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Abstract— The integration of neural rendering and the
SLAM system recently showed promising results in joint
localization and photorealistic view reconstruction. However,
existing methods, fully relying on implicit representations, are
so resource-hungry that they cannot run on portable devices,
which deviates from the original intention of SLAM. In this
paper, we present Photo-SLAM, a novel SLAM framework with
a hyper primitives map. Specifically, we simultaneously exploit
explicit geometric features for localization and learn implicit
photometric features to represent the texture information of the
observed environment. In addition to actively densifying hyper
primitives based on geometric features, we further introduce a
Gaussian-Pyramid-based training method to progressively learn
multi-level features, enhancing photorealistic mapping per-
formance. The extensive experiments with monocular, stereo,
and RGB-D datasets prove that our proposed system Photo-
SLAM significantly outperforms current state-of-the-art SLAM
systems for online photorealistic mapping, e.g., PSNR is 30%
higher and rendering speed is hundreds of times faster in
the Replica dataset. Moreover, the Photo-SLAM can run at
real-time speed using an embedded platform such as Jetson
AGX Orin, showing the potential of robotics applications.
Project Page and code: https://huajianup.github.io/
research/Photo-SLAM/

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) using
cameras is a fundamental problem in both computer vision
and robotics, seeking to enable autonomous systems to navi-
gate and comprehend their surroundings. Traditional SLAM
systems [1]–[4] primarily focus on geometric mapping, pro-
viding accurate but visually simplistic representations of the
environment. However, recent developments in neural ren-
dering [5], [6] have demonstrated the potential of integrating
photorealistic view reconstruction into the SLAM pipeline,
enhancing the perception capabilities of robotic systems.

Despite the promising results achieved through the inte-
gration of neural rendering and SLAM, existing methods
simply and heavily rely on implicit representations, making
them computationally intensive and unsuitable for deploy-
ment on resource-constrained devices. For example, Nice-
SLAM [7] leverages a hierarchical grid [8] to store learnable
features representing the environment while ESLAM [9]
utilizes multi-scale compact tensor components [10]. They
then jointly estimate the camera poses and optimize fea-
tures by minimizing the reconstruction loss of a batch of
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Fig. 1. Rendering and trajectory results. Photo-SLAM is a novel frame-
work for simultaneous localization and photorealistic mapping in real-time
supporting monocular, stereo, and RGB-D cameras. The proposed system
has real-time performance on embedded platforms, such as Jetson AGX
Orin Developer Kit.

ray sampling [11]. Such an optimization process is time-
consuming. Consequently, it is indispensable for them to
incorporate corresponding depth information obtained from
various sources such as RGB-D cameras, dense optical
flow estimators [12], or monocular depth estimators [13] to
ensure efficient convergence. Additionally, since the implicit
features are decoded by the multi-layer perceptrons (MLP),
it is typically necessary to carefully define a bounding area
to normalize ray sampling for optimal performance [14]. It
essentially limits the scalability of the system. These limi-
tations imply that they cannot provide real-time exploration
and mapping capabilities in the unknown environment using
portable platforms, which is one of the main objectives of
SLAM.

In this paper, we propose Photo-SLAM, an innovative
framework that addresses the scalability and computational
resource constraints of existing methods, while achieving
precise localization and online photorealistic mapping. We
maintain a hyper primitives map which is composed of
point clouds storing ORB features [15], rotation, scaling,
density, and spherical harmonic (SH) coefficients [16], [17].
The hyper primitives map allows the system to efficiently



optimize tracking using a factor graph solver and learn the
corresponding mapping by backpropagating the loss between
the original images and rendering images. The images are
rendered by 3D Gaussian splatting [18] rather than ray
sampling. Although the introduction of a 3D Gaussian
splatting renderer can reduce view reconstruction costs, it
does not enable the generation of high-fidelity rendering
for online incremental mapping, in particular in monocular
scenarios. To achieve high-quality mapping without reliance
on dense depth information, we further propose a geometry-
based densification strategy and a Gaussian-Pyramid-based
(GP) learning method. Importantly, GP learning facilitates
the progressive acquisition of multi-level features which
effectively enhances the mapping performance of our system.

