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Abstract

Explaining time series classification models is crucial, particularly in high-stakes
applications such as healthcare and finance, where transparency and trust play a
critical role. Although numerous time series classification methods have identi-
fied key subsequences, known as shapelets, as core features for achieving state-
of-the-art performance and validating their pivotal role in classification outcomes,
existing post-hoc time series explanation (PHTSE) methods primarily focus on
timestep-level feature attribution. These explanation methods overlook the fun-
damental prior that classification outcomes are predominantly driven by key
shapelets. To bridge this gap, we present SHAPEX, an innovative framework
that segments time series into meaningful shapelet-driven segments and employs
Shapley values to assess their saliency. At the core of SHAPEX lies the Shapelet
Describe-and-Detect (SDD) framework, which effectively learns a diverse set of
shapelets essential for classification. We further demonstrate that SHAPEX pro-
duces explanations which reveal causal relationships instead of just correlations,
owing to the atomicity properties of shapelets. Experimental results on both syn-
thetic and real-world datasets demonstrate that SHAPEX outperforms existing
methods in identifying the most relevant subsequences, enhancing both the preci-
sion and causal fidelity of time series explanations. Our code is made available at
https://github.com/BosonHwang/ShapeX

1 Introduction

Time series classification plays a critical role across various domains [1]. While deep learning mod-
els have significantly advanced classification performance in this area, their black-box nature often
compromises explainability. This limitation becomes particularly critical in high-stakes applica-
tions such as healthcare and finance, where reliability and accuracy are paramount. Most research
on time-series model explainability focuses on post-hoc time-series explanation (PHTSE), predom-
inantly via perturbation-based methods at the timestep level. For example, Dynamask [2] generates
instance-specific importance scores through perturbation masks. Similarly, TIMEX [3] trains a sur-
rogate model to mimic pretrained model behavior, whereas TIMEX++ [4] leverages information
bottleneck to deliver robust explanations.

Despite these advancements, existing methods neglect an essential aspect of time series classifi-
cation: the classification outcomes are often driven by key subsequences rather than individual
timesteps. Recently, several classification methods [5, 6, 7] have emphasized the significance of
utilizing these crucial subsequences, known as shapelets. Take some examples for intuitive under-
standing: In electrocardiogram (ECG) signal classification, specific segments like the QRS com-
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plex are critical for accurate diagnostics [8]. In human activity recognition (HAR), patterns like
gait cycles play a decisive role in classifying activities [9]. Recent methods have expanded upon
this foundational knowledge, exploring diverse strategies to incorporate shapelets into classification
frameworks. For instance, ShapeFormer [6] employs a discovery algorithm to extract class-specific
shapelets and incorporates them into a transformer-based model to enhance classification perfor-
mance. Wen et al. [7] generalizes shapelets into symbolic representations, enhancing flexibility and
expressiveness. Similarly, Qu et al. [5] demonstrates that convolutional kernels can naturally func-
tion as shapelets, offering both strong discriminative power and interpretability. Together, these
approaches underscore a growing consensus that shapelets are not only interpretable but also central
to the performance of modern time series classification models.

(d). Shapelet-driven 
segment-level 
perturbation:

(c). Equal-length segment-level
perturbation:

Original timesteps: Perturbed timesteps: True saliency score: Different segments: 

(b). Timestep-level
perturbation: 

(a). Original
ECG signal

Take QRS complex
as saliency score

Figure 1: Perturbation strategies on an ECG
example. (a) shows the original signal with
saliency labels derived from QRS complexes—
clinically critical regions for arrhythmia classifi-
cation. (b)–(d) apply timestep-level, equal-length,
and shapelet-driven perturbations, respectively.
Only (d) maintains alignment with the salient re-
gions.

Although shapelets are widely recognized as
key features in time series classification, ex-
isting explanation methods primarily rely on
perturbing individual timesteps to compute
saliency scores. This disrupts local tempo-
ral dependencies and fails to capture the holis-
tic influence of key subsequences, resulting in
fragmented and less interpretable explanations.
As shown in Figure 1 (b), timestep-level per-
turbations are scattered, making it difficult to
align with true saliency patterns. While equal-
length segment perturbations (Figure 1 (c))
may further reduce interpretability by splitting
meaningful patterns or merging unrelated sub-
sequences. To overcome these limitations, an
ideal approach should perturb segments aligned
with meaningful shapelets, as illustrated in Fig-
ure 1 (d). This preserves the atomicity of key
subsequences, potentially leading to more faithful and interpretable explanations. However, exist-
ing time series segmentation methods primarily detect statistical change points [10, 11] or extract
subsequences unrelated to determining classification outcomes [12], making them unsuitable for
explaining model behaviors.

To fill the gaps, we introduce SHAPEX, a novel approach that segments the time series into mean-
ingful subsequences and computes Shapley value [13] as saliency scores. Instead of distributing im-
portance across individual timesteps, SHAPEX aggregates timesteps into cohesive, shapelet-driven
segments that serve as “players” in the Shapley value computation. By measuring each segment’s
marginal contribution to the black-box model’s prediction, this method clearly identifies which sub-
sequences significantly influence classification outcomes. Specifically, the Shapelet Describe-and-
Detect (SDD) framework within SHAPEX efficiently discovers representative and diverse shapelets
most critical for classification. Subsequently, SHAPEX segments the time series to align closely
with these dominant temporal patterns, yielding more accurate and interpretable explanations. Our
key contributions are summarized as follows:

1. SHAPEX pioneers PHTSE at the shapelet-driven segment level, offering a precise and prin-
cipled alternative to timestep-level methods. Its SDD framework is the first shapelet learn-
ing approach designed specifically for PHTSE, enforcing representativeness and diversity.

2. We provide a theoretical justification for interpreting the Shapley value computed by
SHAPEX as an approximation of the model-level Conditional Average Treatment Effect
(CATE), thereby enabling more trustworthy and robust interpretations across diverse real-
world datasets.

3. Our experiments demonstrate that SHAPEX consistently outperforms the baseline models,
delivering more accurate and reliable explanations in critical applications. To our knowl-
edge, it is also the first approach to conduct a large-scale, occlusion-based evaluation across
the entire UCR archive of 100+ datasets, establishing a more comprehensive benchmark for
explanation quality.
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2 Related Work

The field of time series explainability has gained increasing attention, aiming to interpret the decision
process of black-box models applied to temporal data [14, 15]. Existing methods are commonly cate-
gorized into in-hoc and post-hoc approaches. In-hoc methods embed interpretability directly into the
model, typically via transparent representations such as Shapelets or self-explaining architectures,
as seen in TIMEVIEW [16] and VQShape [17]. In contrast, post-hoc methods generate explanations
after the model has been trained and are further divided into gradient-based and perturbation-based
techniques. The former includes Integrated Gradients (IG) [18] and SGT+GRAD [19], while the lat-
ter observes prediction changes under input perturbation, as in CoRTX [20] and other related work.
For convenience, and following prior literature focused specifically on temporal data, we refer to
post-hoc explainability methods in the time series domain as Post-Hoc Time Series Explainability
(PHTSE).

Several foundational studies have underscored the unique challenges of explaining time series mod-
els, such as the limitations of standard saliency techniques [15], the use of KL-divergence to quantify
temporal importance [21], and the development of symbolic shapelet-based explanation rules [22].
These works laid a foundation for understanding the temporal nature of model explanations.

Building on these insights, a major line of recent work has focused on PHTSE. Unlike generic
saliency methods, PHTSE methods are explicitly designed for time-dependent inputoutput map-
pings. Representative approaches include Dynamask [2], which learns instance-specific perturba-
tion masks; WinIT [23], which models varying temporal dependencies via windowed perturbation;
and the TIMEX family [3, 4], which ensures faithfulness through interpretable surrogate models
and information bottleneck regularization. For a broader discussion of deep learning explainability
methods, see Appendix B.

3 Methodology

Figure 2 shows the two major phases of SHAPEX. Training: the Shapelet Describe-and-Detect
(SDD) framework learns a compact set of shapelets. Inference: these shapelets align segments that
are (i) perturbed at the Shapelet-Driven Segment Level (SDSL) and (ii) assessed with Shapley value
Attribution, producing faithful post-hoc explanations. To keep the discussion self-contained, we
begin by introducing the necessary background and notation.

3.1 Background & Notation

We address the task of explaining time series classification models in a post-hoc manner. Given a
trained black-box model that predicts class labels from time series data, our goal is to analyze its
behavior by identifying which input components contribute most to the prediction.

Formally, let each input be a time series of length T , where each timestep t has a D-dimensional
feature vector Xt ∈ RD, forming X = [X1, X2, . . . , XT ]. The associated label Y lies in a C-
dimensional space, Y ∈ RC . The objective of time series classification is to learn a classifier f(·)
that maps X to its predicted label Ŷ = f(X).

To provide PHTSE, we employ an explanation method E(·) that produces saliency scores R ∈
RT×D, where each element Rt,d ∈ [0, 1] quantifies the importance of the input feature Xt,d for the
predicted label Ŷ . Higher values of Rt,d indicate stronger influence on the classification outcome. In
this work, we focus on the univariate setting, i.e., D = 1, and omit the feature dimension d for clarity;
all subsequent discussions assume univariate time series unless otherwise specified. Furthermore,
the evaluation of E(·) depends on the availability of ground-truth saliency labels: when available,
they serve as direct supervision or evaluation references; otherwise, occlusion-based perturbation is
used to assess the quality of the generated R.

