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Abstract

There is a recent and growing literature on large-width asymptotic properties of deep Gaus-
sian neural networks (NNs), i.e. deep NNs with Gaussian-distributed parameters or weights,
and Gaussian stochastic processes. Motivated by some empirical analyses that show the po-
tential of replacing Gaussian distributions with the more general Stable distributions for the
NN’s weights, in this paper we investigate large-width asymptotic properties of deep Stable
NN, i.e. deep NNs with Stable-distributed parameters. For sub-linear activation functions,
a recent work has characterized the infinitely wide limit of a suitable rescaled deep Stable
NN in terms of a Stable stochastic process, which generalize the Gaussian process. Here,
we extend such a characterization to a general class of activation functions, which includes
sub-linear, linear and super-linear functions. Our results show that in the Stable setting the
scaling of the NN may depend on the choice of the activation function, thus bringing out a
critical difference with respect to the Gaussian setting. In particular, while in the Gaussian
setting the choice of the activation function does not affect the scaling required to achieve
the infinitely wide Gaussian process, in the Stable setting the use of a linear activation
function in place of a sub-linear or a super-linear activation function results in a change of
the scaling, through an additional logarithmic term, in order to achieve the infinitely with
Stable process.

1 Introduction

Deep (feed-forward) neural networks (NNs) play a critical role in many domains of practical interest, and
nowadays they are the subject of numerous studies investigating their theoretical properties. Of special
interest is the study of prior distributions over the NN’s parameters or weights, namely random initializations
of NNs. In such a context, there is a growing interest on large-width asymptotic properties of deep NNs
with Gaussian-distributed parameters, with emphasis on the interplay between infinitely wide limits of such
NNs and some classes of Gaussian stochastic processes. In his seminal work, Neal| (1996) characterized the
infinitely wide limit of a shallow Gaussian NN. In particular, let: i) € R? be the input of the NN; ii)
7 : R — R be an activation function or nonlinearity; iii) § = {wfo),w, b§0)7 b};>1 be the collection of NN’s
’E’Oj) i w; i N(0,02) and bgo) iy N(0,03) for 02,07 > 0, with N(p,0?) being
the Gaussian distribution with mean p and variance o2.

defined as

parameters such that w
Then, consider a rescaled shallow Gaussian NN

gJ(:E) = <’U}J(-O), £E>]Rd + b§0)

(1)

fa)rn P = b+ s YT wi(g()),
with n~1/2 being the scaling factor. Neal| (1996) showed that, as n — +oo the NN output fg(n)[r,n"1/?]
converges in distribution to a Gaussian random variable (RV) with mean zero and a suitable variance. The
proof follows by an application of the Central Limit Theorem (CLT'), thus relying on minimal assumptions on
the activation function 7, as it is sufficient to ensure that E[(g;(x))?] is finite. The result of [Neal (1996)) has
been extended to a general input matrix, i.e. k£ > 1 inputs of dimension d, and deep Gaussian NNs, assuming
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both a sequential growth (Der & Lee| 2005) and a joint growth (de G. Matthews et al., |2018]) of the width
over the NN’s layers. See Theorem in the Appendix. In general, these large-width asymptotic results
rely on some minimal assumptions for the function 7, thus allowing to cover the most popular activation
functions.

Neal| (1996) first discussed the problem of replacing the Gaussian distribution of the NN’s parameters with
a general Stable distribution, namely a distribution with heavy tails (Samorodnitsky & Taqqul [1994). Some
empirical analyses in [Neal (1996) show that while the contribution of Gaussian weights vanishes in the
infinitely wide limit, Stable weights retain a non-negligible contribution. Motivated by these empirical
analyses, [Favaro et al.| (2020)) characterized the infinitely wide limit of a deep Stable NN in terms of a class
of Stable stochastic process, assuming both a joint growth and a sequential growth of the width over the NN’s
layers. See also |[Favaro et al.| (2021)), and references therein, for a detailed discussion. Critical to achieve the
infinitely wide Stable process is the assumption of a sub-linear activation function 7, i.e. |7(z)| < a + b|z|?,
with a,b > 0 and 0 < 8 < 1. In particular, for a shallow Stable NN, let: & € R¢ be the input of the
NN; ii) 7 : R — R be the sub-linear activation function of the NN; iii) § = {wgo),w, bgo), b}i>1 be the NN’s
(0) iid  iid

parameters such that w; / ~ w; ~ Su(0y) and bz(-o) Wy Sa(op) for a € (0,2] and oy, 04 > 0, with S, (0)

being the symmetric Stable distribution with stability a and scale . Then, consider a rescaled shallow
Stable NN defined as

gi(x) = (W”, )ga + b\

(2)
fe(n)[r, n_l/a] =b+ nl% Z?:l ij(gj (),

with n~'/¢ being the scaling factor. The NN is recovered from by setting o = 2. |[Favaro et al.[(2020)
showed that, as n — 400 the NN output fg(n)[r,n~/] converges in distribution to a Stable RV with
stability a and a suitable scale. See Theorem in the Appendix. See also |[Favaro et al.| (2021) for some
refinements of this result in terms of sup-norm convergence rates. Differently from the Gaussian setting of
(de G. Matthews et all 2018]), the result of Favaro et al.| (2020) relies on the assumption of a sub-linear
activation function. This is a strong assumption, as it does not allow to cover some popular activation
functions.

