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It is becoming evident that AI has a great potential to improve the healthcare indus-
try and the overall health and wellbeing of people. However adoption into clinical 
practice still faces the hurdle of a “lack of transparency” [34]. AI assisted healthcare 
services lack transparency when one cannot interpret the reliability or reasoning of 
the AI model involved with decision making. Without interpretable AI a practitioner 
cannot explain results to clients and is therefore unable to guarantee safety. Safety 
is a key element to gain trust from both clinicians and patients, especially for life- 
critical decision making. Thus, interpretable AI is key for the successful and safe 
adoption of AI in healthcare. As such, in this chapter we aim to elucidate what 
interpretability means and why most machine learning (i.e. AI) models fail to sat-
isfy these definitions. We do this by propositioning a layered structure of Interpretable 
AI (see Fig. 1), whereby the ordered layers of uncertainty, significance, and causal-
ity have increasing amounts of “interpretive power” [23]. We first detail this layered 
structure to define interpretability and then explain how it interplays with the so- 
called “black box problem” of AI.  Then we peel back each conceptual layer of 
interpretable AI in turn, while describing their respective applications and limita-
tions. First, we explain how the foremost layer of uncertainty is key for safety and 
fairness by illustrating applications in supporting decision making and clinical tri-
als. Second, we address how “significance” in AI may assist in determining the 
input features contributing most towards a given prediction. Finally we arrive at the 
central core of interpretable AI of “causality”, which is key to answering “what if” 
type questions that are key to estimating treatment effects, treatment recommenda-
tion, and improving clinical trials.
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1  Introduction

It stands to reason that being able to Interpret AI (e.g. machine learning) in health-
care supports clinical decision making (e.g. diagnosis or treatment recommenda-
tion). The “interpretive power” of a model will dictate criteria relating to safety, 
reliability, and fairness as illustrated in Fig. 1. These criteria cannot be guaranteed 
with interpretations from predictions alone, which have limited “interpretive 
power”. Predictions alone provide no intel about the reliability (likelihood of cor-
rectness), nor do predictions inform us about how models make their conclusions. 
For a more comprehensive inference we also need interpretations from uncertainty 
to flag false predictions and know what we don’t know so that we can communicate 
explanations about safety. For an even stronger interpretive power we need interpre-
tations from significance to identify the patient “input” variables (or factors) that 
contribute most strongly with a correct prediction. Interpretations from causality 
provide the most interpretive power by allowing us to estimate necessary treat-
ments; improve fairness by controlling for sensitive variables such as ethnicity, sex, 
and religion; and to avoid confounding biases. All of these interpretations are used 
to help elucidate the choices, architectures and settings of the models employed, to 
in turn combat the black box problem (more on the black box problem below).
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Fig. 1 The canonical structure of quantitative interpretations [23]. All models are equipped with 
predictive capabilities, the foundation of uncertainty, which in turn informs significance and then 
causality. With causality, arguably possessing the highest data-driven interpretive power, we may 
answer counterfactual “what if” and “why” type questions, and begin to reason further away from 
training examples (a new frontier for statistics and machine learning)3
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1.1  Defining Interpretability

Interpretability is notably quite difficult to define exactly. It often depends on 
domain specific context to fully express and is inextricably tied to the medium that 
does the interpreting (e.g., clinician, patient, AI model). Throughout this chapter 
when we talk about interpretability, we specifically refer to what is interpretable to 
a human. If an interpretation makes sense to us, it may improve our current under-
standing of the world (which does not instantly equate to a universal truth). Framed 
another way, this can be thought about as domain-specific knowledge transfer. If a 
model provides information which can be integrated into a new domain-based 
understanding, then it is interpretable. For example, binary machine code is entirely 
interpretable between computers, but to relay information to humans it must be 
translated into an interpretable domain through sound and sight. The same can be 
said about interpretable AI, the goal is to convey valuable information to us using a 
medium we know and understand. This allows the models to become generators of 
new comprehensive information, rather than just being devices that process infor-
mation. For example, if a model developed to detect rare cancers was interpretable, 
it might be capable of constructing a hypothesis about what factors contribute most 
significantly towards the cancer’s progression, thus highlighting viable candidates 
for future interventions.