In the realm of PHTSE methods, perturbation-based explanation methods represent the most pri-
mary category. We briefly present the essential background here; for a more detailed discussion of
perturbation paradigms, saliency granularity, see Appendix A.

The concept of shapelets has played a central role in time series interpretability. It was originally
introduced as short, class-discriminative subsequences directly extracted from raw time series [24].
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Figure 2: Overview of SHAPEX. In the training phase, given time series from dataset and the initial-
ized shapelets, 1 descriptor generates activation maps by 3 taking shapelets as the 1D convolution
kernel, demonstrating to which extent the input time series aligns with each shapelet. Meanwile, 2
detector locates key subsequences for the morphological matching of shapelets. Simultaneously, the
shapelets are optimized using three loss functions. In inference, the learned shapelets first trigger a
shapelet-driven segmentation of the test series; the resulting segments are next perturbed by SDSL
to obtain 4 P (X,MG′). Finally, Shapley value is applied to compute the final saliency scores.

These subsequences served as intuitive and interpretable building blocks, revealing characteristic
temporal patterns most indicative of specific classes. Under this classical definition, each shapelet
corresponded to an explicit segment of the input series and was closely tied to a particular class
identity. Over time, however, this notion has evolved into a more flexible and abstract representa-
tion. Modern approaches no longer require shapelets to be literal subsequences of the data; instead,
they can be viewed as prototypical temporal patterns learned through optimization or representation
learning [25, 26, 27, 7]. These learned shapelets are typically not class-specific but rather aim to
capture generalizable and semantically meaningful features shared across the dataset.

3.2 Shapelet Describe-and-Detect (SDD) Framework

This section introduces the SDD framework used during training to learn a compact set of discrimi-
native shapelets for segmenting time series into interpretable units.

Inspired by the Describe-and-Detect paradigm from image anomaly detection [28], we adapt this
idea to time series by designing shapelets that both activate strongly on discriminative regions and
serve as semantic prototypes. The SDD framework consists of a descriptor-detector layer to localize
high-activation regions, a shapelet encoder to enhance representation quality, and a multi-objective
training strategy that promotes classification relevance and diversity. In contrast to prior methods
that rely on large shapelet banks, SHAPEX emphasizes conciseness and discriminativeness through
joint optimization.

Descriptor-Detector Layer. To identify regions in the input time series that align with key patterns,
we apply a two-step matching mechanism consisting of a descriptor and a detector.

The descriptor uses a set of shapelets S = {S1, S2, . . . , SN}, where each Sn ∈ RL is a fixed-length
prototype, and N is the number of shapelets. For an input X ∈ RT , we compute a similarity map
I ∈ RT×N using valid-width 1D convolution:

I = X ∗ S + b, (1)

4



where ∗ denotes 1D convolution with same padding (i.e., zero padding on both sides), and b is a
learnable bias term. Each It,n represents the similarity between shapelet Sn and the local subse-
quence centered at position t.

We then apply a softmax across the shapelet dimension at each timestep to obtain an activation map
A ∈ RT×N :

At,n =
eIt,n∑N

m=1 e
It,m

. (2)

Here, At,n reflects the normalized alignment strength between Sn and X at time t.

The detector identifies the peak activation position t∗n = argmaxt At,n and extracts a subsequence
of length L centered at t∗n:

Xdetected
n = X[t∗n − ⌊L/2⌋ : t∗n + ⌊L/2⌋]. (3)

This segment Xdetected
n ∈ RL captures the region in X most strongly aligned with shapelet Sn,

forming the basis for downstream segmentation and attribution.

Shapelet Encoder and Training Losses. We apply a lightweight patch-based encoder to refine
the temporal structure of each shapelet; see Appendix C for details.

To jointly optimize shapelet quality, we define a composite loss over training samples (X,Y ), target-
ing three objectives: expressiveness, alignment accuracy, and diversity. Let S = {S1, S2, . . . , SN}
denote the set of learnable shapelets. The expressiveness loss encourages shapelets to be discrimina-
tive with respect to the target label. For each training mini-batch of size K, we obtain the predicted
probabilities Ŷi for each input by applying a projection layer to its activation map A. The expres-
siveness loss is defined as:

Lcls = −
K∑
i=1

(
Yi log Ŷi + (1− Yi) log(1− Ŷi)

)
. (4)

The matching loss promotes alignment between each Sn ∈ S and its most responsive segment
Xdetected

n , encouraging each shapelet to closely match the local temporal shape of the input. The di-
versity loss encourages non-redundancy by penalizing shapelet pairs with high similarity, promoting
angular diversity and preventing redundant patterns [29]. The two losses are defined as:

Lmatch =

N∑
n=1

d(Sn, X
detected
n ), Ldiv =

N∑
i=1

N∑
j=i+1

max (0, δ − sim(Si, Sj)) , (5)

where d(·) denotes the Euclidean distance, sim(·, ·) is the cosine similarity, and δ is a distance
margin. The total objective is a weighted combination of the above components:

L = Lcls + λmatchLmatch + λdivLdiv, (6)

where λmatch and λdiv balance alignment and diversity.

3.3 Shapley Value Attribution for Shapelet-Driven Segments

To perform post-hoc time series explanation, SHAPEX evaluates the importance of shapelet-aligned
segments through Shapley value analysis. These segments correspond to regions aligned with the
learned shapelets. Since this framework relies on marginal contributions over different coalitions,
we simulate segment inclusion or exclusion via perturbation: retaining a segment corresponds to
including it in the coalition, while perturbing it simulates its removal. This enables the computation
of saliency scores reflecting each segments contribution to the model output.

Shapelet-Driven Segmentation. To extract these segments, SHAPEX utilizes the shapelets
learned during training to extract interpretable segments that correspond to key morphological pat-
terns. These segments are derived from shapelet activation maps computed on the test input, en-
abling a structured and semantically meaningful decomposition of the time series.

Specifically, for a time series X ∈ RT from the test set and each learned shapelet Sn ∈ S =
{S1, . . . , SN}, we compute the activation map An ∈ RT using the trained SDD from Section 3.2,
indicating alignment strength between X and Sn across timesteps.
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To extract high-activation regions, we apply a threshold Ω to obtain:

T(Sn) = { t ∈ {1, . . . , T} | An,t > Ω }. (7)

The corresponding segment is:
X(Sn) = {Xt | t ∈ T(Sn)}, (8)

capturing the region in X that is morphologically aligned with shapelet Sn.

Let G = {1, 2, . . . , N} index the set of shapelet-aligned segments {X(Sn)}Nn=1, each corresponding
to a shapelet Sn ∈ S . For any subset G′ ⊆ G, the union of activated timesteps is defined as:

T(G′) =
⋃

n∈G′

T(Sn). (9)

These shapelet-driven segments serve as explanation units in the Shapley value analysis that follows.

Shapelet-driven Segment-Level (SDSL) Perturbation. We define a binary perturbation mask
M(G′) ∈ RT for any subset of segment indices G′ ⊆ G = {1, . . . , N}:

M(G′) =

{
1, t ∈ T(G′)

0, t ∈ T \ T(G′),
(10)

where the perturbation function defined in Equation 14 is instantiated as P (Xt,M(G′)). However,
the current baseline valuing approach, whether zero-filling or averaging, often introduces abrupt
changes at boundaries. These changes may prevent the value function in Shapley value from fully
eliminating the influence of segments outside the coalition. To address this, we propose a linear
perturbation, where the baseline value Bt is set as:

Bt = Xtstart +
t− tstart

tend − tstart
(Xtend −Xtstart), t ∈ [tstart, tend], (11)

where Xtstart , Xtend are the values at the boundaries of the perturbed region. This design isolates the
contribution of X(G′) and enables Shapley value computation. Intuitively, this linear interpolation
creates a smooth transition between the two boundaries, preventing artificial discontinuities when a
segment is masked.

Shapley Value Computation. We compute the Shapley value ϕn for each segment X(Sn) (indexed
by n ∈ G) as:

ϕn =
∑

G′⊆G\{n}

|G′|! (|G| − |G′| − 1)!

|G|!
[
f
(
P
(
X,M(G′∪{n})

))
− f

(
P
(
X,M(G′)

))]
, (12)

where Xtstart and Xtend are the values at the boundaries of the perturbed region, and P (X,M(G′)) de-
notes the perturbed input defined in Equation 14. The coefficient gives the probability that segment
n is added after the subset G′ in a random ordering of all segments, and f(·) denotes the black-box
classifier.

To further reduce the complexity in computation and based on the assumption of temporal depen-
dency, we apply a temporary-relational subset extract strategy, which is to restrict the range of
coalitions in Shapley value to a subset of segments that are directly or indirectly connected to the
current X(Sn). This modification reduces the computational complexity of each segments Shapley
value from O(N !) to O(N). Ultimately, the saliency score is computable using Equation 19 (see
Appendix A for the detailed formulation).

4 ShapeX as Approximate Causal Attribution

In this section, we present a theoretical analysis of SHAPEX as a method for approximate causal
attribution in time series models.

Most post-hoc explainers for time series models merely expose correlations: they estimate the asso-
ciations between input regions and model predictions, often by training proxy models or computing
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correlation-based importance scores. However, these methods do not guarantee that the highlighted
regions are causal drivers of the model’s predictions. In contrast, SHAPEX is designed to provide
model-level causal insight by explicitly conducting causal intervention [30]. Specifically, SDSL
perturbation interprets the actions of “keeping vs. masking a segment” as an intervention in the mod-
els input space, while shapelet-driven segmentation isolates semantically coherent subsequences for
calculating Shapley value. By framing perturbations as interventions, SHAPEX moves beyond corre-
lational explanations to provide causal attributions that are more robust to confounding noise, more
stable across re-training, and better aligned with practitioners needs in sensitive domains such as
medical triage.

