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Abstract—Proving ownership rights on relational databases is
an important issue. The robust watermarking technique could
claim ownership by insertion information about the data owner.
Hence, it is vital to improving the robustness of watermarking
technique in that intruders could launch types of attacks to
corrupt the inserted watermark. Furthermore, attributes are
explicit and operable objectives to destroy the watermark. To my
knowledge, there does not exist a comprehensive solution to resist
attribute attack. In this paper, we propose a robust watermarking
technique that is robust against subset and attribute attacks. The
novelties lie in several points: applying the classifier to reorder
watermarked attributes, designing a secret sharing mechanism
to duplicate watermark independently on each attribute, and
proposing twice majority voting to correct errors caused by
attacks for improving the accuracy of watermark detection. In
addition, our technique has features of blind, key-based, incre-
mentally updatable, and low false hit rate. Experiments show
that our algorithm is robust against subset and attribute attacks
compared with AHK, DEW, and KSF algorithms. Moreover, it
is efficient with running time in both insertion and detection
phases.

Index Terms—Watermarking, Relational database, Robustness,
Attribute Attack

I. INTRODUCTION

With the arrival of the data era, business interests are

mined and analyzed. While attackers also covet the values

of data. Hence, copyright protection is vital for data owners

or providers. For this purpose, watermarking techniques are

widely used in many fields like images [1], multimedia [2],

text [3], databases [4] and applications [5].

A database consists of a collection of relations. A table

represents each one of relations, where columns are attributes

(i.e., Ai) and rows are tuples (i.e., rj). The figure 1 shows the

table representation of a database relation. Then, watermark-

ing techniques insert the watermarks by introducing ”small”

changes. The values being marked red represent watermarks.

Without secret parameters, attackers cannot detect certain

positions of watermarks. At the same time, watermarking tech-

niques should be able to resist benign updates and malicious

attacks. According to our survey, most existing techniques

like [4] [6] [7] [8] aim to improve robustness against subset

attack such that tuples are inserted/altered/deleted, e.g., the r2

*Jing Yu is corresponding author.

is deleted. In comparison, the malicious actions on attributes

remain a challenge to be solved. In most techniques like [4]

[9] [6] [7] [8], the issues of attribute attack that are not raised.

The technique [10] just did an experiment of deleting an

attribute and adding another attribute at the same location. The

experiments are inadequate. Techniques [11] [10] inserting

the watermarks into a single fixed attribute may survive an

attribute attack. Nevertheless, that just relies on the existence

of watermarked attribute. It is an unconscious result that

cannot provide a determining evaluation of robustness against

attribute attack. According to our experiments V, to a certain

extent, some techniques [4] [12] could survive under low-

intensity attribute attack. In brief, these techniques above do

not raise a solution for attribute attack.

Fig. 1: Table representation of a database relation

The attributes or tuples are vital to conveying data values.

For an attacker, it is the same to distort attributes or tuples.

On the one hand, attributes are more explicit and operable

objectives. The attacker may destroy attributes to distort wa-

termarks, e.g., A2 is deleted. On the other hand, the data

owner may publish a part of data with some of the attributes

(e.g., selling of database fragments), making it possible to

be the watermarks undetectable by just changing a part of

the attributes. Hence, for purposes of both benign updates

and malicious attacks, it is valuable to apply a watermarking

technique to solve these issues. In this paper, we aim to

propose a novel attribute-attack-proof watermarking technique.

Our contributions are as follows:
1. We use classification-based and secret sharing-based

mechanisms to provide the ability to re-order attributes and

correct watermark, respectively. Specifically, the first mech-

anism prevents detecting false attributes to extract error bits
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string; the second mechanism addresses the problem of lacking

attributes by assigning shares of watermarks to watermark

attributes.

2. We propose an efficient algorithm AAP. In order to

improve the detection accuracy, it uses twice majority voting

to correct extracted watermarks. At the same time, it has the

advantage features of blind, key-based, incrementally updat-

able, and low false hit rate and is robust against subset and

attribute attacks.

