
Learning Multimodal Probabilistic Models of Manipulation Skill Effects

Siyeon Kim
University of Utah

Mohanraj D. Shanthi*

University of Utah
Yixuan Huang*

Princeton University

Tucker Hermans
University of Utah; NVIDIA

(*) indicates dual second author

1. Introduction

Although robotic manipulation has made significant
progress in simulation and structured settings, it often strug-
gles in real-world scenarios where uncertainty is inevitable.
This challenge is particularly non-negligible for sim-to-real
learning because a reality gap naturally emerges from mod-
eling approximations and parameter mismatches between
simulation and the real world [1, 10, 12]. The uncertainty
arises not only from perception errors, including sensor
noise, incorrect segmentation, and incorrect object recog-
nition, but also from motion execution errors resulting from
imperfect control [6] and calibration to unmodeled effects
due to approximations in the dynamics [1]. Such uncertainty
due to these unmodeled effects is often overlooked. For ex-
ample, consider a robot pushing an object, which involves
non-linear and non-smooth contact dynamics that are dif-
ficult to model exactly. Depending on the direction of the
push, the point of contact, the object’s geometry, and its in-
ertial properties, the object can be slid, toppled, or rotated.
Even a minor perturbation in any of the above parameters
can result in significantly different and unintended effects
on the object’s poses. Therefore, it is necessary to learn a
model to capture this multimodality of effects of skill to en-
able robust planning under uncertainty.

Prior work on learning skill effect models for robot ma-
nipulation [7, 11, 13] leverages deterministic models to pre-
dict the 3D position changes for multi-object interactions.
Huang et al. [7] utilize a transformer network-based dynam-
ics model and a two-layer MLP-based decoder to estimate
the relative position change of objects at each time step.
However, these deterministic models are unable to cap-
ture distinct multi-modal effects when uncertainty is high.
Learning stochastic dynamics models has a rich history in
robot manipulation, with PILCO defining a common ap-
proach using Gaussian process regression [5]. However, be-
cause of the Gaussian process assumption coupled with mo-
ment matching for efficient uncertainty propagation, com-

mon models cannot capture multi-modal outcomes.

Conkey and Hermans [4] advocate for leveraging proba-
bility distributions as a goal representation for planning un-
der uncertainty. This work demonstrates its ability to cap-
ture state uncertainty by learning a mixture density network
(MDNs) [2] of object dynamics, which can be used in plan-
ning to generate robust plans. However, the learned dynam-
ics model assumes it’s given a known object a priori.

We thus extend the MDN dynamics learning approach
to learn uncertainty in a skill effect model using an input
partial point cloud, rather than a known object. Addition-
ally, our skill effect model adopts a latent dynamics model
for robust prediction. We show that our model successfully
deals with predicting skill effects under uncertainty with di-
verse object models from [3] for a push skill. Figure 1 illus-
trates the effect of learning a multimodal dynamics model
over a deterministic and an unimodal model. Moreover, in
Section 4, we showcase that our multimodal model outper-
forms deterministic and unimodal baselines on object pose
prediction and log-likelihood in Table 1. It also maintains
coherent predictions from low to high pushes as shown in
Figures 1, 2, across YCB objects with different geometries.

We present the following contributions.

• Modeling skill-effect uncertainty - We introduce a mix-
ture density network model to capture multimodal, dis-
continuous state uncertainty, and demonstrate that the
model outperforms deterministic models in planning un-
der uncertainty.

• Latent dynamics for robust prediction - Our model
leverages the latent dynamics model for robust single-step
prediction for a push skill

• Object-agnostic perception - Our model utilizes seg-
mented object point cloud data without using any object
priors.

1

Figure 1. Qualitative comparison of the push skill at low, medium, and high heights comparing a deterministic model (Top row), unimodal
(1-component MDN) (Middle row), and multimodal (5-component MDN) (Bottom row). At test time, we predict the object’s pose change
from the input partial-view point cloud and apply it to transform the input cloud. Any full point cloud and object model shown here are for
visualization only.