To formalize the causal semantics of SHAPEX, we demonstrate that its attribution mechanism ap-
proximates the concept of the CATE [31, 32]. The CATE quantifies the expected change in an
outcome resulting from a specific intervention, conditioned on a given context. In our setting, the
outcome is the model prediction f(X), the intervention is whether a shapelet-aligned segment X(Sn)

is retained or masked, and the context is defined by the remaining segments indexed by G′ ⊆ G\{n},
where G = {1, . . . , N} is the set of all segment indices. Shapelet-driven segmentation naturally pro-
vides localized and semantically coherent regions, making it particularly well-suited for modeling
such conditional interventions. Importantly, the resulting CATE in this setting is defined with respect
to the model prediction, not the true outcome Y . Hence, we refer to this quantity as the model-
level CATE, denoted by τmodel, measuring the causal strengths of X(Sn) on f(X). We formalize
this relationship in the following proposition:
Proposition 1 (Shapley Value as Model-Level CATE). Let f(X) denote the models prediction for
input X , and let X(Sn) denote the segment aligned with shapelet n ∈ G, where G = {1, . . . , N} is
the index set of all segments. Then, under the intervention defined by retaining or masking segment
X(Sn), the Shapley value ϕn computed as

ϕn = EG
[
f(XG′∪{n})− f(XG)

]
(13)

is equivalent to the model-level CATE τmodel
n , conditioned on context G′ ⊆ G \ {n}.

A detailed proof is provided in Appendix D. This equality holds exactly when all coalitions G are
exhaustively enumerated. Under subset sampling, the estimator remains unbiased given a valid
surrogate randomization mechanism.

0 20 40 60 80
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 PhalangesOutlinesCorrect

Figure 3: The saliency scores generated by
SHAPEX and TIMEX++ on PhalangesOut-
lineCorrect dataset.

We further conduct a case study in Figure 3 to un-
derline this mechanism, see Appendix G.3 for de-
tails: TIMEX++-based maps scatter importance across
many timesteps, hinting only at a loose association
with the outcome. SHAPEX, however, concentrates
saliency on the growth plate transition region, the true
biomechanical determinant of class labels, providing
visually plausible evidence of a causal structure.

5 Experiments

The explanatory effectiveness of SHAPEX is assessed across four synthetic datasets and a compre-
hensive suite of real-world datasets, considering two different perspectives: (1) For datasets with
ground-truth saliency scores, we conduct saliency score evaluation experiments. (2) For datasets
without ground-truth saliency scores, we perform occlusion experiments [2]. The best and second-
best results in all experiments are highlighted in bold and underlined, respectively. In terms of the
black-box models to be explained, we select four of the most widely used time series classification
models: Transformer [33], LSTM [34], CNN [35] and MultiRocket [36]. The experimental results
presented in the main body are all based on vanilla Transformer [33] as black-box models. Further
experimental details can be found in Appendix E.

Datasets. We evaluate on both synthetic and real-world time series. The synthetic data includes four
motif-based binary classification datasets: (i) MCC-E, (ii) MTC-L, (iii) MCC-L, and (iv) MTC-
E, following [37]. Each sample is annotated with ground-truth saliency for evaluating explanation
quality. For real-world data, we use the ECG dataset [38], which similarly provides ground-truth
labels, and the full UCR Archive [39], comprising over 100 univariate classification datasets across
diverse domains. Further details are provided in Appendix E.1.
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Table 1: Saliency evaluation on synthetic datasets using Trans-
formers as black-box model. Dark blue marks better values.

MCC-E MCC-H
METHOD AUPRC AUP AUR AUPRC AUP AUR

IG [18] 0.3630±0.0052 0.4825±0.0077 0.4671±0.0053 0.4363±0.0058 0.5100±0.0061 0.5793±0.0053
DYNAMASK [2] 0.3251±0.0046 0.4722±0.0098 0.0711±0.0026 0.3506±0.0034 0.1832±0.0023 0.1574±0.0034
WINIT [23] 0.1675±0.0044 0.1575±0.0113 0.3861±0.0066 0.1482±0.0036 0.0974±0.0054 0.4442±0.0073
CORTX [20] 0.4762±0.0055 0.5238±0.0174 0.4589±0.0157 0.6195±0.0036 0.5358±0.0159 0.5428±0.0033
MILLET [40] 0.1730±0.0057 0.2178±0.0071 0.1641±0.0072 0.3016±0.0046 0.2741±0.0082 0.2951±0.0034
TIMEX [3] 0.3691±0.0042 0.3207±0.0038 0.6313±0.0033 0.4436±0.0029 0.6668±0.0055 0.3649±0.0031
TIMEX++[4] 0.3676±0.0038 0.4998±0.0064 0.2801±0.0037 0.6393±0.0041 0.6411±0.0038 0.4879±0.0015

SHAPEX_SF 0.1832±0.0024 0.1709±0.0061 0.2215±0.0043 0.2515±0.0013 0.1511±0.0061 0.7210±0.0057
SHAPEX 0.6407±0.0036 0.5614±0.0076 0.3679±0.0050 0.8113±0.0013 0.6838±0.0054 0.7431±0.0055

MTC-E MTC-H
METHOD AUPRC AUP AUR AUPRC AUP AUR

IG [18] 0.1467±0.0011 0.1468±0.0027 0.5402±0.0041 0.3096±0.0030 0.5317±0.0061 0.4963±0.0059
DYNAMASK [2] 0.1388±0.0006 0.1010±0.0020 0.2796±0.0043 0.2596±0.0022 0.4955±0.0074 0.1894±0.0034
WINIT [23] 0.1407±0.0029 0.0914±0.0053 0.0053±0.0062 0.1504±0.0038 0.0914±0.0045 0.4624±0.0060
CORTX [20] 0.1875±0.0061 0.1749±0.0096 0.5259±0.0171 0.2428±0.0101 0.2405±0.0143 0.5430±0.0056
MILLET [40] 0.1419±0.0053 0.1103±0.0037 0.1550±0.0153 0.2071±0.0109 0.2312±0.0025 0.3518±0.0010
TIMEX [3] 0.2479±0.0025 0.6301±0.0070 0.0935±0.0009 0.3799±0.0016 0.8890±0.0023 0.1542±0.0010
TIMEX++[4] 0.2424±0.0021 0.4906±0.0064 0.2632±0.0031 0.3903±0.0025 0.8996±0.0014 0.1448±0.0012

SHAPEX_SF 0.3569±0.0032 0.1520±0.0036 0.4611±0.0015 0.3852±0.0124 0.7350±0.0046 0.1384±0.0010
SHAPEX 0.6100±0.0048 0.3962±0.0067 0.5472±0.0082 0.6792±0.0014 0.4255±0.0024 0.9019±0.0041

Table 2: Saliency score on the
ECG dataset.

METHOD AUPRC AUP AUR

IG 0.4182±0.0014 0.5949±0.0023 0.3204±0.0012
DYNAMASK 0.3280±0.0011 0.5249±0.0030 0.1082±0.0080
WINIT 0.3049±0.0011 0.4431±0.0026 0.3474±0.0011
CORTX 0.3735±0.0008 0.4968±0.0021 0.3031±0.0009
MILLET 0.3017±0.0024 0.4721±0.0062 0.3098±0.0008
TIMEX 0.4721±0.0018 0.5663±0.0025 0.4457±0.0018
TIMEX++ 0.6599±0.0009 0.7260±0.0010 0.4595±0.0007

SHAPEX_SF 0.4723±0.0012 0.6851±0.0047 0.3274±0.0034
SHAPEX 0.7228±0.0028 0.8395±0.0030 0.6961±0.0032

Table 3: Ablation on ECG.
Ablations AUPRC AUP AUR

Full 0.7225±0.0028 0.8399±0.0030 0.6958±0.0032
w/o M 0.2398±0.0022 0.2055±0.0019 0.7117±0.0041
w/o D 0.3671±0.0030 0.4973±0.0047 0.3619±0.0022
w/o SE 0.2073±0.0019 0.1597±0.0014 0.7504±0.0037
w/o LIN 0.7085±0.0030 0.7739±0.0036 0.6904±0.0032
w/o SEG 0.6975±0.0026 0.7321±0.0033 0.3847±0.0019

M: matching loss ; D: diversity loss ; SE: shapelet encoder
LIN: LINEAR; SEG: SEGMENT.

Benchmarks. The proposed methods are compared with multiple benchmark approaches (see Ap-
pendix E.2 for benchmark details and metric definitions.): Perturbation-based methods: TimeX++
[4], TIMEX [3],Dynamask [2] and CoRTX [20]. Gradient-based methods: Integrated Gradients
(IG) [18], WinIT [23], MILLET [40].
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Figure 4: Occlusion results under different per-
turbation ratios, where higher AUROC indicates
better saliency.
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Figure 5: Ablation study on SHAPEX by replac-
ing SDSL with equal-length segmentation, lead-
ing to performance drop.
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Figure 6: Occlusion evaluation results on the full UCR archive. (a) Average AUROC with stan-
dard deviation across all datasets under varying perturbation ratios. (b) Distribution of the best-
performing explainability method across datasets under varying perturbation ratios. Each row cor-
responds to a perturbation level, and each colored dot represents the method achieving the highest
performance on a specific dataset at that level.