To evaluate the efficacy of our proposed approach, we
conduct extensive experiments employing diverse datasets
captured by monocular, stereo, and RGB-D cameras. These
experiment results unequivocally demonstrate that Photo-
SLAM attains state-of-the-art performance in terms of local-
ization efficiency, photorealistic mapping quality, and ren-
dering speed. Furthermore, the real-time execution of the
Photo-SLAM system on the embedded devices showcases
its potential for practical robotics applications, as shown in
Fig. 1. The schematic overview of Photo-SLAM is demon-
strated in Fig. 2.

II. RELATED WORK

Visual localization and mapping is a problem that aims
to build a proper representation of an unknown environment
via cameras while estimating their poses within that envi-
ronment. In contrast to SfM techniques, visual SLAM tech-
niques typically pursue a better trade-off between accuracy
and real-time performance. In this section, we focus on visual
SLAM and conduct a brief review.
Graph Solver vs Neural Solver. Classical SLAM methods
widely adopt factor graphs to model complex optimization
problems between variables (i.e., poses and landmarks) and
measurements (i.e., observations and constraints). To achieve
real-time performance, SLAM methods incrementally prop-
agate their pose estimations while avoiding expensive oper-
ations. For example, ORB-SLAM series methods [1], [19],
[20] rely on extracting and tracking lightweight geometric
features across consecutive frames, which perform bundle ad-
justment locally instead of globally. Moreover, direct SLAMs
like LSD-SLAM [3] and DSO [4] operate on raw image
intensities, without the cost of geometric feature extractions.
They maintain a sparse or semi-dense map represented by
point clouds online, even on the resource-constraint system.
Benefiting from the success of deep-learning models, learn-
able parameters and models are introduced into SLAM mak-
ing the pipeline differentiable. Some methods such as Deep-
TAM [21] predict camera poses by the neural network [22]
end-to-end, while the accuracy is limited. To enhance per-
formance, some methods, e.g., D3VO [23] and Droid-SLAM
[24], introduce monocular depth estimation [13] or dense
optical flow estimation [12] models into the SLAM pipeline
as supervision signals. Therefore, they can generate depth

(a) Taxonomy (b) Overview of Photo-SLAM

Fig. 2. The Photo-SLAM contains four main components, including lo-
calization, explicit geometry mapping, implicit photorealistic mapping, and
loop closure components, while maintaining a map with hyper primitives.

maps that explicitly represent the scene geometry. With the
large-scale synthetic SLAM dataset, TartanAir [25], available
for training, Droid-SLAM building upon RAFT [12] achieves
state-of-the-art performance. However, the pure neural-based
solver is computationally expensive and their performance
would significantly degrade on the unseen scenes.

Explicit Representation vs Implicit Representation. In
order to obtain dense reconstruction, some methods including
KinectFusion [26], BundleFusion [27], and InfiniTAM [28]
utilize the implicit representation, Truncated Signed Distance
Function (TSDF) [29], to integrate the incoming RGB-D
images and reconstruct a continuous surface, which can
run in real time on GPU. Although they can obtain dense
reconstruction, view rendering quality is limited. Recently,
neural rendering techniques represented by neural radiance
field (NeRF) [11] have achieved breathtaking novel view
synthesis. Given camera poses, NeRF implicitly models the
scene geometry and color by multi-layer perceptrons (MLP).
The MLP is optimized by minimizing the loss of rendering
images and training views. iMAP [30] then adapts NeRF
for incremental mapping, optimizing not only MLP but also
camera poses. The following work Nice-SLAM [7] intro-
duces multi-resolution grids [8] to store features reducing the
cost of deep MLP query. Co-SLAM [31] and ESLAM [9]
explore Instant-NGP [32] and TensoRF [10] respectively to
further accelerate the mapping speed. However, implicitly
joint optimization of camera poses and geometry represen-
tation is still ill-conditioned. Inevitably, they rely on explicit
depth information from RGB-D cameras or additional model
predictions for fast convergence of the radiance field.

