

000 001 002 003 004 005 DEEP LEARNING WITH LEARNABLE 006 PRODUCT-STRUCTURED ACTIVATIONS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

ABSTRACT

032 Modern neural architectures are fundamentally constrained by their reliance on
033 fixed activation functions, limiting their ability to adapt representations to task-
034 specific structure and efficiently capture high-order interactions. We introduce
035 deep low-rank separated neural networks (LRNNs), a novel architecture general-
036 izing MLPs that achieves enhanced expressivity by learning adaptive, factorized
037 activation functions. LRNNs generalize the core principles underpinning continuous
038 low-rank function decomposition to the setting of deep learning, constructing
039 complex, high-dimensional neuron activations through a multiplicative composi-
040 tion of simpler, learnable univariate transformations. This product structure inher-
041 ently captures multiplicative interactions and allows each LRNN neuron to learn
042 highly flexible, data-dependent activation functions. We provide a detailed the-
043 oretical analysis that establishes the universal approximation property of LRNNs
044 and their ability to mitigate the curse of dimensionality for functions with low-rank
045 structure. Moreover, the learnable product-structured activations enable LRNNs
046 to adaptively control their spectral bias, which is crucial for signal representa-
047 tion tasks. These theoretical insights are validated through extensive experiments
048 where LRNNs achieve state-of-the-art performance across diverse domains in-
049 cluding image and audio representation, numerical solution of PDEs, sparse-view
050 CT reconstruction, and supervised learning tasks. Our results demonstrate that
051 LRNNs provide a powerful and versatile building block with a distinct inductive
052 bias for learning compact yet expressive representations.
053

1 INTRODUCTION

034 Neural networks equipped with simple activation functions like ReLU, Tanh, and Sigmoid have
035 achieved remarkable success across a multitude of domains. While their simplicity is a strength,
036 with expressivity achieved through a deep composition of layers, these standard activations possess
037 inherent limitations. For instance, it is well known that the spectral bias of activations such as ReLU
038 can hinder the representation of high-frequency details in signals (Rahaman et al., 2019). This has
039 spurred a long line of research into alternative activation functions with enhanced expressivity and
040 improved optimization properties such as convergence and gradient propagation. Early efforts led to
041 activations such as Maxout (Goodfellow et al., 2013), which learns a piecewise linear function, while
042 others such as Leaky ReLU (Maas et al., 2013), PReLU (He et al., 2015), Swish/SiLU (Ramachan-
043 dran et al., 2018), E-Swish (Alcaide, 2018) and GELU (Hendrycks & Gimpel, 2016) often focus on
044 improved gradient flow or adaptive non-linearities. Kunc & Kléma (2024) provide a comprehensive
045 survey of activation functions in deep learning.

046 A significant leap in expressivity, particularly for representing complex, continuous signals, emerged
047 with the advent of implicit neural representations (INRs). The effectiveness of INRs stems from spe-
048 cialized activation functions designed to capture fine details and high frequencies, often providing
049 better results than standard activations combined with positional encodings (PE) (Mildenhall et al.,
050 2020). Pioneering work by Sitzmann et al. (2020) introduced neural networks with sinusoidal acti-
051 vations (SIREN), which achieves remarkable fidelity in representing images, 3D shapes, and numer-
052 ical solutions of partial differential equations (PDEs). Subsequent developments include Gaussian
053 functions (Ramasininghe & Lucey, 2022), wavelet representations (WIRE) (Saragadam et al., 2023),
semi-periodic damped activations (SPDER) (Shah & Sitawarin, 2024), hyperbolic oscillation func-
tions (HOSC) (Serrano et al., 2024), sinc activations (Saratchandran et al., 2024), and FINER (Liu

et al., 2024); see Essakine et al. (2025) for a recent review. This body of work has demonstrated that the choice and design of the non-linearity are crucial for high-fidelity signal representation.

While tailored activation functions are powerful, they are often designed to capture specific signal properties such as periodicity and multi-scale behavior. This motivates the search for architectures that can *learn* highly expressive and adaptive non-linearities, while maintaining computational efficiency and optimization stability. A recent development in this direction is Kolmogorov-Arnold Networks (KANs) proposed by Liu et al. (2025), which incorporate learnable activation functions on edges rather than using fixed activations at nodes. While KANs offer increased expressivity, they require significantly longer training times and can suffer from optimization instability with larger grid sizes. The ActNet architecture (Ferreira Guilhoto & Perdikaris, 2025) which leverages Laczovich’s variant of Kolmogorov’s superposition theorem has shown promise in addressing these challenges.

In the present work, we introduce deep low-rank separated neural networks (LRNNs), a novel architecture whose expressivity stems from a different principle: a multiplicative composition of learnable, univariate functions. LRNNs are inspired by work on low-rank separated representations, originally proposed for approximating multivariate functions as sums of products of univariate basis functions (Beylkin et al., 2009; Audouze & Nair, 2019). LRNNs generalize this idea to create a new class of deep neural network architectures where the neurons are equipped with learnable product-structured activations. This structure inherently captures multiplicative interactions and allows each *neuron* to independently learn a highly flexible activation function, adapting its non-linearity to the learning task, while maintaining computational efficiency.

The notion of low-rank function decomposition that our work builds upon has deep roots in tensor algebra (Kolda & Bader, 2009). Low-rank decompositions of model weights have been successfully applied to model compression (Novikov et al., 2015; Lebedev et al., 2015) and fine-tuning large language models (LLMs) (Hu et al., 2022). However, our focus with LRNNs is distinct: rather than using low-rank decompositions for compression, we leverage the multiplicative structure of low-rank function decompositions to enhance expressivity. More specifically, LRNNs utilize adaptive product-structured activations to efficiently capture high-order interactions in contrast to standard neurons that compose features additively. Our main contributions are:

- We introduce the LRNN architecture, a generalization of MLPs where each neuron’s activation is a product of learnable univariate functions applied to projected inputs, enabling highly adaptive and expressive non-linearities beyond fixed scalar activations.
- We provide detailed theoretical analysis establishing universal approximation, the ability of LRNNs to overcome the curse of dimensionality for functions with decaying functional ANOVA structure, and insights into how LRNNs can adaptively control their spectral bias.
- We demonstrate that the unique theoretical advantages of LRNNs translate into practical impact across diverse domains:
 - *Image representation*: LRNNs achieve 100% success at a high-fidelity 40 dB target across 1,000 ImageNet images, a regime where the SPDER and SIREN baselines frequently fail.
 - *Audio representation*: 3-11x lower MSE on audio tasks with superior spectral fidelity.
 - *Numerical solution of PDEs*: LRNNs achieve 8x parameter reduction compared to SIREN and 100-1000x lower error than KANs on a PDE benchmark.
 - *Sparse-view CT reconstruction*: On this benchmark, LRNNs provide artifact-free reconstruction and superior performance with a small number of projections (50-100), a critical factor for reducing patient radiation exposure.

2 LOW-RANK DECOMPOSITIONS IN LEARNING

Low-rank tensor decompositions provide a powerful framework for mitigating the curse of dimensionality by representing high-dimensional tensors through interactions among their dimensions, often as products of low-dimensional tensors. The origins of this topic can be traced to work by Hitchcock (1927) on decomposing a tensor into a sum of rank-one tensors, which was later refined by Cattell (1944) with parallel proportional and multi-axis analysis. The most widely used approach is arguably the canonical polyadic (CP) decomposition (Carroll & Chang, 1970; Harshman, 1970). The Tucker decomposition (Tucker, 1966) provides a more general family of decompositions that

108 includes the CP decomposition as a special case. The tensor train (TT) decomposition (Oseledets,
 109 2011) is a well-studied approach that combines the advantages of CP and Tucker decompositions.
 110 It is worth noting that since the Eckart-Young-Mirsky theorem only holds for matrices, there is no
 111 unique approach for generalizing the notion of singular value decomposition to higher-order ten-
 112 sors (Kolda & Bader, 2009).

113 Low-rank tensor decompositions are now ubiquitous in many fields (Kolda & Bader, 2009), and
 114 applications include scientific computing (Dolgov et al., 2021), dimensionality reduction (Papalex-
 115 akis et al., 2015; Shashua & Levin, 2001; Acar et al., 2006), compression of deep learning mod-
 116 els (Novikov et al., 2015), reducing memory footprint when fine-tuning LLMs (Hu et al., 2022), and
 117 decomposition of LLM gradients to reduce training memory (Zhao et al., 2024).

118 The present work is motivated by the observation that a low-rank tensor decomposition can be inter-
 119 preted as a discretization of a continuous low-rank decomposition of a multivariate function. This
 120 observation underpins the separated rank decomposition (SRD) model (Beylkin et al., 2009), which
 121 is a continuous generalization of the CP decomposition. For a d -dimensional function, the SRD
 122 model takes the form: $\hat{y}(\mathbf{x}) = \sum_{i=1}^r s_i \prod_{j=1}^d g_{i,j}(x_j)$, where r is the separation rank, s_i are nor-
 123 malization coefficients, and $g_{i,j}$ are approximated using a linear combination of univariate basis
 124 functions. The basis functions are typically polynomials or radial basis functions and alternating
 125 least squares is used for training (Beylkin et al., 2009; Chevreuil et al., 2015), which can result
 126 in slow convergence and ill-conditioned subproblems when the support region of the basis is dis-
 127 joint from the data points. Audouze & Nair (2019) proposed a sparse SRD approach that uses
 128 ℓ_1 -regularization and a coordinate descent optimization algorithm to address these challenges.

129 Other models in the literature that use univariate component functions include projection pursuit
 130 regression (Friedman & Stuetzle, 1981) and neural additive models (NAMs) (Agarwal et al., 2021).
 131 Tree tensor networks (TTNs) (Shi et al., 2006; Cheng et al., 2019; Bachmayr et al., 2021; Ali &
 132 Nouy, 2023) are another class of models that use compositions of low-dimensional functions that
 133 are not restricted to be univariate. TTNs have a structure similar to an MLP equipped with a sparsity
 134 mask. Despite the growing body of theoretical work on this topic, applications have so far been
 135 restricted to simple test problems. This can be attributed to the fact that learning the optimal tree
 136 structure from data is a challenging combinatorial problem.

3 LRNN ARCHITECTURE

140 In this section, we introduce the LRNN architecture in the supervised learning setting. Let \mathcal{D} denote
 141 a dataset of N observations, $\mathcal{D} := \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^N$, where $\mathbf{x}^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)}) \in \mathbb{R}^d$ is an input
 142 vector with d feature dimensions and $\mathbf{y}^{(i)} \in \mathcal{Y}$ denotes a noisy observation containing either K
 143 regression targets (i.e., $\mathcal{Y} \subset \mathbb{R}^K$) or K class labels (i.e., $\mathcal{Y} \subset \mathbb{Z}^K$). Our goal is to construct a
 144 predictive model for the regression targets or class labels using the dataset \mathcal{D} .

3.1 SHALLOW LRNNs

147 At the core of our approach is the LRNN neuron’s ability to capture multiplicative interactions
 148 through product-structured activations. We begin with the shallow LRNN architecture—a single
 149 layer that transforms inputs through learnable univariate functions—before extending to deeper com-
 150 positions. For a dataset with K outputs, the shallow LRNN takes the form

$$151 \quad \hat{\mathbf{y}}_{\text{lrnn}}(\mathbf{x}) = \sum_{\ell=1}^r \mathbf{s}_\ell \prod_{j=1}^{\bar{d}} (1 + \gamma g_j^\ell(z_j^\ell)), \quad \mathbf{z}^\ell = \mathbf{W}^\ell \mathbf{x} + \mathbf{b}^\ell, \quad (1)$$

155 where $r \in \mathbb{N}$ is the separation rank, $\mathbf{s}_\ell \in \mathbb{R}^K$ are weight vectors, $g_j^\ell : \mathbb{R} \rightarrow \mathbb{R}$ denotes a univariate
 156 component function, $\gamma = \bar{d}^{-1/2}$ is a scaling factor, $\mathbf{z}^\ell \in \mathbb{R}^{\bar{d}}$, $\mathbf{W}^\ell \in \mathbb{R}^{\bar{d} \times d}$, and $\mathbf{b}^\ell \in \mathbb{R}^{\bar{d}}$.

157 It can be seen from (1) that LRNNs project the d -dimensional input to r latent vectors in $\mathbb{R}^{\bar{d}}$ and
 158 produce an output using a sum-product operation. We introduce the term $(1 + \gamma g_j^\ell(z_j^\ell))$ to ensure
 159 automatic relevance determination (ARD) and make initialization more convenient; see Appendix A.1
 160 for details. The scaling factor $\gamma = \bar{d}^{-1/2}$ plays a crucial role analogous to Xavier/He initialization
 161 in standard networks (Glorot & Bengio, 2010; He et al., 2015) and the scaling used in LoRA (Hu
 et al., 2022). We formalize this by establishing the following result (see Appendix A.3 for proof):

162 **Lemma 1** (Variance-controlled initialization). *Under mild assumptions on the component functions at initialization (zero mean, finite variance), the product-structured LRNN activation*
 163 $\varphi(\mathbf{z}) = \prod_{j=1}^d (1 + \gamma g_j(z_j))$ *satisfies the following bounds:*

$$166 \quad (i) \text{Var}[\varphi(\mathbf{z})] \leq e^{\sigma_g^2} - 1 \text{ and } (ii) \sum_{k=1}^{\bar{d}} \text{Var}[\partial\varphi(\mathbf{z})/\partial z_k] \leq \sigma_{g'}^2 e^{\sigma_g^2} \quad (2)$$

168 where σ_g^2 and $\sigma_{g'}^2$ denote the variance of the component functions and their first-order derivatives,
 169 respectively, at initialization.