5.1 Saliency Score Evaluation on Synthetic Datasets and Real-world Datasets

In this section, we directly evaluate the generated saliency score by each model on the synthetic
dataset and the real-world dataset. We also report SHAPEX_SF, using ShapeFormer [6] in place
of SDD (see Subsection 5.3 for details). In Table 1, SHAPEX surpasses the second-best method in
AUPRC by an average of 58.12%, with the largest gain of 146.07% on MTC-E. For AUR, it achieves
an average improvement of 21.09%. However, in AUP, SHAPEX shows a slight performance decline.
We make the following observations: The consistent enhancement of SHAPEX in AUPRC indicates
that it effectively balances the identification of complete salient sequences while maintaining high
accuracy. Notably, TIMEX and TIMEX++ perform significantly worse on the MCC-E and MTC-E
datasets, where the motif amplitude is equal to the baseline waveform, compared to the MCC-H
and MTC-H datasets, where motifs exhibit higher amplitudes. This suggests that these methods
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tend to label outliers or anomalies as key features. In contrast, SHAPEX remains stable across all
datasets, demonstrating its ability to identify key time series patterns relevant to classification rather
than relying on extreme amplitude variations. Table 2 shows that SHAPEX also consistently out-
performs all baselines, with a notable AUR improvement in ECG dataset. To explore how different
black-box classifiers affect saliency outcomes, we also conduct further evaluations using a range of
models, from standard LSTM [34] and CNN [35] to the state-of-the-art MultiRocket [36]. Results
are presented in Appendix F.

5.2 Occlusion Experiments on Real-world Datasets

We follow the occlusion protocol from [3], which perturbs the bottom-k timesteps ranked by saliency
scores generated from explanation methods. By progressively perturbing less important regions, we
observe how quickly the model’s classification accuracy degrades. A reliable explanation model
should exhibit a slow and smooth performance drop—indicating that high saliency regions truly
capture the key discriminative patterns, while a steep drop suggests poor alignment between the
saliency map and the underlying predictive logic.

Figure 4 illustrates occlusion results on two typical UCR datasets, serving as visual examples of
the evaluation process rather than highlighting best-case performance. Full occlusion results for all
datasets are included in Appendix F.2. Figure 6 summarizes occlusion results across 112 datasets
from the UCR archive. Subfigure (a) presents the average AUROC under different perturbation
ratios, where SHAPEX consistently achieves the highest scores and exhibits the most stable degrada-
tion curve, indicating superior robustness. Subfigure (b) reports the frequency with which each
method ranks first across all datasets and occlusion levels, further confirming the reliability of
SHAPEX.

To our knowledge, this is the first PHTSE work to conduct explanation evaluation over the entire
UCR archive, covering a wide range of real-world domains, sequence lengths, and class granularities.
The results not only validate the strong generalization ability of SHAPEX but also demonstrate its
unmatched consistency and reliability across diverse conditions.

5.3 Ablation Study

Figure 7: Visualization of learned
shapelets in ECG dataset.

We conduct ablation studies on both real-world and synthetic
datasets to assess the contributions of different components in
SHAPEX. The results on the ECG dataset are shown in Table 3,
while additional results on synthetic datasets are provided in
Appendix F. As the trends are consistent, we focus our discus-
sion on the ECG setting.

We first evaluate SHAPEX_SF, a variant that replaces the pro-
posed SDD module with ShapeFormer [6] for shapelet learn-
ing, while keeping the downstream explanation pipeline un-
changed. Despite ShapeFormer’s ability to model local pat-
terns, this variant performs worse in saliency evaluation, high-
lighting that shapelets must be learned in an explanation-aware
manner to be effective for post-hoc interpretation. Next, we ab-
late key components of the SDD module. Specifically, we remove the two loss functions that guide
morphological learningthe matching loss and the diversity lossas well as the shapelet encoder. W/O
LINEAR replaces the linear perturbation with a zero-mask perturbation, and W/O SEGMENT directly
uses the shapelet activation map as the saliency score without segment-based aggregation.

From the results, we observe that the loss components have the most significant impact on model
performance, confirming that the learned shapelets must be well-aligned with the input, temporally
smooth, and morphologically diverse. Furthermore, the sharp drop in AUR for W/O SEGMENT
validates the necessity of segment-level aggregation for capturing complete key subsequences.

To assess the impact of shapelet-driven segmentation, we perform an ablation study involving oc-
clusion experiments on two real-world datasets. Specifically, we replace the SDSL perturbation in
SHAPEX with equally spaced segments of length N , denoted as E_L N . The results are shown in
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Figure 5. SHAPEX significantly outperforms other variants. These results indicate that the effective-
ness of SHAPEX is fundamentally dependent on SDSL perturbation.

5.4 Shapelet Visualization and Case Study

Visualization. ShapeFormer [6] is a leading shapelet learning method. We visualize and compare
the shapelets generated by ShapeFormer and SHAPEX, as shown in Figure 7. In accordance with
the initial configuration of ShapeFormer, we choose the shapelets it generates that have the highest
PSD scores within the dataset. The results show that ShapeFormers shapelets primarily match sub-
sequences within the time series, while SHAPEX learns shapelets critical for classification. Specif-
ically, SHAPEX’s shapelets align with saliency labels, emphasizing their relevance to classification.
This indicates that only SHAPEX’s shapelets effectively support downstream explanations.

Case Study. Additionally, case studies on three real-world datasets (Appendix G.3) further vali-
date SHAPEXs causal fidelity and interpretive precision. In each case, SHAPEX produces saliency
distributions that align closely with the ground-truth causal regions verified by domain knowledge or
prior annotations. For example, on the PhalangesOutlinesCorrect dataset, the model accurately high-
lights the transitional growth plate region that determines bone maturity, while other baselines yield
dispersed and noisy saliency maps without semantic correspondence. Similarly, for the FaceAll
dataset, SHAPEX concentrates attention around facial boundaries and expression-related areaskey
morphological cues for class discrimination, demonstrating its ability to capture meaningful shape
transitions rather than texture noise. Finally, in motion-related datasets such as UWaveGestureLi-
braryAll [41], SHAPEX highlights subsequences with decreasing acceleration, which correspond
to the transitional phases of gestures such as sharp turns or circular motions. Overall, SHAPEX
identifies truly causal segments, while other methods focus on random or uninformative regions.

6 Conclusion

SHAPEX introduces an innovative shapelet-driven approach for explaining time series classification.
By leveraging the SDD framework, SHAPEX effectively learns representative and diverse shapelets,
integrating Shapley value to assess their contribution to classification outcomes. Experimental re-
sults demonstrate that SHAPEX not only enhances precision in identifying key subsequences but
also provides explanations with stronger causal fidelity. Its effectiveness across synthetic and real-
world datasets highlights its potential for improving interpretability in critical applications such as
healthcare and finance.

However, several limitations remain. The framework involves a few user-defined hyperparameters,
such as the number and length of shapelets and the threshold that determines their selection. These
parameters control the granularity and diversity of extracted shapelets, which in turn influence both
interpretability and quantitative performance. While they offer flexibility across tasks, they may
also require dataset-specific tuning and manual calibration to achieve optimal results, limiting the
methods plug-and-play usability on unseen domains.

Meanwhile, SHAPEX relies on a separate training phase to learn shapelets and optimize the SDD
module, which introduces additional computational overhead compared to purely gradient-based
methods. This two-stage design ensures interpretability and robustness but sacrifices some efficiency
and adaptability. Future work could address these limitations through automated hyperparameter
selection, lightweight or joint-training strategies, and generalized formulations for multivariate and
irregular time series.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: SHAPEX is a post-hoc explanation framework for time series classification
that segments inputs by learned shapelets and attributes importance using Shapley val-
ues, consistently outperforming existing methods across extensive synthetic and real-world
benchmarks in both precision and causal fidelity.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All the proofs in this paper can be found in Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have open-sourced our code and experimental settings in https://
anonymous.4open.science/r/ShapeX_nips2025 and Appendix E to facilitate repro-
ducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have open-sourced our code and experimental settings in https://
anonymous.4open.science/r/ShapeX_nips2025.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided detailed experimental settings in Appendix E to facilitate
reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviation error bars (±1σ) across five independent runs
with different random seeds for all saliency experiments. These include evaluations on
synthetic datasets, the ECG dataset, and ablation analysis. The reported variability accounts
for randomness in model initialization and training. Error bars are consistently included in
tables, with details described in corresponding captions and discussed in the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute details are provided in Appendix E and runtime statistics are in-
cluded in Table 10.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics in this paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Potential positive societal impacts are briefly mentioned in the Section 6.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The datasets chosen in this paper are commonly used benchmark datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: This paper follows CC 4.0, and the code is in an anonymized URL.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Background: Perturbation Paradigms and Shapelets

A.1 Perturbation-based Explanation Methods

Perturbation-based methods derive the saliency of input features by analyzing how perturbations to
those features affect the models output. Let P (X,M) represent a perturbation function that modifies
the input X using a mask M = [M1,M2, . . . ,MT ], where Mt ∈ [0, 1]. The perturbed X is defined
as:

X ′
t := P (Xt,Mt) = Mt ·Xt + (1−Mt) ·Bt, (14)

where Bt denotes a baseline value (e.g., zero, mean, or noise). A general formulation of perturbation-
based explanation methods to evaluate saliency is given by:

R ∝ EM∼µ

[
G (f(X)− f(P (X,M)))

]
, (15)

where µ is the distribution of the perturbation mask, and G(·) represents some transformation func-
tion. Two primary subclasses can be utilized to instantiate this method: the Optimized Mask and
Fixed Mask methods.