2. Problem Definition

We seek to learn a predictive skill-effect model that takes a
partial-view point cloud S, along with an action A as input
and outputs the change in pose for all objects in the scene
resulting from the action. We assume the point cloud con-
sists of N object and environment segments Oi ⊂ O, where
i = 0, . . . , N . Our skill effect model outputs corresponding
SE(3) object poses. We further assert that the model can be
decomposed into an encoder Enc, a latent dynamics model
T , and a decoder Dec.

We define our robotic planning task as finding a sequence
of skills at and their parameters θt, τ = (A0, . . . , AT−1),
where At = (at, θt). Then, we can formulate this plan-
ning task as an optimization problem for the skill sequence
that has the minimum expected trajectory cost J(τ) =
Ep0:H−1∼p(τ)[c(τ)] as follows:

τ∗ = argmin
τ=(A0,...,AT−1)

J(τ)

= argmin
τ

∫ H−1∏
k=0

P(pk+1|zk, Ak)

H∑
j=1

c(pj ,pg)dp (1)

subject to δzt+1 = T (zt, At) ∀t = 0, . . . ,H − 1 (2)
z0 = Enc(S0) (3)
δpt = Decp(δzt) ∀t = 0, . . . ,H − 1 (4)
At ⊂ A ∀t = 0, . . . ,H − 1 (5)
θmin ≤ θt ≤ θmax ∀t = 0, . . . ,H − 1 (6)

3. Methods
We now provide details of our model architecture, the train-
ing procedure, and how we perform planning to solve the
problem as stated in Section 2.

3.1. Model architecture
Encoders: Given input point cloud S, we first extract
segment-specific feature vectors from each point cloud seg-
ment, xi = Encpc(O

i), using a point cloud encoder Encpc
from [14]. We use a learned positional embedding, posi =
Embp(i), to identify each segment and concatenate it with
segment feature vectors to create a latent state for each seg-
ment, zi = posi ⊕ xi.

We encode discrete skill parameters, i.e., object identities

of interest, to which the action will be applied, into a one-
hot embedding and concatenate them with embeddings of
continuous skill parameters θt. For both push skills, we pro-
vide end effector poses when the action starts and ends; es-
pecially, we translate end-effector start pose with respect to
target object pose at initial step and its end pose with respect
to start pose: θt = (otTeestart ,

eestart Teeend
). Furthermore,

for continuous skill parameters, we parameterize 6-DoF rel-
ative skill poses δp as (t, R) ∈ SE(3), where t ∈ R3 and
R ∈ SO(3). Like [9], we parametrize skill parameters and
object poses as 9-DoF pose vectors: a translation t ∈ R
and a continuous 6D rotation given by two unconstrained
vectors c1, c2 ∈ R3, which are orthonormalized to yield
R ∈ SO(3). Unlike Euler angle and quaternion, this con-
tinuous rotational representation guarantees the continuity
of orientation for our learning model, and the two vectors
c1, c2 can be easily retrieved into the rotation matrix R by a
Gram-Schmidt-like process [15].

Latent dynamics model: Like [7], given latent state and
skill embeddings, our latent dynamics model T predicts
a relative pose change between the current and following
states of an object in latent space, δzt = T (zt, At).

Decoder: In order to predict relative object pose from
latent state and action embeddings, we employ the pose de-
coder Decp: δpt = Decp(δzt). We then compute its corre-
sponding transformation matrix ω(δpt), which transforms
the current point cloud to the next point cloud, Ot+1 =
ω(δpt)Ot. We define the centroid of the point cloud as the
origin of itself and align the initial object frame’s directions
with the world frame, then the pose vector of point cloud
can be also viewed as pt+1 = w(δpt)pt. We evaluate that
our model works well with an MDN-based decoder model
in the following Section 3.2.

3.2. MDN Probabilistic Skill Effect Model

Like [4], we leverage an MDN [2] as a pose decoder to pre-
dict the distribution of SE(3) object poses. Unlike the de-
terministic model-based decoder, this stochastic model is
able to capture multi-modal skill effects, such as objects
that stand up and topple down. The MDN defines the pa-
rameters of a Gaussian mixture model, P(pk+1|zk,Ak) =∑N

i=1 αi(δzt)N (µi(δzt),Σi(δzt)) and αi, µi, and Σi are
mixing coefficients, mean, and covariance for each compo-
nent, respectively, and are output from the learned MDN
decoder. We make the dependence of these predictions on
the predicted latent delta action δzt explicit, to denote their
structure as output of the neural network. We can ensure the
mixing parameters sum to 1 by having them be output from
a softmax. The mean parameters are standard linear output
models, while we follow common practice to ensure the pa-
rameters of the covariance matrix are positive definite [2, 4].