Another closely related concept worth mentioning is explainable AI, often used 
interchangeably with interpretability by many authors. Throughout this chapter we 
refer to explainability as an interpretation that’s tailored to a specific end user, 
which reveals information about how a model reaches its output. For an explanation 
to be practical it must be faithful to the actual model, comprehensive to the end user, 
and complete with respect to the dynamics of the entire model, i.e. the explanation 
would provide enough information to compute the output for any input within sen-
sible bounds. We note that all explanations are a form of interpretation, however not 
all interpretations serve as explanations. We use the terminology interpretability 
throughout the document as we note that some interpretable AI methods do not 
provide full explanations but are still useful in pursuit of the same motivating 
criteria.

1.2  The Black-Box Problem

The blackbox problem is an issue related to the opaqueness of learning processes 
within machine learning (ML) models and is particularly relevant to deep learning 
models. The problem is that, while ML often achieves superior predictive perfor-
mance in very narrowly defined tasks, ML solutions tend to fall short of being suf-
ficiently interpretable. As stated, this is especially problematic in high-risk domains 
like healthcare, where decisions cannot be treated lightly as they often affect a 
patient’s wellbeing. Ascertaining exactly how the model achieved its performance is 
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still a major open question and an area of active research. The more complex ques-
tions we ask the more complex models we build, making it increasingly difficult to 
know how the models work, rendering them opaque, hence the term “black box”.

A class of ML particularly susceptible to the black box problem – because it is 
increasingly trending towards higher model complexity – is deep learning. Deep 
learning has made evident that there is a strong positive relationship between state- 
of- the-art predictive performance and the number of model parameters. Take for 
example the full version of Open-AI’s powerful natural language processing model, 
GPT-3, which has about 175 billion learnable parameters [6]. A price for the com-
plex structure inherent in deep learning architectures is the consequential difficulty 
in making interpretations about uncertainty, significance, and causality with suffi-
cient fidelity.

This highlights a commonly perceived trade-off between interpretability and pre-
dictive capabilities of models. Which is not to say high fidelity interpretations are 
impossible, but rather the difficulty of interpreting goes up with model complexity, 
a rather straightforward outcome. As an example, the humble linear model  – so 
ubiquitous throughout the sciences – is so appealing because of its simplicity and 
hence interpretability. It allows for transparent interpretations about the significance 
of input variables (i.e. features), as well as offering tractable uncertainty measures. 
Conversely, neural network models often host many compositions of multivariate 
and nonlinear functions, which are not directly interpretable.

The black box problem, i.e. the difficulty interpreting complex models is a major 
hurdle impeding the common utilisation of deep learning models throughout health-
care. So how do we overcome the problem and enjoy the benefits of AI in healthcare?

Throughout the following sections, we will discuss how the black box problem 
can be addressed, by targeting the individual layers and components of interpret-
ability, as well as additionally outlining the limitations of these components. While 
there are no universally accepted definitions of interpretable AI within the literature, 
we posit a structure of “orders of interpretive power” described in Fig. 1. Ordering 
the layers from least to most interpretable, as: uncertainty, significance, and 
causality.

2  Interpretations from Uncertainty – Explaining Reliability 
for Safety and Trust

The safety of AI in healthcare depends on being able to communicate AI reliability 
with good uncertainty quantifications [3] . Many things may be communicated 
about as there are various sources of uncertainty. Such sources of uncertainty non- 
exhaustively include (1) data acquisition error, (2) sub-population under- 
representation, (3) predictive error, (4) model suitability, (5) randomness inherent in 
the modelled phenomena, and (6) presence of hidden confounders [3]. Uncertainty 
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estimates may or may not represent these sources of uncertainty so we can exploit 
them and improve safety.