A.1.1 Two Primary Subclasses of Perturbation-Based Explanation Methods

Optimized Mask Perturbation Methods. In these methods, mask M is treated as a learnable
parameter. The optimal mask M∗ is obtained by solving an optimization problem [2, 3, 4], and the
optimized mask M∗ directly represents the saliency score, with Rt = M∗

t .

Fixed Mask Perturbation Methods. wherein M is a predefined, fixed mask (e.g., masking one
time step or a segment). The saliency score R is defined as:

R = EM∼M

[∣∣f(X)− f(P (X,M))
∣∣], (16)

where M is the distribution of the mask M , and | · | denotes a norm, typically L1 or L2, to measure
the change in the models output.

Within this field, the Shapley value is frequently employed to determine the marginal contribution
of each unmasked element (as a player in Shapley value) to a model’s behavior, which can then be
converted to the saliency score. This branch primarily focuses on Perturbing equal-length segments
[42, 43]. Refer to Appendix A.2 for additional information on using equal-length perturbed segments
to compute Shapley value.

A.2 Applying Shapley Value to Fixed Mask Perturbation

Shapley value [13] offers a principled approach to measure the importance of each segment by
averaging their marginal contributions across all possible subsets of segment indices. In fixed mask
perturbation methods, segments of the time series are treated as participants, and the Shapley value is
computed using the model’s output as the value function. The saliency scores derived from Shapley
value provide interpretable and consistent importance measures for segments or individual time steps
within the time series.

Under the fixed mask perturbation framework, suppose the time series X = {X1, . . . , XT } is
equally divided into n segments {E1, E2, . . . , En}. Each segment Ei acts as a “participant" that
can either be retained (unmasked) or masked with a baseline value. Define the mask M ∈ {0, 1}n,
where Mi = 1 indicates that segment Ei is retained, and Mi = 0 indicates it is masked. For a subset
of segment indices u ⊆ N , the value function is defined as:

v(u) = f (P (X,Mu)) , (17)

where Mu is a mask that retains segments with indices in u and masks all other segments.

The Shapley value ϕi for each segment Ei is then computed as:

ϕi =
∑

u⊆N\{i}

|u|! (n− |u| − 1)!

n!

[
f
(
P
(
X,Mu∪{i}

))
− f (P (X,Mu))

]
. (18)
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This equation captures the average marginal contribution of segment Ei across all possible subsets
u of segment indices that do not include i. The resulting ϕi serves as the saliency score for segment
Ei. To obtain saliency scores for individual time steps t, distribute the segment-level Shapley value
uniformly across the time steps within each segment:

Rt =
|ϕi|
|Ei|

, for t ∈ Ei. (19)

As the general form of fixed mask perturbation methods is given by:

Rt = EM∼M [|f(X)− f (P (X,M))|] ,

where M is the distribution over masks. By leveraging the Shapley value, the distribution M can
be interpreted as considering all possible subsets of segment indices with equal probability. Thus,
the Shapley value-based saliency scores ϕi provide a theoretically grounded method to estimate the
importance of each segment in the fixed mask perturbation framework.

A.3 Timestep-level and Segment-level Perturbation

Previously, we categorized perturbation-based explanation methods [4, 3, 2, 44, 42, 43] based on
whether the mask was fixed. From another perspective, we classify them by the minimal element in
the perturbation mask: timestep-level and segment-level, indicating whether the mask is applied to
individual timesteps or segments. All the optimized mask methods are timestep-level, while most
fixed mask methods are segment-level.

However, timestep-level perturbation directly disrupts the local dynamic dependencies, while equal
length segment-level perturbation may disrupt the integrity of critical subsequences by splitting
them across adjacent segments or combining unrelated subsequences into a single segment, refer to
Figure 1. This can lead to fragmentation of meaningful patterns and generation of spurious segments,
yielding suboptimal explanations.

B Additional Related Works and Discussion

Explainable Artificial Intelligence. Explainable Artificial Intelligence (XAI) aims to make AI
systems’ decisions understandable and auditable [45]. The growing complexity of deep learning
models necessitates XAI methods to address safety, fairness, and accountability concerns. XAI is
generally categorized into in-hoc and post-hoc explainability methods.

In-hoc explainability methods are inherently interpretable by design. In the field of computer vi-
sion, in-hoc methods include such as interpretable representation learning [46, 47], and model ar-
chitectures with intrinsic interpretability [48]. Mean while, transparent generative models, such as
interpretable Generative Adversarial Networks (GANs), are also used to provide visual explanations
for image generation processes [49]. In natural language processing, in-hoc methods leverage inter-
pretable attention mechanisms to reveal the relationship between input text and output predictions
[50]. For tabular data, in-hoc methods often rely on comprehensible models like decision trees or
linear models [51].

Post-hoc explainability methods provide explanations for complex models after training, making
them applicable to various data modalities. Among these, Shapley value, derived from game theory,
is widely used in XAI to quantify the contribution of each feature to model predictions [24]. The ad-
vantage of Shapley value lies in its adherence to principles of fairness, equitability, and consistency.
Methods based on Shapley value, such as SHAP (SHapley Additive exPlanations), approximate
Shapley value to offer both global and local explanations for complex models [52]. In computer
vision, SHAP identifies the pixels or regions in an image that have the greatest influence on classifi-
cation outcomes, helping to understand the key areas the model focuses on [53]. In natural language
processing, Shapley value are used to evaluate the contribution of each word to text classification or
generation tasks, revealing the basis for the model’s decisions [54].

Besides Shapley value, post-hoc methods include techniques such as LIME [55], Grad-CAM [56],
Layer-wise Relevance Propagation (LRP) [57], and Integrated Gradients [18]. These methods pro-
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vide fine-grained explanations without altering the original model structure, aiding in the understand-
ing of feature extraction and decision-making processes.

Through these methods, the application of XAI across various data modalities not only enhances the
transparency and interpretability of models but also strengthens user trust in AI systems, laying a
solid foundation for their deployment and adoption in real-world applications.

Time Series Explainability. Explainability methods for time series models are broadly categorized
into in-hoc and ad-hoc approaches. Early survey and benchmarking studies have established the
foundation of this field. Theissler et al. [58] provided a comprehensive taxonomy of explainable AI
for time series classification, grouping methods into time-point-, subsequence-, and instance-based
explanations, while Ismail et al. [15] systematically benchmarked saliency-based interpretability
techniques, revealing their limitations in capturing temporal importance.

In-hoc methods embed interpretability directly into the model, typically via transparent represen-
tations such as Shapelets or self-explaining architectures. For instance, TIMEVIEW adopts a top-
down transparency framework to understand both high-level trends and low-level properties, leverag-
ing static features and visualization tools for interpretability [16], while VQShape introduces a novel
representation learning approach based on vector quantization, enabling shapelet-based interpretable
classification [17]. Spinnato et al. [59] further advanced this direction by developing a subsequence-
based explainer capable of generating saliency, instance-level, and rule-based explanations for any
black-box time series classifier.

Ad-hoc methods are typically divided into two main categories. Gradient-Based Methods are mainly
derived from IG [18]. For instance, SGT+GRAD refines gradient-based saliency maps by iteratively
masking noisy gradient features to improve interpretability [19]. Perturbation-Based Methods de-
rive the saliency by observing the effect of perturbation. Tonekaboni et al. [60] proposed FIT, a
framework quantifying instance-wise feature importance via KL-divergence to identify when and
where a models decision changes over time. Dynamask creates dynamic perturbation masks to yield
feature importance scores specific to each instance [2]. CoRTX enhances real-time model explana-
tions using contrastive learning to reduce reliance on labeled explanation data [20]. WinIT improves
perturbation-based explainability by explicitly accounting for temporal dependence and varying fea-
ture importance over time [23]. TIMEX learns an interpretable surrogate model that maintains con-
sistency with a pretrained models behavior to ensure faithfulness [3]. TIMEX++ builds on the infor-
mation bottleneck principle to generate label-preserving explanations while mitigating distributional
shifts [4].

The principal distinction between these methods lies in their interpretability strategies: in-hoc ap-
proaches seek intrinsic transparency of the model itself, whereas ad-hoc strategies aim to provide
explanations for the behaviors of the model, with perturbation-based techniques currently prevailing
in the domain.

C Shapelet Econder

The shapelets S used in descriptor and detector are not fixed but learned jointly with the model.
To ensure their internal consistency and expressive capacity, we introduce a dedicated encoder that
models their temporal structure. Each shapelet is segmented into local patches, which are embedded
with positional encoding as in [61]. A multi-head self-attention mechanism is then applied to model
temporal dependencies across patches, promoting smoothness and internal consistency in shapelet
representations. This encoder helps shapelets act as both expressive and stable morphological proto-
types.

We first divide the input shapelet sequence sm ∈ RL into several equal-length patches, where each
patch captures a continuous segment of temporal features and is mapped into a representation pi
through a linear transformation combined with positional encoding. Specifically, the representation
of each patch is given by

pi = Linear(si) + PE(i), (20)

where Linear(·) denotes the linear mapping operation and PE(i) is the positional encoding that
preserves the position information of the patch. Next, we apply a multi-head attention module to
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perform information exchange and fusion among all patch representations. For the set of patch
representations p1, p2, . . . , pN obtained after the linear transformation, the attention is computed
using the following formula:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (21)

where Q, K, and V are the query, key, and value matrices, respectively, obtained through linear pro-
jections of pi. The multi-head attention mechanism utilizes multiple sets of these linear projections
to capture different feature patterns in parallel, which can be expressed as

MultiHead(Q,K, V ) = WO [head1; head2; . . . ; headh] , (22)

with each individual attention head computed as

headi = Attention(QWQ
i ,KWK

i , V WV
i ), (23)

where index i refers to different attention heads. This design enables the Shapelet Encoder to not
only preserve the fine-grained information of local patches but also to integrate global temporal
dependencies through multi-head attention, thus aiding in the learning of more precise and stable
shapelets.