1.1 Our contributions

In this paper, we consider the problem of characterizing the infinitely wide limit of deep Stable NNs with
a general activation function, thus removing the assumption of a sub-linear function considered in [Favaro
et al.| (2020). In particular, we assume 7 : R — R to be a continuous activation function belonging to one of
these classes:

E,={r € CR;R): |7(2)] = O(|Z|B) with 0 < 8 < 1};
Ey = {1 € C(R;R) : |7(2)| « |2|” for z = £ + o0 and 7 strictly increasing for |z| > a, for some 7,a > 0};

E3 = {1 € C(R;R) : 7(2) v 2" for z = +o0, |7(2)| = O(|z|®) with 8 < 7 for 2 — —o0

and 7 strictly increasing for z > a, for some 7, a > 0}.

We characterize the infinitely wide limit of a deep Stable NN with an activation function belonging to the
above classes, for a d-dimensional input and assuming a sequential growth of the width over the NN’s layers.
The extension to a general input matrix, i.e. k inputs of dimension d, and the joint growth of the width
over the NN’s layers are also discussed. The use of activation functions of linear envelope, i.e. Fq, is covered
in [Favaro et al.| (2020), and here we present an alternative proof of the infinitely wide limit of the NN,
which relies on the application of a generalized CLT (Uchaikin & Zolotarev, 2011} |Otiniano & Gongalves,
2010). The novelty of our result lies in the use of linear functions, i.e. Fo U E3 choosing v = 1, and super-
linear functions, i.e. E; U E3 choosing v > 1. For example, the ReLU function, i.e. 7(s) = max{0, s},
which is arguably the most popular linear activation function, belongs to the class F3 whereas a classical
activation like 7(s) = s”, with 3 > 1 odd, is contained in Ey. Our results show that in the Stable setting the
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scaling factor of the NN may depend on the choice of the activation function 7, thus bringing out a critical
difference with respect to the Gaussian setting. While in the Gaussian setting the choice of 7 does not affect
the scaling n~'/2 required to achieve the infinitely wide Gaussian process, in the Stable setting the usage
of certain activation functions, e.g. linear activation when the parameters of the NN have the same index
a, results in a change of the scaling n~/%, through an additional (log n)*l/ @ term, to achieve the infinitely
wide Stable process.

1.2 Organization of the paper

Section [2| contains the main results of the paper, which are organized as follows: i) the weak convergence
of a shallow Stable with an activation function 7 in the classes Fy, F5 and FEj3, for an input x = 1 and no
biases; ii) the weak convergence of a deep Stable NN with an activation function 7 in the classes Fy, Fs
and Ej, for an input x € R? and biases; iii) some examples of weak convergence of deep Stable NNs using
specific activation functions, and in particular the ReLU activation function, for an input 2 € R? and biases.

In Section [3] we discuss some extensions of our work and directions for future research in the context of deep
Stable NNs.

2 Main results

Let (2, H,P) be a probability space, such that the RVs introduced in this paper are defined on such a

probability space. Given a RV Z we define the cumulative distribution function (CDF) of Z as Pz(z) =
P(Z < z), the truncated CDF of Z as Pz(z) = 1 — Pz(z) and the density function (PDF) as pz(z) = dpjz(z).
We work with probability measures with respect to the Lebesgue measure, and use the notation Pz(dz) to

indicate pz(z)dz. A RV Z is symmetric if Z 2 —Z,ie. if Z and —Z has the same distribution, that is
Pz(z) = Pz(—=z) for all z € R. We say that Z,, converges to Z in distribution, as n — +oo, if for every

point of continuity z € R of Pz it holds Pz, (z) — Pz(z) as n — 400, in which case we write Z, Ny

Given two functions f : R — R and g : R — R we write f ~ g if and only if lim,_, % =1, f=o(g) if

and only if lim,_, 4 o % =0 and f = O(g) if and only if there exists C > 0 and zg such that J;Ezg < C for
every z > 2. ' 4
Definition 2.1. A R-valued RV X has Stable distribution with stability o € (0,2], skewness 8 € [—1,1], scale
o > 0 and shift p € R, and we write X ~ So(0, B, 1), if its characteristic function is px (t) = E[e®X] = ),
fort € R, where

- —o®[t|*[1 + i tan (%" ) sign(t)] + it a # 1
t) =
—o|t|[1 +iB2sign(t)log (|t])] +iut o =1.

By means of [Samorodnitsky & Taqqu| (1994, Property 1.2.16), if X ~ S,(c, 8, 1) with 0 < a < 2 then
E[|X|"] < 400 for 0 < r < a, and E[|X|"] = 400 for any r > a. A R-valued RV X is distributed as the
symmetric a-Stable distribution with scale parameter o, and we write X ~ S, (o), if X ~ S,(c,0,0), which
implies that

px(t) = E[e"¥] = ="
This allows to prove that if X ~ S,(0), then aX ~ S,(|a|o); see [Samorodnitsky & Taqqul (1994, Property
1.2.3). Furthermore, although the PDF of a Stable RV is not available in a closed form, except for few cases,
one has a complete characterization of the tail behaviour of the CDF and PDF of Stable RVs: for a symmetric
a-Stable distribution, [Samorodnitsky & Taqqu| (1994, Proposition 1.2.15) states that, if X ~ S, (o) with
0<a<?,

teR.

_ 1
Px(z) = Px(~x) ~ §Ca0a|$|_a7

where
o -1 2 roaeosrE O F L
C, = (/0 x~® Sin(x)dx) = ;F(a) sin (az) = TEmeeos(ry)

2 a=1.
s
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Analogously to what written before, if X ~ S,(0) with 0 < a < 2, then px (z) = px(—) ~ §Cq0o®|x[~*!
holds true.