2.1  Applications of Uncertainty

Uncertainty Is Often Used to Manage the Inherent Risk in AI Systems Consider 
the example where genomic information is used by an AI model to predict whether 
a patient responds positively to an extremely expensive and high-risk intervention – 
treatment X.  A doctor may use this “outcome predictor” model to support their 
decision making. Now imagine an unlucky patient is subjected to an incorrect pre-
diction from the AI model, incorrectly forecasting how the patient will respond to 
treatment X. If the doctor decides to rely on this AI model, using only the predictive 
information (ignoring uncertainty), the patient would undergo treatment, suffer 
financial stress, biological side-effects, without any positive impact from the treat-
ment. On the other hand, if the doctor chooses to inspect the AI model’s uncertainty 
estimate, they may notice the uncertainty is unacceptably large, deeming the AI 
prediction unreliable, and reject the prediction. Consequently, utilising uncertainty 
measurements allows for risk management, facilitating a safer and more trustworthy 
decision-making process.

This “risk management” process can be scaled up to systems that make more 
frequent predictions, whereby predictions about some calibrated uncertainty thresh-
olds are deemed unreliable and rejected semi-automatically. Machine learning engi-
neers use such risk management processes often, usually calling it “uncertainty 
thresholding” or “risk shedding”. It is important in this application that engineers 
ensure stakeholders are informed about what percent of data are rejected (at the 
class level). This is important because sometimes risk shedding will first discard 
under-represented sub-populations (as they have higher model uncertainties).

Uncertainty Can Improve the Safety of Clinical Trials A recent proposal [20] 
illustrates this in the context of phase one clinical trials, which aim to determine the 
maximum tolerated dose of a drug, constrained by maintaining levels below some 
acceptable toxicity. These trials can be adaptively proceeded, starting with low drug 
doses with negligible toxicity. The drug dose is then slowly increased or decreased, 
depending on the frequency of patients who experience toxicity levels above the 
acceptable safety margin. Lee et al. [20], proposed a way to improve the safety of 
this procedure with an uncertainty aware model. The model is uncertainty aware 
because it estimates a distribution of toxicity levels as a function of drug dose (and 
all past observations). By employing uncertainty, i.e. estimating a distribution of 
toxicity levels, the largest dose increase (constrained by confidence) can be esti-
mated so that the toxicity levels remain within an acceptable safety margin. This is 
because the dose increase was constrained by confidence (a common notion of 
uncertainty).
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Uncertainty Has Many Other Applications Lee et  al. [32] Lab showed how 
uncertainty may support the discovery of sub-populations in clinical trials, while 
maximising heterogeneity between groups and homogeneity within groups. A spe-
cific type of uncertainty, “model uncertainty” correlates with the sample size of 
classes (or similar data points) which allows for a plethora of techniques to repre-
sent under-represented sub-populations more fairly [16]. Additionally, model uncer-
tainties can indicate there are too little data on record to rely on the AI system, 
which can help inform doctors when additional laboratory testing is needed. 
“Distance aware” uncertainty quantification techniques [18, 28] can also flag 
whether the input data is not supported by the training data (i.e. too different) for the 
modelling predictions to be relied on (something other uncertainties struggle with). 
There are many more applications of uncertainty.

The above examples illustrate some convincing applications of uncertainty that 
improve safety in AI assisted healthcare services. But of course, this all runs on the 
assumption that uncertainty estimates are perfectly reliable, which of course, they 
are not. So next we detail the basic limitations of uncertainty, to help understand 
when AI is overconfident and therefore dangerous.