3. We evaluate our AAP algorithm compared with AHK [4],

KSF [12] , and DEW [13] algorithms in a real-world dataset.

The result of subset, attribute, and multifaceted attribute at-

tacks prove AAP algorithm achieves our goals.

The paper is organized as follows: In Section II, we describe

the related work about the robustness of existing watermarking

techniques. In Section III, the problem definition of attribute

attack is proposed. The overview of the scheme is described.

In Section IV, the implementation of preprocessing, insertion,

and detection algorithms are demonstrated. In Section V, data-

driven experiments are showed. The robustness performances

against subset, attribute, and multifaceted attacks are pre-

sented. In section VI, we conclude our work.

II. RELATED WORK

The first relational database watermarking technique was

proposed by Agrawal et al. [4] [14]. By Hash function and

secret key, it selects a fraction of tuples, attributes, and bit

locations for insertion. It is known as the AHK Algorithm by

using the combination of the secret key (SK) and the primary

key (PK) of tuples to decide whether to mark them or not. A

number of following techniques like [15] [16] [17] continue

to study this technique. Cui et al. [15] proposed a weighted

watermarking algorithm that assigns different weights to at-

tributes. Guo et al. [16] proposed a twice-insertion scheme

for identifying both the owner and the traitor.

In [18], Sion et al. proposed a method that encodes the wa-

termark bit relies on altering the size of the “positive violators”

set. That addresses data re-sorting, subset selection, and linear

data changes attacks but subset deletion and alteration attack.

Shehab et al. [19] formulated the watermarking techniques

of relational database as a constrained optimization problem.

They insert watermarks with constraints on partitioned tuple

groups. They presented two techniques to solve the formulated

optimization problem based on genetic algorithms and pattern-

searching techniques. It is robust against subset attacks. In

[8], Saman et al. developed an information technique that

inserts watermarks on non-significant effect features. The

attribute selection relies on mutual information to control data

distortions. In [7], Javier et al. raised a scheme that modulates

the relative angular position of the circular histogram center

of mass of one numerical attribute for message insertion. The

techniques above have good robustness against subset attack.

However, the problem of attribute attack did not address.

Besides, most watermarking techniques use the primary

key to deciding where and how to insert the watermark.

The primary key is also an attribute, which stores unique

values that identify each tuple in the relation. It enforces

synchronization between watermark insertion and detection.

The virtual primary key schemes [20] [21] aim to avoid

compromising watermark detection due to the deletion or

replacement of the relation’s primary key. In this paper, we

do not consider the problem that the primary key attribute is

attacked by erasing or updating.

III. APPROACH OVERVIEW

In this section, we illustrate the main components of our

watermarking technique. Consider a database relation D, let

the schema of D be D(P,A1, ..., Aν), where P is primary

key and A1, A2, ..., Aν are numerical attributes. The number

of the attribute is ν. Besides, let r be a tuple in D, and the

number of tuples in D be η. A robust watermark algorithm is

used to insert the watermark bits string (W ) into the dataset

D. Figure 2 shows the block diagram summarizing the main

components of our watermarking technique.

Preprocessing aims to remember the original order of water-

marked attributes and duplicate copies of a part of watermark

bits string mapping, then assign then to each watermarked

attribute. It has two main steps: Attribute Classification.
In this step, optional attributes in original data are selected

for watermarking. The data in each selected attribute are

considered samples. Moreover, these samples are trained to

identify selected attributes by a classifier. Watermark Shares
Generation. By applying the idea of replicated secret-sharing

mechanism, watermark shares WS1, ...,WSn in bits string are

generated from watermark W . Every WSi maps an attribute.

Each one contains a part of the whole watermark bits string,

being capable of correcting others’ errors. Hence, if some

attributes are deleted, watermark shares mapped on other

attributes could fill the lacks and correct the errors.