For an activation function belonging to the classes F1, Fo and E3, we characterize the infinitely wide limit of
a deep Stable NN, assuming a sequential growth of the width over the NN’s layers. Critical is the use of the
following Generalized Central Limit Theorem (GCLT) (Uchaikin & Zolotarev), [2011} |Otiniano & Gongalves,
2010]).

Theorem 2.1 (GCLT). Let Z be a RV such that Pz(z) ~ cz PL(z) and Pz(—z) ~ dz"PL(z) for some
c,d >0, 0 <p <2 and with L being a slow varying function. Moreover, let (Z,)n>1 be a sequence of RVs
iid as Z. If

0 0<p<l1

an =1 (c—d)logn p=1
E[Z] 1<p<?,

then, as n — 4+o00

1 - c+d v oe—d
T 24 5 Gc] +do> |

i=1

2.1 Shallow Stable NNs: large-width asymptotics for an input x = 1 and no biases

We start by considering a shallow Stable NN, for an input # = 1 and no biases. Let w(®) = [wgo), wéo), T

and w = [wy,ws,...]T independent sequences of RVs such that w§0) i Sao(00) and w; i Sa,(01). Then,

we set Z; = ij(w(O)

; ), where 7 : R — R is a continuous non-decreasing function, and define the shallow
Stable NN

Fd = 37 )
j=1

with p being a positive real number. From the definition of the shallow Stable NN , being 71, Zs, ... iid
according to a certain RV Z, it is sufficient to study the tail behaviour of Pz(z) and Pz(—z) in order to
obtain the convergence in distribution of f(n)[7, p]. As a general strategy, we proceed as follows: i) we study
the tail behaviour of X - 7(Y") where X ~ S, (03), Y ~ Sq,(0y), X L Y and 7 € Ey, 7 € Ey and 7 € Ej;
ii) we make use of the GCLT, i.e. Theorem [2| in order to characterize the infinitely wide limit of the shallow
Stable NN .

Note that to find the tail behaviour of X -7(Y") it is sufficient to find the tail behaviour of | X - 7(Y')|, and then
use the fact that P[X -7(Y) > z] = (1/2) -P[| X - 7(Y)| > z] for every z > 0, since X - 7(Y) is symmetric as X
is so. Then, to find the asymptotic behaviour of the truncated CDF of | X - 7(Y")| we make use of some results
in the theory of convolution tails and domain of attraction of Stable distributions. Hereafter, we recall some
basic facts. Given two CDFs F and G, the convolution F * G is defined as F = G(t) = [ F(t — y)dG(y),
which inherits the linearity of the convolution and the commutativity of the convolution from properties of
the integral operator. Recall that a function F on [0, +00] has exponential tails with rate o (F' € L) if and
only if
F(t — y) ay

lim ——= =, for all real y € R.
t——+o0 F(t)

Then,
¢
F(t) = a(t) exp {—/ a(v)dv] , where a(t) = a > 0,a(t) = «, as t = +o0.
0

A complimentary definition is the following: a function U on [0, 4o00] is regularly varying with exponent p
(U € RV,) if and only if
U(yt)

i — P
tBIJPoo 0 =yP, forall y > 0.
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Then,
"p(v)
U(t) = a(t) exp {/ dv] , where a(t) — a > 0,p(t) — p, as t,— 400,
0 v

i.e. the Karamata’s representation of U. Clearly F' € £, if and only if F(Int) € RV_,. The next lemma
provides the tail behaviour of the convolution of F' and G, assuming that they have exponential tails with
the same rates.

Lemma 2.2 (Theorem 4 of Cline| (1986)). Let F,G € L, for some a > 0, f € RVg and g € RV, where
f(t) =e“F(t) and g(t) = e**G(t) and B > —1 and v > —1. Then
r1+prl1+n~)

B G0 T iy 51

ate®F(t)G(t), ast— +oo

We make use of Lemma to find the tail behaviour of |X - 7(Y)| when |X| and |7(Y)| have regularly
varying truncated CDFs with same rates. If |X| and |7(Y")| have regularly varying truncated CDFs with
different rates, then we make use of the next lemma, which describes the tail behaviour of U - W, where U
and W are two independent non-negative RVs such that P[U > u]| is regularly varying of index —a < 0 and
E[W] < 4o0.
Lemma 2.3 (Breiman’s theorem). Suppose U and W are two independent non-negative RVs such that

E[W] < 400 and P[W > u] = o(P[U > u).
IfPU > u] « cu™®, with ¢ > 0, then

PUW > u] ~ E[W]-P[U > u.

Lemma was first stated in Breiman| (1965) for « € [0, 1], and then extended by |Cline & Samorodnitsky
(1994) for all values of , still under the hypothesis that E[W €] < +oo for some € > 0. Lemmaprovides

a further extension of these results in the case P[U > z] v« cx ™%, with ¢ > 0, and has been proved in [Denisov
& Zwart| (2005).

Based on Lemma and Lemma it remains to find the tail behaviour of |X| and |7(Y)|. For the
former, it is immediate to derive that P|x|(t) := P[|X| > t] « Cy, 097t~ %, while, for the latter, we have the
following lemma.