3.3. Training

We utilize a combination of loss functions, Ltot = a·Lreg+
b·Lpose, to train our model in an end-to-end manner. Firstly,
we adopt the regularization loss from [7] to regularize latent
states: Lreg = ∥zt+1−ẑt+1∥22, where the ground truth of la-
tent states at current and next time steps are zt = Enc(Ot)
and zt = Enc(Ot+1), respectively, and the predicted latent
states at next step is ẑt+1 = zt + δzt. Next, we define the
second loss term Lpose = g(otTot+1 ,

ot T̂ot+1
) for predict-

ing the change of object pose, otTot+1
=w T−1

ot ·
w Tot+1

,
by converting object following pose ot+1 frame from world
w to current object pose ot. We assume no covariance be-
tween position and orientation for simplicity. For the deter-
ministic decoder model, we leverage a geodesic loss and,
for the MDN-based decoder, compute position as a multi-
variate normal distribution in Euclidean space and orienta-
tion as an SO(3) Riemannian manifold. Then, we sum their
log-likelihood to resolve the difference in unit/scale in po-
sition and orientation.

3.4. Planning

We sample the 18-DoF action parameters using a Cross-
Entropy Motion (CEM) planner [8] to solve our single-step
planning problem Eq.(1). For this planning problem, we en-
code the latent dynamics as a constraint in Eq. (2), given
a latent embedding encoded from input observation with
Eq. (3). It also has a constraint that decodes the output la-
tent embedding into an object pose change with Eq. (4),
with constraints on action parameters in Eqs. (5)–(6). Af-
ter solving this problem, it returns the optimal trajectory
τ∗ that has the lowest cost by computing the object pose,
pt+1 = w(δpt)pt.

We cannot compute the expected cost of each trajectory
from Eq. (1) exactly for the case of the MDN density. In-
stead, we suggest a Markov Chain Monte Carlo (MCMC)-
style sampler over trajectories using to approximate Eq. (1)
as argminτ

1
Nτ

∑Nτ

i=0 P(τ)c(τ). We provide the detailed al-
gorithm in Supplementary Material A.

4. Experimental Results

4.1. Data Collection

We generate a dataset for a push skill in the IsaacGym sim-
ulator using a 7-DOF KUKA iiwa arm. We train different
skill-effect models to manipulate a bleach cleanser, a mus-
tard bottle, and a cracker box from the YCB dataset [3]. For
each object, we first collect random nominal skill execu-
tion and then create perturbed variants based on it. In addi-
tion, we add approximately 15% of negative examples. The
dataset contains 6,500 to 7,300 trajectories for each object
and approximately 20,000 trajectories in total.

4.2. Simulation Experiments

We compare our model with the deterministic regres-
sor, unimodal (1-component MDN), and multimodal (5-
component MDN) to assess prediction performance and un-
certainty estimates. As the deterministic baseline, we adopt
the latent dynamics of Points2Plans [7] to directly regress
the object pose in SE(3).

Model prediction: As shown in Figure 1, the determinis-
tic regressor reliably predicts the object’s position; by con-
trast, it shows inaccurate prediction of orientation by aver-
aging the orientations observed in the dataset, resulting in a
half-toppled pose. The unimodal MDN produces a plausi-
ble prediction under high push, but gives dispersed samples
for both low and middle push. In comparison, we observe
that our multimodal MDN-based model gives coherent and
reasonable predictions across all low, mid, and high pushes.

Figure 2. In order to show that our stochastic model is robust to
uncertainty, we assess how close simulation rollouts and model
predictions are with respect to the same actions. We show that our
proposed stochastic model learn multimodal skill effects under un-
certainty for both position and orientation.

