL,τ and the T-GLS problem (Def-
inition 3.3).

4

Algorithms and Hardness for Active Learning on Graphs

Figure 2. On the left, a graph G is displayed with some vertices in L which are displayed in red. To obtain the graph ĜL,τ as in
Definition 4.1, the vertices s and t are added, the source s is connected to every vertex with an edge of weight τ , and every vertex in L is
connected to the sink with an edge of infinite weight ∞. Now, consider an s-t cut whose left side does not contain any vertices in L, such
as C in the final panel. We observe that total weight of the blue edges is w(C ∩ V, V \ C) and the total weight of the orange edges is
|C ∩ V | · τ . If the weight of the blue edges is less than the weight of the orange edges, then Ψ(L) < τ .

Lemma 4.7. There is a set L of size |L| ≤ k such that
Ψ(L) ≥ τ if and only if there exists a set L with |L| ≤ k
such that mincutĜL,τ

(s, t) = n · τ .

Proof. The lemma directly follows from Claim 4.5 and
Claim 4.6.

By the min-cut max-flow duality, we observe the following
corollary.

Corollary 4.8. There is a set L of size |L| ≤ k such that
Ψ(L) ≥ τ if and only if there exists a set of L with |L| ≤ k

such that the s-t max-flow in ĜL,τ is n · τ .

5. Greedy Approximately Solves Label
Selection

Given the flow perspective obtained in the previous section,
a natural greedy criterion for selecting vertices to add to L
presents itself: Simply choose the vertex which increases
the maximum-flow the most.

Greedy algorithm. In this paragraph, describe our algo-
rithm for selecting the set L given a threshold τ . First, we
initialize L = ∅. Then, while the s-t min-cut in ĜL,τ is
not n · τ and L ≤ ⌈2 · log2 nW + 2⌉ · k, we iterate over all
vertices v ∈ V \ L and compute mincutĜL∪{v}

(s, t). We
then choose the vertex that achieves the largest min-cut and
add it to L. See also Algorithm 1.

Analysis. In this section, we show that Algorithm 1 solves
the T-GLS problem (Definition 3.3).

Lemma 5.1. For a graph G = (V,E,w) such that
maxL⊂V :|L|≤k Ψ(L) ≥ τ , the greedy algorithm finds a
set of size L′ at most O(log n) · k such that Ψ(L′) ≥ τ .

Algorithm 1 T-GLS(G, τ, k)
Input: Graph G = (V,E,w) with n = |V | and∑

e∈E w(e) = W , threshold τ ∈ R, and budget k ∈
{1, . . . , n}.
L← ∅; s← ⌈2 · log2 nW + 2⌉
while |L| ≤ s · k and mincutĜL,τ

(s, t) < n · τ do
u← argmaxv∈V \L mincutĜL∪{v}

(s, t)

L← L ∪ {u}
end while
return L

Proof. We first observe that the value of the maximum flow
in the graph only increases throughout the execution of the
greedy algorithm by Observation 4.2. Therefore, the gap g
between the current flow and n · τ only decreases.

Throughout, there is a flow supported on at most k ex-
tra edges with gap 0 by maxL⊂V :|L|≤k Ψ(L) ≥ τ and
Claim 4.5. Any such flow routes at least g flow over these
k edges. Fix an integral such flow f . By the pigeonhole
principle, it routes at least ⌈g/k⌉ over one of the extra edges.
Fixing such an edge, and removing all flow paths from s to
t crossing other newly added edges shows that there exists
an individual edge that decreases the gap by at least ⌈g/k⌉.

Now, consider k consecutive steps of the algorithm with
initial gap g. As long as the gap has not halved, it gets
decreased by at least g/2k every step by the argument pre-
sented in the previous paragraph with gap g/2. Therefore,
the gap gets halved after k steps.

Since the gap is an integer, we conclude that running the
algorithm for ⌈2 log(nW) + 2⌉ · k steps achieves gap 0
because the gap gets halved every k steps and is at most
nW at the start.

Together with Corollary 4.8, this concludes the proof.

5

Algorithms and Hardness for Active Learning on Graphs

Theorem 5.2. There is an algorithm that solves the T-GLS
problem (Definition 3.3) for a graph with n vertices and
m edges of total weight W with slack s = O(log nτ) that
runs in time O(nk log nW) ·M(2n+m, 2W + 1) where
M(2n+m, 2W +1) denotes the time it takes to compute a
maximum flow on a graph with 2n+m edges with capacities
bounded by 2W + 1.

Proof. By Lemma 5.1, we are guaranteed to find a set of
size at most O(log nτ) · k whenever a set of size k exists.
The runtime bound directly follows from the description of
our algorithm.