Lemma 2.4 (Tail behaviour of 7(Y), 7 € E; U E3). IfY ~ S,(0), then

i) P[|7(Y)| > t] «~» Coo®t=2/7,  if1 € By

i) P(7(Y)| > t] v~ £Co0t=/7,  if T € B3
Proof. If T is strictly increasing for > a and 7(z) ~ 27 for  — +oo with v > 0, then 7! (y) ~ y'/7.
Analogously at —oo. We refer to Theorem 5.1 of |Olver| (1974) for the case v = 1. Now, starting with 7 € Fs

and defining the inverse of 7 where the activation is strictly increasing, we can write for a sufficiently large
t:

1 1
P(r(Y)| > 1) = P(r(Y) > 1) + P(r(Y) < =t) » 5Ca0®[r 7 (O] + 5 Ca0®|r 7 ()]~
1 1
# 5Ca0™ ™ 4 S Ca® 1|77 = Cao®t™/1.

Instead, if 7 € Es, then there exits b > 0 and yo < 0 such that |7(y)| < bly|® for y < yo. Then, for ¢
sufficiently large,

1
P(r(Y)| >t,Y <0) < POY|®? >t,Y <0) ~ 5caaa(bt)*a/ﬁ.
Furthermore,

1 1
P(7(Y)| > t,Y >0) = P(Y > 77(t)) « §Ca0°‘|7_1(t)|_a - EC'(XU‘IZ_O‘/",

hence, since 8 < 7, it holds that P(|7(Y)| > t) «» $C,0®27%/7, which concludes the proof. O
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Based on the previous results, it is easy to derive the tail behaviour of | X - 7(Y")|, which is stated in the next
theorems.

Theorem 2.5 (Tail behaviour of |X - 7(Y)|). Let |Z]| = |X - 7(Y)| where X and Y are independent and
distributed respectively as Sq,(05) and Sy, (0y). If T € E1 and Bo, < ay, then

ﬁ\m(f) A Co, o0 E[|7(Y)|* ]t~

Az~

For T € Ey U E3, define o = min(ag, oy /) and ¢, = % if T € E3 and ¢, = 1 otherwise. Then

¢ Cayoy B[ X272 if > ay/a
Piz/(2) ~ ¢ ¢:CaCayoroy 2 %logz  if v =ay/og

CooSE[r(V)elze iy <ay/a.

Proof. We start from the proof of the first case, i.e. 7 € Ey. Here, |7(Y)| < b|Y|? for certain 8 € (0,1) and
b > 0, when |Y| is larger than some yo > 0, hence there exists ¢ > 0 such that

E[|7(Y)|%] < ¢+ E[b|Y|? ] < 400,

being Ba, < a, by hypothesis. The thesis then follows from Lemma@ An analogous strategy can be used
in the case a, # o, /7. Indeed, E[|X|*/7] < 400 if iy > ay/y and E[[7(Y)|*] < +00 if a, < /7. Hence
Breiman’s theorem allows to conclude. A different situation arises when a, = a, /7. In this case, consider
the RVs log | X| and log |7(Y)| and observe that

62 g

Prog x|(t) i=Pllog |X| > ] = P[|X| > e!] v~ Cy 0% e € L,

i.e. Pllog|X| > t] has an exponential tail with index oy, and the same has Piog|-(vy := P[log|7(Y)] > ]
since o = o, /y. Furthermore, e 'Plog|X\ (t) € RVo and e« - P,y I=(v)| € RVo, hence we apply Lemma
with 3 = v = 0, and obtain that
Pllog|X - 7(Y)| > 1] = Pllog|X| +1og |7(Y)| > ] = Piog x| * Piog|=(v)|(1)
= azteawtﬁlog | X| (t)?log |7 (Y)| (t)
= a,;Cy, C a%o;‘yte_a’t.

ayOg

It is sufficient to evaluate this expression in logt to obtain the thesis. As for the case 7 € Ej, the proof is
the same except for an extra % in the tail behaviour of P yy(t). O

Based on Theorem the next theorem is an application of the generalized CLT [2] that provides the
infinitely wide limit of the shallow Stable NN , with the activation function 7 belonging to the classes
E17 EQ; ES'

Theorem 2.6 (Shallow Stable NN, 7 € Ey, Es, E3). Consider f(n)[r,p] defined in (3). If 7 € Ei and
Bay < ag, then

fwtrcal = S (01 (EZNSQD(UO)[|T(Z)|m])1/a1) :

If 7 € E3 U B3, define « = min(aq, a/7), ¢r = % if T € E5 and ¢, = 1 otherwise, and m,(vy) = logn if
v = ag/aq and my(y) = 1 otherwise. Then

where Y
COC 6% g .
7901 (Crc;;Ezwal(l)[lZ\*]) if v>ag/m

1 .
o=1 ogo1(craCyq) /e if v=a/a

1/a
01 (B s, (o0 [I7(2)12]) i v <ao/m
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Proof. Observe that, since w; - T(wj(-o)) is symmetric, then

0 0 1 0
Plw; - 7(w(”) > t] = Plw; - 7(wl”) < ] = 5Plw; 7(wl”)] > 1.
Hence, the proof of this theorem follows by combining Theorem and the GCLT, i.e. Theorem [2] after
observing that a, = 0 due to the symmetry of w; - T(wj(-o)). O
The term (logn)~ /2 in the scaling in the case 7 € Ey U F3 and a1 = ag/7, is a novelty with respect to
the Gaussian setting. That is, NNs with Gaussian-distributed parameters are not affected by the presence
of one activation in place of another as the scaling is always n~1/2, while this is not true for Stable NNs as
shown above.