The encoding process can be summarized in the follow-

ing steps: Watermark Insertion. The watermark insertion

algorithm takes a secret key K, a cryptographic pseudoran-

dom sequence generator [22] S and the watermark shares

(Wi) as input and converts a dataset D into watermarked

dataset Dw. Without the knowledge of the seed (K), it is

computationally infeasible to compute the sequence because

different K leads to different sequences using cryptographic

pseudorandom sequence generator S . The changes in the

data are controlled by placing certain bounds on the least

significant bit (LSB) ξ of selected attributes. According to

the above parameters, it uses the bit setting mechanism to

alter the bit of selected tuples. Note that, for distinct attribute,

it inserts bits from a particular watermark share. Attacker
Channel (Attack Model). When the owner of data marks

database D to generate a watermarked database Dw, the

attackers want to destroy the watermark by launching different

types of attacks, including subset attacks and attribute attacks.

Malicious attacks may take various forms: 1. Subset Deletion

Attack. Attacker can delete a subset of watermarked tuples

from database Dw. Deletion will damage tuples which may

have watermarks. 2. Subset Alteration Attack. Attacker can

change the value of tuples on database Dw. We assume the
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Fig. 2: Proposed Scheme

TABLE I: Notions

D: Original dataset Dw: Watermarked dataset
A: Attributes WA: Watermark Attribute
η: Number of tuples ν: Number of attributes
t: Number of shares n: Number of watermark attributes
ξ: Least significant bit 1/γ: Fraction of tuples used
K: Secret key S: Pseudo-random squence generator
τ : Detection threshold W : Watermarks
P : Primary key attribute L: Length of watermark
l: Length of watermark share

attacker does not know the real positions where the watermarks

were inserted. 3. Subset Insertion Attack. Attacker adds similar

tuples that may disturb detection. 4. Attribute Attack. Attacker

may either add spurious attributes, delete existing ones or re-

order the attributes randomly.

The watermark decoding process can be summarized in the

following steps: Attribute Classification. Before detecting

watermarks, the trained classifier aims to identify watermarked

attributes WA, then recover the original order of watermark

attribute WA. Watermark Shares Detection. The detection is

the reverse process of insertion. The watermarked dataset Dw,

secret key K, pseudorandom sequence generator S are used

to extract bits. Majority Voting and Watermark Recover.
This step contains twice majority voting. The first majority

voting corrects the extracted bits string because each bit will

be inserted many times. Even being attacked, the particular

bit could be corrected by comparing this in other positions.

Another majority voting corrects watermark shares which

helps reconstruct watermark W
′
. On the receiver side, the

original watermark bits string (W ) is reconstructed by a certain

number of watermark shares extracted on watermark attributes.

As a result, high detection accuracy is achieved irrespective

of the types of attacks in the watermarked data.

IV. ALGORITHM

In this section, different phases of our algorithm are demon-

strated. Table I gives the notations used in our technique.

A. Preprocessing

The preprocessing phase consists of two main steps, At-

tribute Classification and Watermark Shares Generation. The

attribute attack may cause the out-of-order problem or lacking

problem of attributes. The solution of out-of-order attributes

helps address the lack problem. Because when the lacked

or malposed attributes are identified, the detection strategy

can be adapted easily. These attributes could be skipped or

corrected accurately. The algorithm of preprocessing is shown

in Algorithm 1. The inputs are original dataset D, watermark

attributes WA, watermark W and parameters n, t. The

watermark is an L-bits long binary bit string b0b1b2...bL−1.

1) Attribute Classification: We say that the candidates’ at-

tributes to be watermarked are defined as Watermark Attribute

(WA). The n denotes the number of WA.

Definition 1 (Watermark Attribute). Given an original
dataset D, let WA be the optional numerical attribute to be
watermarked, which WA ⊆ A.

The original order of WA is the information we should gain

accurately before and after inserting watermarks, preventing

detecting error watermarks on false watermark attributes. In or-

der to address the problem of out-of-order attributes, machine

learning is a suitable tool that turns data in different attributes

into the information of attributes order. That is a classic multi-

class classification task. Classification methods including De-

cision tree [23], Neural network [24], Linear/logistic/Softmax

regression [25] can be applied. In this paper, because the

novelty of classification is not our contribution, we use a

simple open-source Linear classifier 1 to implement attribute

classification. Data in each watermark attribute WAi are

trained with label i by a classifier. Once each WA is classified,

a classifier could compare the candidate dataset and return

the label of attributes. Thus, in detection phase, the identified

labels of attributes are referenced to re-sort the attribute order.