170 It follows from this result that the variance of the LRNN activation and the sum of the variances of its
 171 gradients are bounded independently of the projection width \bar{d} . This reveals an intrinsic mechanism
 172 for ARD: as projection width \bar{d} increases, each coordinate’s gradient contribution $\text{Var}[\partial\varphi/\partial z_k] =$
 173 $\mathcal{O}(1/\bar{d})$ diminishes, while their collective impact remains constant. This ensures stable gradient
 174 flow through arbitrarily wide product structures, enabling LRNNs to learn high-dimensional yet
 175 well-conditioned representations.

176 The univariate LRNN component functions $g_j^\ell : \mathbb{R} \rightarrow \mathbb{R}$ can be flexibly parametrized, with each
 177 of the $r\bar{d}$ functions typically being a small MLP, enabling them to adapt to complex patterns in the
 178 data. The parameters of the component functions are learned along with the weight vectors $\mathbf{s}_\ell \in \mathbb{R}^K$
 179 during training. The hyperparameters of a shallow LRNN are the separation rank, r , which controls
 180 the model’s expressivity, and the dimensionality of the linear projection layer, \bar{d} .

182 **Connection to SRD:** For the special case of scalar targets (i.e., $K = 1$), if we set the projection
 183 layer to identity (i.e., $\mathbf{z}^\ell = \mathbf{x}$) and replace $(1 + \gamma g_j^\ell(z_j^\ell))$ with $g_j^\ell(z_j^\ell)$, we recover the SRD model
 184 of Beylkin et al. (2009). The LRNN model can hence be viewed as a generalization of CP-based
 185 function decomposition, which we will later generalize further to deeper architectures.

186 **Generalization of MLPs:** LRNNs generalize the familiar MLP architecture. If we set $\bar{d} = 1$ and
 187 replace g_j^ℓ with a standard activation function, LRNNs reduce to a standard shallow MLP. To see
 188 this generalization clearly, consider a shallow MLP with r neurons in the hidden layer: $\mathbf{y}_{\text{mlp}}(\mathbf{x}) =$
 189 $\sum_{\ell=1}^r \mathbf{v}_\ell \sigma(z_\ell)$, where $z_\ell = \mathbf{w}_\ell^T \mathbf{x} + b_\ell$ is a scalar projection of the input with $\mathbf{w}_\ell \in \mathbb{R}^d$, $\mathbf{v}_\ell \in \mathbb{R}^K$,
 190 and $b_\ell \in \mathbb{R}$ denoting the weights and biases, respectively, and $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is a standard MLP
 191 activation function. The shallow LRNN in (1) can be rewritten in the same form: $\mathbf{y}_{\text{lrnn}}(\mathbf{x}) =$
 192 $\sum_{\ell=1}^r \mathbf{s}_\ell \varphi_\ell(\mathbf{z}^\ell)$, where $\varphi_\ell(\mathbf{z}^\ell) = \prod_{j=1}^{\bar{d}} (1 + \gamma g_j^\ell(z_j^\ell))$ is the LRNN product-structured activation
 193 function with $\mathbf{z}^\ell = \mathbf{W}^\ell \mathbf{x} + \mathbf{b}^\ell$. The key distinctions are: (i) each LRNN neuron learns its own
 194 *distinct learnable* activation function $\varphi_\ell : \mathbb{R}^{\bar{d}} \rightarrow \mathbb{R}$, whereas all MLP neurons share the same *fixed*
 195 activation $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ operating on scalar projections;¹ (ii) LRNN activations achieve this vector-
 196 to-scalar mapping through multiplicative compositions, enabling efficient representation of higher-
 197 order interactions that additive architectures struggle to capture (see Section 3.3).

198 3.2 DEEP LRNNs

200 We now extend LRNNs to deeper architectures, enabling them to learn hierarchical representations
 201 through composed transformations. Deep LRNNs stack multiple layers, creating a sequence of
 202 maps from input to output space, i.e., $\mathbf{x}^{(0)} \rightarrow \mathbf{x}^{(1)} \rightarrow \dots \rightarrow \mathbf{x}^{(L)} \rightarrow \hat{\mathbf{y}}$ for a model with L layers;
 203 see Figure 10 for a graphical illustration. This hierarchy progressively transforms inputs into latent
 204 representations amenable to efficient low-rank approximation, combining deep learning’s composi-
 205 tional power with the expressivity of low-rank function decomposition.

206 A deep LRNN architecture with L layers and r_k neurons in the k th hidden layer for mapping a
 207 d -dimensional input to a K -dimensional output can be represented as

$$208 \quad \hat{\mathbf{y}}(\mathbf{x}) = \mathbf{S}^{\text{out}}(\phi^{(L)} \circ \phi^{(L-1)} \circ \dots \circ \phi^{(1)})(\mathbf{x}), \quad (3)$$

209 where $\mathbf{S}^{\text{out}} \in \mathbb{R}^{K \times r_L}$ and $\phi^{(k)} : \mathbb{R}^{r_{k-1}} \rightarrow \mathbb{R}^{r_k}$, with $r_0 = d$ and $\phi^{(0)} = \mathbf{x}$. The output of the k -th
 210 hidden layer can be written as $\phi^{(k)} = (\varphi_1^{(k)}(\mathbf{z}^{1,(k)}), \varphi_2^{(k)}(\mathbf{z}^{2,(k)}), \dots, \varphi_{r_k}^{(k)}(\mathbf{z}^{r_k,(k)}))^T$, where

$$212 \quad \varphi_\ell^{(k)}(\mathbf{z}^{\ell,(k)}) = \prod_{j=1}^{\bar{d}_k} (1 + \gamma g_j^{\ell,(k)}(z_j^{\ell,(k)})), \ell = 1, 2, \dots, r_k, k = 1, 2, \dots, L. \quad (4)$$

215 ¹Maxout networks (Goodfellow et al., 2013) are a notable exception, also using vector-to-scalar mappings
 but through max operations rather than products.

In the preceding equation $\mathbf{z}^{\ell,(k)} = \mathbf{W}^{\ell,(k)}\phi^{(k-1)} + \mathbf{b}^{\ell,(k)} \in \mathbb{R}^{\bar{d}_k}$, and $\mathbf{W}^{\ell,(k)} \in \mathbb{R}^{\bar{d}_k \times r_{k-1}}$, and $\mathbf{b}^{\ell,(k)} \in \mathbb{R}^{\bar{d}_k}$ denote the weight matrix and bias vector for the ℓ -th neuron, respectively, $g_j^{\ell,(k)} : \mathbb{R} \rightarrow \mathbb{R}$ are learnable univariate component functions, and $\varphi_\ell^{(k)} : \mathbb{R}^{\bar{d}_k} \rightarrow \mathbb{R}$.

Each LRNN neuron ℓ in layer k applies a product-structured activation $\varphi_\ell^{(k)}$ to a \bar{d}_k -dimensional projection of the previous layer’s output. The matrix \mathbf{S}^{out} maps $\phi^{(L)}$ to the target space. Similar to the shallow LRNN, the deep generalization also introduces distinct product-structured activation functions within and across layers that operate on distinct \bar{d}_k -dimensional projections.²

Parameter sharing can be used to reduce the parameter complexity of deep LRNNs, e.g., sharing the activation function across LRNN neurons in each layer, the term $\varphi_\ell^{(k)}$ can be rewritten as

$$\varphi_\ell^{(k)}(\mathbf{z}^{\ell,(k)}) = \prod_{j=1}^{\bar{d}_k} (1 + \gamma g_j^{(k)}(z_j^{\ell,(k)})), \text{ where } \mathbf{z}^{\ell,(k)} = \mathbf{W}^{\ell,(k)}\phi^{(k-1)} + \mathbf{b}^{\ell,(k)}. \quad (5)$$

The use of shared activations for the neurons in each hidden layer reduces the number of learnable univariate component functions from $r_k \bar{d}_k$ to \bar{d}_k (i.e., $g_j^{(k)}$ shared across all neurons in the k -th layer). Note that each hidden layer is equipped with a distinct learnable product-structured activation function. We evaluate the trade-offs of this approach in Appendix C. (Figure 11), comparing this shared activation variant against the standard flexible LRNN architecture. Our results indicate that while parameter sharing improves efficiency at lower parameter counts, distinct activations are necessary to maximize fidelity for complex high-frequency signals. Another possibility is to share the projection layer across neurons in each layer; however, we found that this approach leads to significant loss in expressivity.

Implementation aspects: In our implementation, each univariate component function $g_j^{\ell,(k)}$ within the LRNN’s product-structured activation is parametrized by a small shallow MLP. Importantly, these component networks—not the LRNN neurons themselves—employ traditional scalar activation functions; for implicit neural representation tasks, we use either SPDER activations (e.g., $\sin(x)\sqrt{|x|}$, $\sin(x)\arctan(x)$) or SIREN’s sinusoidal activation ($\sin(x)$) within these component networks. To ensure stable learning dynamics in deep architectures, we apply LayerNorm to the output vector $\phi^{(k)}$ after each LRNN layer’s product-structured computation; see Appendix C.2 for details. This normalization strategy proves crucial for consistent convergence in deeper networks. Implementation details and ablation studies are provided in Appendices B and C, respectively.

3.3 THEORETICAL ASPECTS

We establish fundamental theoretical properties of LRNNs that provide insight into their empirical success: universal approximation, mitigation of the curse of dimensionality for structured functions, and adaptive spectral bias control.

Theorem 1 (Universal approximation). *If $f : [0, 1]^d \rightarrow \mathbb{R}$ is a continuous function, then for every $\varepsilon > 0$, there exists an LRNN with suitably chosen separation rank r such that $\max_{\mathbf{x} \in [0, 1]^d} |f(\mathbf{x}) - f_{\text{lrnn}}(\mathbf{x})| \leq \varepsilon$.*

This result, establishing universality analogous to that of standard MLPs, follows from the Stone-Weierstrass theorem and the fact that LRNNs can represent arbitrary polynomial expansions (see Appendix A.4 for proof). Just as the width of an MLP may grow with $1/\varepsilon$, the separation rank r of an LRNN can grow arbitrarily large to capture complex functions. Thus, “universal” here does not guarantee a small r unless the target function has low-rank or near-separable structure.

Beyond universal approximation, the stability of LRNN training is crucial. It follows from Lemma 1 (Section 3.1), the variance-controlled initialization ensures variance-controlled learning for LRNNs:

The scaling factor $\gamma = \bar{d}^{-1/2}$ ensures that both forward and backward propagation remain stable regardless of projection width \bar{d} , with activation variance and gradient variance sum both bounded from above by constants independent of \bar{d} .

This property enables automatic relevance determination and stable optimization even for wide product structures (detailed analysis in Appendix A.3).

²In practice, we set \bar{d}_k to be the same across layers, i.e., $\bar{d}_k = \bar{d} \forall k$.

270
 271 **Theorem 2** (Curse of dimensionality mitigation). *For functions whose ANOVA decomposition is*
 272 *dominated by terms involving at most $m \ll d$ variables, LRNNs achieve approximation error ε with*
 273 *parameter complexity $\mathcal{O}(\text{poly}(d)/\varepsilon)$ rather than exponential in d .*

274 Theorem 2 shows that LRNNs can circumvent the
 275 curse of dimensionality for a class of structured
 276 functions since the parameter complexity grows
 277 only polynomially with d rather than the exponential
 278 scaling typical of generic approximators. Appendix A.5 provides a more precise statement of
 279 this result with the technical assumptions and proof.
 280 The key insight is that LRNNs naturally encode
 281 sum-of-products structures matching ANOVA
 282 decompositions. Functions arising from physical
 283 systems often exhibit such decay in interaction order,
 284 making LRNNs particularly suitable for scientific
 285 computing applications. Figure 1 illustrates this in
 286 practice for a synthetic test function with product-
 287 structure; see Appendix D for details.

288 **Lemma 2** (Adaptive spectral bias control). *When equipped with periodic activations (e.g., SIREN,*
 289 *SPDER), LRNNs with $\bar{d} > 1$ generate rich frequency spectra through combinatorial frequency syn-*
 290 *thesis. A single LRNN neuron with \bar{d} components generates not only the \bar{d} fundamental frequencies*
 291 *but also all $2^{\bar{d}} - 1$ possible sum and difference combinations.*

292 This multiplicative frequency synthesis contrasts with MLPs' additive synthesis, where each neuron
 293 contributes a single frequency pair. Consequently, LRNNs can represent complex spectra with fewer
 294 parameters, particularly for signals with harmonic relationships or intermodulation products. This
 295 explains their superior performance on audio and image representation tasks where the ability to
 296 capture high-frequency details is crucial (see Appendix A.7 for proof and detailed discussion).

298 4 NUMERICAL EXPERIMENTS

300 We evaluate LRNNs across diverse domains, including image and audio representation, numeri-
 301 cal solution of PDEs, and sparse-view CT reconstruction. All models were implemented in Py-
 302 Torch (Paszke et al., 2019) and trained using the Adam optimizer (Kingma & Ba, 2015) on a single
 303 NVIDIA 4090 GPU. An anonymized repository containing the LRNN codebase is available at:
 304 https://anonymous.4open.science/r/iclr_lrnn-9C35.

305 Prior to presenting task-specific results, we summarize key architectural insights gained through
 306 extensive ablation studies (detailed in Appendices C–H): (i) Stability: The multiplicative structure
 307 of LRNNs alters activation statistics compared to additive networks, making LayerNorm essential
 308 for convergence (Appendix C.2); (ii) Component selection: Using periodic activations (e.g., SIREN,
 309 SPDER) within the univariate components is crucial for minimizing spectral bias in high-frequency
 310 tasks (Appendix C.3); and (iii) Robustness: LRNNs provide excellent performance in the sparse-
 311 data regime, maintaining high reconstruction fidelity (Appendix H).