Extremely large edge weights. The guarantee on s in
Theorem 5.2 becomes meaningless when τ grows very large,
which can happen on graphs with extremely large edge
weights w(e)≫ nO(1). Fortunately, we can avoid this issue
by slightly relaxing the guarantee on Ψ(L′) and rounding
edge weights.
Definition 5.3 (Relaxed Thresholded Graph Label Selection
(RT-GLS)). Given a graph G = (V,E,w), a budget k ≤
|V | and a threshold τ ∈ R>0, the thresholded graph label
selection problem with slack s and error ϵ is to either

• certify that maxL⊆V :|L|≤k Ψ(L) < τ or

• output a set L with |L| ≤ s · k such that Ψ(L) ≥
(1− ϵ) · τ .

Given error ϵ, the magnitude of the relevant edge weights
can be reduced drastically.
Theorem 5.4. There is an algorithm for RT-GLS (Defini-
tion 5.3) for a graph with n vertices and m edges with slack
s = O(log n/ϵ) that runs in time O(nk log n

ϵ) ·M(2n +
m,W ′) where M(2n+m,W ′) denotes the time it takes to
compute a maximum flow on a graph with 2n +m edges
with weights bounded by W ′ = O(n2/ϵ2).

Proof. We first remove all edges with weight less than
ϵτ/(2n) from the graph. For any cut, these edges contribute
at most ϵτ/2 mass. Edges with weight larger than 2τ ·n can
be reduced to 2τ · n without affecting the solution, since
any cut that includes such edges has ratio at least 2τ . This
reduces all the edge weights to the range [ϵτ/(2n), 2τ · n]
Dividing all the edges by ϵτ/10 and rounding up again intro-
duces at most error ϵτ/2 when scaling back to the original
magnitude. We then obtain our result via running the al-
gorithm from Theorem 5.2 on the graph with the rounded
down edge weights and scaling up the solution.

We conclude this section with our main result.
Theorem 5.5. There is an algorithm that solves the GLS
problem (Definition 3.2) for a graph with maximum integral
edge weight U with

1. slack O(log nU) and error 0 in O(nk)(n+m)1+o(1) ·
log3 U time and;

2. slack O(log n/ϵ) and error ϵ > 0 in O(nk) · (n +
m)1+o(1) · log3 ϵ−1 time.

Proof. The first item directly follows from Theorem 5.2 and
Lemma 3.4 with current algorithms for computing maxi-
mum flows (Chen et al., 2023; van den Brand et al., 2024)
where we notice that Ψ(L) ≤ U for L ̸= V . The second
item follows by Theorem 5.4 and a slightly refined threshold
search, where we first find the largest edge weight w(e) such
that the threshold w(e)/n can be achieved, but 2n · w(e)
cannot by binary search. Such an edge is guaranteed to exist
since the optimal threshold has to fall into that range for
some edge with largest weight in a witness cut. We may
assume ϵ < 1 with no loss of generality. This implies that
once we found such a range we can perform binary search
with small enough ϵ′ < ϵ/10 until we find a close enough
approximation. The runtime follows directly.

This directly implies Theorem 1.1 as a corollary.

Proof of Theorem 1.1. Directly follows from the first item
of Theorem 5.5.

6. Hardness of Approximation
In this section, we show hardness of approximation. We
first relate our problem to independent sets.

Lemma 6.1. Assume to be given a ∆-regular unweighted
graph G = (V,E), and threshold τ = ∆. Then Ψ(L) ≥ ∆
if V \ L is an independent set, and Ψ(L) ≤ (2∆ − 2)/2
otherwise.

Proof. If two vertices u, v in V \ L are be adjacent, they
form a cut C = {u, v} of value ΨC = (2∆ − 1)/2 < ∆
that does not include a vertex in L. Otherwise, V \ L is an
independent set and we obtain Ψ(L) ≥ 3 directly.

See Figure 3 for an illustration of our reduction from maxi-
mum independent set on regular graphs.

Proof of Theorem 1.2. The maximum independent set prob-
lem is NP-hard even on graphs which are 3-regular (Fleis-
chner et al., 2010; Alimonti & Kann, 2000). Therefore, the
theorem follows from Lemma 6.1, since we could otherwise
test for the existence of independent sets of size n− k for
arbitrary k.

6

Algorithms and Hardness for Active Learning on Graphs

Figure 3. This figure shows two graphs with vertices in L depicted
in red. On the left hand side, the non-labeled vertices form an
independent set. Therefore, τ = ∆ = 3. On the right hand side,
they do not. Choosing two connected vertices proves that there is
a cut of sparsity 4/2 = 2.

7. Experiments
To complement our theoretical results, we run a proof-of-
concept experiment where we compare our algorithm prac-
tical performance with the previous algorithms of (Guillory
& Bilmes, 2009) and (Cesa-Bianchi et al., 2010). We recall
that the algorithm of (Guillory & Bilmes, 2009) is heuristic,
whereas the algorithm of (Cesa-Bianchi et al., 2010) guaran-
tees constant slack on unweighted trees. To handle arbitrary
unweighted graphs, the authors suggest to sample a random
spanning tree of the graph before running their algorithm.