Our proposed Photo-SLAM seeks to recover a concise
representation of the observed environment for immersive
exploration rather than reconstructing a dense mesh. It main-
tains a map with hyper primitives online which capitalizes
on explicit geometric feature points for accurate and effi-
cient localization while leveraging implicit representations
to capture and model the texture information. Please refer to
Fig. 2(a) for the taxonomy of existing systems. Since Photo-
SLAM achieves high-quality mapping without reliance on
dense depth information, it can support RGB-D cameras as
well as monocular and stereo cameras.



III. PHOTO-SLAM
Photo-SLAM contains four main components, including

localization, geometry mapping, photorealistic mapping, and
loop closure, shown in Fig. 2(b). Each component runs in a
parallel thread and jointly maintains a hyper primitives map.

A. Hyper Primitives Map

In our system, hyper primitives are defined as a set of
point clouds P ∈ R3 associated with ORB features [15]
O ∈ R256, rotation r ∈ SO(3), scaling s ∈ R3, density σ ∈
R1, and spherical harmonic coefficients SH ∈ R16. ORB
features extracted from image frames take responsibility for
establishing 2D-to-2D and 2D-to-3D correspondences. Once
the system successfully estimates the transformation matrix
based on sufficient 2D-to-2D correspondences between ad-
jacent frames, the hyper primitives map is initialized via
triangulation, and pose tracking gets started. During tracking,
the localization component processes the incoming images
and makes use of 2D-to-3D correspondence to calculate
current camera poses. In addition, the geometry mapping
component will incrementally create and initialize sparse
hyper primitives. Finally, the photorealistic component pro-
gressively optimizes and densifies hyper primitives.

B. Localization and Geometry Mapping

The localization and geometry mapping components pro-
vide not only efficient 6-DoF camera pose estimations of the
input images, but also sparse 3D points. The optimization
problem is formulated as a factor graph solved by the
Levenberg–Marquardt (LM) algorithm.

In the localization thread, we use a motion-only bundle
adjustment to optimize the camera orientation R∈ SO(3) and
position t ∈ R3 in order to minimize the reprojection error
between matched 2D geometric keypoint pi of the frame and
3D point Pi. Let i ∈ X be the index of set of matches X ,
what we are trying to optimize with LM is

{R, t}= argmin
R,t

∑
i∈X

ρ

(
∥pi −π(RPi + t)∥2

Σg

)
, (1)

where Σg is the scale-associated covariance matrix of the
keypoint, π(·) is the 3D-to-2D projection function, and ρ

denotes the robust Huber cost function.
In the geometry mapping thread, we perform a local

bundle adjustment on a set of covisible points PL and
keyframes KL. The keyframes are selected frames from the
input camera sequence and provide good visual information.
We fix the poses of keyframes KF which are also observing
PL but not in KL. Let K = KL ∪KF , and Xk be the set
of matches between 2D keypoints in a keyframe k and 3D
points in PL. The optimization process aims to reduce the
geometric inconsistency between K and PL, and is defined
as

{Pi,Rl , tl |i ∈ PL, l ∈ KL}= argmin
Pi,Rl ,tl

∑
k∈K

∑
j∈Xk

ρ(E(k, j)),

(2)
with reprojection residual

E(k, j) = ∥p j −π(RkP j + tk)∥2
Σg .

Fig. 3. We make use of initial geometric information to densify hyper
primitives.

C. Photorealisitc Mapping

The photorealistic mapping thread is responsible for op-
timizing hyper primitives that are incrementally created by
the geometry mapping thread. The hyper primitives can be
rasterized by a tile-based renderer to synthesize correspond-
ing images with keyframe poses. The rendering process is
formulated as

C(R, t) = ∑
i∈N

ciαi

i−1

∏
j=1

(1−αi), (3)

where N is the number of hyper primitives, ci denotes
the color converted from SH ∈ R16, and αi is equal to
σi ·G (R, t,Pi,ri,si), G denotes 3D Gaussian splatting algo-
rithm [18]. The optimization in terms of position P, rotation
r, scaling s, density σ , and spherical harmonic coefficients
SH is performed by minimizing the photometric loss L
between rendering image Ir and ground truth image Igt,
denoted as

L = (1−λ )
∣∣Ir − Igt

∣∣
1 +λ (1−SSIM(Ir, Igt)), (4)

where SSIM(Ir, Igt) denotes structural similarity between two
images and λ is a weight factor for balance.