Figure 3 further exhibits that our stochastic model makes
consistent predictions across different object geometries.
When pushing on the wide face, it is highly probable to pre-
dict the object toppled at all push heights. Meanwhile, when
pushing on the narrow face, objects are more likely to be
slid/rotated, remaining stable even at higher push heights.
Therefore, it illustrates that our stochastic model contributes

Pos Err (m)↓ Rot Err (rad)↓ NLL↓

Deterministic 0.171± 0.048 0.733± 0.157 —
Unimodal 0.113± 0.027 0.758± 0.132 (17.6± 6.75)× 103

Multimodal 0.086± 0.018 0.463± 0.051 137± 41.7

Table 1. Mean pose error and log likelihood of object pose discrep-
ancy between simulation results and predictions with the same ac-
tions. Position and rotation errors are represented as mean ± SE.
The lower NLL values are better, and it’s robust against state un-
certainty.

to learn the multi-modal skill effects well when there are
different modes for object poses.

Uncertainty quality: We assess how well the model
captures uncertainty by comparing simulation rollouts and
model predictions given the same actions, as shown in Fig-
ure 2. We execute ten actions for each object and evaluate
them by using position error, rotation error, and negative
log-likelihood (NLL). Table 1 indicates that the multimodal
model achieves the lowest position/rotation errors as well as
the lowest NLL for all objects. It demonstrates that multi-
modal MDN has both accurate predictions and a well-fitting
predictive distribution. In contrast, the deterministic base-
line produces only point estimates, resulting in substantially
larger position and rotation errors, which means that it’s un-
able to fully capture uncertainty. The unimodal MDN model
has lower position error, but fails to model multimodal ori-
entation outcomes, which leads to a very large NLL. Over-
all, our multimodal MDN model outperforms other base-
line models in reflecting uncertainty in dynamics and shows
more robust predictions.

5. Conclusion
We studied single-step outcome prediction for a probabilis-
tic skill-effect model under uncertainty. Our approach learns
a multimodal distribution over object pose change from par-
tial point clouds and an action using a mixture density net-
work (MDN) with latent dynamics. Across three YCB ob-
jects, the multimodal MDN separates different modes of ob-
ject pose and outperforms deterministic and unimodal base-
lines in both pose accuracy and state uncertainty quality. In
addition, we demonstrate that our stochastic model is ca-
pable of learning state uncertainty with different object ge-
ometries. As this paper focuses on single-step prediction,
we will integrate the model into multi-step planning and
validate it on a real robot. We will also extend to additional
skills, such as pick-and-place, and evaluate generalization
in cluttered, multi-object, and diverse environments.

References
[1] Jad Abou-Chakra, Lingfeng Sun, Krishan Rana, Brandon

May, Karl Schmeckpeper, Niko Suenderhauf, Maria Vitto-

ria Minniti, and Laura Herlant. Real-is-sim: Bridging the
sim-to-real gap with a dynamic digital twin, 2025. 1

[2] Christopher M Bishop. Mixture density networks. 1994. 1,
3

[3] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srini-
vasa, Pieter Abbeel, and Aaron M. Dollar. The ycb object
and model set: Towards common benchmarks for manipu-
lation research. In 2015 International Conference on Ad-
vanced Robotics (ICAR), pages 510–517, 2015. 1, 3

[4] Adam Conkey and Tucker Hermans. Planning under uncer-
tainty to goal distributions, 2022. 1, 3

[5] Marc Deisenroth, Carl Rasmussen, and Dieter Fox. Learn-
ing to control a low-cost manipulator using data-efficient re-
inforcement learning. In Proceedings of Robotics: Science
and Systems, 2012. 1

[6] Kaijen Hsiao, Matei Ciocarlie, Peter Brook, and Willow
Garage. Bayesian grasp planning. In ICRA 2011 Workshop
on Mobile Manipulation: Integrating Perception and Manip-
ulation, 2011. 1

[7] Yixuan Huang, Christopher Agia, Jimmy Wu, Tucker Her-
mans, and Jeannette Bohg. Points2plans: From point clouds
to long-horizon plans with composable relational dynamics,
2024. 1, 3, 4

[8] Marin Kobilarov. Cross-entropy randomized motion plan-
ning. In Robotics: Science and Systems, pages 153–160. MIT
Press, 2012. 3