313 **Image representation:** We conducted experiments to study how the performance, measured
 314 by peak signal-to-noise ratio (PSNR) scales with parameter count for LRNN, SPDER (Shah &
 315 Sitawarin, 2024), and MLPs. We refer to our LRNN implementation for this case as LRNN-SPDER,
 316 since we use the SPDER activation function $\sin(x)\sqrt{|x|}$ in the MLP parametrizations of the LRNN
 317 univariate component functions; see Appendix E for details.

318 As shown in Figure 2, on both the cameraman image (grayscale 256×256) and the retina image
 319 (RGB 256×256), a 2-layer LRNN-SPDER consistently outperforms deeper 3- and 5-layer SPDER
 320 models and 5-layer MLP models with both ReLU and tanh activations across all tested parameter
 321 counts. For cameraman, the performance gap widens between LRNN-SPDER and SPDER up to
 322 ~ 300 k parameters, suggesting that LRNN-SPDER achieves superior parameter efficiency compared
 323 to its baseline. Similarly, for retina, 2-layer LRNN-SPDER shows increasing performance gains as
 model size grows compared to both SPDER models. These scaling plots highlight LRNN-SPDER's

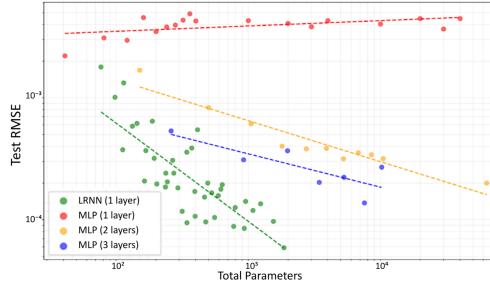


Figure 1: Test RMSE vs. parameter count for LRNN and ReLU MLP.

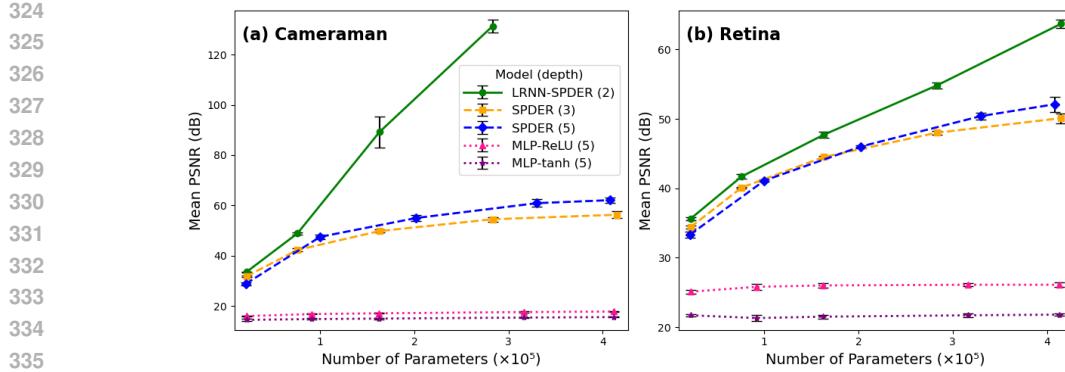


Figure 2: Scaling laws for image representation task.

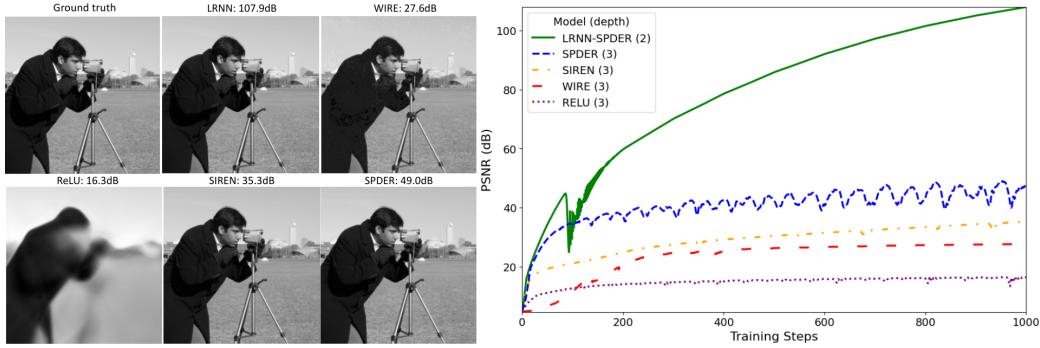


Figure 3: Cameraman image results: ground truth and reconstructed images from LRNN-SPDER, SPDER, SIREN, WIRE and ReLU (left); and PSNR convergence history over iterations (right).

expressivity and learning capacity, surpassing the corresponding benchmark on which the LRNN activations are based, even at shallower depth.

We compare the performance of LRNN-SPDER to an MLP with ReLU activations, SIREN (Sitzmann et al., 2020), WIRE (Saragadam et al., 2023) and SPDER (Shah & Sitawarin, 2024) on the cameraman image. All models are chosen to have ~ 197 k parameters. LRNN-SPDER outperformed all the baselines, achieving a PSNR of 107.9 dB—a margin of 58.9 dB over the next best, SPDER (49.0 dB). While such extreme fidelity exceeds visual distinguishability, it confirms that LRNNs avoid the spectral saturation limiting standard architectures. Figure 3 shows the qualitative image reconstructions and PSNR convergence history for all models. The PSNR convergence plot shows LRNN-SPDER achieving the highest PSNR early on in training and continuing to climb even while the other models show signs of convergence.

We conducted a large-scale robustness study on 1,000 images from the ImageNet dataset, each postprocessed to 256×256 . LRNN-SPDER, SIREN, and SPDER models with ~ 200 k parameters were trained for 1,000 epochs using three random seeds per image, totaling 3,000 runs per model. Figure 4 reports the success rate and average wall-clock time required to reach PSNR targets of 33 dB, 35 dB, and 40 dB. We observe that LRNNs consistently outperform the baselines. For the challenging 40 dB target, LRNNs achieved a 100% success rate, whereas SIREN and SPDER failed to reach this target in 98.2% and 73.6% of cases, respectively. Even at lower targets, LRNNs surpass SPDER in both success rate and time-to-solution. While SIREN has shorter runtimes, its success rate significantly drops at higher fidelity targets. See Appendix E.1 for further analysis. Figure 5 compares repre-



Figure 4: Average success rate and time for models to reach PSNR targets on 1000 ImageNet images.

sentative reconstructions at epoch 250. LRNN reconstructions are virtually indistinguishable from the ground truth, whereas SPDER exhibits mild degradation and SIREN produces blurrier outputs.

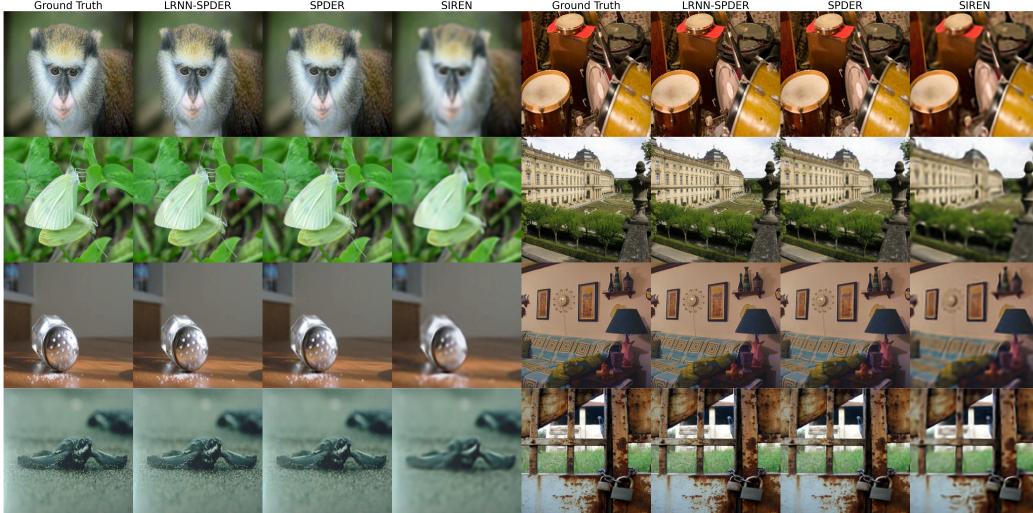


Figure 5: Qualitative comparison of ImageNet reconstructions after 250 epochs. Selected examples demonstrate that LRNNs capture fine details significantly earlier in training than baseline models.

We demonstrate the capabilities of LRNN-SPDER on images from the DIV2K dataset. We downsample the original image with a scaling factor of 4, train the model on the downsampled image, then reconstruct the image by upsampling the model output back to the full resolution. The frequency factor ω_0 within the MLP component functions of our LRNN-SPDER model was chosen following de Avila Belbute-Peres & Kolter (2023). The upsampled reconstruction is compared to the ground truth in Figure 6. Additional studies on color images are presented in Appendix E.



Figure 6: LRNN-SPDER upsampled image reconstruction demonstrated on DIV2K image.

Audio Representation: We tested LRNNs on audio signal representation using four diverse clips: instrumental classical music (bach) and male human speech (counting) as used in Sitzmann et al. (2020); reggae music with singing (reggae) from the GTZAN dataset (Tzanetakis et al., 2001); and female human speech (reading) from the LibriSpeech dataset (Panayotov et al., 2015). We used $\sin(x)$ $\arctan(x)$ (Shah & Sitawarin, 2024) activations pare against the baseline mode

Table 1: MSE loss and ρ_{AG} across architectures. Values show mean(std) over 10 runs.

Method	MSE Loss ($\times 10^{-4}$)			
	bach	counting	reggae	reading
SIREN	1.21(0.28)	2.77(0.56)	21.5(6.3)	9.98(1.57)
SPDER	1.12(0.05)	2.29(0.55)	24.8(7.7)	8.88(2.45)
LRNN-SPDER	0.10(0.01)	0.72(0.03)	7.93(0.11)	1.86(0.30)

	ρ_{AG} (std $\times 10^{-4}$)			
	bach	counting	reggae	reading
SIREN	0.9986(5)	0.9906(15)	0.9769(11)	0.9193(94)
SPDER	0.9988(3)	0.9937(6)	0.9729(10)	0.9324(104)
LRNN-SPDER	0.9999(0)	0.9967(2)	0.9860(2)	0.9862(31)

& Sitawarin, 2024) activations for the MLP-based component functions of LRNN-SPDER and compare against the baseline models, SIREN and SPDER.

Table 1 presents MSE loss and frequency similarity (ρ_{AG}), while Figure 7 shows time and frequency domain absolute errors and loss convergence for the bach audio. Additional results and implementation details are presented in Appendix F. The results consistently demonstrate LRNNs’ superiority: LRNN-SPDER significantly outperforms all other models, including its SPDER baseline, achieving **3x–11x** lower final MSE and higher ρ_{AG} across all the datasets. LRNN-SPDER also exhibits faster convergence compared to the baselines. The error distributions in the frequency domain show that LRNN-SPDER preserves spectral integrity essential to human perception (e.g., timbre, pitch, harmonics). This demonstrates superior generalization across both temporal and spectral representations compared to baselines.

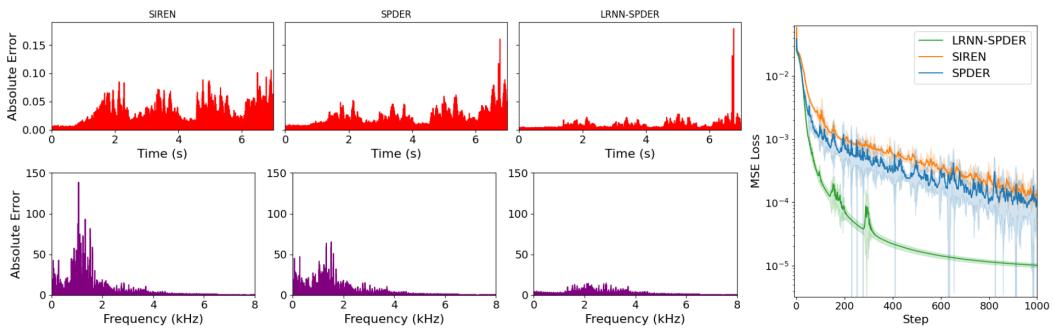


Figure 7: Absolute error in time and frequency domain and convergence of training MSE loss (mean $\pm 1\sigma$) for bach audio representation tasks for comparably sized models.

PDE benchmark: We evaluate LRNNs (with $\sin(x)$ activations for the MLP component functions) on the high-frequency Poisson PDE benchmark (Liu et al., 2025), comparing against SIREN, MLPs, and KANs. Figure 8 compares the ℓ_2 error obtained using LRNN, MLP, and SIREN with different model parameter counts when the frequency parameter is set to $n = 2$ and $n = 4$. Results for KAN1 ([100] $G = 10$) and KAN2 ([100] $G = 20$) are from Liu et al. (2025) and are displayed as horizontal lines since the parameter counts are unknown. It can be seen from the results that LRNNs exhibit exceptional performance, particularly in parameter efficiency. For instance, a 16k-parameter 2-layer LRNN achieves a significantly lower error for frequency $n = 2$ and comparable error at $n = 4$ relative to a 132k-parameter SIREN with three hidden layers (an **8x** parameter reduction).