Experimental setup. For all experiments, we run the al-
gorithm of (Guillory & Bilmes, 2009) for maximizing Ψ(·)
and the algorithm of (Cesa-Bianchi et al., 2010) 10 times
and report the mean and standard deviation for the achieved
ratio Ψ(L). Since our algorithm is deterministic, we simply
report the ratio. We don’t allow any slack in the budget k
when evaluating the algorithms.5

We first evaluate the algorithms on two simple graphs that
cause the previous heuristic algorithms to fail. The first such
graph is the star on 50 vertices, which we denote as S(50).
The second graph 3C(10, 30, 10) is obtained by taking a path
consisting of 3 vertices, and replacing the central vertex with
a clique of size 30 and the two degree one vertices with a
clique of size 10 each.

We then explore the full trade-off between budget k and
Ψ(L) for the Davis southern woman graph (Davis et al.,
1941). This is a small graph modeling a social circle con-
sisting of 32 vertices.

Finally, we run experiments on two real world graphs from
the Stanford Network Analysis Project (SNAP) (Leskovec &
Krevl, 2014). The graph ca-GrQc models the Arxiv GR-QC
(General Relativity and Quantum Cosmology) collaboration
network and ego-Facebook is a Facebook friend network.
Since ca-GrQc is not connected, we run the algorithms on

5We provide the code used for running the experiments
under https://github.com/mesimon/graph_label_
selection.

the largest connected component (4158 vertices).

Results. We report the results for the simple graphs in
Table 1. For S(50) our algorithm and (Cesa-Bianchi et al.,
2010) always choose the center of the star, but (Guillory &
Bilmes, 2009) often chooses 3 leaves. For 3C(10, 30, 10),
our algorithm and the algorithm of (Guillory & Bilmes,
2009) always chooses one vertex from each clique, which
the algorithm of (Cesa-Bianchi et al., 2010) fails to do.

We plot the trade-off between budget and ratio for the Davis
southern woman graph in Figure 4.

Finally, we report he results for the SNAP graphs in Table 2.

In all the experiments we notice that our algorithm obtains
better performance than previous work.

We remark that when the size of the label set approaches
n, our algorithm gets outperformed by (Guillory & Bilmes,
2009). A simple reason for this behavior is that for a star
graph our algorithm always includes the center, whereas the
algorithm of (Guillory & Bilmes, 2009) sometimes picks all
the leaves. For k = n− 1, it is advantageous to pick all the
leaves (See Figure 1).6

We point the interested reader to Appendix C for additional
experiments on synthetic graphs.

Interpretable Example Graphs for k = 3
Graph S(50) 3C(10, 30, 10)
(Guillory & Bilmes, 2009) 0.16±0.28 1.0± 0.0
(Cesa-Bianchi et al., 2010) 1.0± 0.0 0.1± 0.03
Ours 1.0 1.0

Table 1. Experimental results for interpretable example graphs
rounded to two digitis after the decimal point.

8. Generalizing to Vertex Importances
If the data set contains outliers, our methods are highly en-
couraged to label them. (Guillory & Bilmes, 2009) point
out that this leads to sub-par performance on many real-
world data sets. We present a natural remedy for this issues
by generalizing the GLS problem to vertex importances
f : V 7→ R≥0. The vertex importance function allows re-
moving weight from outliers. A particularly natural function
is f(·) = deg(·). Then, sparsity corresponds to conductance
and vertices that are very dissimilar to all other vertices re-
ceive a low importance.

Definition 8.1 (Importance Sparsity). For a graph G =

6With a small budget, labeling vertices with high degree is
generally advantageous since they cover a large part of the graph.
When the budget approaches n, these are vertices for which one
can learn a lot without labeling them, and it therefore becomes
advantageous to label their neighborhood instead.

7

https://github.com/mesimon/graph_label_selection
https://github.com/mesimon/graph_label_selection

Algorithms and Hardness for Active Learning on Graphs

Graph ca-GrQc (n = 4158) ego-Facebook (n = 4039)
Budget k = 10 k = 50 k = 100 k = 10 k = 50 k = 100
GB 0.015±0.006 0.066±0.011 0.132±0.011 0.076±0.008 0.396±0.055 0.777±0.059
BGVZ 0.054±0.006 0.062±0.000 0.062±0.000 0.037±0.010 0.300±0.376 0.831±0.339
Ours 0.091 0.215 0.333 1.0 1.0 1.080

Table 2. This table compares the ratio Ψ(·) achieved by GB (Guillory & Bilmes, 2009), BGVZ (Cesa-Bianchi et al., 2010) and our
algorithm for several budgets on two real world graphs from the Stanford Network Analysis Project (Leskovec & Krevl, 2014). We round
to three digits after the decimal point.