Lines 1-3 show this process in algorithm 1.

2) Watermark Shares Generation: The second step is to

generate different watermark shares for the watermark at-

tribute. The idea of the secret-sharing technique is used, which

divides a watermark W into n WS1, ...,WSn watermark

shares such that no one can know the watermark W unless

they can collect ≥ t shares, where t is the threshold, n
is the number of attributes. Each WSi contains a part of

watermark bits string W . The repetitive part of bits string

between any two WS can be considered the redundancy of W .

When some attributes are deleted, watermark shares extracted

from the remaining attribute can still reconstruct the W by

comparing, correcting repetitive parts, and supplementing the

non-repetitive part of W . That addresses the problem of

suffering from attribute deletion.

1https://github.com/oracle/tribuo
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The challenges of generating watermark shares consist of

three parts: 1) the watermark share should have the same

representation as to the watermark, such that it be in bit

string form as well; 2) the watermark should be distributed

equally to each share. It ensures that each attribute could hold

a certain amount of bits, which prevents uneven distribution

from causing recovery difficulties of watermark; 3) the shares

are capable of error tolerance to reconstruct watermark. The

tiny changes should not lead to the failure of reconstructing

the watermark W , then decreasing the detection accuracy.

Hence, lots of classic secret sharing techniques [26] [27]

can not be used in this situation. There are a example,

such that Shamir’s secret-sharing uses univariate polynomial

f(y) = s + r1y + r2y
2 + ... + rty

t to reconstruct secret s.

Each share sj is f(j). By performing Lagrange interpolation,

set of sj ( the number of shares ≥ t) can reconstruct secret s.

However, it is obvious that if an error s
′
j joins reconstruction,

the result s is wrong because polynomial f(y) returns a wrong

value.

Thus, the idea of replicated secret sharing [28] [29] is

used for watermark shares generation. Because when shares

have some error of bits, the reconstruction of replicated secret

sharing is still achieved. Note that, to a certain degree, the error

could be corrected because each bit is inserted in different

tuples many times.

Fig. 3: Assignment of pieces on (3,5) secret sharing

The generation of watermark share is described as follows.

We say the n is the number of watermark attributes WA, t
is the threshold, Ct

n is the abbreviation of t-combination of

the set of n combination. Hence, the number of recoverable

attributes combination is |Ct
n|+ ...+ |Cn−1

n |+ |Cn
n |, i.e., when

the number of attributes is greater than or equal to t. The Ct−1
n

is the set of maximal non-recoverable attributes combination.

Then, the watermark W is additively split into |Ct−1
n |(i.e.,

m) pieces B0, ..., Bm. Note that each B contains a L/m-bits

long binary string. Each B denotes a possibility within Ct−1
n

combination of attributes can not reconstruct watermark. For

example, in the figure 3, if there exist a (3,5)-scheme, the

possibility of 1,1,0,0,0 can not reconstruct watermark because

it only has two ”1”, at least 3 is required for reconstruction.

WSi contains Bj (i ∈ {0, 1, ...,m}) which the i-column of Bj

is zero. Hence, WS1 holds a vector of B4, B5, B6, B7, B8, B9

because the value of 1-column in B0, B1, B2, B3 is ”1”. It

ensures that members of t− 1 WSi jointly miss at least one

additive share and shares is divided equally to each WS.

Each WSi holds |Ct−1
n−1| pieces which is a |Ct−1

n−1| ∗ L/m-

bits long binary string. All WS jointly hold t copies of the

whole watermark W . Greater than or equal to t WS jointly

have all required pieces and can thus reconstruct W . Lines

4-15 show this process in algorithm 1. Line 16 transforms

Bi0, ..., Bim to bi0bi1...bil. Each bil denotes a bit. In encoding

phase, algorithm uses a bit every time of insertion. Finally, the

result of classification and watermark shares are returned.