Furthermore, a 57k-parameter LRNN reduces the error by nearly an order of magnitude compared to the 132k-parameter SIREN when $n = 4$. Compared to KANs, LRNNs achieve orders of magnitude lower error across all tested frequencies. These results underscore LRNNs’ superior expressivity for complex PDE solutions with compact models; see Appendix G for additional details and results.

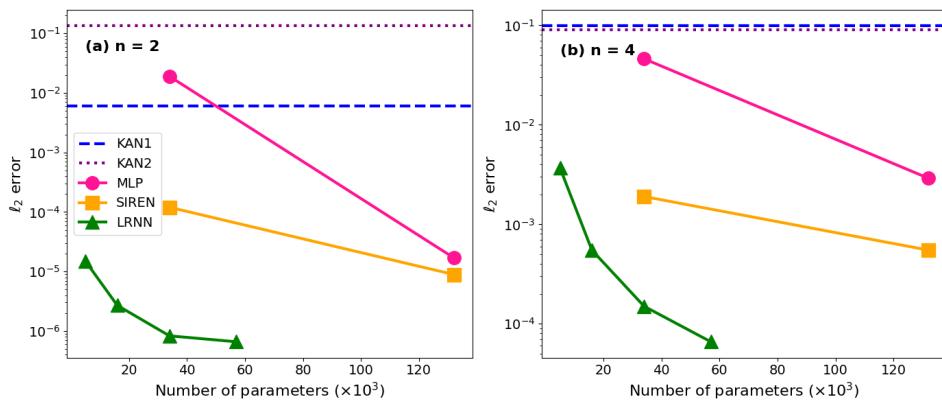


Figure 8: Results for the PDE benchmark.

CT Reconstruction: Sparse-view Computed Tomography (CT) is vital for reducing patient radiation exposure, and INRs can reconstruct high-fidelity images from such limited data. We compared

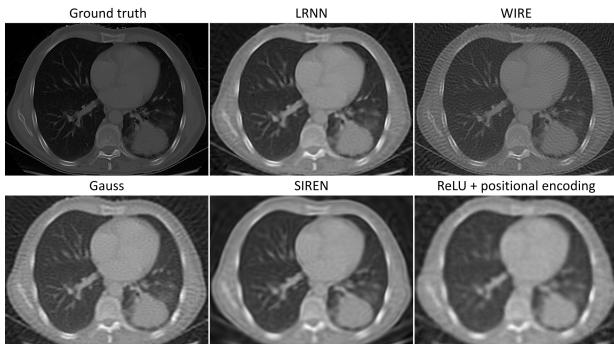


Figure 9: Comparison of CT ground truth and reconstructed images by similarly complex models.

Table 2: Comparison of model performance.

Model	PSNR	SSIM
LRNN	29.13	0.7455
WIRE	28.83	0.6413
Gauss	27.84	0.6855
SIREN	27.46	0.6877
ReLU	26.89	0.6341

LRNN against WIRE, SIREN, Gaussian-activated networks (Gauss), and ReLU with positional encoding (ReLU+PE) on a 256×256 chest CT image task (Saragadam et al., 2023), using $\sim 180k$ parameters for all models.

Table 2 shows that LRNN achieves the highest PSNR (29.13 dB) and SSIM (0.7455). Qualitatively, Figure 9 demonstrates LRNNs’ superior reconstruction fidelity: its output is sharper and closer to the ground truth than the blurry results from SIREN and ReLU+PE. Notably, while the training loss of the LRNN converges similarly to WIRE (the next best in PSNR), the LRNN reconstruction is free from the high-frequency artifacts present in WIRE’s output. This suggests that LRNNs find solutions that better correspond to perceptually accurate image features. Appendix H further details ablation studies, confirming the suitability of LRNNs for sparse-view CT. This artifact-free reconstruction from limited projections has direct clinical implications for reducing patient radiation exposure while maintaining diagnostic quality.

5 CONCLUDING REMARKS

We introduced deep low-rank separated neural networks (LRNNs), a novel architecture that generalizes MLPs, achieving enhanced expressivity through learnable product-structured activation functions. This design allows LRNN neurons to effectively capture complex high-order interactions with a compact parameterization. Our theoretical analysis established LRNNs’ universal approximation capabilities, their potential to overcome the curse of dimensionality for functions with low-rank structure, and their ability to adaptively control spectral bias—crucial for signal representation tasks.

Our extensive experiments demonstrate that LRNNs hold significant potential across several domains. They set new benchmarks on a challenging PDE test-case, achieving orders of magnitude lower error with significantly fewer parameters than SIREN, MLPs, and KANs. In INR tasks, LRNNs delivered state-of-the-art image reconstruction quality, outperforming SPDER and SIREN even when using their respective component activations. They also produced superior audio fidelity with faster convergence and yielded higher-quality, artifact-free CT reconstructions.

Exciting avenues for future research include extending LRNNs to domains such as video modeling and unsteady PDEs. We view 3D scene reconstruction (NeRFs) as a particularly promising direction; we hypothesize that the multiplicative structure of LRNNs is naturally suited for capturing the high-frequency, view-dependent effects. Additionally, experiments in Appendix I on classification benchmarks suggest that LRNNs’ applicability extends beyond continuous signal representation.

While remarkably effective, LRNNs present opportunities for further refinement. For instance, while our use of forward-mode AD proved highly efficient for Laplacian computations in PDE tasks, the general backward pass currently incurs a higher memory footprint than standard MLPs due to intermediate product storage. However, as detailed in Appendix B.2, strategies such as kernel fusion and mixed-precision training offer clear paths to mitigate this. In summary, LRNNs provide a versatile and powerful building block for learning compact and expressive representations across a broad spectrum of machine learning challenges.

540 REPRODUCIBILITY STATEMENT
541542 We provide complete architectural specifications, hyperparameters, and training procedures in Sec-
543 tions 3 and 4 and Appendices B-I. Our implementation uses PyTorch and runs on a single NVIDIA
544 4090 GPU. The anonymous repository at [https://anonymous.4open.science/r/iclr_](https://anonymous.4open.science/r/iclr_1rnn-9C35)
545 [1rnn-9C35](https://anonymous.4open.science/r/iclr_1rnn-9C35) contains the core LRNN implementation and sample scripts. All experimental config-
546 urations, including learning rates, and model architectures for each benchmark, are detailed in the
547 respective appendices. Full scripts to reproduce all experiments and figures will be made available
548 upon publication.549
550 ETHICS STATEMENT
551552 Our work introduces a new deep learning architecture with demonstrated advantages in medical
553 imaging (CT reconstruction) and scientific computing (numerical solution of PDEs). While these
554 applications have clear benefits—reducing patient radiation exposure and advancing computational
555 science—we acknowledge that powerful representation learning tools can be misused. The improved
556 efficiency of LRNNs could potentially lower barriers to applications requiring careful ethical
557 consideration. We encourage responsible deployment with appropriate domain expertise and ethical
558 oversight, particularly in medical applications.559 During the preparation of this work, the authors used LLMs for proofreading the text and for debug-
560 ging code.561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Evrim Acar, Seyit Ahmet Çamtepe, and Bülent Yener. Collective sampling and analysis of high
597 order tensors for chatroom communications. In Sharad Mehrotra, Daniel Dajun Zeng, Hsinchun
598 Chen, Bhavani Thuraisingham, and Fei-Yue Wang (eds.), *Intelligence and Security Informatics,
599 IEEE International Conference on Intelligence and Security Informatics, ISI 2006, San Diego,
600 CA, USA, May 23-24, 2006, Proceedings*, volume 3975 of *Lecture Notes in Computer Science*,
601 pp. 213–224. Springer, 2006.

602 Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Benjamin J. Lengerich, Rich
603 Caruana, and Geoffrey E. Hinton. Neural additive models: Interpretable machine learning with
604 neural nets. In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
605 Jennifer Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems 34: An-
606 nual Conference on Neural Information Processing Systems*, pp. 4699–4711, 2021.

607 Eric Alcaide. E-swish: Adjusting activations to different network depths. *CoRR*, abs/1801.07145,
608 2018.

609 Mazen Ali and Anthony Nouy. Approximation theory of tree tensor networks: Tensorized
610 univariate functions. *Constructive Approximation*, 58(2):463–544, 2023. doi: 10.1007/
611 s00365-023-09620-w.

613 Christophe Audouze and Prasanth B. Nair. Sparse low-rank separated representation models for
614 learning from data. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering
615 Sciences*, 475(2221):20180490, 2019. doi: 10.1098/rspa.2018.0490.

616 Markus Bachmayr, Anthony Nouy, and Reinhold Schneider. Approximation by tree tensor networks
617 in high dimensions: Sobolev and compositional functions. *CoRR*, abs/2112.01474, 2021.

619 Gregory Beylkin, Jochen Garcke, and Martin J. Mohlenkamp. Multivariate regression and machine
620 learning with sums of separable functions. *SIAM J. Sci. Comput.*, 31(3):1840–1857, 2009.

621 Russel E. Caflisch, William J. Morokoff, and Art B. Owen. Valuation of mortgage backed securities
622 using brownian bridges to reduce effective dimension. *Journal of Computational Finance*, 1(1):
623 27–46, 1997.

625 J.D. Carroll and J. J. Chang. Analysis of individual differences in multidimensional scaling via an
626 n-way generalization of “eckart-young” decomposition. *Psychometrika*, 25:283–319, 1970.

627 R. B. Cattell. Parallel proportional profiles and other principles for determining the choice of factors
628 by rotation. *Psychometrika*, 9:267–283, 1944.

630 Song Cheng, Lei Wang, Tao Xiang, and Pan Zhang. Tree tensor networks for generative modeling.
631 *Physical Review B*, 99(15), April 2019. ISSN 2469-9969. doi: 10.1103/physrevb.99.155131.

632 M. Chevreuil, R. Lebrun, A. Nouy, and P. Rai. A least-squares method for sparse low rank ap-
633 proximation of multivariate functions. *SIAM/ASA Journal on Uncertainty Quantification*, 3(1):
634 897–921, 2015.

636 George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of Con-
637 trol, Signals, and Systems*, 2:303–314, 1989. doi: 10.1007/BF02551274.

638 Filipe de Avila Belbute-Peres and J. Zico Kolter. Simple initialization and parametrization of sinu-
639 soidal networks via their kernel bandwidth. In *The Eleventh International Conference on Learning
640 Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*, 2023.

641 Sergey Dolgov, Dante Kalise, and Karl K. Kunisch. Tensor decomposition methods for high-
642 dimensional hamilton–jacobi–bellman equations. *SIAM Journal on Scientific Computing*, 43(3):
643 A1625–A1650, 2021.

645 Amer Essakine, Yanqi Cheng, Chun-Wun Cheng, Lipei Zhang, Zhongying Deng, Lei Zhu, Carola-
646 Bibiane Schönlieb, and Angelica I Aviles-Rivero. Where do we stand with implicit neural rep-
647 resentations? a technical and performance survey. *Transactions on Machine Learning Research*,
2025. ISSN 2835-8856.

648 Leonardo Ferreira Guilhoto and Paris Perdikaris. Deep learning alternatives of the kolmogorov
 649 superposition theorem. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu (eds.), *International*
 650 *Conference on Representation Learning*, volume 2025, pp. 78241–78269, 2025.

651

652 Jerome H. Friedman and Werner Stuetzle. Projection pursuit regression. *Journal of the American*
 653 *Statistical Association*, 76(376):817–823, 1981. doi: 10.1080/01621459.1981.10477729.

654 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
 655 ral networks. In Yee Whye Teh and D. Mike Titterington (eds.), *Proceedings of the Thirteenth*
 656 *International Conference on Artificial Intelligence and Statistics, AISTATS*, volume 9 of *JMLR*
 657 *Proceedings*, pp. 249–256. JMLR.org, 2010.

658 Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, and Yoshua Bengio.
 659 Maxout networks. In *Proceedings of the 30th International Conference on Machine Learning,*
 660 *ICML*, volume 28 of *JMLR Workshop and Conference Proceedings*, pp. 1319–1327. JMLR.org,
 661 2013.

662

663 Samuel Greydanus and Dmitry Kobak. Scaling down deep learning with MNIST-1D. In *Forty-first*
 664 *International Conference on Machine Learning, ICML*, 2024.

665 R.A. Harshman. Foundations of the parafac procedure: Models and conditions for an explanatory
 666 multimodal factor analysis. *UCLA Working Papers in Phonetics*, 16:1–84, 1970.

667

668 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
 669 human-level performance on imagenet classification. In *Proceedings of the IEEE International*
 670 *Conference on Computer Vision, ICCV*, pp. 1026–1034. IEEE Computer Society, 2015.

671 Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
 672 error linear units. *CoRR*, 2016.

673

674 Frank L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. *Journal of*
 675 *Mathematics and Physics*, 6(1-4):164–189, 1927.

676

677 Kurt Hornik. Approximation capabilities of multilayer feedforward networks. *Neural Networks*, 4
 (2):251–257, 1991.

678

679 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 680 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *The Tenth Interna-*
681 tional Conference on Learning Representations, ICLR, 2022.

682

683 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
 684 and Yann LeCun (eds.), *3rd International Conference on Learning Representations ICLR*, 2015.

685

686 Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. *SIAM Rev.*, 51(3):
 455–500, 2009.

687

688 Vladimír Kunc and Jirí Kléma. Three decades of activations: A comprehensive survey of 400
 689 activation functions for neural networks. *CoRR*, abs/2402.09092, 2024.

690

691 Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan V. Oseledets, and Victor S. Lempitsky.
 Speeding-up convolutional neural networks using fine-tuned cp-decomposition. In Yoshua Bengio
 692 and Yann LeCun (eds.), *3rd International Conference on Learning Representations, ICLR*, 2015.