2.2  The Limitations of Uncertainty

The major caveat to using uncertainty to proxy the predictive reliability is that mod-
ern machine learning models struggle to provide quality uncertainty estimates. This 
is mostly due to modern machine learning models (e.g. deep learning) being highly 
parameterised (like deep learning) [12] while failing to generalise to data distinct 
from the training data [7]. Importantly, most machine learning algorithms are deter-
ministic in order to make them scalable to large datasets. Deterministic algorithms 
often ignore the inherent randomness of nature, which is a major source of uncer-
tainty (as discussed above). To overcome this limitation, uncertainties can be esti-
mated by “randomising model outputs”1 (e.g. by randomising the parameters with 
“Bayesian inference”; see Fig. 2). While radomising the model outputs is not neces-
sary to approximate uncertainty, there is plenty of theoretical and empirical evidence 
suggesting that such randomised AI enhances the reliability and therefore safety of 
AI [14, 17], which is absolutely imperative in healthcare’s life-critical domain.2

There are still major hurdles to overcome before obtaining reliable uncertainties 
in AI and especially deep learning. One major issue is that a model’s uncertainty 
estimates fail to generalise beyond what the model is experienced with. A common 
failure mode if test data are too different from training input data (e.g. if the data 

1 We abuse terminology here as the details are esoteric and a little beside the point. Please refer to 
please refer to MacDonald [24] for a more accessible details about uncertainty in deep learning.
2 See Davis et al. [14] for a practical prescriptive guide on how to estimate uncertainties in deep 
learning.
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belongs to an unseen and novel class) is that extremely small uncertainties will 
accommodate false predictions, which we call “Silent Catastrophic Failure”. This is 
in large part because a central assumption is broken: test data are not independent 
nor identically distributed to the training data. For example, some models trained on 
data from one hospital can have poorer accuracy when testing on data from a differ-
ent hospital, while additionally yielding misleadingly smaller estimates of uncer-
tainty [14, 25]. This is a heavily studied pathology of AI which is often called 
overconfidence. This overconfidence problem has many contributing factors, some 
of which are caused by test data being too different from training data, but there is 
also contribution from the design choices of deterministic models. It has been 
proven that passing a single point estimate through the SoftMax layer of a neural net 
will lead to larger confidence scores than if a distribution is parsed through the 
SoftMax layer [17]. Overconfidence can lead to unsafe predictions and a higher rate 
of false predictions, which in healthcare is unacceptable. Research that aims to 
overcome this specific pathology suggests that in big data settings deep ensembles 
[11, 18] and “distance aware” models (Amersfoort et al. [39, 40]) might be the most 
practical and most effective way forward.

3  Interpretations from Significance – Explaining Predictions 
with Associative Reasoning

Almost all machine learning problems are framed with respect to some set of inputs 
(i.e. features) which are then transformed by the model to produce the desired out-
put (e.g. classification). Ultimately, each of the features used will have some level 

Fig. 2 Monte Carlo dropout is one way where model outputs can be randomised. Given a single 
input x, the neural network model makes multiple different predictions of y = f(x, Θt) of by switch-
ing off (grey circle) and on (black circle) neurons at random. The uncertainty is simply the variance 
(i.e. “spread”) of all these estimates. (Figure extracted from Ref. [24])

Interpretable AI in Healthcare: Enhancing Fairness, Safety, and Trust



248

of contribution towards the model’s output. However, identifying the most impor-
tant features – those that contribute most towards inference – requires the next step 
in interpretive power: significance. Some features contribute more meaningfully to 
the task at hand than others, both at a global scale (across the whole population of 
data points) and a local scale (about individual data points). Interpreting feature 
importance from machine learning models is not a trivial task as the models are non- 
linear and a high dimensional parameter space must be translated into some mea-
sure of feature significance. There are a number of different statistics available to 
help tackle this (e.g. SHAP [22], LIME [29], L2X [8], and p-values [31]), each with 
their respective strengths and weaknesses. However, methods to obtain such statis-
tics (except for p-values and Bayes factors, the latter of which we do not discuss 
herein) are reliant on interpreting feature importance by simple ordering on the 
magnitude of their respectively calculated numerical scales, saying nothing about 
how far down the list the meaningful features propagate, resulting in arbitrary cut- 
offs at a desired feature number.