[9] Weiyu Liu, Chris Paxton, Tucker Hermans, and Dieter Fox.
Structformer: Learning spatial structure for language-guided
semantic rearrangement of novel objects, 2021. 3

[10] Fabio Muratore, Fabio Ramos, Greg Turk, Wenhao Yu,
Michael Gienger, and Jan Peters. Robot learning from ran-
domized simulations: A review. CoRR, abs/2111.00956,
2021. 1

[11] Chris Paxton, Chris Xie, Tucker Hermans, and Dieter Fox.
Predicting stable configurations for semantic placement of
novel objects. In 5th Annual Conference on Robot Learning,
2021. 1

[12] Fabio Ramos, Rafael Carvalhaes Possas, and Dieter Fox.
Bayessim: adaptive domain randomization via probabilis-
tic inference for robotics simulators. arXiv preprint
arXiv:1906.01728, 2019. 1

[13] Mohit Sharma and Oliver Kroemer. Relational learning
for skill preconditions. In Conference on Robot Learning
(CoRL), 2020. 1

[14] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In Proceedings
of the IEEE/CVF Conference on computer vision and pattern
recognition, pages 9621–9630, 2019. 2

[15] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks, 2020. 3

Learning Multimodal Probabilistic Models of Manipulation Skill Effects

Supplementary Material

A. CEM planner for MDN-based model

Algorithm 1 Monte Carlo (MC)-style CEM planner

Require: The number of action candidates Ncand, the number of elites Nelite, the number of MDN samples Nmc, the
number of MDN components C, an initial segmented point cloud O0 and a goal pose of a target object pG.

1: global: Encpc, Decp, T , ω, a uniform random sampling U
2: function MDN CEM(O0,pG)
3: Sample initial actions: {Ãn

t }
Ncand
n=1 ∼ U(−r, r)d ▷ Initialize diverse action distribution

4: z0 = Encpc(O0) ▷ Encode initial observation
5: for k = 1, . . . ,K do
6: zk0 = z0
7: Ok

0 = O0

8: {ϵn}Ncand
n=1 ∼ U(−r, r)d

9: Ãk
1:H ← µk + ϵn ⊙Σk ▷ Sample Ncand action trajectories

10: for t = 1, . . . ,H do
11: δzkt = T (zkt , Ã

k
t) ▷ Delta-dynamics function

12: αk
t , δµ

k
t , δΣ

k
t = Decp(δz

k
t) ▷ Obtain parameters for delta pose distributions

13: {y(s,n)} s=1,...,Nmc
n=1,...,Ncand

∼ U(0, 1)

14: c(s,n) = min
{
c ∈ {1, . . . , C}

∣∣∣ ∑c
l=1 α

k
t,l ≥ y(s,n)

}
▷ MDN component samples

15: δpk
t,(s,n) ∼ N

(
δµk

t,c(s,n)
, δΣk

t,c(s,n)

)
▷ Sample delta pose

16: Ok
t+1,(s,n) = ω(δpk

t,(s,n))O
k
t ▷ Point clouds transformations

17: pk
t+1,(s,n) = ω(δpk

t,(s,n))p
k
t ▷ Pose transformations

18: zkt+1 = Encpc(O
k
t+1,(s,n))

19: end for
20: for i = 1, . . . , Ncand do
21: costi =

1
Nmc

∑Nmc

j=1

∑Hk

t=1 Lcost(p
k
t,(i,j),pG)

22: end for
23: µk,Σk ← MeanStd

({
Ãk

1:H | i ∈ TopKmin(costi), |TopK| = Nelite

})
▷ Update µ and Σ using Nelite lowest-cost actions

24: end for
25: end function

B. Additional qualitative results

Figure 3. Our multimodal MDN (with 5 components) captures the multimodal skill effects with different object shapes. Especially here
with a cracker box that has unequal side lengths, it tends to topple down easily when it pushes on the wide face (thin support along the
push axis), whereas it rarely topples down when it pushes on the narrow face (wide support).

	Introduction
	Problem Definition
	Methods
	Model architecture
	MDN Probabilistic Skill Effect Model
	Training
	Planning

	Experimental Results
	Data Collection
	Simulation Experiments

	Conclusion
	CEM planner for MDN-based model
	Additional qualitative results