0 5 10 15 20 25 30
k

0

2

4

6

8

10

12

14

(L
)

Davis Southern Woman

Guillory Bilmes
Cesa-Bianchi et al.
Ours

Figure 4. The full trade-off between the budget k and the achieved
threshold for the Davis southern woman graph (Davis et al., 1941).

(V,E,w), a positive vertex function f : V 7→ R≥0 and a
cut ∅ ⊂ C ⊂ V , we let

Ψf
C

def
=

w(C, V \ C)

f(V)

where f(V)
def
=

∑
v∈V f(v). Furthermore, we let Ψf

∅
def
=

∞, and Ψf
V

def
= 0.

Notice that for the constant function f(·) = 1, we obtain
Ψf

C = ΨC for all C and Definition 8.1 therefore generalizes
Definition 3.1. We then define the I-GLS problem, which is
a generalization of the GLS problem Definition 3.2.
Definition 8.2 (I-GLS). Given a graph G = (V,E,w),
a positive vertex function f : V 7→ R≥0 and a budget
k ≤ |V |, we let

Ψf (L)
def
= min

C⊆V \L
Ψf

C .

The I-GLS objective is then given by

max
L⊆V :|L|≤k

Ψf (L).

We call any solution L′ such that |L′| ≤ s · k and

Ψf (L′) ≥ max
L⊆V :|L|≤k

Ψf (L) (1)

a solution with slack s ∈ R≥0.

Next, we show that our algorithm can be extended to also
solve the I-GLS problem directly.

Theorem 8.3. Assume to be given a graph G = (V,E,w)
alongside a vertex function f : V 7→ R≥0 and a bud-
get k, such that w(e) ∈ {1, 2, . . . |V |O(1)} and f(v) ∈
{1, 2, . . . |V |O(1)} for all e ∈ E and v ∈ V respectively.
Then, there exists an algorithm that returns a set L′ such
that

• |L′| ≤ O(log |V |) and

• Ψ(L′) ≥ maxL⊂V :|L|≤k Ψ(L).

The algorithm runs in time k · |V | · (|V |+ |E|)1+o(1) where
o(1) goes to 0 as |V | approaches infinity.

Remark 8.4. We assume that the similarity vector w and the
vertex importances f(·) are polynomially bounded in |V | for
ease of presentation. Slightly relaxing the objective allows
removing this assumption analogously to Theorem 5.5.

Since the proof of Theorem 8.3 directly follows the outline
of the proof of Theorem 1.1 we only sketch the alterations
and include a full proof in Appendix B for completeness.

Proof sketch of Theorem 8.3. To incorporate the impor-
tance function f : V 7→ R≥0 into the flow gadget from
Definition 4.1, we simply multiply the edge weight of (s, v)
with the importance f(v) of vertex v for every edge adjacent
to s. We furthermore increase the weight of the edges (v, t)
for v ∈ L sufficiently such that they are still effectively
infinite.

Then, by following the proof outline of Claim 4.5 and
Claim 4.6, we directly observe that this altered gadget de-
cides the threshold version of Definition 8.2. This again
enables us to solve the problem using binary search.

9. Conclusion
We present the first approximation algorithm for maximizing
the graph label selection objective Ψ(L) in a general graph
with theoretical guarantees, and extend it to the case where

8

Algorithms and Hardness for Active Learning on Graphs

not all data points are equally important. We also show that
maximizing Ψ(L) to high accuracy is NP hard. Finding
better resource augmented algorithms as well as finding
approximation algorithms for Ψ(L) without relaxing the
cardinality constraint remain interesting open problems.7

Furthermore, it is interesting whether our lower bound can
be strengthened or extended to more natural graph instances.

Although our algorithm is relatively practical, it runs in time
much larger than linear. This prevents us from scaling to
large real world graphs. However, it is encouraging that
much faster approximation algorithms for the densest sub-
graph problem have been developed (Chekuri et al., 2022).
It is an interesting research direction to understand whether
similar techniques could drastically improve the scalability
for graph label selection, which would enable gathering
experimental results on a larger scale. We remark that sub-
modular optimization is highly sensitive to adversarial noise
(Hassidim & Singer, 2017), and therefore approximate flow
oracles as developed in (van den Brand et al., 2024) cannot
be used directly to speed up our algorithm.8

Acknowledgments
Simon Meierhans is supported by a Google PhD Fellowship
and grant no. 200021 204787 of the Swiss National Science
Foundation.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. The nature of our work is mainly
theoretical, and thus our insights might find use in various
areas.