This limitation stems primarily from the fact that the distributional properties of 
the saliency estimates, such as SHAP values, have not yet been mathematically 
proven. Consequently, preventing calculation of thresholds trusted by frequentists, 
such as p-values. Although there are potential avenues to overcome this limitation, 
there is no doubt that the lack of established significance standards makes it very 
difficult to reliably separate signal from noise. One simple way of approximating 
p-values would be by numerical ranking of the values converting them to quantiles 
drawn from some assumed, underlying distribution (the most frequently assumed is 
gaussian). However, just as it is true with the distributional transformations of data, 
e.g., taking the log of variables to improve the assumption of normality, it does not 
change the fact that the distribution of the original values could have been very dif-
ferent from the assumed ranks, making interpretations of significance tricky 
and unsafe.

Understanding the nature of the phenotype of interest can also present an alterna-
tive solution to p-values. For example, Yap et  al. [42], investigated reliability of 
SHAP values, by benchmarking the results from a Neural Network (NN) against a 
known and trusted traditional bioinformatic tool, edgeR [31]. The authors used 
IntegratedGradient method from the SHAP family, which is essentially an amalga-
mation of Integrated Gradients [38], SHAP [22], and SmoothGrad [37] to explain 
learning processes of the NN. Given that their trait of interest was predicting dif-
ferential expression of multiple tissue types, they estimated a point of “significance” 
as a function of tissue exclusivity, drawing the line at 50% of identified top genes 
being tissue exclusive. Although conservative, this approach aimed to balance the 
importance of genes uniquely characteristic to an individual tissue as well the pleio-
tropic candidates (one gene playing an important role in many tissues) which are 
often observed in complex traits. This set of genes, called by the authors, “SHAP 
genes’‘, showed remarkable replicability when compared to a set extracted from a 
totally independent sample (using identical methodology, overalp varied between 
20% and 60% across all tissues), as well as when compared to genes identified by 
edgeR (r  =  0.98%). In addition, gene-sets from within individual tissues were 
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enriched in pathways consistent with expectations from domain experts in biology 
(e.g., Fig. 3).

Further benchmarking against edgeR, a more standard (and trusted) technique, 
revealed that expression profiles of the SHAP genes could predict tissue types more 
accurately than edgeR genes even though there were fewer of them (n = 2423 and 
n = 7854 respectively). Prediction accuracy in this instance was inferred from the 
quality of cluster formations in an independent dataset. Clusters were calculated 
using k-means clustering on the UMAP dimensionality reduced data, followed by 
the calculation of the V-Measure, which is essentially a measure of not only how 
well samples of the same label group together but also how homogenous each clus-
ter is (refer to Fig. 4).

As mentioned earlier, the cut-off threshold was selected to optimise the balance 
between unique gene signatures within as well as across tissues. This design was 
purposeful as edgeR is limited to pairwise comparisons, hence designed to identify 
the signature of an individual tissue separately. The comparison of the effect sizes 
estimated for these genes showed that NNs are indeed sensitive to subtle effects of 
those general genes (Fig. 5).

This study illustrates that although the lack of p-values makes for challenging 
interpretability of AI, alternative ways of identifying “significant” features exist and 
can be very useful if designed and tested very carefully.