2.2 Deep Stable NNs: large-width asymptotics for an input = € R? and biases

The above results can be extended to deep Stable NNs, assuming a sequential growth of the width
over the NN’s layers, for an input * = (21,..,74) € R? and biases. In particular, let § =
{wgo), ...,wEL_l),w,bEO), ...,bz(»L_l),b}izl the set of all parameters and € R? be the input. Define Vi > 1
andVi=1,...,.L—1

wEO) = [wg)l), wg;), . wg)d)] € R4

wgl) = [wl(l%, wfg, e wz(l%] SN

w = [wy,wa, ... wy] eR” (4)
wg?j)7 wz(l]), Wy, bz(-l), b eR

W 80 0 8 )

%,

Then, we define the deep Stable NN as

gj(-l)(zc) = aw<w§0),w>Rd + Ubbg-o)
g (@) = opb ™ + opr(n)E 0wl V(g (@), Vi=2,..,L (5)

fo)r,a] = gi" V(@) = oyb + o (n) = 0 wir(g ()

where v(n) = n-log(n) if 7 € E; U E5 with v = 1 and v(n) = n otherwise, and (-, -)ga denotes the Euclidean
inner product in R?. Note that the definition coincides with the definition provided that L = 1,
op = 0,d =1 and z = 1. For the sake of simplicity and readability of the results, we have restricted
ourselves to the case where all the parameters are Stable-distributed with same index «, but this setting can
be further generalized.

The next theorem provides the infinitely wide limit of the deep Stable NN , assuming a sequential growth
of the width over the NN’s layers. In particular, if we expand the width of the hidden layers to infinity one
at the time, from [ = 1 to [ = L, then it is sufficient to apply Theorem [2.0] recursively through the NN’s
layers.

Theorem 2.7 (Deep Stable NN, 7 € E; and 7 € ExU E3 with v < 1). Consider gﬁl)(w) for fited j =1,...,n
andl=2,....,L+1 as defined in @ Then, as the width goes to infinity sequentially over the NN’s layers,

gV (@) L Sa (o),

x

where
1/«

d
1) [e% @ [e%
ot = o8> |z;|* +of :
j=1
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and, forl=2,...,L+1

1/
o (Uﬁj Z~Sa(a§f‘1>)[|7—(z)|a] + a{f) if T€E€E, orT € FEyUE; withy <1
o —

T 1/«

(C‘racaag(o—a(:l_l))a + U?) Zf T € Ey U Ej, with v = 1.,

with ¢, = 1/2 if T € E3 and ¢, = 1 otherwise.

Proof. The case L = 1 deals again with a shallow Stable NN but considering non-null Stable biases and a

more complex type of input. The result follows from Theorem by replacing wj(-o) with gj(.l)

with o, = (o + 05, 25:1 |z;]*)= thanks to the fact that g; () % Sa(oz) for j =1,...,n. This can be easily
proved using the following properties of the Stable distribution (Samorodnitsky & Taqqul (1994, Chapter 1):

(z) and o9

i) if X7 1L X5 and X; ~ Sa(07) then X + Xo ~ So([of + 08]%);

ii) if c#£ 0 and X1 ~ S, (01) then ¢- X7 ~ S, (|c|oq).

The proof for the case L > 1 is based on the fact that the ggl_l)(w)’s are independent and identically

distributed as S, (Jg(gl_l)) since they inherit these properties from the iid initialization of weights and biases:
the thesis then follows applying the result for L = 1 layer after layer and substituting ag(cl_l) in place of

Oy O

Theorem includes the limiting behaviour of fz(n)[r,a] in the case I = L + 1. In general, it is possible
to write an explicit form of the scale parameter by recursively expanding the scale parameters of the hidden
layers. See Subsection 2.3 for an example in the case of the ReLU activation function. Before concluding,
we point out that when using a sub-linear activation, i.e. 7 € Fy or 7 € Ey U E3 with v € (0, 1), or a linear
activation, i.e. 7 € E5U FE3 with v = 1, the index « of the limiting Stable distribution does not change as the
depth of a node increases so that, even for a very deep NN, the limiting output is distributed as a a-Stable
distribution. Such a behaviour is not preserved for super-linear activation functions, i.e. 7 € Fy U E3 with
v > 1. When a1 < «ap/7, the convergence result of Theorem involves a Stable RV with index equal
to ag/v, and not ap. In case oy = o, = «, this is the case when v > 1, which corresponds to a super-
linear activation in Fy U F3. The fact that the limiting RV takes a factor 1/ prevent us from writing a
theorem in the setting of Definition because we would not be able to apply the property i) above as it
describes the distribution of the sum of independent Stable RVs with different scales but same index. We
are then forced to adjust the initialization of the biases and to this purpose we define a new setting. Let
0= {wgo), e wELil), w, bgo)’ e bgLil), b};>1 the set of all parameters and x € R? be the input. Define Vi > 1
and Vi =0,....,.L —1

wio) = [wg,ol), wgg, .. wl(od)] € R4
l n o l n
wg ) = [wl(i, wi%, . wf(;] €eR
w = (w1, wa, ... W) € R
wgf)j), wz(lj), wi, bl(.l), b eR (6)

1) iid i1d
wfj) ~wj ~ Sa(l)

(1 iid
b’ ~ Sﬁ(l)

bﬁsﬁuy
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Then, we define the deep Stable NN as

o0 (@) = o (0, @)gs + b
g (@) = bV + oun a0 wl T 7(gl V@), V=2, L (7)

fem)[r,a] = ¢ (@) = opb + oun % X1 wir (gl ().

The next theorem provides the counterpart of Theorem for the deep Stable NN . It provides the
infinitely wide limit of the deep Stable NN , assuming a sequential growth of the width over the NN’s
layers.