1) Geometry-based Densification: If we consider photo-
realistic mapping as a regression model of the scene, denser
hyper primitives, i.e., more parameters, generally can better
model the complexity of the scene for higher rendering
quality. To meet the demand for real-time mapping, the
geometry mapping component only establishes sparse hyper
primitives. Therefore, the coarse hyper primitives created
by the geometry mapping need to be densified during the
optimization of photorealistic mapping. Apart from splitting
or cloning hyper primitives with large loss gradients similar
to [18], we introduce an additional geometry-based densifi-
cation strategy.

Experimentally, less than 30% of 2D geometric feature
points of frames are active and have corresponding 3D
points, especially for non-RGB-D scenarios, as shown in
Fig. 3. We argue that 2D geometric feature points spatially
distributed in the frames essentially represent the region
with a complex texture that requires more hyper primitives.
Therefore, we actively create additional temporary hyper
primitives based on the inactive 2D feature points once the
keyframe is created for photorealistic mapping. When we
use RGB-D cameras, we can directly project the inactive
2D feature points with depth to create temporary hyper
primitives. As for monocular scenarios, we estimate the
depth of inactive 2D feature points by interpreting the depth



of their nearest neighborhood’s active 2D feature points. In
stereo scenarios, we rely on a stereo-matching algorithm to
estimate the depth of inactive 2D feature points.

D. Gaussian-Pyramid-Based Learning

Progressive training is a widely used technology in neu-
ral rendering to accelerate the optimization process. Some
methods have been proposed to reduce training time while
achieving better rendering quality. A basic method is to
progressively increase the structure resolution and the num-
ber of model parameters. For example, NSVF [33] and
DVGO [34] progressively increase the feature grid resolu-
tion during training which significantly improves training
efficiency compared to previous work. The lower-resolution
model is used to initialize the higher-resolution model but is
not retained for final inference. To enhance performance with
multi-resolution features, NGLoD [35] progressively trains
multiple MLPs as encoders and decoders, while only retain-
ing the final decoder to decode integrated multi-resolution
features. Furthermore, Neuralangelo [36] only maintains a
single MLP during training. It progressively activates differ-
ent levels of hash tables [32] achieving better performance
in large-scale scene reconstruction. Similarly, 3D Gaussian
Splatting [18] progressively densifies 3D Gaussian achieving
top performance on radiance field rendering. Training differ-
ent level models in these methods is supervised by the same
training images. Conversely, BungeeNeRF [37] demonstrates
the efficiency of explicitly grouping multi-resolution training
images for models to learn multi-level features. However,
such a method is not universal since multi-resolution images
are not available for most scenarios.

To make full use of various merits, we propose Gaussian-
Pyramid-based (GP) learning, a new progressive training
method. As illustrated in Fig. 4, a Gaussian pyramid is a
multi-scale representation of an image containing different
levels of detail. It is constructed by repeatedly applying
Gaussian smoothing and downsampling operations to the
original image. At the beginning training step, the hyper
primitives are supervised by the highest level of the pyramid,
i.e., level n. As training iteration increases, we not only
densify hyper primitives as described in Sec. III-C.1 but
also reduce the pyramid level and obtain a new ground
truth until reaching the bottom of the Gaussian pyramid.
The optimization process using a Gaussian pyramid with n+1
levels can be denoted as

t0 : argminL
(
In
r ,GPn(Igt)

)
,

t1 : argminL
(
In−1
r ,GPn−1(Igt)

)
,

. . .

tn : argminL
(
I0
r ,GP0(Igt)

)
,

(5)

where L (Ir,GP(Igt)) is Eq. 4, while GPn(Igt) denotes the
ground image in the level n of the Gaussian pyramid. In the
experiment, we prove that GP learning significantly improves
the performance of photorealistic mapping particularly for
monocular cameras.

Fig. 4. We proposed a new method based on the Gaussian pyramid to
efficiently learn multi-level features.