D Theoretical Justification for Approximate Causal Attribution

D.1 Theoretical Analysis

In this section, we provide a theoretical justification for interpreting the Shapley value computed
by SHAPEX as an approximation of the model-level CATE. We begin by introducing the necessary
notation. Let z ∈ {0, 1} indicate whether a segment indexed by n is retained (z = 1) or masked
(z = 0), and let G′ ⊆ G \ {n} denote a coalition of other retained segments, where G = {1, . . . , N}
is the index set of all shapelet-aligned segments in the input.

We define the potential model outcomes under each intervention as follows:

Y (1,G′) = f(XG′∪{n}), (24)

Y (0,G′) = f(XG′). (25)

where Y (1,G′) represents the models output when segment n is retained alongside the coalition G′,
and Y (0,G′) represents the output when segment n is masked, with only G′ retained.

To establish the causal interpretability of SHAPEX at the model level, we reinterpret classical identi-
fication assumptions from causal inference in the space of model inputs [30, 31, 62]. Specifically:

• Consistency & SUTVA: Each shapelet-aligned segment is perturbed independently, and
the effect of a given segment does not depend on the perturbation status of others. That
is, the potential model output under a given intervention depends only on the subset of
included segments, consistent with the SUTVA.

• Ignorability: Given a subset of retained segments G′, the assignment variable z ∈ {0, 1},
representing whether segment n is retained (z = 1) or masked (z = 0), is independent of
the potential model outcomes. This holds because z is controlled deterministically through
our synthetic perturbation policy.

• Positivity: For any G′, both interventions z = 0 and z = 1 occur with non-zero probability,
ensured by our random sampling over subsets.

Under these assumptions, the model-level CATE τmodel
n is identifiable.

We now proceed to prove Proposition 1, which establishes the equivalence between the Shapley
value computed by SHAPEX and the model-level CATE.
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Proposition 1 (Shapley Value as Model-Level CATE). Let f(X) denote the models prediction for
input X , and let X(Sn) denote the segment aligned with shapelet n ∈ G, where G = {1, . . . , N} is
the index set of all segments. Then, under the intervention defined by retaining or masking segment
X(Sn), the Shapley value ϕn computed as

ϕn = EG′
[
f(XG′∪{n})− f(XG′)

]
(26)

is equivalent to the model-level CATE τmodel
n , conditioned on context G′ ⊆ G \ {n}.

Proof. Given the validity of the three identification assumptions, the model-level CATE τmodel
n is

identifiable. Its definition is given by:

τmodel
n = EG′ [Y (1,G′)− Y (0,G′)] . (27)

Substituting the definitions of Y (1,G′) and Y (0,G′), we obtain:

τmodel
n = EG′

[
f(XG′∪{n})− f(XG′)

]
= ϕn (28)

Thus, the Shapley value ϕn is equivalent to the model-level CATE τmodel
n .

D.2 Practical Estimation via Coalition Averaging

Using the temporally-relational subset strategy, we estimate:

τ̂model
n =

1

M

M∑
m=1

[
f(XGm∪{n})− f(XGm

)
]
,

where each Gm ⊆ G \ {n} is sampled from segments temporally connected to n. This estimator is
unbiased within the restricted coalition space, and reduces complexity from O(|G|!) to O(|G|).

Approximation Caveat. When only a subset of coalitions is used, the estimated CATE converges
to a conditional average over a restricted support. We refer to this as a shapelet-local CATE, ac-
knowledging that this is an approximation of the full-coalition effect.

Table 4: Overview of Datasets
Category Dataset Name Classes Testing Samples Training Samples Length of Series Description True Saliency Score

Real UCR Archive (128 datasets) varies varies varies varies Benchmark suite of diverse time series tasks No
ECG 2 37,004 55,507 360 Biomedical ECG signals with expert annotation Yes

Synthesis

MCC-E 2 2,000 10,000 800 Shapelet count for classification, equal amplitude Yes
MCC-H 2 2,000 10,000 800 Shapelet count for classification, higher amplitude Yes
MTC-E 2 2,000 10,000 800 Shapelet type for classification, equal amplitude Yes
MTC-H 2 2,000 10,000 800 Shapelet type for classification, higher amplitude Yes

E Experimental Details

E.1 Dataset Details

Following the experimental setup of previous PHTSE methods [3, 4], we evaluate the explanation
model using both synthetic and real-world datasets. The statistical details of the datasets are pre-
sented in Table 4.

Synthetic Datasets. Previous PHTSE methods [3, 4] have used synthetic dataset generation ap-
proaches such as SeqComb and FreqShapes, that derive from the data generation method in [63].
However Geirhos et al. [63] generates datasets by injecting highly salient features as shortcuts into
the original data to test whether deep neural networks rely on them for classification. Accordingly,
methods like FreqShapes inject time series segments with significantly higher amplitudes than the
mean to serve as class-discriminative features. Therefore, this approach is more similar to synthetic
data generation methods in time series anomaly detection, which primarily evaluate whether an
explanation model can highlight timesteps with extreme amplitude variations. In real-world time se-
ries classification tasks, class-discriminative features are often defined by specific temporal patterns
rather than simple amplitude differences. For example, in ECG data [8], the class-discriminative fea-
tures P-waves and T-waves do not necessarily exhibit higher amplitudes than surrounding regions.
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Based on this observation, we propose a new approach for synthetic data generation for the PHTSE
problem. Inspired by the time series motif insertion methods in [37], we generate four different
motif-based binary classification datasets: Motif Count Classification Equal (MCC-E), Motif
Type Classification Large (MTC-L), Motif Count Classification Large (MCC-L), and Motif
Type Classification Equal (MTC-E). Here, “type” and “count” refer to datasets where classifi-
cation is determined by either the type of inserted motifs or their count, respectively. The terms
“Equal” and “Large” indicate whether the inserted motif has the same amplitude as the baseline
waveform or significantly exceeds it.

These dataset synthetic methods better align with the mechanisms of the generation real data, allow-
ing us to better assess whether an explanation method can effectively identify time series patterns
that are crucial for classification.

Real-world Datasets. To further evaluate the explanation methods, we conduct experiments on
several real-world time series datasets across diverse domains. ECG [38] is a physiological dataset
used for binary classification of atrial fibrillation (AF), where each instance corresponds to a raw
ECG segment annotated by clinical experts. UCR Archive [39] is a large-scale benchmark suite
containing time series from a wide range of application domains such as image outlines, motion sen-
sors, and astronomical observations. Since most datasets in the archive do not provide ground-truth
saliency labels, they are primarily used in our occlusion-based evaluation. Additionally, datasets
with variable-length sequences are excluded for consistency. We select 114 fixed-length datasets
from the archive that span a wide spectrum of domains and difficulty levels. To the best of our
knowledge, this is the first work in Post Hoc Time Series Explanation (PHTSE) that performs such a
comprehensive and diverse evaluation on the UCR archive.

E.2 Benchmarks

We evaluate explanation methods using multiple benchmark approaches designed for interpreting
deep learning models on time series data.

Perturbation-based methods: TimeX++ [4] applies an information bottleneck principle to gen-
erate label-preserving, in-distribution explanations by perturbing the input while addressing trivial
solutions and distributional shift issues. TimeX [3] trains an interpretable surrogate model to mimic
a pretrained classifier while preserving latent space relations, ensuring faithful and structured expla-
nations. Dynamask [2] generates dynamic perturbation masks to produce instance-wise importance
scores while maintaining temporal dependencies. WinIT [23] captures feature importance over time
by explicitly modeling temporal dependencies and summarizing importance over past time windows.

Gradient-based methods: Integrated Gradients (IG) [18] computes feature attributions by in-
tegrating gradients along a path from a baseline input to the actual input, ensuring sensitivity and
implementation invariance. SGT + GRAD [19] enhances saliency-based explanations by reduc-
ing noisy gradients through iterative feature masking while preserving model performance. MIL-
LET [40] enables inherent interpretability for time series classifiers by leveraging Multiple Instance
Learning (MIL) to produce high-quality, sparse explanations without sacrificing performance.

Metrics: We follow the evaluation metrics from [3], adopting AUP (Area Under Perturbation
Curve), AUR (Area Under Recall), and AUPRC (Area Under Precision-Recall Curve) in the saliency
evaluation experiment to assess the discrepancy between the generated saliency scores and the
ground truth. A metric value closer to 1 indicates higher accuracy. In the occlusion experiment, we
use the prediction AUROC (Area Under the Receiver Operating Characteristic Curve) of the black-
box classifier as the evaluation metric, measuring the impact of removing important subsequences
on classification performance.