Theorem 2.8 (Deep Stable NN, 7 € Fy U F3 with v > 1). Consider gj(-l)(:c) for fized j = 1,...,n and
l=2,....,L+1 as defined in @ As the width goes to infinity sequentially over the NN’s layers,

d
gﬁl)(m) — Sa/.yl—l (Ufcl))

where
J 1/«

1) o a «
o ={ond lzl*+oi |
j=1

and

-1

CTCQ -2 -1 _ 1—2 -1 o/~ v e

"”(”l):<c//7105” (04 ) Bgs, wllZ g
a/fyt T

with ¢ = 1/2 if T € E3 and ¢, = 1 otherwise.

Proof. The proof is along lines similar to the proof of Theorem Notice that the fact that bgl_l) i
Sa/~1-1(1) is critical to conclude the proof. O

As a corollary of Theorem m the limiting distribution of fz(n)[r,al, as n — +o0, follows a (a/v%)-Stable
distribution with scale parameter that can be computed recursively. That is, for a large number L of layers,
the stability parameter of the limiting distribution is close to zero. As we have pointed out for a shallow
Stable NN, this is a peculiar feature of the class 7 € Es U E5 with v > 1, and it can be object of a further
analysis.

2.3 Some examples

As Theorem [2.0]is quite abstract, we present some concrete examples using well-known activations functions.
First consider the case when 7 = tanh € Fjy, since it is bounded. Then, the output of a shallow Stable NN
is such that

Foftant, i) = Su, (o1 (Bl 2)) ")

See also [Favaro et al.| (2020). As for the new classes of activations introduced here, we can start considering
the super-linear activation 7(z) = 23 € By with v = 3, in the case of a shallow NN with a; = a9 = a and
obtain that

J C 3/«
f(n)[(')3704/3] — Sa/3 (Ugal (C,(XEZ~SQ(1)[|Z|Q/3]) ) )
a/3
with the novelty here lying in the fact that the index of the limiting output is /3 instead of .. As for linear

activations, if you take 7 = id, i.e. the identity function, again under the hypothesis of a shallow NN with
a1 = g = «, you obtain that

(logn) Y f(n)lid,a] L5 S, <|:O‘Ca:| 1/&000’1> ;
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which shows the presence of an extra logarithmic factor of (logn)~'/* in the scaling for the first time.
Beware that this behaviour, which is a critical difference with the Gaussian case, does not show up only
with linear activation: for example, if you take a; = 1, i.e. Cauchy distribution, g = 3/2, i.e. Holtsmark
distribution, and 7(z) = 2%/2 then
_ d
(logn) ™' f(n)[(-)*%,1] == S1 (C10001) .
Finally, we consider the ReLU activation function, which is one of the most popular activation functions. The

following theorems deal with shallow Stable NNs and deep Stable NNs, respectively, with a ReLU activation
function.

Theorem 2.9 (Shallow Stable NN, ReLU). Consider Z = X - ReLU(Y') where X ~ So(04), Y ~ Sa(oy),
X UY. Then o o

Pz(z) = Pz(—2) ~ ZC&O’;J?Z_Q log 2.
Furthermore, if f(n)[ReLU,p] = n"r Z?Zl ijeLU(wj(-O)), where ReLU(t) = max{0,t} and wj(o) i

Sa(oo) 1L wj # Sa(o1), then

(logn)~ % f(n)[r, 0] - S, (EaC’a} ; 0001>

Proof. The theorem follows easily from Theorem [2.5] and Theorem [2.6] after noticing that ReLU € E5 with
B8 =0 and v = 1. In addition to that, we also provide an alternative proof which can be useful in other
applications. So, first, let us derive the distribution of @ := ReLU(Y)

0 if ¢g<0
PR =Fma {0V} <sa)=) o0 g

from which we observe that @ is neither discrete nor absolutely continuous with respect to the Lebesgue
measure as it has a point mass of £ at z = 0 while the remaining % of the mass is concentrated on R
accordingly to the Stable law of Y on (0, 4+00). Hence, having in mind the shape of Pg(q) = P(Q < q), we
derive the approximation for the tails of the distribution of X - ReLU(Y") and, as usual, we make use of the
GCLT to prove the following theorem. We prove the tail behaviour of Pz(z) first. For any z > 0 we can
write that

Ps(z) = /0 p Q> 2] px(@)ds = /O p v > 2] px(@)da,

since Y and @ have the same distribution on (0, +00). Now, observe that

+oo
PIXY > 2] = / PlzY > 2] Pyx(dz) = 2/ P [Y > 3} px (z)da
R 0 z
where the second equality holds by splitting the integral on R into the sum of the integrals on (—o0,0) and
(0,400) and using the fact that Y is symmetric. It follows that, for every z > 0, Pz(z) = iP[XY > z].

Applying the results for 7 = id, we find that

1
Pz(z) = §P[XY >z] - %Caaaaaz_o‘ log z.

a“y“x

The proof for the asymptotic behaviour of Pz (z) works in the same way after fixing z < 0 and using a change
of variable while the convergence in distribution of (logn)~= f(n)[r, o] follows by a direct application of the
GCLT. 0

Theorem can be extended to deep Stable NN with input @ = (1, ..., z4) € R? and considering the biases.