TABLE I
QUANTITATIVE RESULTS ON THE REPLICA DATASET. WE MARK THE

BEST TWO RESULTS WITH FIRST AND SECOND .

On Replica Dataset Localization Mapping Resources

Cam Method RMSE (cm)↓ PSNR↑SSIM↑LPIPS↓Operation Time↓Tracking FPS↑Rendering FPS↑GPU Memory↓

M
on

o

ORB-SLAM3 [20] 3.942 - - - <1 mins 58.749 - 0
DROID-SLAM [24] 0.725 - - - <2 mins 35.473 - 11 GB

Nice-SLAM* [7] 99.9415 16.311 0.720 0.439 >10 mins 2.384 0.944 12 GB
Orbeez-SLAM [38] - 23.246 0.790 0.336 <5 mins 49.200 1.030 6 GB

Go-SLAM [39] 71.054 21.172 0.703 0.421 <5 mins 25.366 0.821 22 GB
Ours (Jetson) 1.235 29.284 0.883 0.139 <5 mins 18.315 95.057 4 GB
Ours (Laptop) 0.713 33.049 0.926 0.086 <5 mins 19.974 353.504 4 GB

Ours 1.091 33.302 0.926 0.078 <2 mins 41.646 911.262 6 GB

R
G

B
-D

ORB-SLAM3 [20] 1.833 - - - <1 mins 52.209 - 0
DROID-SLAM [24] 0.634 - - - <2 mins 36.452 - 11 GB
BundleFusion [27] 1.606 23.839 0.822 0.197 <5 mins 8.630 - 5 GB

Nice-SLAM [7] 2.350 26.158 0.832 0.232 >10 mins 2.331 0.611 12 GB
Orbeez-SLAM [38] 0.888 32.516 0.916 0.112 <5 mins 41.333 1.401 6 GB

ESLAM [9] 0.568 30.594 0.866 0.162 <5 mins 6.687 2.626 21 GB
Co-SLAM [31] 1.158 30.246 0.864 0.175 <5 mins 14.575 3.745 4 GB
Go-SLAM [39] 0.571 24.158 0.766 0.352 <5 mins 19.437 0.444 24 GB

Point-SLAM [40] 0.596 34.632 0.927 0.083 >2 hrs 0.345 0.510 24 GB
Ours (Jetson) 0.581 31.978 0.916 0.101 <5 mins 17.926 116.395 4 GB
Ours (Laptop) 0.590 34.853 0.944 0.062 <5 mins 20.597 396.082 4 GB

Ours 0.604 34.958 0.942 0.059 <2 mins 42.485 1084.017 5 GB

IV. EXPERIMENT

We implemented Photo-SLAM fully in C++ and CUDA,
making use of ORB-SLAM3 [20], 3D Gaussian splat-
ting [18], and the LibTorch framework. We ran Photo-SLAM
and all compared methods using their official code on a
desktop with an NVIDIA RTX 4090 GPU. We further tested
Photo-SLAM on a laptop and a Jetson AGX Orin Developer
Kit. As quantitative comparison demonstrated in Table I,
Photo-SLAM achieves top performance in terms of map-
ping quality. With competitive localization accuracy, Photo-
SLAM can track the camera poses in real time. Moreover,
Photo-SLAM renders hundreds of photorealistic views in a
resolution of 1200×680 per second with less GPU memory
usage. Even on the embedded platform, the rendering speed
of Photo-SLAM is about 100 FPS.

V. CONCLUSION

In this paper, we have proposed a novel SLAM framework
called Photo-SLAM for simultaneous localization and pho-
torealistic mapping. Instead of highly relying on resource-
intensive implicit representations and neural solvers, we
introduced a hyper primitives map. It enables our system
to leverage explicit geometric features for localization and
implicitly capture the texture information of the scenes.
In addition to geometry-based densification, we proposed
Gaussian-Pyramid-based learning to further enhance map-
ping performance. Furthermore, our system verifies its prac-
ticality by achieving real-time performance on an embedded
platform, highlighting its potential for advanced robotics
applications in real-world scenarios.
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