693

694 Zhen Liu, Hao Zhu, Qi Zhang, Jingde Fu, Weibing Deng, Zhan Ma, Yanwen Guo, and Xun Cao.
 FINER: flexible spectral-bias tuning in implicit neural representation by variable periodic activa-
 695 tion functions. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR*,
 pp. 2713–2722. IEEE, 2024.

696

697 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
 698 Thomas Y. Hou, and Max Tegmark. KAN: kolmogorov-arnold networks. In *The Thirteenth*
 699 *International Conference on Learning Representations, ICLR*, 2025.

700

701 Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural net-
 work acoustic models. In *Proceedings of the 30th International Conference on Machine Learning*
ICML, volume 28, 2013.

702 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 703 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In Andrea
 704 Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), *16th European Conference
 705 on Computer Vision ECCV, Proceedings, Part I*, volume 12346 of *Lecture Notes in Computer
 706 Science*, pp. 405–421. Springer, 2020.

707 Alexander Novikov, Dmitry Podoprikin, Anton Osokin, and Dmitry P. Vetrov. Tensorizing neural
 708 networks. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman
 709 Garnett (eds.), *Advances in Neural Information Processing Systems 28: Annual Conference on
 710 Neural Information Processing Systems*, pp. 442–450, 2015.

711 Ivan V. Oseledets. Tensor-train decomposition. *SIAM J. Sci. Comput.*, 33(5):2295–2317, 2011.

712 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
 713 based on public domain audio books. In *Acoustics, Speech and Signal Processing (ICASSP), 2015
 714 IEEE International Conference on*, pp. 5206–5210. IEEE, 2015.

715 Evangelos E. Papalexakis, Konstantinos Pelechrinis, and Christos Faloutsos. Location based social
 716 network analysis using tensors and signal processing tools. In *6th IEEE International Workshop
 717 on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2015, Cancun, Mex-
 718 ico, December 13-16, 2015*, pp. 93–96. IEEE, 2015.

719 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 720 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 721 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 722 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
 723 deep learning library. In *Advances in Neural Information Processing Systems 32*, pp. 8024–8035.
 724 Curran Associates, Inc., 2019.

725 Allan Pinkus. Approximation theory of the mlp model in neural networks. *Acta Numerica*, 8:
 726 143–195, 1999. doi: 10.1017/S0962492900002919.

727 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht,
 728 Yoshua Bengio, and Aaron C. Courville. On the spectral bias of neural networks. In Kamalika
 729 Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on
 730 Machine Learning, ICML*, volume 97 of *Proceedings of Machine Learning Research*, pp. 5301–
 731 5310. PMLR, 2019.

732 Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. In *6th In-
 733 ternational Conference on Learning Representations, ICLR, Workshop Track Proceedings*, 2018.

734 Sameera Ramasinghe and Simon Lucey. Beyond periodicity: Towards a unifying framework for acti-
 735 vations in coordinate-mlps. In Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria
 736 Farinella, and Tal Hassner (eds.), *Computer Vision - ECCV 2022 - 17th European Conference, Tel
 737 Aviv, Israel, October 23-27, 2022, Proceedings, Part XXXIII*, volume 13693 of *Lecture Notes in
 738 Computer Science*, pp. 142–158. Springer, 2022.

739 Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraraghavan, and
 740 Richard G. Baraniuk. WIRE: wavelet implicit neural representations. In *IEEE/CVF Conference
 741 on Computer Vision and Pattern Recognition, CVPR*, pp. 18507–18516. IEEE, 2023.

742 Hemanth Saratchandran, Sameera Ramasinghe, Violetta Shevchenko, Alexander Long, and Simon
 743 Lucey. A sampling theory perspective on activations for implicit neural representations. In *Forty-
 744 first International Conference on Machine Learning, ICML*, 2024.

745 Danzel Serrano, Jakub Szymkowiak, and Przemyslaw Musalski. HOSC: A periodic activation
 746 function for preserving sharp features in implicit neural representations. *CoRR*, abs/2401.10967,
 747 2024.

748 Kathan Shah and Chawin Sitawarin. SPDER: semiperiodic damping-enabled object representation.
 749 In *The Twelfth International Conference on Learning Representations, ICLR*, 2024.

756 A. Shashua and A. Levin. Linear image coding for regression and classification using the tensor-rank
757 principle. In *Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision*
758 and *Pattern Recognition. CVPR 2001*, volume 1, pp. I–I, 2001.

759

760 Y.-Y. Shi, L.-M. Duan, and G. Vidal. Classical simulation of quantum many-body systems with a
761 tree tensor network. *Phys. Rev. A*, 74:022320, Aug 2006.

762

763 Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wet-
764 zstein. Implicit neural representations with periodic activation functions. In Hugo Larochelle,
765 Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances*
766 in *Neural Information Processing Systems 33: Annual Conference on Neural Information Pro-*
767 *cessing Systems 2020*, 2020.

768

769 L. Tucker. Some mathematical notes on three-mode factor analysis. *Psychometrika*, 31:279–311,
770 1966.

771

772 George Tzanetakis, Georg Essl, and Perry Cook. Automatic musical genre classification of audio
773 signals, 2001.

774

775 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
776 Tian. Galore: Memory-efficient LLM training by gradient low-rank projection. In *Forty-first*
777 *International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*,
778 2024.

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A THEORETICAL ANALYSIS OF LRNNs
811812 A.1 LRNN MODEL STRUCTURE
813

814 Consider an LRNN with one layer and separation-rank r , i.e., $f(\mathbf{x}) = \sum_{\ell=1}^r s_\ell \prod_{j=1}^d (1 + \gamma g_j^\ell(x_j))$,
815 where $\mathbf{x} \in [0, 1]^d$ and each $g_j^\ell : [0, 1] \rightarrow \mathbb{R}$ is a univariate function. The factors $(1 + \gamma g_j^\ell(x_j))$ in
816 our LRNN model explicitly separate a constant offset of 1 from the learnable component $\gamma g_j^\ell(x_j)$.
817 This is a specific parameterization of the more general multiplicative factors in classical separated-
818 rank decompositions. While this choice does not change the fundamental expressive power, it yields
819 tangible advantages in model initialization, learning dynamics, and interpretation, as we detail next.
820 For simplicity, we will drop the γ scaling in the following discussion – we will study the role of γ
821 in Section A.3.

822 1. Built-in additive terms. Expanding $\prod_{j=1}^d (1 + g_j^\ell(x_j))$ automatically includes (i) a constant off-
823 set 1, (ii) purely additive terms $\sum_j g_j^\ell(x_j)$, (iii) all possible higher-order products. Although one
824 can mimic this in a purely multiplicative model by adding a constant or bias term inside each
825 factor, the $(1 + g_j)$ notation makes these offsets more explicit.
826

827 2. Initialization and automatic relevance determination. Setting each $g_j^\ell(\cdot)$ to zero at initialization
828 yields an initial product of 1, a natural baseline. The network can then gradually learn interactions
829 by adapting specific $g_j^\ell(\cdot)$ functions. If a feature x_j is unimportant, the network can keep
830 $g_j^\ell(\cdot) \approx 0$, which in our experience often leads to more stable training while providing an in-built
831 automatic relevance determination mechanism.
832

3. Connection to functional ANOVA decompositions. The expanded form

$$834 \prod_{j=1}^d (1 + g_j^\ell(x_j)) = 1 + \sum_{j=1}^d g_j^\ell(x_j) + \sum_{j < k} g_j^\ell(x_j) g_k^\ell(x_k) + \cdots + \prod_{j=1}^d g_j^\ell(x_j)$$

835 is reminiscent of a *functional ANOVA* decomposition. In principle, a single rank-1 factor can
836 capture constant, additive, pairwise, and all higher-order interactions. Rank- r LRNN is equiv-
837 alent to a functional ANOVA decomposition whose component functions are weighted linear
838 combinations of products of univariate functions.
839

840 We discuss below some additional reasons why the $(1 + \cdot)$ factorization can be advantageous in
841 practice, even though it is not a fundamentally different decomposition than classic CP.
842

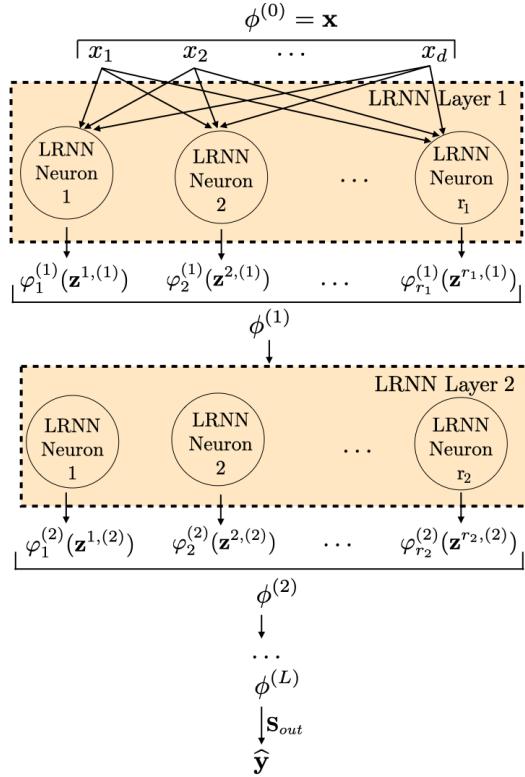
843 **Modeling sparse interactions.** Suppose we want f to capture a product of only a few relevant
844 coordinates (e.g., $\prod_{j \in S} x_j$ for some small subset S). In a *purely* multiplicative model $\prod_{j=1}^d h_j(x_j)$,
845 one typically sets $h_j(x_j) = x_j$ for $j \in S$ and $h_j(x_j) = 1$ for $j \notin S$. With LRNNs, we can
846 do the same by setting $g_j^\ell(x_j) = x_j - 1$ for $j \in S$ and $g_j^\ell(x_j) = 0$ for $j \notin S$. Hence, the factor
847 $\prod_{j=1}^d [1 + g_j^\ell(x_j)]$ becomes $\prod_{j \in S} x_j$, while all factors corresponding to irrelevant coordinates default
848 to 1. This offset-based parameterization can be more natural to train or initialize.
849

850 **Compact representation of polynomial features.** One can also view $(1 + g_j^\ell(x_j))$ as a generating
851 function in each coordinate. When g_j^ℓ is a complete polynomial, the product term when expanded
852 yields constant, linear, and higher-order powers of x_j . A classical fact (see, e.g., Kolda & Bader
853 (2009) for a tensor viewpoint) is that polynomials with *fully factorable* coefficient structure can be
854 captured in a single rank-1 product. Although this observation is not novel (it dates back to standard
855 generating-function ideas and CP decompositions), it illustrates how $(1 + g_j^\ell)$ can unify constant,
856 additive, and multiplicative terms in one factor.
857

858 In summary, the $(1 + \gamma g_j^\ell(\cdot))$ construction is mostly for notational and practical convenience, rather
859 than a departure from classical multiplicative low-rank expansions. From a theoretical perspective,
860 an LRNN is equivalent in representational power to a standard rank- r CP model $\sum_{\ell=1}^r \prod_{j=1}^d h_j^\ell(x_j)$
861 that permits each h_j^ℓ to have a constant offset. However, specifying these offsets explicitly by $(1 + g_j^\ell)$
862 often simplifies initialization (starting from a constant baseline), captures additive terms by default,
863 and can improve interpretability regarding how interactions are learned during training. Later in this

864 section, we will provide some theoretical analysis to show how the normalization constant γ ensures
 865 that the variance of the LRNN output is controlled, which can be beneficial for training.
 866

867 The deep LRNN architecture is illustrated in Figure 10.



894 Figure 10: Deep LRNN architecture.
 895
 896

897 A.2 INTERPRETABILITY AND INTERACTION ANALYSIS

898 A significant challenge in deep learning is the opaque nature of standard architectures. In a standard
 899 MLP, feature interactions are entangled within dense matrix multiplications, making it difficult to
 900 isolate the contribution of specific variables. The LRNN architecture, by virtue of its separable
 901 product structure, offers a more structured view of how features are combined, similar in spirit to
 902 generalized additive models (GAMs) such as neural additive models (NAMs) proposed by Agarwal
 903 et al. (2021).

904 GAMs approximate a function as a sum of univariate functions: $f(\mathbf{x}) = \sum f_j(x_j)$. LRNNs general-
 905 ize this by allowing for multiplicative interactions. Each LRNN neuron ℓ computes a product of
 906 univariate transformations on projected features: $\phi_\ell(\mathbf{z}) = \prod_{j=1}^d (1 + \gamma g_j^\ell(z_j))$. Since the com-
 907 ponent functions $g_j^\ell : \mathbb{R} \rightarrow \mathbb{R}$ are univariate, they can be visualized directly. By plotting the learned
 908 curves $g_j^\ell(z)$, practitioners can inspect the nonlinear transformation applied to each projected fea-
 909 ture dimension (e.g., whether the model has learned an approximately linear trend, a threshold-like
 910 response, or a periodic modulation) before these features are combined multiplicatively.

911 Beyond visualizing individual components, the LRNN structure enables an explicit, architecture-
 912 level notion of which features participate in a given interaction. In the product above, each factor
 913 $(1 + \gamma g_j^\ell(z_j))$ acts as a modulator. If, over the data distribution, a component function learns a
 914 nearly constant mapping $g_j^\ell(z) \approx 0$, then the corresponding factor is close to 1 and effectively does
 915 not influence the product. Conversely, if $g_j^\ell(z)$ varies substantially, it actively modulates the neuron
 916 output.