10
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Theorem 2.10 (Deep Stable NN, ReLU). Consider the deep Stable NN with ReLU activation defined as
follows

9, (@) = 0w (w]”, @)ns + auby”
gj(l)(a:) = abb;lfl) + ow(nlogn) == > wg;l)ReL U(gglfl)(:c)),w =2,...,L (8)

fe(n)[ReLU, o] = ¢i" (@) = b + u(nlogn) ™= 37, w; ReLU(g\") (x))

Then, under the hypothesis of Stable initialization for weights and biases as in (@, as the width of the
previous layers goes to infinity sequentially,

d
gj(‘l)(m) — Sa (C’a(cl)) )
where )
d /o
oM = U$Z|xj|°‘ + oy ,
j=1
and, forl=2,..., L +1,
1 1/«
o) = (GaCatol ot o)
Proof. The proof is along lines similar to the proof of Theorem with v = 1 and 7 € E3. O
Then, as a corollary of Theorem the limiting distribution of fz(n)[ReLU,qa], as n — +oo, is the

distribution of a a-Stable RV whose scale can be computed recursively. In particular, we can write the
following statement.

Corollary 2.10.1. Under the setting of Theorem[2.10 with a generic depth L,
1 L L-1 Cqd
f(n)[ReL U, q] 8, ({ (QaCan;) oy + Z(QaCaaf‘u)’a{f} )
i=0

Proof. The claim is true for L = 1, which can be proved using the standard two properties of the Stable
distribution. Moreover, for a NN with depth of L + 1, using Theorem [2.10} the scale is

1 1 L L-1 1 i 1
_5040&03) [ (QaCaag,') oy + Z (2a0a03> a{f] + a{;‘} =

/1 L+1 L 1 i 1
_ (2O¢C’aaﬁj) o + Z QOzC'acrﬁj) oy + U‘b)‘] =

which concludes the proof. O

3 Discussion

In this paper, we have characterized the infinitely wide limit of deep Stable NNs with a general activation
function, thus removing the strong assumption of a sub-linear function considered in |Favaro et al.| (2020)
and [Favaro et al.| (2021). For a; = «ap/7, and in particular for the choices 7 = id and 7 = ReLU with
ag = a1, Theorem shows that the right scaling of the NN is (nlogn)~/®, thus including the extra factor
(logn)~/® with respect to sub-linear activation functions. For a; > ag/7, and in particular for the choice

11
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of a super-linear activations with oy = @1, Theorem shows that the distribution of the limiting output
is (ag/7)-Stable, with 4 > 1, and this may have undesirable consequences for posterior estimates in case of
a very deep NN.

We conclude our work by presenting some open challenges and some directions for future research in the
context of deep Stable NNs with 7 € FE;, for some ¢ = 1,2,3. A natural problem consists in extending our
results to the case of deep Stable NNs with £ > 1 inputs of dimension d, i.e. the input consists of a d X k
matrix X. Recently, this problem has been considered in [Favaro et al. (2022) for the sole special case of
shallow Stable NNs with a ReLU activation function. A further natural problem consists in extending our
results to the case of a joint growth of the width over the NN’s layers (Favaro et al., 2021)). In general, under
the setting specified in definition or definition , one may consider a deep NN defined recursively as
follows:

d
1 1 1
X)) =3 wlx; +b01T
j=1

and

IR -
1 (X n) = f(n)t/e > wi) (TO 7 1)(X’">) +517,
j=1

with fi(l)(X,n) = fi(l)(X), where 1 is the k-dimensional unit (column) vector, o denotes the element-wise
application and f(n) = n-logn if 7 € E5 and f(n) = n otherwise. Then, the goal is to extend our results to
fi(l)(X, n), assuming a joint growth of the width over the NN’s layers. The case 7 € F; was already tackled
by [Favaro et al.| (2020) but the other two cases are missing. Clearly, for the case 7 = id, it is immediate to
obtain the spectral measure of the limiting multivariate Stable distribution using Levy’s theorem and the
linearity of the scalar product. Less trivial would be to adapt these computations when 7 = ReLU or when
7€ EyU Es with v > 1.

An interesting research direction consists in extending to the Stable setting some results of the popular works
of Jacot et al. (2020) and Arora et al.| (2019)), which established the equivalence between a specific training
setting of deep Gaussian NNs and kernel regression. In particular, they considered a deep Gaussian NN
where the hidden layers are trained jointly under quadratic loss and gradient flow, i.e. gradient descent with
infinitesimal learning rate, and it was shown that, as the width of the NN goes to infinity simultaneously,
the point predictions are arbitrarily close to those given by a kernel regression with respect to the so-called
neural tangent kernel (NTK). It would be interesting to study if such an equivalence holds also in the case
of Stable weights and biases. For shallow Stable NNs with ReLU activation function, and input X, this
problem has been considered in |[Favaro et al|(2022)). In particular, their result characterized the large-width
training dynamics of the shallow Stable NN with respect to a kernel regression with an («/2)-Stable random
kernel.

The main concept at the basis of the equivalence between overparameterized Gaussian NNs and kernel
regression is the fact that a wide NN, whose output is relatively close to zero, behaves like its linearization
around the initialization. Intuitively, when the NN is very wide, each individual parameter needs to move
a tiny amount from its initialization in order to have a non-negligible change in the NN’s output. This
behaviour is known in the literature as the "lazy training" phenomenon, and it is one of the hottest topic
in the field of machine learning since it is a phenomenon which can affect any model, not only NNs. More
precisely, |Chizat et al.| (2018]) showed that lazy training is caused by an implicit choice of the scaling and
that every parametric model can be trained in the lazy regime provided that its output is initialized close
to zero. Furthermore, coming back to NNs, they considered a two layers NN with Gaussian weights and
proved a sufficient condition for achieving lazy training, provided that E[w§0)7(<wi -x))] = 0. Clearly, the
theorem applies also in the case of symmetric Stable weights and biases when o > 1, but not when o <1 as
the expectation of such RVs is undefined. It would be then interesting to study what happens in that case
in order to find a new theoretical result which leads to a suitable scaling for which we have the lazy training
phenomenon.