Algorithm 1 Preprocessing Algorithm

Require: D,WA,W, n, t, l
Ensure: WS,Classifier

1: for each WAi ∈ D do
2: Classifier = train(data in WAi attribute, label i)
3: end for
4: combinationV ectors = combination(n, t− 1)
5: piecesSize m = |combinationV ectors|
6: bitsLength l = |combination(n− 1, t− 1)| ∗ L/m
7: pieces B0, ..., Bm = split W into m pieces
8: for each i ∈ n do
9: WSi = []

10: for j=1 to m do
11: vector ∈ combinationV ectors[j]
12: if i /∈ vector then
13: WSi.append(Bj)
14: end if
15: end for
16: WSi = transform Bi0, ..., Bim to bi0bi1...bil
17: end for
18: return WS,Classifier

B. Watermark Encoding

The insertion algorithm is shown in Algorithm 2. The

inputs are original dataset D, watermark attributes WA,

watermark shares WS, secret key K and parameters l, n, ξ, γ.

The algorithm inserts bits of watermark shares into mapped

watermark attributes. The insertion algorithm traverses the D
and finds the tuple satisfying S1(K, r.P ) mod γ equals 0.

The primary key binds K which is computationally infeasible

to compute the same value to locate the same tuple using a

wrong secret key. The parameter γ could control the insertion

density. Sequentially, it determines attributes in sets of WA
in the same way. The n is the number of watermark attribute

|WA|. Then, a bit x of i-th watermark share is selected by

S3(K, r.P ) mod l equals 0 which prevents synchronization

error because it makes inserted bit of watermark share is not

fixed. The length of the watermark share is l. We assume that

it is acceptable to change one of |ξ| least significant bits in a

small number of numeric values. Finally, a bit x is inserted

in k-th position amongst ξ when S4(K, r.P ) mod l equals 0.

Note that, in insertion algorithm, watermark shares are inserted
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into D using b0b1b2...bl−1. The S could generate a fixed

sequence using the same seed. Thus, in terms of insertion

and detection, it determines the same position of bit, attribute,

and tuple. For watermarked tuples, without having correct S
and comparing watermark copies, it’s impossible to extract

bits, then recover ownership information to claim ownership

because extracted bits can’t contain meaningful ownership

information. Databases usually allow attributes to assume null

values. The algorithm will skip the null value, leaving it

unchanged. On average, a fraction η/γ of tuples will be

selected to insert watermarks. Each watermark share bit x is

inserted η/(γln) times.

Algorithm 2 insertion Algorithm

Require: D,K,WS,WA, l, n, ξ, γ
1: for each tuple r ∈ D do
2: if S1(K, r.P ) mod γ equals 0 then
3: attributeIndex i = S2(K, r.P ) mod n
4: if r.WAi isn

′t null then
5: markIndex j = S3(K, r.P ) mod l
6: bitIndex k = S4(K, r.P ) mod ξ
7: markBit x = bij ∈WSi

8: Set Least significant bit k of r.WAi to x
9: end if

10: end if
11: end for
12: return D

C. Watermark Decoding

Fig. 4: Classification on attributes in D′

The watermark decoding contains four steps: Attribute

Classification, Watermark Shares Detection, Majority Voting,

and Watermark Recover. The decoding algorithm is shown in

Algorithm 3. The Dw of inputs is the watermarked database

which may be distorted under types of attacks. The other

inputs are watermark W , secret key K, classifier Classifier
and parameters l, t, n, ξ, γ. The first step is Attribute Classifi-

cation, which identifies watermark attributes WA. The figure 4

demonstrates this process. The candidate attributes A
′
1, ..., A

′
ν

in Dw are identified as watermark attributes WA
′
1, ...,WA

′
n.

Hence, the identification and order of WA are determined

by the pre-trained classifier. The needless attributes will be

removed, and missing attributes will be filled with a blank. The

connection between each pair of watermark attributes WAi

and watermark share WSi can be uniquely confirmed.