918 This observation suggests a simple diagnostic: by computing the empirical variance of each component function, $\text{Var}[g_j^\ell(z_j)]$, over a validation set, one can construct “interaction heatmaps” that indicate which coordinates are active for each neuron. For example, if a specific neuron ℓ exhibits high variance predominantly for components $j = 1$ and $j = 4$, this provides evidence that this neuron is primarily sensitive to joint variation in feature dimensions 1 and 4 and relatively invariant to the others.

924 Standard MLPs with conventional activation functions can, in principle, be analyzed using post-hoc attribution or sensitivity methods, but their parameterization does not make such interaction structure explicit. In contrast, LRNNs build this structure into the architecture: the univariate components g_j^ℓ and their variances provide a direct handle for probing which dimensions and interactions a given neuron is using.

929

930 A.3 VARIANCE-CONTROLLED INITIALIZATION: PROOF OF LEMMA 1

931

932 In this section, we provide a proof for Lemma 1 in Section 3.1 and discuss its implications. The proof is broken down into a lemma (see Lemma 3) and a corollary (see Corollary 1). An LRNN neuron acting on the \bar{d} -dimensional projection $\mathbf{z} = (z_1, \dots, z_{\bar{d}})$ is defined by the product-structured activation $\varphi(\mathbf{z}) = \prod_{j=1}^{\bar{d}} (1 + \gamma g_j(z_j))$, where $\gamma = \frac{1}{\sqrt{\bar{d}}}$. Let $z_j = \mathbf{w}_j^\top \mathbf{x} + b_j$, with weights initialized such that for a fixed input \mathbf{x} , $\mathbb{E}[z_j] = 0$ and $\text{Var}[z_j] = \sigma_z^2$ for each j . In addition, let each $g_j : \mathbb{R} \rightarrow \mathbb{R}$ be a twice-differentiable, learnable univariate function. We theoretically analyze the role of the scaling parameter γ under the following standard assumptions at initialization:

935 **Assumption 1** (Independence across dimensions). *For any distinct indices $j, k \in \{1, \dots, \bar{d}\}$, the random variables z_j and z_k are independent. In other words, $g_j(z_j)$ is independent of $g_k(z_k)$, and $g'_j(z_j)$ is independent of $g'_k(z_k)$ for $j \neq k$, as g_j are deterministic functions of z_j at initialization.*

936 **Assumption 2** (Properties of component functions). *For every $j \in \{1, \dots, \bar{d}\}$, $\mathbb{E}[g_j(z_j)] = 0$, $\text{Var}[g_j(z_j)] = \sigma_g^2$, $\mathbb{E}[g'_j(z_j)] = 0$, and $\text{Var}[g'_j(z_j)] = \sigma_{g'}^2$, where σ_g and $\sigma_{g'}$ are finite constants.*

937 Assumption 2 ensures that the expected partial derivatives $\mathbb{E}[\partial\varphi/\partial z_k]$ are zero, simplifying variance calculations. We note that while the main conclusion regarding the sum of gradient variances being $\mathcal{O}(1)$ holds more broadly (see discussion after Lemma 3), these specific assumptions lead to the following variance bounds.

938 **Lemma 3** (Gradient-variance stabilization). *Under Assumptions 1 and 2, the partial derivatives of the LRNN product-structured activation $\varphi(\mathbf{z}) = \prod_{j=1}^{\bar{d}} (1 + \gamma g_j(z_j))$, where $\gamma = \frac{1}{\sqrt{\bar{d}}}$ satisfy*

$$939 \mathbb{E}\left[\frac{\partial\varphi}{\partial z_k}\right] = 0, \quad \text{and} \quad \mathbb{E}\left[\left(\frac{\partial\varphi}{\partial z_k}\right)^2\right] \leq \frac{\sigma_{g'}^2}{\bar{d}} e^{\sigma_g^2} \quad \forall k \in \{1, \dots, \bar{d}\}.$$

940 and consequently the sum of the variances of the first-order partial derivatives satisfies the following bound that is independent of \bar{d} , i.e., $\sum_{k=1}^{\bar{d}} \text{Var}\left[\frac{\partial\varphi}{\partial z_k}\right] \leq \sigma_{g'}^2 e^{\sigma_g^2}$.

941

942 *Proof.* From the definition of φ , we have $\partial\varphi/\partial z_k = \gamma g'_k(z_k) \prod_{j \neq k} (1 + \gamma g_j(z_j))$. Using Assumption 1 to separate expectations and Assumption 2 for the properties of g_j and g'_j , we have

$$943 \mathbb{E}\left[\frac{\partial\varphi}{\partial z_k}\right] = \gamma \mathbb{E}[g'_k(z_k)] \prod_{j \neq k} \mathbb{E}[1 + \gamma g_j(z_j)] = \gamma \cdot 0 \cdot \prod_{j \neq k} (1 + \gamma \cdot 0) = 0.$$

944

945 For the second moment, we have

$$946 \begin{aligned} \mathbb{E}\left[\left(\frac{\partial\varphi}{\partial z_k}\right)^2\right] &= \gamma^2 \mathbb{E}[g'_k(z_k)^2] \prod_{j \neq k} \mathbb{E}[(1 + \gamma g_j(z_j))^2] \\ 947 &= \gamma^2 (\text{Var}[g'_k(z_k)] + (\mathbb{E}[g'_k(z_k)])^2) \prod_{j \neq k} (1 + 2\gamma \mathbb{E}[g_j(z_j)] + \gamma^2 \mathbb{E}[g_j(z_j)^2]) \\ 948 &= \frac{1}{\bar{d}} (\sigma_{g'}^2 + 0^2) \prod_{j \neq k} (1 + 0 + \frac{1}{\bar{d}} (\text{Var}[g_j(z_j)] + (\mathbb{E}[g_j(z_j)])^2)) = \frac{1}{\bar{d}} \sigma_{g'}^2 \left(1 + \frac{\sigma_g^2}{\bar{d}}\right)^{\bar{d}-1}. \end{aligned}$$

Using the inequality $(1 + \frac{a}{m})^{m-1} \leq e^a$ for $a, m > 0$ ³, we have $\mathbb{E} \left[\left(\frac{\partial \varphi}{\partial z_k} \right)^2 \right] \leq (\sigma_{g'}^2 / \bar{d}) e^{\sigma_g^2}$. Since $\mathbb{E}[\partial \varphi / \partial z_k] = 0$, it follows that $\text{Var}[\partial \varphi / \partial z_k] = \mathbb{E}[(\partial \varphi / \partial z_k)^2]$. Summing this variance bound over $k = 1, \dots, \bar{d}$ yields the following upper bound independent of the projection width \bar{d} .

$$\sum_{k=1}^{\bar{d}} \text{Var}[\partial \varphi / \partial z_k] \leq \sum_{k=1}^{\bar{d}} \frac{\sigma_{g'}^2}{\bar{d}} e^{\sigma_g^2} = \sigma_{g'}^2 e^{\sigma_g^2}$$

□

Remark 1 (Relaxing Assumption 2). *If $\mathbb{E}[g'_j(z_j)] = \mu_{g'} \neq 0$, then $\mathbb{E}[\partial \varphi / \partial z_k] = \gamma \mu_{g'}$. The sum of variances $\sum_k \text{Var}[\partial \varphi / \partial z_k]$ would then be bounded by $[(\sigma_{g'}^2 + \mu_{g'}^2) e^{\sigma_g^2} - \mu_{g'}^2]$, which is still an $\mathcal{O}(1)$ constant independent of \bar{d} . Thus, the primary conclusion of width-independent total gradient variance still holds, though Assumption 2 simplifies the constant and ensures zero-mean gradients.*

We now prove a corollary showing that the variance of the output of the LRNN neuron remains $\mathcal{O}(1)$ as \bar{d} increases.

Corollary 1 (Activation variance). *Under Assumptions 1 and 2, the variance of the LRNN activation satisfies the inequality $\text{Var}[\varphi(\mathbf{z})] \leq e^{\sigma_g^2} - 1$.*

Proof. Using Assumptions 1 and 2, we have $\mathbb{E}[\varphi(\mathbf{z})] = \prod_{j=1}^{\bar{d}} \mathbb{E}[1 + \gamma g_j(z_j)] = \prod_{j=1}^{\bar{d}} (1 + \gamma \cdot 0) = 1$. For the second moment, it follows from Assumption 2 that $\mathbb{E}[g_j(z_j)^2] = \sigma_g^2$, which gives

$$\begin{aligned} \mathbb{E}[\varphi(\mathbf{z})^2] &= \prod_{j=1}^{\bar{d}} \mathbb{E}[(1 + \gamma g_j(z_j))^2] = \prod_{j=1}^{\bar{d}} (1 + 2\gamma \mathbb{E}[g_j(z_j)] + \gamma^2 \mathbb{E}[g_j(z_j)^2]) \\ &= \prod_{j=1}^{\bar{d}} (1 + \gamma^2 \sigma_g^2) = \left(1 + \frac{\sigma_g^2}{\bar{d}}\right)^{\bar{d}}. \end{aligned}$$

Therefore, $\text{Var}[\varphi(\mathbf{z})] = \mathbb{E}[\varphi(\mathbf{z})^2] - (\mathbb{E}[\varphi(\mathbf{z})])^2 = \left(1 + \frac{\sigma_g^2}{\bar{d}}\right)^{\bar{d}} - 1$. Using the inequality $(1 + a/m)^m \leq e^a$ that holds for $a, m > 0$, yields the stated result. □

Remark 2 (Implications). *Lemma 3 demonstrates that while the variance of each individual coordinate-gradient $\partial \varphi / \partial z_k$ decays like $1/\bar{d}$, their cumulative variance sum remains constant. This suggests an intrinsic mechanism for automatic relevance determination: as projection width \bar{d} grows, the influence of any single projected coordinate z_k on the output's gradient variance diminishes. Together with Corollary 1, which ensures $\mathcal{O}(1)$ activation variance, this analysis establishes that the scaling factor $\gamma = 1/\sqrt{\bar{d}}$ plays a crucial role analogous to initialization approaches for additive NNs (Glorot & Bengio, 2010; He et al., 2015) or the $1/\sqrt{r}$ scaling in LoRA adapters (Hu et al., 2022), ensuring stable propagation in both forward and backward passes for LRNN neurons, regardless of product width.*

A.4 UNIVERSAL APPROXIMATION THEOREM: PROOF OF THEOREM 1

Theorem 1 (Universal approximation theorem). *If $f : [0, 1]^d \rightarrow \mathbb{R}$ is a continuous function, then for every $\varepsilon > 0$, there exists an LRNN model $\hat{f}_{\text{lrrnn}}(\mathbf{x}) = \sum_{\ell=1}^r s_\ell \prod_{j=1}^d (1 + g_j^\ell(x_j))$ with suitably chosen separation rank $r \leq R(\varepsilon)$ and univariate component functions $g_j^\ell : [0, 1] \rightarrow \mathbb{R}$ such that*

$$\max_{\mathbf{x} \in [0, 1]^d} |f(\mathbf{x}) - \hat{f}_{\text{lrrnn}}(\mathbf{x})| \leq \varepsilon.$$

Proof. We provide a proof based on classical tensor-product expansions and polynomial approximations; see, for example, Hornik (1991); Pinkus (1999); Cybenko (1989) for analogous MLP proofs.

³This follows from the fact that $(1 + \frac{a}{m})^{m-1} = \frac{(1+a/m)^m}{1+a/m} \leq \frac{e^a}{1}$ as $1 + a/m \geq 1$.

It follows from the Stone-Weierstrass theorem that any continuous function on the compact domain $[0, 1]^d$ can be uniformly approximated by a multivariate polynomial. Thus, there exist $N \in \mathbb{N}$, real coefficients a_α , and univariate polynomials $\{\phi_{j,\alpha}(x_j) : [0, 1] \rightarrow \mathbb{R}\}_{j=1}^d$, such that $\hat{f}(\mathbf{x}) = \sum_{\ell=1}^N a_\ell \prod_{j=1}^d \phi_{j,\ell}(x_j)$, with $\sup_{\mathbf{x} \in [0,1]^d} |f(\mathbf{x}) - \hat{f}(\mathbf{x})| \leq \varepsilon/2$

Noting that $\sum_{\ell=1}^N a_\ell \prod_{j=1}^d \phi_{j,\ell}(x_j)$ is a sum of product terms representation, we will set $r := N$, $s_\ell := a_\ell$, and define the univariate functions $g_j^\ell(x_j) := \phi_{j,\ell}(x_j) - 1$ in the LRNN representation such that

$$\sum_{\ell=1}^r s_\ell \prod_{j=1}^d [1 + g_j^\ell(x_j)] = \sum_{\ell=1}^r a_\ell \prod_{j=1}^d \phi_{j,\ell}(x_j).$$

It follows from standard universal approximation results (see, for example Hornik (1991)) that each component function g_j^ℓ can be approximated by a univariate neural network $\tilde{g}_j^\ell(x_j)$ such that $\max_{x_j \in [0,1]} |g_j^\ell(x_j) - \tilde{g}_j^\ell(x_j)| \leq \delta$. Using a telescoping product approach yields the inequality

$$\left| \sum_{\ell=1}^r s_\ell \prod_{j=1}^d (1 + g_j^\ell(x_j)) - \sum_{\ell=1}^r s_\ell \prod_{j=1}^d (1 + \tilde{g}_j^\ell(x_j)) \right| \leq r d S_{\max} M^{d-1} \delta,$$

where $M := \max_{j,\ell} \sup_{z \in [0,1]} |1 + g_j^\ell(z)|$ is bounded by construction and $S_{\max} = \max |s_\ell|$. Choosing $\delta \leq \varepsilon / (2 r d S_{\max} M^{d-1})$ completes the proof. \square

A.5 STRUCTURED FUNCTIONS WITH DECAYING ANOVA INTERACTIONS: PROOF OF THEOREM 2

We show that LRNNs can mitigate the curse of dimensionality for a class of high-dimensional functions whose functional ANOVA decomposition exhibits a decay in the importance of higher-order interaction terms, and whose significant low-order terms are themselves approximable by sums of factorized components. The analysis presented here focuses on the case when the LRNN component functions are univariate MLPs. To prove our main result, we first establish a lemma on the approximation of functions that are already sums of products of univariate functions, where each product involves a limited number of variables.