E.3 Experimental Settings

All experiments were conducted on a machine equipped with an NVIDIA RTX 4090 GPU and
24 GB of RAM. The black-box classifiers used in our evaluation (e.g., Transformer, CNN) are
trained independently using standard cross-entropy loss until convergence, with early stopping based
on validation accuracy. Unless otherwise specified, default training settings from each baselines
original implementation are followed.
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Table 5: Saliency score evaluation on synthetic datasets (CNN as the black-box model).
MCC-E MCC-H

METHOD AUPRC AUP AUR AUPRC AUP AUR

IG 0.3394±0.0045 0.3966±0.0060 0.4689±0.0024 0.4097±0.0059 0.4896±0.0065 0.4960±0.0027
DYNAMASK 0.3488±0.0056 0.2277±0.0047 0.1008±0.0024 0.4017±0.0073 0.2633±0.0057 0.0510±0.0012
WINIT 0.1513±0.0028 0.0625±0.0010 0.4636±0.0074 0.1659±0.0033 0.0628±0.0011 0.4481±0.0063
TIMEX 0.2608±0.0029 0.2571±0.0032 0.5505±0.0013 0.3107±0.0033 0.3147±0.0038 0.4493±0.0013
TIMEX++ 0.3179±0.0036 0.3155±0.0041 0.5657±0.0025 0.1960±0.0023 0.2109±0.0034 0.4900±0.0021
SHAPEX 0.6197±0.0037 0.5157±0.0078 0.2775±0.0048 0.8100±0.0014 0.6144±0.0045 0.7541±0.0055

MTC-E MTC-H
METHOD AUPRC AUP AUR AUPRC AUP AUR

IG 0.3427±0.0017 0.7233±0.0039 0.2616±0.0024 0.3531±0.0022 0.6482±0.0060 0.3664±0.0065
DYNAMASK 0.2869±0.0016 0.5252±0.0026 0.0857±0.0014 0.3300±0.0032 0.6177±0.0068 0.0798±0.0011
WINIT 0.1511±0.0034 0.0632±0.0018 0.4522±0.0068 0.1321±0.0021 0.0614±0.0008 0.4790±0.0066
TIMEX 0.1413±0.0015 0.1197±0.0012 0.5787±0.0022 0.2315±0.0032 0.2293±0.0040 0.5184±0.0027
TIMEX++ 0.1157±0.0009 0.0877±0.0008 0.4845±0.0035 0.1174±0.0010 0.1136±0.0014 0.5436±0.0026
SHAPEX 0.6954±0.0029 0.5084±0.0051 0.6663±0.0063 0.6793±0.0014 0.4249±0.0025 0.8933±0.0045

To ensure robustness and account for variability in training and explanation outputs, we repeat each
experiment across five random seeds, reporting the mean and standard deviation as error bars. The
random seeds affect both model initialization and data shuffling. For methods involving sampling-
based perturbation (e.g., TIMEX++), the same set of seeds is applied to ensure fair comparison.

All models and explanation methods are implemented in PyTorch, and our codebase supports effi-
cient parallel evaluation across datasets and seeds.

For dataset splits, we follow the standard training/test partitions provided in each dataset. A valida-
tion set comprising 20% of the training set is held out to tune hyperparameters and perform early
stopping.

F Additional Experiments

F.1 Saliency Experiments

To further examine the impact of black-box models on explainability, we conducted saliency evalu-
ation experiments on both synthetic and real-world datasets using LSTM [34], CNN [35] and Multi-
Rocket [36] as classifiers. The results are presented in Tables 5, 6, 8, 9, and 7.

We observe that other baseline methods are significantly affected by changes in the classifier,
whereas SHAPEX consistently achieves the best performance with remarkable stability. This in-
dicates that SHAPEX provides highly robust explanations, benefiting from its ability to preserve true
causal relationships.

Table 6: Saliency score evaluation on ECG dataset (CNN as the black-box model).

ECG
METHOD AUPRC AUP AUR

IG 0.4949±0.0010 0.5374±0.0012 0.5306±0.0010
DYNAMASK 0.4598±0.0010 0.7216±0.0027 0.1314±0.0008
WINIT 0.3963±0.0011 0.3292±0.0020 0.3518±0.0012
TIMEX 0.6401±0.0010 0.7458±0.0011 0.4161±0.0008
TIMEX++ 0.6726±0.0010 0.7570±0.0011 0.4319±0.0012

SHAPEX 0.7198 ±0.0029 0.8321 ±0.0031 0.6948 ±0.0032

Table 9: Saliency score evaluation on ECG dataset (LSTM as the black-box model).

ECG
METHOD AUPRC AUP AUR

IG 0.5037±0.0018 0.6129±0.0026 0.4026±0.0015
DYNAMASK 0.3730±0.0012 0.6299±0.0030 0.1102±0.0007
WINIT 0.3628±0.0013 0.3805±0.0022 0.4055±0.0009
TIMEX 0.6057±0.0018 0.6416±0.0024 0.4436±0.0017
TIMEX++ 0.6512±0.0011 0.7432±0.0011 0.4451±0.0008

SHAPEX 0.7206 ±0.0028 0.8510 ±0.0032 0.6924 ±0.0032
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Table 7: Saliency score evaluation on synthetic datasets (MultiRocket as the black-box model).
MCC-E MCC-H

METHOD AUPRC AUP AUR AUPRC AUP AUR

IG 0.2871±0.0065 0.4713±0.0013 0.3415±0.0086 0.3391±0.0048 0.4215±0.0038 0.5214±0.0069
DYNAMASK 0.4141±0.0048 0.4726±0.0058 0.4142±0.0014 0.4150±0.0079 0.1572±0.0038 0.2113±0.0033
WINIT 0.1974±0.0057 0.2411±0.0112 0.3250±0.0057 0.1528±0.0024 0.0925±0.0075 0.5101±0.0078
CORTX 0.3109±0.0071 0.4782±0.0171 0.4317±0.0148 0.5931±0.0016 0.5107±0.0011 0.4839±0.0062
MILLET 0.2355±0.0026 0.2513±0.0071 0.2142±0.0056 0.3147±0.0013 0.2511±0.0067 0.3125±0.0061
TIMEX 0.4032±0.0056 0.3140±0.0082 0.6490±0.0034 0.4513±0.0077 0.6712±0.0051 0.3500±0.0092
TIMEX++ 0.3509±0.0066 0.4851±0.0061 0.2631±0.0009 0.6351±0.0051 0.6524±0.0078 0.5120±0.0023

SHAPEX_SF 0.2715±0.0072 0.2231±0.0033 0.2690±0.0056 0.4681±0.0082 0.2046±0.0034 0.7135±0.0081
SHAPEX 0.6125±0.0067 0.5209±0.0023 0.3511±0.0083 0.8245±0.0044 0.6944±0.0070 0.7714±0.0023

MTC-E MTC-H
METHOD AUPRC AUP AUR AUPRC AUP AUR

IG 0.2481±0.0023 0.1125±0.0070 0.5721±0.0034 0.3152±0.0054 0.3513 ±0.0034 0.4742±0.0075
DYNAMASK 0.1409±0.0035 0.1266±0.0056 0.2519±0.0065 0.2760±0.0045 0.3937±0.0076 0.2175±0.0044
WINIT 0.1539±0.0076 0.1072±0.0023 0.0417±0.0050 0.1434±0.0076 0.0821±0.0023 0.4728±0.0078
CORTX 0.1841±0.0056 0.1851±0.0049 0.5152±0.0051 0.2153±0.0022 0.2307±0.0051 0.5311±0.0016
MILLET 0.1846±0.0027 0.1252±0.0009 0.1952±0.0024 0.2194±0.0038 0.2474±0.0089 0.3811±0.0032
TIMEX 0.2511±0.0061 0.6249±0.0010 0.1250±0.0043 0.3856±0.0008 0.3745±0.0039 0.1730±0.0023
TIMEX++ 0.2165±0.0042 0.4301±0.0097 0.2250±0.0042 0.3521±0.0061 0.3504±0.0057 0.1149±0.0055

SHAPEX_SF 0.3840±0.0042 0.1677±0.0021 0.4698±0.0003 0.3890±0.0041 0.4600±0.0041 0.1459±0.0082
SHAPEX 0.6705±0.0001 0.6558±0.0041 0.5660±0.0008 0.6859±0.0031 0.4262±0.0051 0.9122±0.0032

Table 8: Saliency score evaluation on synthetic datasets (LSTM as the black-box model).
MCC-E MCC-H

METHOD AUPRC AUP AUR AUPRC AUP AUR

IG 0.4752±0.0078 0.5282±0.0088 0.4622±0.0059 0.5144±0.0079 0.5297±0.0092 0.4965±0.0054
DYNAMASK 0.3999±0.0067 0.4925±0.0099 0.0369±0.0014 0.4178±0.0068 0.3239±0.0073 0.0103±0.0003
WINIT 0.2037±0.0076 0.1897±0.0160 0.3355±0.0085 0.2013±0.0057 0.1573±0.0157 0.3472±0.0115
TIMEX 0.2407±0.0026 0.2139±0.0025 0.5495±0.0009 0.5013±0.0052 0.5492±0.0065 0.3482±0.0019
TIMEX++ 0.3766±0.0041 0.3356±0.0040 0.5242±0.0017 0.4799±0.0043 0.2395±0.0039 0.5224±0.0046
SHAPEX 0.7422±0.0029 0.7507±0.0053 0.5703±0.0059 0.8166±0.0014 0.6893±0.0054 0.7701±0.0052

MTC-E MTC-H
METHOD AUPRC AUP AUR AUPRC AUP AUR

IG 0.2469±0.0031 0.3512±0.0063 0.4862±0.0044 0.4453±0.0029 0.5938±0.0030 0.3652±0.0023
DYNAMASK 0.1243±0.0012 0.0803±0.0038 0.0085±0.0005 0.2344±0.0016 0.2398±0.0058 0.0283±0.0006
WINIT 0.1395±0.0024 0.0953±0.0098 0.3785±0.0091 0.1560±0.0046 0.1457±0.0165 0.2519±0.0084
TIMEX 0.2012±0.0022 0.1500±0.0012 0.6780±0.0022 0.1874±0.0021 0.1556±0.0016 0.5216±0.0013
TIMEX++ 0.1314±0.0006 0.1235±0.0011 0.5070±0.0012 0.3169±0.0027 0.2076±0.0020 0.4632±0.0018
SHAPEX 0.6028±0.0053 0.4472±0.0080 0.5616±0.0086 0.6702±0.0015 0.3952±0.0024 0.8549±0.0056

F.2 Details of the Occlusion Experiment

To enable a fair and comprehensive evaluation across diverse datasets, we first preprocessed the UCR
Archive by excluding datasets with variable-length sequences, as their inconsistent input shapes are
incompatible with fixed-length perturbation settings. Additionally, both TIMEX and TIMEX++ suf-
fered from gradient explosion during training on a small subset of datasets. For fairness, we removed
these failed runs from comparison.