Finally, the difficulty with many learning features is they are fundamentally 
based on correlations between the input features and output features, so they don’t 
necessarily tell us anything about causality (which will be discussed later). However, 
as demonstrated above, knowledge of feature contribution does enable a greater 
interpretation of the model’s inner workings. Illuminating exactly which pieces of 
information stand out, even if at an arbitrary level, can be used not only to identify 
important features, but also to prevent silent failures due to ever present 

Fig. 3 Reactome pathway analysis. This enrichment of pathways for Heart – AA (atrial append-
age) and Thyroid tissue. (Figure extracted from Ref. [42])
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confounders. As an example of such danger, an AI algorithm used to diagnose lung 
infection from an X-ray scan was found to use the type of X-ray machine used, 
when making its predictions [10]. A closer look revealed that patients who were too 
sick to get out of bed were X-rayed using a portable type of x-ray, hence the spuri-
ous correlation that should have been controlled for. This model biasing could have 
potentially catastrophic outcomes if its predictions were trusted in real-world 
scenarios.

4  Interpretations from Causality – Explaining Hypothetical 
Outcomes with Causal Reasoning

Interpretations of causality are the most informative for explanations. As mentioned 
above, most ML methods only recognise associations between variables (e.g. linear 
correlations). Associative models disregard causality and as such are unable to dis-
entangle confounding biases or ask hypothetical “what if” kinds of questions. 
Conversely, models endowed with the correct and complete causal structure possess 
the direction between causes and effects, thus enabling causal reasoning. Causal 
reasoning involves estimating different outcomes from corresponding hypothetical 
interventions which may or may not have yet been observed. This ability to estimate 

Fig. 4 V-Measure of k-means clustering analysis on UMAP. k-means clustering was performed 
using SHAP genes (2423 genes), 10 random sets of 2423 genes, edgeR genes (7854 genes), and all 
genes (18,884 genes). (Figure extracted from Ref. [42])
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outcomes, or “imagine”, via correct causal reasoning would improve control in 
decision making processes. For example, intervening with variables (e.g. levels of a 
drug) that are causal to an outcome of interest (e.g. toxicity) will affect patient out-
comes. On the other hand, intervening with variables (e.g. alertness caused by the 
drug) that are not causal to the toxicity will have no effect, even if observational 
records show a spurious correlation between alertness and toxicity. This example is 
just a thin slice of why causality is important. The whole picture is far more compli-
cated, and is still a very new frontier in machine learning research.

There are two major fields of research in causal inference: (1) estimating causal 
relationships and (2) estimating causal effects. In this chapter we only address esti-
mating causal effects.3 For the rest of this section, we outline why we are motivated 
to understand the role of causal machine learning using examples in diagnosis, and 

3 We refer the interested reader to Peters J. et al. [27] for a comprehensive review of causal infer-
ence including methods for estimating causal relationships.

Fig. 5 Violin plots of the top genes unique and common to the edgeR and SHAP methods at the 
individual tissue level. (Figure extracted from Ref. [42])
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treatment recommendation, while addressing the key assumptions and limitations 
that must be addressed.

4.1  Diagnosis

Causality Is Crucial for Explaining Risk Factors in Diagnosis This can be high-
lighted by considering the example detailed by Richens et  al. [30], where an AI 
model was tasked with diagnosing pneumonia. In this example, the level of patient 
care was not accounted for and therefore a hidden confounder. Asthmatic patients 
admitted for pneumonia are given significantly more treatment, when compared to 
other patients and therefore have lower mortality rates (despite the higher risk). As 
such, associative models (ignoring causality) would figure asthma as a protective 
risk factor. This erroneous explanation would be a dangerous conclusion as the ML 
model would lead an automated system to suggest less aggressive treatment for 
asthmatic patients. Alternatively, interpretations about the causal relationships 
between variables would have made such a conclusion much more unlikely, as the 
confounding attention could be controlled for, and asthma may not then present 
itself as a factor for improved outcome.

Causal Reasoning Can Improve Predictive Accuracy Association based models 
may leverage spurious relations that would be damaging when evaluating data dis-
tinct from what it was trained for (e.g. testing in a new Hospital or country). Causal 
models suffer less from this pitfall. For the task of diagnosis, Richens et al. [30] 
compared the predictive performances between an associative model, a causal- 
aware model, and a cohort of 44 doctors. The associative algorithm achieved simi-
larly with the average doctor, respectively scoring accuracies of 72.5% and 71.4%, 
while the causal-aware model achieved a mean accuracy of 77.3%. The causal- 
aware model was particularly good at rare-diseases.