12
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A Complementary statements and proofs

Definition A.1 (Multivariate Stable distribution). Let S be the unit sphere in R : S = {u € R¥ : Ju| = 1},
A random vector, X, has a multivariate Stable distribution, denoted as X ~ Sty(a,T,9), if the joint char-
acteristic function of X is

Efexp (iu" X)] = exp {— /

ses {‘UTSP +iv (u's, a) } ['(ds) + iuT‘S}

where 0 < a < 2, and for y € R
—sign(y) tan(ma/2)|y|* a#1
Wy, ) = (y) tan(mar/2)|y] 7#
(2/m)yIny| a=1
The case with 6 =0 is denoted by Sty (o, T).

The next two theorems characterize the infinitely wide limits of a deep NN with Gaussian and Stable
parameters respectively, under the setting of joint growth and taking a matrix as input.

Theorem A.1 ((de G. Matthews et al.}2018)). For anyd > 1 and k > 1 let X denote a d x k (input signal)
matriz, with x; being the j-th (input signal) row, and for any D > 1 and n > 1 let: i) (W(l),...,W(D))

be i.i.d. random (weight) matrices, such that W) = (w(1)> and W = ( (U) for
b1 ) 1<i<n,1<j<d bl ) 1<i<n,1<i<n

2 <1 < D, where the wl(lj) s are i.1.d. as N(O o ) forl=1,...,D; ) (b(l),...,b(D)) be i.i.d. random

(bias) vectors, such that b = (bgl), .. .,bﬁ?) where the bg) s are i.i.d. as N (0,0’%) forl=1,...,D. Now,

let ¢ : R — R be a continuous activation function (nonlinearty) such that

[¢(s)| < a+bls|
for every s € R and for any a,b > 0, and consider a (fully connected) feed-forward
NN (fi(l)(X,n)) of depth D and width n defined as follows
1<i<n,1<I<D

x Z wiMx; + b7
and

f(l) X,n) Zw (qSo (X,n)) —i—bl(-l)lT

with fi(l)(X, n) = fi(l)(X), where 1 is the k-dimensional unit (column) vector, and o denotes the element-wise
application. Foranyl=1,...,D, if (f(l)(X n)) - is the sequence obtained by extending (W(l), . ,W(D))

and (b(l), . 7b(D)) to infinite i.i.d. arrays, then as n — +oo jointly over the first | NN ’s layers

(Frxm) (1)

where (f-(l)(X)) is distributed as the product measure ®;>1 N (O,E(l)), and the covariance matriz XV
i>1 =

K2

has the (u,v)-th entry defined recursively as follows:
2(12} =0} + 02 (Xu, Xy)

u7

and

20, = of + oL Elo(f)d(9)],
(1=1)  53(=1)
0 Eu7u Z
where (f,g) ~ Ny <( 0 )( $(=1) z” ) )
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Theorem A.2 (Theorem 2 of [Favaro et al.[(2020)). For anyd > 1 and k > 1 let X denote a d x k (input sig-
nal) matriz, with x; being the j-th (input signal) row, and for any D > 1 andn > 1 let: z) (W(l), . ,W(D))

SN,1x)>

2 <1< D, where the w”) s are i.i.d. as Sq(oyw) forl=1,...,D; i) (b(1 oo, b)) be d.i.d. random (bzas)

vectors, such that b() = (b(l) ol ) where the bgl) 's are i.4.d. as

N, IS >

Sa(db)

forl=1,...,D. Now, let ¢ : R = R be a continuous activation function (nonlinearty) such that

6(s)| < (a+b]s|?)”

for every s € R and for any a,b > 0,7 < a~! and B < v~, and consider a (fully connected) feed-forward
NN (f(l)(X n)) of depth D and width n defined as follows
1<i<n,1<I<D

f(l Zw bgl)lT

and

O X, n) nl/a Zw(l) (00D X,m)) + 517

with f(l)(X n) = f(l)(X), where 1 is the k-dimensional unit (column) vector, and o denotes the element-wise

application. Foranyl=1,...,D, if (f l)(X n)) - is the sequence obtained by extending (W(l), . ,W(D))

and (b(l), . ,b(D)) to infinite i.1.d. arrays, then as n — +oo jointly over the first INN' s layers
), = (100
(Hxm) = (£00)

K2

where (f.(l)(X)) - is distributed as the product measure ®@;>1 Sty (a, F(l)), with « € (0,2), and the spectral

measure I’ bez'ng_] defined recursively as follows:

d
PO = o2y + 08 D €
=1 g
and
T = [lop1"[|" ¢+ / low(@o FIC sor gD (df)
H1TH [[¢ofll
where

AT AT
0 otherwise,

Cn =

1 (60 +6_ . if|h >0
IRl 5

with & being the Dirac measure, and ¢~V is the distribution of fi(l_l)(X). The limiting SP (fi(l)(X)) - is
referred to as the Stable SP with parameter (a,T). B

15



	Introduction
	Our contributions
	Organization of the paper

	Main results
	Shallow Stable NNs: large-width asymptotics for an input x=1 and no biases
	Deep Stable NNs: large-width asymptotics for an input x Rd and biases
	Some examples

	Discussion
	Complementary statements and proofs