The next steps are Watermark Shares Detection, Majority

Voting, and Watermark Recover. Firstly, the two-dimensional

array zeros and ones are initial as 0. Then, the watermark

bits are extracted as the insertion algorithm does in lines 8-

22. When S1(K, r.P ) mod γ equals 0, the select tuple then

Algorithm 3 Decoding Algorithm

Require: Dw,K,W, l, n, t, ξ, γ, Classifier
1: WA1, ...,WAn = Classifier(Dw, {A′

1, ..., A
′
ν})

2: for i=0 to n-1 do
3: for j=0 to l-1 do
4: zeros[i][j] = 0
5: ones[i][j] = 0
6: end for
7: end for
8: for each tuple r ∈ Dw do
9: if S1(K, r.P ) mod γ equals 0 then

10: attributeIndex i = S2(K, r.P ) mod n
11: if isExist(WA

′
i) then

12: markIndex j = S3(K, r.P ) mod L
13: bitIndex k = S4(K, r.P ) mod ξ
14: bij = Least significant bit k of r.WAi

15: if bij = 1 then
16: ones[i][j] = ones[i][j] + 1
17: else
18: zeros[i][j] = zeros[i][j] + 1
19: end if
20: end if
21: end if
22: end for
23: for i=0 to n-1 do
24: WS

′
i = []

25: for j=0 to l-1 do
26: if ones[i][j] ≥ zeros[i][j] then
27: bij = 1
28: else
29: bij = 0
30: end if
31: WS

′
i .setV alue(j, bij)

32: end for
33: end for
34: for i=0 to n-1 do
35: transform bi0bi1...bil of WS

′
i to Bi0Bi1...Bim

36: end for
37: majority voting of B0, ..., Bm sequence of WS

′
1, ...,WS

′
n

38: reconstrcut watermark W
′
from B0, ..., Bm

39: return match(W,W
′
)

|W | ∗ 100%

is determined by the attribute and position of LSB to extract

a watermark share bit. Note that if the select attribute doesn’t

exist, this tuple will be skipped. The arrays ones and zeros
are used to store an extracted bit, indicating the number of

times that bit is extracted to be 0 and 1, respectively. If

this bit has been changed by the attacker, the extracted bit

may not match its original value. In generality, some error

bits can’t decrease detection accuracy in that each bit of

watermark share will be inserted many times. As a rule, water-

marking techniques should have error correction mechanisms

like voting or cyclic redundancy check. Our technique has

capable of error correction of watermark on bits and attributes,
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respectively. Thus, secondly, by Majority Voting step on bij
of watermark shares, bit errors are corrected as a result of

malicious attacks, and the template of WS
′

is obtained. Line

23-33 shows this step, where bij is the voting result of j-th bit

of watermark share WS
′
i . In the Watermark Recover step, each

WS
′

is transformed to corresponding Bi0, ..., Bil of which the

particular combination is determined in Preprocessing. Then

another majority voting is performed to correct possible error

of B0, ..., Bm from WS
′
1, ...,WS

′
n. Finally, pieces B0, ..., Bm

construct watermark W
′
. The ownership could be claimed if

the recovered W
′

matches W with high accuracy.

Blind means that it is not required to have the original

database or watermark in detection. In our algorithm, prepro-

cessing introduces a machine learning technique that provides

the capability of identification for watermarking attributes.