Nevertheless, the remaining collection still covers a highly diverse and representative set of over
100 datasets, making it by far the most comprehensive occlusion-based evaluation conducted in the
literature of PHTSE. The aggregated results are illustrated in Figure 8, 9, 10, and 11.

Given the inherent diversity of UCR datasets—covering various domains, sequence lengths, and
class cardinalities, generating accurate saliency scores remains a challenging task. Consequently, no
single explanation model dominates across all datasets. However, SHAPEX demonstrates superior
robustness compared to baseline methods: its performance degrades more gracefully on challenging
cases, as reflected in the smoother drop of AUROC scores across datasets. The statistical comparison,
with Figure 6(a) reporting mean performance and Figure 6(b) highlighting the best-case results,
reinforces the advantage of SHAPEX as the most consistently robust and reliable method for PHTSE
tasks to date.
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Table 10: Computation Time (in seconds) of Different Explanation Methods
METHOD MCC-E MCC-H MTC-E MTC-H
TIMEX++ 13.0470 13.7306 13.5581 5.6111
IG 49.7619 52.9600 53.4244 910.0483
DYNAMASK 837.2252 851.3321 840.9815 833.0267
WINIT 167.9867 165.1973 166.8685 166.5299
SHAPEX 129.0921 132.8452 127.1462 115.3432

Table 11: Ablation analysis on synthetic datasets.

Ablations MCC-E MCC-H
AUPRC AUP AUR AUPRC AUP AUR

Full 0.6407±0.0036 0.5614±0.0076 0.3679±0.0050 0.8113±0.0013 0.6838±0.0054 0.7431±0.0055
w/o matching loss 0.1455±0.0112 0.1682±0.0057 0.1347±0.0012 0.2612±0.0035 0.1792±0.0011 0.3849±0.0023
w/o diversity loss 0.1309±0.0023 0.1450±0.0061 0.1103±0.0031 0.2630±0.0032 0.1849±0.0012 0.3542±0.0035
w/o shapelet encoder 0.2407±0.0013 0.0933±0.0032 0.4359±0.0023 0.2366±0.0030 0.3274±0.0074 0.7113±0.0023
w/o LINEAR 0.5926±0.0036 0.5381±0.0011 0.3352±0.0021 0.7633±0.0024 0.6551±0.0062 0.7084±0.0037
w/o segment 0.6104±0.0036 0.5274±0.0090 0.2461±0.0046 0.7030±0.0023 0.6312±0.0099 0.3851±0.0002

Ablations MTC-E MTC-H
AUPRC AUP AUR AUPRC AUP AUR

Full 0.6100±0.0048 0.3962±0.0067 0.5472±0.0082 0.6792±0.0014 0.4255±0.0024 0.9019±0.0041
w/o matching loss 0.1273±0.0052 0.1135±0.0057 0.1043±0.0056 0.2153±0.0034 0.1305±0.0044 0.3347±0.0012
w/o diversity loss 0.1371±0.0043 0.1524±0.0012 0.1042±0.0023 0.2094±0.0054 0.1053±0.0022 0.4914±0.0035
w/o shapelet encoder 0.2358±0.0057 0.1827±0.0076 0.0982±0.0023 0.1902±0.0030 0.2781±0.0012 0.8120±0.0033
w/o LINEAR 0.5627±0.0045 0.3991±0.0033 0.5184±0.0055 0.6204±0.0065 0.3683±0.0042 0.7711±0.0055
w/o segment 0.5792±0.0070 0.3518±0.0045 0.5371±0.0020 0.6347±0.0045 0.4014±0.0060 0.8820±0.0034

G Further Analysis Experiments

G.1 Computational Cost Analysis

It is well known that computing Shapley value is highly time-consuming, making computational
cost a critical consideration in Shapley value analysis. We measure the inference time required for
explanation generation across several datasets, with results presented in Table 10.

While SHAPEX is not the fastest method, it is significantly more efficient than Dynamask. This
acceptable computational cost is primarily attributed to SHAPEX’s segment-level design and its
temporally relational subset extraction strategy. Consequently, SHAPEX not only achieves superior
performance but also maintains practical feasibility.

G.2 Parameter Analysis

We further analyze the impact of shapelet-related parameters on the performance of SHAPEX. Specif-
ically, we examine the interplay between shapelet length (L) and the number of shapelets (N ). Fig-
ure 12 presents the results on the ECG dataset.

Overall, we observe that AUP decreases as the number of shapelets increases, indicating that only
shapelets corresponding to key features contribute to improved accuracy. In contrast, AUR exhibits
an opposite trend, suggesting that a larger number of shapelets facilitates the discovery of more latent
features. Additionally, optimal performance is achieved when the shapelet length is appropriately
chosen, highlighting the importance of selecting a balanced length.

G.3 Case Study

To qualitatively assess the interpretability of SHAPEX, we present case studies on three represen-
tative UCR datasets with well-defined domain semantics: PhalangesOutlinesCorrect, FaceAll, and
UWaveGestureLibraryAll. These datasets span the domains of medical imaging, biometric contours,
and motion sensors, respectively. In each case, we compare SHAPEX against existing baselines by
visualizing the generated saliency scores.

PhalangesOutlinesCorrect Dataset. The PhalangesOutlinesCorrect dataset [64] is a one-
dimensional time series derived from X-rays of the third phalanx through contour-based processing.
First, the bone contour is extracted from the original radiograph. Then, the Euclidean distance from
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each point on the contour to the bones center is computed. By radially sampling these distances in a
clockwise direction, a polar distance sequence is formed, which captures the morphological profile
of the bone outline in 1D space.

As illustrated in Figure 13, the sequence may contain two components: the shaft and the epiph-
ysis. If a growth plate is present, the sequence includes a distinct transition region—highlighted in
greenbetween the bone shaft and the epiphysis. The dataset comprises two classes: Immature, cor-
responding to the early Tanner-Whitehouse (TW) stages, and Mature, representing the later stages.
In clinical practice, the key criterion for distinguishing between these two classes is the extent of
epiphyseal development, particularly its fusion with the diaphysis. In the time series representation,
the growth plate transition region typically corresponds to the time interval between steps 40 and 60.

In Figure 14, we observe that, as the most advanced baselines, TIMEX and TIMEX++ predominantly
generate explanations focused on the peaks or valleys of the sequence. However, these features are
not the primary indicators of bone maturity. In contrast, SHAPEX highlights the sequence region
between the 40th and 60th time steps, which is critical for reflecting the developmental status of the
epiphysis. This indicates that SHAPEX effectively identifies segments within the sequence that are
medically significant, distinguishing it significantly from other baselines that focus on prominent
values in the sequence.

FaceAll Dataset. The FaceAll dataset [39] is sourced from the UCR archive. It consists of head
contours collected from 14 graduate students, converted into one-dimensional time series through
a series of image processing algorithms. The first half of the sequence corresponds to the facial
contour of the human head, while the second half corresponds to the contour of the hair. This dataset
includes 14 classes, each representing one of the 14 graduate students. Due to the high variability in
human hair shapes, the classification results are primarily determined by the facial contour portion
of the time series.

In the visualization of model predictions, as shown in Figure 15, we observe that only SHAPEX
effectively highlights the facial contour regions, whereas other models merely focus on a few peaks
and fail to provide meaningful insights.

UWaveGestureLibraryAll Dataset. The UWaveGestureLibraryAll dataset [41] generates se-
quences by recording acceleration signals during user gestures, encompassing eight predefined ges-
tures. Compared to the phases of increasing acceleration, the phases where acceleration begins
to decrease often carry more gesture-specific information. This is because decreasing acceleration
indicates the beginnings of gesture transitions, such as sharp turns or circular motions.

In Figure 16, we observe that SHAPEX distinctly focuses on regions with negative slopes in the se-
quence, which correspond to the phases where gestures begin to change. This demonstrates that our
method can effectively identify sub-sequences that are more valuable for sequence classification.
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Figure 8: Occlusion experimental results on UCR archive.
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Figure 9: Occlusion experimental results on UCR archive.
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Figure 10: Occlusion experimental results on UCR archive.
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Figure 11: Occlusion experimental results on UCR archive.
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Figure 12: Saliency score generated by SHAPEX concerning various shapelet lengths and quantities
on ECG Dataset.

a. Radial Contour Projection b. Polar Distance Sequence
c. Growth Plate 
Transition Region

Figure 13: Radial sampling from the center (a) yields a polar distance sequence (b), where the green
region highlights the growth plate transition region. [64]
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Figure 14: Visualization of saliency score on PhalangesOutlinesCorrect dataset.
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Figure 15: Visualization of saliency score on FaceAll dataset.
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Figure 16: Visualization of saliency score on UWaveGestureLibraryAl dataset.
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