References
Alimonti, P. and Kann, V. Some apx-completeness

results for cubic graphs. Theoretical Computer
Science, 237(1):123–134, 2000. ISSN 0304-3975.
doi: https://doi.org/10.1016/S0304-3975(98)00158-3.
URL https://www.sciencedirect.com/
science/article/pii/S0304397598001583.

Belkin, M., Matveeva, I., and Niyogi, P. Regularization
and semi-supervised learning on large graphs. In Shawe-
Taylor, J. and Singer, Y. (eds.), Learning Theory, pp.
624–638, Berlin, Heidelberg, 2004. Springer Berlin Hei-

7We remark that the example in Figure 1 hints that greedy
algorithms might not be suitable to obtain the latter.

8Having to evaluate the flow gadget |V | times to add the first
edge is the practical bottleneck of our algorithm. Thereafter, one
can prioritize checking vertices that provided high benefit in the
previous round and exploit that the benefit is monotonically de-
creasing.

delberg. ISBN 978-3-540-27819-1.

Bengio, Y., Delalleau, O., and Roux, N. Label propagation
and quadratic criterion. Semi-Supervised Learning, 09
2006. doi: 10.7551/mitpress/9780262033589.003.0011.

Blum, A. and Chawla, S. Learning from labeled and un-
labeled data using graph mincuts. In Proceedings of
the Eighteenth International Conference on Machine
Learning, ICML ’01, pp. 19–26, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc. ISBN
1558607781.

Blum, A., Lafferty, J., Rwebangira, M. R., and Reddy,
R. Semi-supervised learning using randomized min-
cuts. In Proceedings of the Twenty-First International
Conference on Machine Learning, ICML ’04, pp. 13,
New York, NY, USA, 2004. Association for Comput-
ing Machinery. ISBN 1581138385. doi: 10.1145/
1015330.1015429. URL https://doi.org/10.
1145/1015330.1015429.

Boob, D., Gao, Y., Peng, R., Sawlani, S., Tsourakakis,
C., Wang, D., and Wang, J. Flowless: Extracting
densest subgraphs without flow computations. In Pro-
ceedings of The Web Conference 2020, WWW ’20,
pp. 573–583, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450370233.
doi: 10.1145/3366423.3380140. URL https://doi.
org/10.1145/3366423.3380140.

Cesa-Bianchi, N., Gentile, C., Vitale, F., and Zappella, G.
Active learning on trees and graphs. In COLT 2010: the
23rd conference on learning theory, Haifa, Israel, June
27-29, 2010, pp. 320–332. COLT, 2010.

Chang, H. and Yeung, D.-Y. Graph laplacian kernels for
object classification from a single example. In 2006 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 2, pp. 2011–
2016. IEEE, 2006.

Chekuri, C., Quanrud, K., and Torres, M. R. Densest Sub-
graph: Supermodularity, Iterative Peeling, and Flow,
pp. 1531–1555. Society for Industrial and Applied
Mathematics, 2022. doi: 10.1137/1.9781611977073.64.
URL https://epubs.siam.org/doi/abs/10.
1137/1.9781611977073.64.

Chen, L., Kyng, R., Liu, Y. P., Peng, R., Gutenberg,
M. P., and Sachdeva, S. Almost-linear-time algorithms
for maximum flow and minimum-cost flow. Commun.
ACM, 66(12):85–92, November 2023. ISSN 0001-0782.
doi: 10.1145/3610940. URL https://doi.org/10.
1145/3610940.

9

https://www.sciencedirect.com/science/article/pii/S0304397598001583
https://www.sciencedirect.com/science/article/pii/S0304397598001583
https://doi.org/10.1145/1015330.1015429
https://doi.org/10.1145/1015330.1015429
https://doi.org/10.1145/3366423.3380140
https://doi.org/10.1145/3366423.3380140
https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.64
https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.64
https://doi.org/10.1145/3610940
https://doi.org/10.1145/3610940

Algorithms and Hardness for Active Learning on Graphs

Chen, L., Kyng, R., Liu, Y. P., Meierhans, S., and
Probst Gutenberg, M. Almost-linear time algorithms
for incremental graphs: Cycle detection, sccs, s-t shortest
path, and minimum-cost flow. In Proceedings of the 56th
Annual ACM Symposium on Theory of Computing, STOC
2024, pp. 1165–1173, New York, NY, USA, 2024. Asso-
ciation for Computing Machinery. ISBN 9798400703836.
doi: 10.1145/3618260.3649745. URL https://doi.
org/10.1145/3618260.3649745.

Dasarathy, G., Nowak, R., and Zhu, X. S2: An efficient
graph based active learning algorithm with application to
nonparametric classification. In Grünwald, P., Hazan, E.,
and Kale, S. (eds.), Proceedings of The 28th Conference
on Learning Theory, volume 40 of Proceedings of Ma-
chine Learning Research, pp. 503–522, Paris, France, 03–
06 Jul 2015. PMLR. URL https://proceedings.
mlr.press/v40/Dasarathy15.html.