4.2  Decision Making – Individualised 
Treatment Recommendation

The Task of Recommending some Treatment W to a Patient Depends on the 
Description of the Patient  X and Outcome  Y The decision is based on the 
expected treatment effect T for that patient T = Y (1)–Y (0), where Y (1) and Y (0) denote 
the potential outcome with and without treatment, respectively. Traditionally, treat-
ment effects are only known at the population level (i.e. Averaged Treatment Effects) 
and typically quantified with careful and expensive clinical trials that can cost 
upwards of hundreds of millions of dollars [19]. Averaged Treatment Effects are 
useful but fail to differentiate effects between sub-populations of the trialled cohort 
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(understand Fig. 6). On the other hand, with causal machine learning, Individual 
Treatment Effects can be estimated to imagine different potential outcomes Y (W) 
which depend on an individual’s characteristics X and treatment option W. Thus, 
individualised treatment recommendations can be made by interpreting the 
Individual Treatment Effects [5]. There are many pros and cons for using observa-
tional data versus randomised clinical trials to estimate treatment effects, we discuss 
this in the next subsection. In this subsection we focus on the opportunities within 
learning individualised treatment effects on observational data for the task of treat-
ment recommendation.

While It Is Possible, a Standard Supervised Model Should Not Be Used for 
Individualised Treatment Recommendation Treatment recommendation should 
be based on the expected treatment effect T. A single supervised function can be 
trained to learn an outcome  Y based on the patient description X  and treatment 
option W, such that Y (W) = f(X,W). In this scheme, the treatment effect could be 
approximated by toggling the treatment variable between the various states, such 
that the treatment effect T = f(X, 1) − f(X, 0). This is not advised, as the function 
learns only one outcome-response curve to describe two potential outcomes. These 
two potential outcomes Y (1) and Y (0) may have different properties and thus need 
distinct ways in which they are described. To increase flexibility, other supervised 

Fig. 6 Average treatment effects (ATEs) represent the average population and, if derived from a 
randomised clinical trial, are often trusted. ATEs do not represent the individuals, especially those 
who are particularly unique. This is what motivates causal machine learning techniques to model 
individualised treatment effects
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techniques aim to learn two unique functions (one for each potential outcome), but 
this then dramatically reduces the available learning data, which now has to be split 
(unevenly) between two functions. As such, causal machine learning techniques 
aim to learn multiple outcome-response curves using a shared function (e.g. with 
multi-task learning), whereby information can be shared between the two potential 
outcome’s response curves, while respecting the flexibility required to provide 
unique properties to each potential outcome’s underlying process. We recommend 
Bica et al. [4], for a good review on the topic.

Causal Machine Learning Techniques Learn Individualised Treatment Effects 
for a Variety of Frameworks Treatment options can be categorical, including 
binary treatment [1], categorical treatment [9], and combinations of treatments [4]. 
Each of these treatment options can be complimented with continuous dosage levels 
too [35]. Furthermore, side-effects can be modelled in addition to outcomes, thus 
enabling a compromise for a safer treatment recommendation.

4.3  Assumptions, Challenges, and Limitations in Causal 
Machine Learning

While there is much promise in using causal machine learning to estimate individ-
ual treatment effects and in turn allow for careful treatment recommendation sys-
tems, the modelling assumptions are complex and require careful attention in order 
to arrive at correct conclusions.

Observational Data for Estimating Individual Treatment Effects Is Extremely 
Biased (e.g Electronic Health Records) For example, patients burdened with an 
advanced cancer with a high tumor mutational burden may be more likely to receive 
immunotherapy [13]. Not controlling for this bias can lead to concluding immuno-
therapy treatment leads to harm. These biases additionally result in distributional 
differences (i.e. dataset shifts) between the treated patients and non-treated patients. 
Traditional supervised techniques will fail to generalise in such settings due to limi-
tations already discussed (recall the spurious dependencies). Some ways to control 
for this bias can include learning balanced representations [36], or by adjustments 
with the propensity score (probability of being assigned treatment) [33].