Lemma 4 (LRNN approximation of separable low-rank functions). *Let $f : [0, 1]^d \rightarrow \mathbb{R}$ denote a continuous function that admits the representation $f(\mathbf{x}) = \sum_{\ell=1}^r \alpha_\ell \prod_{j \in S_\ell} \Phi_{j,\ell}(x_j)$, where $S_\ell \subseteq \{1, 2, \dots, d\}$ with $|S_\ell| \leq m$ for some $m \leq d$, $\Phi_{j,\ell} : [0, 1] \rightarrow \mathbb{R}$, $j \in S_\ell$ are continuous univariate functions such that $|\alpha_\ell| \leq c$ and $\|\Phi_{j,\ell}\|_\infty \leq 1$, where $c \geq 0$ is a constant. Then for any $\varepsilon > 0$, there exists an LRNN approximation, \hat{f}_{lrnn} , with $\mathcal{O}(rm^2/P(c, r, m, \varepsilon))$ parameters such that $\sup_{\mathbf{x} \in [0,1]^d} |f(\mathbf{x}) - \hat{f}_{\text{lrnn}}(\mathbf{x})| \leq \varepsilon$, where $P(c, r, m, \varepsilon) = \ln(1 + \frac{\varepsilon}{rc})$.*

Proof. We begin by noting that the target function admits exact representation by an LRNN by appropriately defining the scale and univariate component functions, i.e., $f(\mathbf{x}) = f_{\text{lrnn}}(\mathbf{x}) = \sum_{\ell=1}^r s_\ell \prod_{j=1}^d (1 + \tilde{g}_j^\ell(x_j))$ with $s_\ell = \alpha_\ell$ and $\tilde{g}_j^\ell(x_j) = \Phi_{j,\ell}(x_j) - 1 \forall j \in S_\ell$ and $\tilde{g}_j^\ell = 0 \forall j \notin S_\ell$.

Each non-trivial \tilde{g}_j^ℓ is approximated by a univariate MLP $g_j^\ell : \mathbb{R} \rightarrow \mathbb{R}$ with sufficient capacity such that $\|g_j^\ell - \tilde{g}_j^\ell\|_\infty \leq \delta$. It follows from standard universal approximation results (Hornik, 1991; Pinkus, 1999) that the number of parameters needed for each g_j^ℓ is $\mathcal{O}(1/\delta)$.

Since $\|\Phi_{j,\ell}\|_\infty \leq 1$, we have $|1 + \tilde{g}_j^\ell(x_j)| \leq 1$, and $|1 + g_j^\ell(x_j)| = |1 + \tilde{g}_j^\ell(x_j) + g_j^\ell(x_j) - \tilde{g}_j^\ell(x_j)| \leq 1 + \delta \forall j \in S_\ell, x_j \in [0, 1]$, while $|1 + \tilde{g}_j^\ell(x_j)| = 1$ and $|1 + g_j^\ell(x_j)| = 1 \forall j \notin S_\ell, x_j \in [0, 1]$ (since $\tilde{g}_j^\ell = 0$ for $j \notin S_\ell$).

Let $k_\ell = |S_\ell| \leq m$ be the number of interacting variables in the ℓ -th term. To bound the error between f and \hat{f}_{lrnn} , we first consider the error for the ℓ -th term in the sum, i.e., $E_\ell := |\prod_{j \in S_\ell} (1 + g_j^\ell(x_j)) - \prod_{j \in S_\ell} (1 + \tilde{g}_j^\ell(x_j))|$. Let $\{p_1, p_2, \dots, p_{k_\ell}\}$ be an ordered enumeration of the indices in

1080 S_ℓ . Using a telescoping product argument, we have
 1081

$$\begin{aligned} 1082 \quad E_\ell &\leq \sum_{k=1}^{k_\ell} |g_{p_k}^\ell(x_{p_k}) - \tilde{g}_{p_k}^\ell(x_{p_k})| \prod_{i=1}^{k-1} |1 + g_{p_i}^\ell(x_{p_i})| \prod_{i=k+1}^{k_\ell} |1 + \tilde{g}_{p_i}^\ell(x_{p_i})| \\ 1083 &\leq \sum_{k=1}^{k_\ell} \delta \cdot (1 + \delta)^{k-1} = \delta \sum_{j=0}^{k_\ell-1} (1 + \delta)^j = (1 + \delta)^{k_\ell} - 1. \\ 1084 \\ 1085 \\ 1086 \\ 1087 \end{aligned}$$

1088 Since $k_\ell \leq m$, we have $E_\ell \leq (1 + \delta)^m - 1$. The total approximation error can be bounded as:
 1089

$$\sup_{\mathbf{x} \in [0,1]^d} |f(\mathbf{x}) - \hat{f}_{\text{lrnn}}(\mathbf{x})| \leq \sum_{\ell=1}^r |\alpha_\ell| E_\ell \leq \sum_{\ell=1}^r c((1 + \delta)^m - 1) = rc((1 + \delta)^m - 1).$$

1092 We need to choose δ such that the total approximation error to be less than or equal to ε , i.e.,
 1093 $rc((1 + \delta)^m - 1) \leq \varepsilon$. Using the inequality $(1 + y)^k \leq e^{yk}$ for $y \geq 0, k \geq 1$ with $y = \delta$ and
 1094 $k = m$ in the preceding equation, we have $rc(e^{m\delta} - 1) \leq \varepsilon$. Taking the logarithm of both sides
 1095 and rearranging gives $\delta = (1/m) \ln(1 + \frac{\varepsilon}{rc})$. Noting that we have at most rm non-trivial univariate
 1096 functions, with each requiring $\mathcal{O}(1/\delta)$ parameters, we obtain the stated parameter complexity. \square
 1097

1098 **Remark 3** (Simplified parameter complexity). *If $\varepsilon \ll rc$ the parameter count simplifies to
 1099 $\mathcal{O}(r^2 m^2 c / \varepsilon)$. The parameter complexity grows as m^2 ($m \leq d$) for fixed (r, c) , thereby circum-
 1100 venting the curse of dimensionality.*

1101 **Remark 4** (Assumption $\|\Phi_{j,\ell}\|_\infty \leq 1$). *The assumption $\|\Phi_{j,\ell}\|_\infty \leq 1$ is a common approach to
 1102 normalize components in approximation theory. In practical machine learning scenarios, this is of-
 1103 ten justified since the target function $f(\mathbf{x})$ is typically normalized. The constants r and c (governing
 1104 $|\alpha_\ell|$) characterize a specific sum-of-products decomposition assumed to exist for this normalized
 1105 target function, where its constituent univariate functions $\Phi_{j,\ell}$ have norms bounded by 1. If such a
 1106 representation exists for the normalized target, this condition is met.*

1107 We now prove our main theorem for a general continuous function $f : [0, 1]^d \rightarrow \mathbb{R}$ whose functional
 1108 ANOVA decomposition takes the form:
 1109

$$f(\mathbf{x}) = \sum_{S \subseteq [d]} f_S(\mathbf{x}_S), \quad (6)$$

1110 where each f_S depends only on variables \mathbf{x}_S with $S \subseteq \{1, \dots, d\}$ and $\mathbf{x}_S := (x_j)_{j \in S}$. We assume
 1111 that standard ANOVA orthogonality conditions hold, e.g., $\int_0^1 f_S(\mathbf{x}_S) dx_j = 0$ for any $j \in S$ and
 1112 $f_\emptyset = \int f(\mathbf{x}) d\mathbf{x}$. Our theoretical analysis uses the following assumptions:
 1113

1114 **Assumption 3** (Decay of ANOVA components). *The norms of ANOVA components decay suffi-
 1115 ciently fast. Specifically, for a given $\varepsilon_1 > 0$, let $\mathcal{I}_{\text{trunc}} = \{S \subseteq [d] : \|f_S\|_\infty \geq \tau_S\}$ be a collection of
 1116 index sets such that the truncated sum $f_{\text{trunc}}(\mathbf{x}) = \sum_{S \in \mathcal{I}_{\text{trunc}}} f_S(\mathbf{x}_S)$ satisfies $\|f - f_{\text{trunc}}\|_\infty \leq \varepsilon_1$.
 1117 Let $N_a = |\mathcal{I}_{\text{trunc}}|$ be the number of significant ANOVA terms, and let $m_a = \max_{S \in \mathcal{I}_{\text{trunc}}} |S|$ be
 1118 their maximum interaction order. In addition, let $m_a \ll d$, and let N_a grow at most polynomially
 1119 with d .*

1120 **Assumption 4** (Factorizability of ANOVA components). *Each ANOVA component can be ap-
 1121 proximated by a sum-product representation. Specifically, for each ANOVA component $f_S(\mathbf{x}_S)$
 1122 $\forall S \in \mathcal{I}_{\text{trunc}}$, there exists $\varepsilon_2 > 0$ such that the sum-product representation $\hat{f}_S(\mathbf{x}_S) =$
 1123 $\sum_{\beta=1}^{k_S} \alpha_{S,\beta} \prod_{j \in S} \phi_{j,S,\beta}(x_j)$ satisfies the error bound $\|f_S - \hat{f}_S\|_\infty \leq \varepsilon_2$, $k_S \leq k_{\max}$ for some
 1124 $k_{\max} \geq 1$, $|\alpha_{S,\beta}| \leq c$ and $\|\phi_{j,S,\beta}\|_\infty \leq 1$.*

1125 **Remark 5** (The assumption $\|\phi_{j,S,\beta}\|_\infty \leq 1$). *Each significant ANOVA term $f_S(\mathbf{x}_S)$ is itself a
 1126 function of at most m_a variables. If the target function is pre-normalized, its ANOVA components
 1127 f_S (which are defined through integrals of f) also inherit scaling properties. It is then plausible
 1128 that these (scaled) f_S terms can be well-approximated by a sum-of-products representation where
 1129 the individual univariate components $\phi_{j,S,\beta}$ are also normalized. The practical strength of this
 1130 assumption rests on whether such a ‘normalized-component’ sum-of-products approximation for
 1131 each relevant f_S exists with a simultaneously controlled number of terms and bounded coefficients.
 1132 For ANOVA terms f_S that are smooth and depend on a small number of variables (small m_a), this
 1133 is often considered a reasonable modeling assumption.*

1134 **Theorem 2.** *If $f : [0, 1]^d \rightarrow \mathbb{R}$ satisfies Assumption 3 and Assumption 4, then for any target accuracy $\varepsilon > 0$, there exists an LRNN approximation, \hat{f}_{lrnn} , with parameter complexity*
 1135 *$\mathcal{O}\left(\frac{(N_a k_{\max})^2 m_a^2 c}{\varepsilon}\right)$ such that $\sup_{\mathbf{x} \in [0, 1]^d} |f(\mathbf{x}) - \hat{f}_{\text{lrnn}}(\mathbf{x})| \leq \varepsilon$.*

1138 *Proof.* It follows from Assumption 3 that truncating the ANOVA expansion of f gives $f(\mathbf{x}) \approx$
 1139 $f_{\text{trunc}}(\mathbf{x}) = \sum_{S \in \mathcal{I}_{\text{trunc}}} f_S(\mathbf{x}_S)$ such that $\|f - f_{\text{trunc}}\|_{\infty} \leq \varepsilon_1$. From Assumption 4, we can approx-
 1140 imate f_S as $\hat{f}_S(\mathbf{x}_S) = \sum_{\beta=1}^{k_S} \alpha_{S, \beta} \prod_{j \in S} \phi_{j, S, \beta}(x_j)$ such that the error is $\|f_S - \hat{f}_S\|_{\infty} \leq \varepsilon_2$.

1142 Let $h(\mathbf{x}) = \sum_{S \in \mathcal{I}_{\text{trunc}}} \hat{f}_S(\mathbf{x}_S)$. Then $\|f_{\text{trunc}} - h\|_{\infty} \leq \sum_{S \in \mathcal{I}_{\text{trunc}}} \|f_S - \hat{f}_S\|_{\infty} \leq N_a \varepsilon_2$. We
 1143 now approximate h using an LRNN, \hat{f}_{lrnn} , such that $\|h - \hat{f}_{\text{lrnn}}\|_{\infty} \leq \varepsilon_{\text{lrnn}}$. The total error is
 1144 $\|f - \hat{f}_{\text{lrnn}}\|_{\infty} \leq \varepsilon_1 + N_a \varepsilon_2 + \varepsilon_{\text{lrnn}}$. We set $\varepsilon_1 = \varepsilon/3$, $N_a \varepsilon_2 = \varepsilon/3$ (i.e., $\varepsilon_2 = \varepsilon/(3N_a)$), and
 1145 $\varepsilon_{\text{lrnn}} = \varepsilon/3$ to ensure that the total error is at most ε .