Davis, A., Gardner, B. B., Gardner, and R., M. Deep South;
a social anthropological study of caste and class. Univer-
sity of Chicago Press, 1941.

Fleischner, H., Sabidussi, G., and Sarvanov, V. I.
Maximum independent sets in 3- and 4-regular
hamiltonian graphs. Discrete Mathematics,
310(20):2742–2749, 2010. ISSN 0012-365X.
doi: https://doi.org/10.1016/j.disc.2010.05.028.
URL https://www.sciencedirect.com/
science/article/pii/S0012365X10001974.
Graph Theory — Dedicated to Carsten Thomassen on
his 60th Birthday.

Goldberg, A. B. and Zhu, X. Seeing stars when there aren’t
many stars: Graph-based semi-supervised learning for
sentiment categorization. In Proceedings of TextGraphs:
The first workshop on graph based methods for natural
language processing, pp. 45–52, 2006.

Goldberg, A. V. Finding a maximum density subgraph.
Technical report, University of California at Berkeley,
USA, 1984.

Guillory, A. and Bilmes, J. A. Label selection on graphs. In
Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.,
and Culotta, A. (eds.), Advances in Neural Information
Processing Systems, volume 22. Curran Associates, Inc.,
2009. URL https://proceedings.neurips.
cc/paper_files/paper/2009/file/
90794e3b050f815354e3e29e977a88ab-Paper.
pdf.

Hassidim, A. and Singer, Y. Submodular optimization
under noise. In Kale, S. and Shamir, O. (eds.), Pro-
ceedings of the 2017 Conference on Learning The-
ory, volume 65 of Proceedings of Machine Learn-
ing Research, pp. 1069–1122. PMLR, 07–10 Jul 2017.

URL https://proceedings.mlr.press/v65/
hassidim17a.html.

Herbster, M. and Lever, G. Predicting the labelling of a
graph via minimum p-seminorm interpolation. In NIPS
Workshop 2010: Networks Across Disciplines: Theory
and Applications, 2009.

Hu, S., Xiong, Z., Qu, M., Yuan, X., Côté, M.-A., Liu,
Z., and Tang, J. Graph policy network for transferable
active learning on graphs. In Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 10174–10185. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
73740ea85c4ec25f00f9acbd859f861d-Paper.
pdf.

Kushnir, D. and Venturi, L. Diffusion-based deep active
learning. arXiv preprint arXiv:2003.10339, 2020.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

Mac Aodha, O., Campbell, N. D., Kautz, J., and Brostow,
G. J. Hierarchical subquery evaluation for active learning
on a graph. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June
2014.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta,
B. B., Chen, X., and Wang, X. A survey of deep active
learning. ACM Comput. Surv., 54(9), October 2021. ISSN
0360-0300. doi: 10.1145/3472291. URL https://
doi.org/10.1145/3472291.

Roughgarden, T. Resource Augmentation, pp. 72–92. Cam-
bridge University Press, 2021.

Settles, B. Active learning literature survey. Technical
report, University of Wisconsin-Madison Department of
Computer Sciences, 2009.

Shin, H., Tsuda, K., and Schölkopf, B. Protein functional
class prediction with a combined graph. Expert Systems
with Applications, 36(2):3284–3292, 2009.

van den Brand, J., Chen, L., Kyng, R., Liu, Y. P., Peng,
R., Gutenberg, M. P., Sachdeva, S., and Sidford, A. A
deterministic almost-linear time algorithm for minimum-
cost flow. In 2023 IEEE 64th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 503–514,
2023. doi: 10.1109/FOCS57990.2023.00037.

van den Brand, J., Chen, L., Kyng, R., Liu, Y. P., Meierhans,
S., Gutenberg, M. P., and Sachdeva, S. Almost-linear time

10

https://doi.org/10.1145/3618260.3649745
https://doi.org/10.1145/3618260.3649745
https://proceedings.mlr.press/v40/Dasarathy15.html
https://proceedings.mlr.press/v40/Dasarathy15.html
https://www.sciencedirect.com/science/article/pii/S0012365X10001974
https://www.sciencedirect.com/science/article/pii/S0012365X10001974
https://proceedings.neurips.cc/paper_files/paper/2009/file/90794e3b050f815354e3e29e977a88ab-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/90794e3b050f815354e3e29e977a88ab-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/90794e3b050f815354e3e29e977a88ab-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/90794e3b050f815354e3e29e977a88ab-Paper.pdf
https://proceedings.mlr.press/v65/hassidim17a.html
https://proceedings.mlr.press/v65/hassidim17a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/73740ea85c4ec25f00f9acbd859f861d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/73740ea85c4ec25f00f9acbd859f861d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/73740ea85c4ec25f00f9acbd859f861d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/73740ea85c4ec25f00f9acbd859f861d-Paper.pdf
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1145/3472291
https://doi.org/10.1145/3472291

Algorithms and Hardness for Active Learning on Graphs

algorithms for decremental graphs: Min-cost flow and
more via duality. In 2024 IEEE 65th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 2010–
2032, 2024. doi: 10.1109/FOCS61266.2024.00120.