And secret sharing provides an assignment scheme of water-

mark pieces. Original database or watermark aren’t contained

in the detection process. Hence, our algorithm is blind. For

watermarking techniques, it assumes that the insertion and

detection algorithm should be public. Ownership information

must lie only in the choice of the secret key. In our algorithm,

the new mechanism helps to reorder attributes before detection

and correct errors after detection, respectively. That doesn’t

mean weak the work of the secret key that determines our

algorithm is key-based. Then, we give the analysis of detecting

a specific watermark in the non-watermarked dataset. Repeated

independent trails are Bernoulli trails. And that has only two

probabilities p and q, where q = 1 − p. Let b(k;n, p) be the

probabilities such that there are n trials, probabilities p for

success, and q for failure. Then

b(k;n, p) =

(
n

k

)
pkqn−k (1)

The cumulative binomial probability is

B(k;n, p) =
n∑

i=k+1

b(i;n, p) (2)

If the detection algorithm performs on non-watermarked

data, it obtains some binary string b0b1...bl−1 as a potential

watermark share. Let bi be extracted ωi times (ωi > 0). The

ωi ≈ η/γn, where η is the number of tuples, γ is the density

parameter, n is the number of watermark attributes. Besides,

the τ is the threshold probability of majority voting for a bit.

Each extract is considered as zero or one with a probability of

0.5, which is modeled as an independent Bernoulli trial. The

bi is detected to be zero or one with the same probability

B(�τωi� ;ωi, p) =

ωi∑
j=�τωi�+1

b(j;ωi, 0.5) (3)

Thus, the probability of a possible watermark share is∏l−1
i=0 2B(�τωi� ;ωi, p), where the factor 2 is that each bit

may be either zero or one. The number of possible binary

strings is 2l. The number of watermark shares is |WS|. Thus,

TABLE II: Default parameters

Parameters γ ξ τ n t
Value 50 3 50% 10 3

a binary string match a valid watermark share is
|WS|
2l

. For a

watermark share WS, the overall false hit rate is

FHRWS =
|WS|
2l

l−1∏
i=0

2B(�τωi� ;ωi, p) (4)

By the equation 4, the value is close to 0 if l 	 log|WS|.
Hence, the false hit rate of our algorithm is low. The com-

plexity of the insertion algorithm is O(η). The complexity of

decoding consists of three steps: the first is watermark share

detection, the complexity is O(η); the second, the complexity

of majority voting is O(n ∗ l); the third, the complexity of

correction of watermark pieces is O(n ∗ m), where η is the

number of tuples, n is the number of watermark attributes,

l is the length of bits string of watermark share, m is the

number of pieces of the watermark. Thus, the decoding of

AAP is efficient with low complexity O(η+n ∗ l+n ∗m).

V. EXPERIMENTS AND RESULTS

In this section, we report the experimental results. Exper-

iments are conducted on Intel Core i7 with CPUs of 3.60

GHz and RAM of 16GB. Algorithms were implemented with

JAVA. Experiments are performed using the Forest Cover Type

(FCT) data set 2. The FCT has 581,012 rows in which each

tuple contains 10 integer attributes, 1 categorical attribute,

and 44 Boolean attributes. We added an extra attribute ID

as the primary key, 4 attributes of integer type. We select

ten attributes for watermarking. The experiments are repeated

many times, and the average result is calculated. The default

parameters are described in table II. Hence, our algorithm

ensures that only three remaining attributes can still recover

complete ownership information. The result shows that our

algorithm is efficient and robust against subset, attribute, and

multifaceted attacks. It is difficult to remove the watermark

under these attacks. We evaluate our technique (denoted by

AAP) against the Agrawal-Kiernan’s [4] technique (denoted by

AHK), Yuan’s technique [13] (denoted by DEM) and Kamran-

Suhail-Farooq’s technique (denoted by KSF).

A. Watermarking Overhead

Two experiments assess the computational cost of insertion

detection in figure 5 by varying different tuples on selected

configurations and datasets. Reading the entire data from disk

and writing the data to disk are not contained in execution

times. The execution time of AAP and AHK algorithms is

low. It can be seen that the execution times of these algorithms

increase as tuples increase. For 0 ≤ tuples ≤ 500000, the

execution time of AAP and AHK is less than 1s. Moreover,

the execution time of DEM and KSF is high.

2kdd.ics.uci.edu/databases/covertype/covertype.html
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Fig. 5: Execution times of AAP algorithm

Fig. 6: Robustness of algorithms against subset attack

B. Attack Analysis

Consider data owner generates a dataset Dw by inserting a

watermark W in the dataset D using our insertion algorithm.