Causal Inference Assumes there Are No Hidden Confounders [27] To assume 
there are no hidden confounders, one should consult domain experts who can be 
sure of its validity. This is rarely the case. As such, multiple machine learning meth-
ods have been developed to adjust for the hidden confounders. The most successful 
way to do this may be by modelling the hidden confounder with a “latent variable” 
([21]; [41]; [43]). Zhang et al. [43] shows an example with data from an electronic 
health record (EHR) where non-causal treatments are recommended when latent 
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variable modelling is ignored, hence highlighting the significance of hidden 
confounders.

Causal Inference Is Only Reliable If the Potential Outcomes Y (W) Have Shared 
Support [27] In other words, the treatment effects for a patient can only be relied 
on if that patient has a non-zero probability of receiving any of the treatment options. 
This is difficult to guarantee in practice. Ways around this limitation is to either 
characterise the “overlap of shared support” [26]. Alternatively, we identify that the 
assumption of shared support may be inspected using distance-aware uncertainty 
estimates (e.g. from Gaussian processes), whereby large model (i.e. “epistemic”) 
uncertainties might indicate where the assumption of shared support is not valid and 
thus where inference is not trustworthy.

Individual Treatment Effects Are Technically Impossible to Perfectly 
Evaluate The fundamental challenge of causal inference is that we can only 
observe factual outcomes. We can only observe a single outcome for each patient – 
the factual outcome. The counterfactual outcome that would have occurred in the 
imaginary world where the patient received a different treatment is unobservable. 
Thus, we cannot estimate the error in our estimated individual treatment effects. To 
overcome this limitation, quasi-evaluation techniques are undertaken on semi- 
synthetic data, whereby confounding biases are introduced by applying treatments 
according to unbalanced Bernoulli or Categorical distributions.

Data Quality Is the Most Limiting Challenge in Causal Machine 
Learning Electronic health records (EHRs) have the benefit of being highly avail-
able in large quantities and extremely heterogeneous, all of which lends itself well 
to data-driven techniques such as machine learning. Although algorithms trained on 
EHRs have less regulatory acceptance, large amounts of missing data (for many 
different reasons) and extreme amounts of observation biases [2]. To overcome data 
quality pitfalls of EHRs, efforts are being made to combine EHRs and data from 
randomised controlled trials (RCTs). For example, Kallus et  al. [15] adjust con-
founding biases inherent in EHRs using data from RCTs. Other techniques can be 
imagined, for example we could propose to cross-check the averaged treatment 
effect from observation-based estimates against the average treatment effect from a 
corresponding RCT.

5  Conclusion

Healthcare demands transparent and interpretable AI in order for us to meet the 
strict criteria of safety, fairness, and reliability for acceptable decision making and 
justified explanations of scientific hypotheses (Fig. 1). What plagues the adoption of 
AI into healthcare is the black box problem, which can be explained in terms of the 
trade-off between model complexity and interpretability. In order to overcome the 
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black box problem we must be aware of different interpretations that are possible 
from machine learning models and their limitations. As such, we explained the 
canonical layers/components of interpretable AI: predictions, uncertainty, signifi-
cance, and causality. We additionally explained how these different types of inter-
pretations can support various explanations (e.g. that interpretations from uncertainty 
support explanations about safety and reliability). The pertinent message we wanted 
to convey in this chapter was that the Blackbox problem is the major barrier to reli-
able AI in healthcare. Once this is overcome, we expect AI to dramatically improve 
the productivity of the systems in healthcare while improving patient outcomes, not 
just in terms of their health, but also in a way that is fair to us all.
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