Watts, D. J. and Strogatz, S. H. Collective dynamics
of ‘small-world’networks. Nature, 393(6684):440–442,
1998. doi: 10.1038/30918. URL https://doi.org/
10.1038/30918.

Young. On-line file caching. Algorithmica, 33(3):371–383,
2002. doi: 10.1007/s00453-001-0124-5. URL https:
//doi.org/10.1007/s00453-001-0124-5.

Zhang, J., Katz-Samuels, J., and Nowak, R. GALAXY:
Graph-based active learning at the extreme. In
Chaudhuri, K., Jegelka, S., Song, L., Szepesvari,
C., Niu, G., and Sabato, S. (eds.), Proceedings
of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 26223–26238. PMLR, 17–23
Jul 2022a. URL https://proceedings.mlr.
press/v162/zhang22k.html.

Zhang, W., Wang, Y., You, Z., Cao, M., Huang, P., Shan, J.,
Yang, Z., and Cui, B. Information gain propagation: a
new way to graph active learning with soft labels. arXiv
preprint arXiv:2203.01093, 2022b.

Zhu, X., Ghahramani, Z., and Lafferty, J. Semi-supervised
learning using gaussian fields and harmonic functions.
In Proceedings of the Twentieth International Confer-
ence on International Conference on Machine Learn-
ing, ICML’03, pp. 912–919. AAAI Press, 2003. ISBN
1577351894.

11

https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1007/s00453-001-0124-5
https://doi.org/10.1007/s00453-001-0124-5
https://proceedings.mlr.press/v162/zhang22k.html
https://proceedings.mlr.press/v162/zhang22k.html

Algorithms and Hardness for Active Learning on Graphs

A. Submodularity
Submodular functions are an important function class in combinatorial optimization. We first state one of multiple equivalent
definitions of submodularity.

Definition A.1. A function f : 2A 7→ R is called submodular if for all X,Y ∈ A and a ∈ A such that X ⊆ Y we have
f(X − {a})− f(X) ≥ f(Y − {a})− f(Y).

Intuitively, this corresponds to the notion of diminishing returns. We re-consider the simple example from Figure 1 in
Figure 5, and observe that Ψ(X ∪ {a})−Ψ(X) = 0 whereas Ψ(Y ∪ {a})−Ψ(Y) = 2.

Figure 5. A star graph with 3 leaves and sets X = {v2}, Y = {v2, v3}, and a = v4 is a counterexample to Ψ(·) being submodular. We
have Ψ(X) = Ψ(Y) = 1, as well as Ψ(X∪{a}) = 1. But Ψ(Y ∪{a}) = 3, which implies Ψ(X∪{a})−Ψ(X) < Ψ(Y ∪{a})−Ψ(Y).
Therefore the function Ψ(·) is not submodular.

Next, we define supermodularity.

Definition A.2. A function f : 2A 7→ R is called supermodular, if −f is submodular.

Unfortunately, the function Ψ(·) is also not supermodular. To show this, we consider a line graph on 4 vertices in Figure 6.

Figure 6. We let Y = {v3, v4} and X = {v4}. Then, we have Ψ(X) = 1/3 and Ψ(Y) = 1/2. For a = v2, we obtain Ψ(X ∪ {a}) = 1,
and Ψ(Y ∪{a}) = 1. We obtain Ψ(X ∪{a})−Ψ(X) > Ψ(Y ∪{a})−Ψ(Y), which shows that the function Ψ(·) is not supermodular
either.

In contrast to the function Ψ(·), the function f : 2V 7→ R defined by f(A) = mincutĜA,τ
(s, t) (See Definition 4.1) is

submodular. Recall that every vertex v ∈ A corresponds to adding an edge (v, t) to ĜA,τ . We can observe that all the extra
flow that can be routed when adding the edge (a, t) to ĜY can also be routed when adding (a, t) to ĜX .

B. Proof of Theorem 8.3
To prove Theorem 8.3, we first introduce a generalization of our flow gadget.

Definition B.1 (f -Flow Graph). Assume to be given an undirected graph G = (V,E,w), a function f : V 7→ R≥0, a set L
and a threshold τ . Let W denote the sum of the edge weights of G. We then construct a graph Ĝf

L,τ as follows.

• (Vertex set). The vertex set of Ĝf
L,τ is V ∪ {s, t}.

• (Copy). Every edge e ∈ E is present in Ĝf
L,τ with the same weight.

• (Source). For every vertex v ∈ V , the graph Ĝf
L,τ contains an edge (s, v) with weight f(v) · τ .