An attacker wants to destroy watermarks by attacks. At the

same time, the attacker preserves data quality so that it remains

useful as well. We assume that the attacker can’t access to the

original dataset D, watermark W , secret key K and parameters

used in insertion algorithm ( e.g. γ, ξ, τ , n, t). Hence,

the watermark shares (WS) and watermark attributes (WA)

are also inaccessible to the attacker. Besides, the knowledge

about the detail of secret sharing or classification cannot help

the attacker to extract watermark when leaks watermark W ,

parameters n, t and secret key K.

1) Subset Attack: For subset attacks, the attacker may ran-

domly insert/alter/delete tuples from the watermarked dataset.

Then the detection algorithm is performed. Figure 6 shows

the experimental results. Our algorithm successfully extracts

the watermarks with 100% accuracy even when over 95% of

the tuples are inserted/altered/deleted. Besides, KSF has the

same robustness with 100% accuracy even when over 95% of

the tuples are inserted/altered/deleted. However, as the number

of distorted tuples increases, the detection accuracy of AHK

and DEW decreases. An insertion attack may cause more

loss of detection accuracy for AHK and DEW algorithms.

The attacker alters the attribute values intending to flip the

watermark bits. AHK achieves 100% detection accuracy. DEW

has a worse result in terms of alteration attacks. All algorithms

are robust against deletion attack because the number of wa-

termarks and the number of matches decrease simultaneously.

The high robustness of our watermarking algorithm is due

to the redundancy of watermark bits in insertion phase and

majority voting in detection phase.

2) Attribute Attack: In the real world, these attribute attacks

cause the same consequence: the detection algorithm would

Fig. 7: Robustness of algorithms against attribute attack

Fig. 8: Robustness of AAP algorithm against multifaceted

attack

locate false attributes to extract watermarks. Hence, measuring

the number of affected attributes is fair for the robustness test.

The figure 7 shows the results. Due to the identification of

watermark attributes and correction of extracted watermarks,

our algorithm is robust against attribute attack even when over

9 attributes are false. The worst case is DEW. When greater

than one attribute loses, detection fails with 0% accuracy. The

locating of DEW is distorted under attribute attack in that it

uses the watermark itself to locate the position of watermarks.

The false location cause failure detection. As the number of

affected attributes increases, the detection accuracy of AHK

and KSF decreases. When over 5 attributes are affected, the

detection accuracy of KSF drops steeply because of the failure

of majority voting of data partitioning. The detection accuracy

of AHK decreases in that the number of false bits increases.

3) Multifaceted Attribute Attack: We have also performed

experiments for sophisticated attacks by combining subset at-

tack with attribute attack. The scenario is that attacker launches

a type of subset attack, then destroys some attributes. Note that

it is not rare because destroying attributes is easy. To show the

results clearly, the figure 8 shows the robustness of our AAP

algorithm against multifaceted attack. Our algorithm is robust

against multifaceted attack as well. When over 9 attributes

are affected, and over 95% tuples are inserted/altered/deleted,

the detection accuracy remains up to 90%. The reason behind

this desirable behavior is that the majority voting corrects the

errors introduced by subset attack, and secret sharing corrects

the errors introduced attribute attack. At the same time, these

two mechanisms do not affect each other. The figure 9 show

the robustness of compared algorithms against multifaceted

attack. The detection accuracy of DEW is low because of

attribute attack. As the number of affected attributes increases,

the detection accuracy of AHK and KSF decreases under

multifaceted attack.
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Fig. 9: Robustness of compared algorithms against multi-

faceted attack

VI. CONCLUSION

This paper proposes a highly robust algorithm against inser-

tion, deletion, alteration attacks, and even attribute attacks by

introducing classification, secret sharing, and majority voting

mechanisms. At the same time, it is efficient and easy to

implement. Note that our algorithm is restricted to numeric

data. The results of our experiments on a real-world dataset

substantiate our claims. In the future, we are looking to find

an attribute-attack-proof solution for both normal and primary

key attributes.
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