• (Sink). For every vertex l ∈ L, the graph Ĝf
L,τ contains an edge (l, t) with weight W + f(v) · τ + 1.

We then show analogous claims to Claim 4.5 and Claim 4.6.

12

Algorithms and Hardness for Active Learning on Graphs

Claim B.2. If mincutĜf
L,τ

(s, t) < f(V) · τ , then Ψf (L) < τ .

Proof. Fix some s-t min-cut C in Ĝf
L,τ . As in the proof of Claim 4.5, we have that C ∩ V ̸= ∅ as otherwise

mincutĜf
L,τ

(s, t) = f(V) · τ . We then have

w(C, V \ C) + f(V \ C) · τ = mincutĜL,τ
(s, t)

< τ · f(V)

and obtain w(C,V \C)
f(C) < τ by reordering and f(V)− f(V \ C) = f(C). This concludes the proof of the claim.

Claim B.3. If Ψ(L) < τ , then mincutĜL,τ
(s, t) < f(C) · τ .

Proof. Consider a set C ⊆ V that certifies Ψ(L) < τ , i.e. a set C such that w(C, V \C) < τ · f(C). Then the cut {s} ∪C
has value f(V)τ +w(C, V \ C)− τ · f(C) < f(C) · τ . This concludes the proof of the claim.

Proof of Theorem 8.3. We first show that there is an algorithm that either

• certify that maxL⊆V :|L|≤k Ψ
f (L) < τ or

• output a set L with |L| ≤ s · k such that Ψf (L) ≥ τ .

using |L| calls to a maximum flow oracle. This generalization of the T-GLS problem (Definition 3.3) can be solved by
adapting our flow gadget to Ĝf

L,τ (Definition B.1). By Claim B.2 and Claim B.3 the set L achieves threshold τ if and only if
the s-t min-cut in Ĝf

L,τ is τ · f(V).

By an analogous argument to the proof of Lemma 5.1, the greedy algorithm with slack O(log n) finds a solution obtaining
threshold τ if a size k solution achieving threshold tau exists.

The theorem follows from standard binary search analogous to the proof of Lemma 3.4.

C. Additional Experiments on Synthetic Graphs
We explore the trade-off between budget and objective for various Watts-Strogatz random graphs with 50 vertices. We
let Watts-Strogatz(50, d, p) refer to the Watts-Strogatz graph with average degree d and re-linking probability p (Watts
& Strogatz, 1998) and perform experiments for the graphs Watts-Strogatz(50, 4, 0.1), Watts-Strogatz(50, 4, 0.2), Watts-
Strogatz(50, 8, 0.1) and Watts-Strogatz(50, 8, 0.2).

For each of these graphs, we run our algorithm as well as the algorithms of (Guillory & Bilmes, 2009) and (Cesa-Bianchi
et al., 2010) for all budgets k and plot the mean and standard deviation after 10 experiments for the algorithms involving
randomization.

The results of our experiments are shown in Figures 7 to 10. We again observe that our algorithm outperforms the previous
algorithms.

13

Algorithms and Hardness for Active Learning on Graphs

0 10 20 30 40 50
k

0

1

2

3

4

5

(L
)

Watts Strogatz(50, 4, 0.1)

Guillory Bilmes
Cesa-Bianchi et al.
Ours

Figure 7. Trade-off between the budget k and the achieved threshold for a Watts-Strogatz random graph with degree 4 and rewiring
probability p = 0.1 on 50 vertices (Watts & Strogatz, 1998).

0 10 20 30 40 50
k

0

1

2

3

4

5

(L
)

Watts Strogatz(50, 4, 0.2)

Guillory Bilmes
Cesa-Bianchi et al.
Ours

Figure 8. Trade off between the budget k and the achieved threshold for a Watts-Strogatz random graph with degree 4 and rewiring
probability p = 0.2 on 50 vertices (Watts & Strogatz, 1998).

14

Algorithms and Hardness for Active Learning on Graphs

0 10 20 30 40 50
k

0

2

4

6

8

10

(L
)

Watts Strogatz(50, 8, 0.1)

Guillory Bilmes
Cesa-Bianchi et al.
Ours

Figure 9. Trade-off between the budget k and the achieved threshold for a Watts-Strogatz random graph with degree 8 and rewiring
probability p = 0.1 on 50 vertices (Watts & Strogatz, 1998).

0 10 20 30 40 50
k

0

2

4

6

8

10

(L
)

Watts Strogatz(50, 8, 0.2)

Guillory Bilmes
Cesa-Bianchi et al.
Ours

Figure 10. Trade-off between the budget k and the achieved threshold for a Watts-Strogatz random graph with degree 8 and rewiring
probability p = 0.2 on 50 vertices (Watts & Strogatz, 1998).

15