1147 To bound the parameter complexity of \hat{f}_{lrnn} , we note that

$$h(\mathbf{x}) = \sum_{S \in \mathcal{I}_{\text{trunc}}} \sum_{\beta=1}^{k_S} \alpha_{S, \beta} \prod_{j \in S} \phi_{j, S, \beta}(x_j)$$

1149 is a sum of products involving $\sum_{S \in \mathcal{I}_{\text{trunc}}} k_S \leq N_a k_{\max}$ terms. Each product $\prod_{j \in S} \phi_{j, S, \beta}(x_j)$
 1150 involves $|S| \leq m_a$ univariate functions with coefficients $\alpha_{S, \beta}$, where $|\alpha_{S, \beta}| \leq c$. Moreover, the
 1151 univariate functions $\phi_{j, S, \beta}$ satisfy the bound $\|\phi_{j, S, \beta}\|_{\infty} \leq 1$. Thus, h matches the form required
 1152 by Lemma 4, with parameters: $r = R \leq N_a k_{\max}$ and $m = m_a$. It therefore follows that h can be
 1153 approximated by an LRNN \hat{f}_{lrnn} to an accuracy $\varepsilon_{\text{lrnn}} = \varepsilon/3$, with the number of parameters (using
 1154 the simplified parameter count) given by $\mathcal{O}\left(\frac{(N_a k_{\max})^2 m_a^2 c}{\varepsilon/3}\right)$. Absorbing the constant 1/3 into the \mathcal{O}
 1155 notation yields the stated complexity. \square

1156 **Remark 6** (Special cases). *If m_a and k_{\max} are small constants (or grow very slowly with d), and c is small, the complexity depends primarily on N_a^2/ε . If the ANOVA decay is such that $N_a \approx \sum_{k=0}^{m_a} \binom{d}{k} \approx \mathcal{O}(d^{m_a})$, then the parameter complexity becomes $\mathcal{O}((d^{2m_a} k_{\max}^2 m_a^2 c)/\varepsilon)$. This complexity is polynomial in d if m_a is constant, demonstrating mitigation of the exponential growth in parameter complexity.*

1166 A.6 REMARKS ON THEOREM 2

1167 Theorem 2 establishes that if a high-dimensional function admits a functional ANOVA decomposi-
 1168 tion dominated by low-complexity terms, LRNNs can approximate it with a number of parameters
 1169 that scales polynomially with the effective dimension d . To provide further insight, we examine the
 1170 intuition behind Assumptions 3 and 4 and the specific function classes they encompass.

1171 Assumption 3 requires that the number of significant ANOVA terms, N_a , grows at most poly-
 1172 nomially with dimension d . This implicitly constrains the *maximum interaction order* m_a . Since a
 1173 full ANOVA decomposition contains 2^d terms, for the truncated sum to scale polynomially (e.g.,
 1174 $N_a \approx \mathcal{O}(d^k)$), the interaction order m_a must generally be small relative to d (i.e., $m_a = \mathcal{O}(1)$).
 1175 This characterizes functions with a low *effective superposition dimension* Caflisch et al. (1997), a
 1176 property common in physical systems dominated by main effects and low-order (pairwise or triplet)
 1177 interactions.

1178 Assumption 4 posits that significant high-order interaction terms can be approximated by a tensor
 1179 product with limited rank k_{\max} . This can be viewed as a conservation of complexity principle; the
 1180 curse of dimensionality is constrained rather than eliminated. Specifically, if ANOVA terms involve
 1181 few variables ($m_a \ll d$), Assumption 4 is easily satisfied as low-dimensional functions typically
 1182 admit efficient low-rank approximations. Conversely, if a term involves all variables ($m_a \approx d$),
 1183 Assumption 4 requires it to be rank-deficient (small k_{\max}).

1184 Thus, LRNNs efficiently represent functions that are either *interaction-sparse* (small m_a) or
 1185 *interaction-dense but rank-sparse* (small k_{\max}). Theorem 2 implies that if a function has both
 1186 global interactions ($m_a \approx d$) and high separation rank, k_{\max} would necessarily scale exponentially
 1187 with d , reintroducing the curse of dimensionality.

- *Pairwise potentials (illustrates Assumption 3):* Functions such as Coulomb or gravitational potentials $V(\mathbf{x}) = \sum_{i \neq j} \phi(\|\mathbf{x}_i - \mathbf{x}_j\|)$ are dominated by pairwise interactions ($m_a = 2$). Even for large d , the number of significant ANOVA terms N_a grows quadratically in d , satisfying the polynomial-growth requirement in Assumption 3.
- *Separable functions (illustrates Assumption 4):* A product state $f(\mathbf{x}) = \prod_{i=1}^d \sin(x_i)$ has maximum interaction order ($m_a = d$), so it does not have low interaction order. However, it is exactly rank-1 as a product of univariate factors ($k_{\max} = 1$), satisfying Assumption 4 with a single significant ANOVA term ($N_a = 1$). In this case the parameter bound in Theorem 2 still scales polynomially in d because both N_a and k_{\max} are constants.
- *Sign-parity function (violates Assumptions 3 and 4):* The parity function $f(\mathbf{x}) = \prod_{i=1}^d \text{sgn}(x_i)$ possesses both full interaction order ($m_a = d$) and high separation rank. It cannot be approximated by a small sum of smooth product terms and therefore falls outside the scope of Theorem 2.

In summary, when a function satisfies these structural assumptions (as in the first two examples), the LRNN architecture naturally aligns with its decomposition. As established in Lemma 4, this alignment allows LRNNs to learn the representation efficiently, achieving a parameter complexity that scales polynomially rather than exponentially with dimension. This theoretical result provides an insight into the empirical success of LRNNs on tasks where underlying low-order interaction structures are likely present.

A.7 SPECTRAL REPRESENTATION ANALYSIS OF LRNNs: PROOF OF LEMMA 2

Here, we study the spectral representation capabilities of LRNNs, particularly when equipped with periodic activation functions commonly found in the INR literature, such as SIREN ($\sigma(z) = \sin(z)$) or SPDER (e.g., $\sigma(z) = \sin(z)\sqrt{|z|}$). We use ω to denote a scalar frequency parameter, which can be specific to each univariate function (ω_k) or shared.

For simplicity, we do not consider the normalization term γ in our analysis. We begin by recalling the observation in Section 3.1 that LRNNs with $\bar{d} = 1$ recover standard MLPs. Writing the LRNN activation function as $\varphi(\mathbf{x}) = \prod_{k=1}^{\bar{d}} (1 + g_k(z_k))$, where $z_k = \mathbf{v}_k^T \mathbf{x} + c_k$ and setting $\bar{d} = 1$, we have $\varphi(z_1) = 1 + g_1(z_1)$. Let $g_1(z_1) = \sigma(\omega_1 z_1)$ be a periodic activation function, where $z_1 = \mathbf{v}_1^T \mathbf{x} + c_1$. The full LRNN model is a sum of r such rank-1 terms, each with its own scaling factor s_ℓ : $f_{\text{lrnn}}(\mathbf{x}) = \sum_{\ell=1}^r s_\ell \varphi_\ell(\mathbf{x}) = \sum_{\ell=1}^r s_\ell (1 + g_{1,\ell}(z_{1,\ell}))$. Substituting $g_{1,\ell}(z_{1,\ell}) = \sigma(\omega_{1,\ell}(\mathbf{v}_{1,\ell}^T \mathbf{x} + c_{1,\ell}))$ leads to

$$f_{\text{lrnn}}(\mathbf{x}) = \sum_{\ell=1}^r s_\ell + \sum_{\ell=1}^r s_\ell \sigma(\omega_{1,\ell}(\mathbf{v}_{1,\ell}^T \mathbf{x} + c_{1,\ell})).$$

The second term in the preceding equation is an MLP with r neurons in the hidden layer, where $\mathbf{v}_{1,\ell}$ are the input-to-hidden weights, $c_{1,\ell}$ are the hidden biases, σ is the activation function (scaled by $\omega_{1,\ell}$), and s_ℓ are the hidden-to-output weights. The first term, $\sum_{\ell=1}^r s_\ell$, is a constant, acting as an overall output bias for the MLP. Thus, an MLP with a given periodic activation function can be viewed as a special case of an LRNN with $\bar{d} = 1$ and the same base activation. This observation forms the basis for comparing their spectral properties. The key distinction of LRNNs with $\bar{d} > 1$ lies in their product structure, which leads to a richer spectral synthesis than the purely additive nature of MLPs which we establish in the following lemma.

Lemma 2 (Combinatorial frequency generation by LRNNs). *Consider the LRNN product-structured activation function $\varphi(\mathbf{x}) = \prod_{k=1}^{\bar{d}} (1 + g_k(\mathbf{x}))$, where $g_k(\mathbf{x}) = \sigma_k(\omega_k(\mathbf{v}_k^T \mathbf{x} + c_k))$ is a univariate function with characteristic frequencies $\pm \mathbf{f}_k$ in the Fourier domain. Then, the Fourier transform of $\varphi(\mathbf{x})$ contains spectral components at not only the fundamental frequencies $\pm \mathbf{f}_k$ but also at all possible sum and difference combinations, i.e., frequencies of the form $\sum_{k \in S} s_k \mathbf{f}_k$ where $S \subseteq \{1, \dots, \bar{d}\}$ and $s_k \in \{+1, -1\}$.*

Proof. The Fourier transform of $h_k(\mathbf{x}) = 1 + g_k(\mathbf{x})$ can be written as

$$\mathcal{F}\{h_k\}(\xi) = \mathcal{F}\{1\}(\xi) + \mathcal{F}\{g_k\}(\xi) = \delta(\xi) + G_k(\xi), \quad (7)$$

1242 where $\delta(\xi)$ is the Dirac delta representing the DC component (zero frequency), and $G_k(\xi)$ is the
 1243 Fourier transform of $g_k(\mathbf{x})$, which by assumption has significant energy at $\pm \mathbf{f}_k$.
 1244

1245 Since the LRNN activation is a product of these $h_k(\mathbf{x})$ terms, i.e., $\varphi(\mathbf{x}) = \prod_{k=1}^{\bar{d}} h_k(\mathbf{x})$, its Fourier
 1246 transform takes the form

$$1247 \quad 1248 \quad \mathcal{F}\{\varphi\}(\xi) = \mathcal{F}\{h_1\} * \mathcal{F}\{h_2\} * \cdots * \mathcal{F}\{h_{\bar{d}}\} = \left(*_{k=1}^{\bar{d}} \mathcal{F}\{h_k\} \right) (\xi),$$

1249 where $*$ denotes convolution. Using equation 7 we have
 1250

$$1251 \quad 1252 \quad \mathcal{F}\{\varphi\}(\xi) = \left(*_{k=1}^{\bar{d}} (\delta(\cdot) + G_k(\cdot)) \right) (\xi).$$

1253 Now, expanding the product in the LRNN activation yields
 1254

$$1255 \quad 1256 \quad \varphi(\mathbf{x}) = \prod_{k=1}^{\bar{d}} (1 + g_k(\mathbf{x})) = 1 + \sum_i g_i(\mathbf{x}) + \sum_{i < j} g_i(\mathbf{x})g_j(\mathbf{x}) + \cdots + \prod_{k=1}^{\bar{d}} g_k(\mathbf{x}).$$

1258 The Fourier transform of the first term is $\mathcal{F}\{1\} = \delta(\xi)$ (the DC component). The second term,
 1259 $\mathcal{F}\{\sum_i g_i(\mathbf{x})\} = \sum_i G_i(\xi)$, contributes the fundamental frequencies $\pm \mathbf{f}_i$ from each g_i . The
 1260 third term, $\mathcal{F}\{\sum_{i < j} g_i(\mathbf{x})g_j(\mathbf{x})\} = \sum_{i < j} (G_i * G_j)(\xi)$ leads to pairwise combination fre-
 1261 quencies, e.g., $\pm \mathbf{f}_i \pm \mathbf{f}_j$. This pattern continues for higher-order terms since a product of p functions
 1262 $g_{k_1}(\mathbf{x}) \dots g_{k_p}(\mathbf{x})$ will have a Fourier transform of the form $(G_{k_1} * \dots * G_{k_p})(\xi)$, generating fre-
 1263 quencies corresponding to all combinations $\pm \mathbf{f}_{k_1} \pm \dots \pm \mathbf{f}_{k_p}$. Thus, a single LRNN activation with \bar{d}
 1264 components generates up to $2^{\bar{d}} - 1$ distinct frequency combinations from just \bar{d} base frequencies. \square
 1265

1266 Lemma 2 provides some useful insights into differences between how LRNNs and MLPs represent
 1267 functions in the frequency domain. Standard MLPs (equivalent to LRNNs with $\bar{d} = 1$) synthe-
 1268 size functions *additively* in the spectral domain. Each neuron, with activation $s_l \sigma(\omega_l(\mathbf{v}_l^T \mathbf{x} + b_l))$,
 1269 contributes primarily to a specific frequency pair $\pm \mathbf{f}_l = \pm \omega_l \mathbf{v}_l$ (for SIREN) or a narrow band
 1270 around these (for SPIDER-like activations). The overall spectrum of an MLP is the linear super-
 1271 position of these individual contributions: $\mathcal{F}\{f_{MLP}\} = \sum_l s_l G_l(\xi)$. To represent a complex
 1272 spectrum with many frequencies, an MLP typically requires a corresponding number of neurons.
 1273 In contrast, LRNNs with $\bar{d} > 1$ employ a *multiplicative synthesis* within each rank-1 term. As
 1274 shown in Lemma 2, a single rank-1 term can generate a combinatorial set of frequencies from just \bar{d}
 1275 base projected features g_k . The full LRNN then additively combines these rank-1 components, i.e.,
 1276 $\mathcal{F}\{f_{lrnn}\} = \sum_l s_l \mathcal{F}\{\varphi_l\}(\xi)$.
 1277

1278 This combinatorial frequency synthesis mechanism provides LRNNs with adaptive spectral bias
 1279 control—by learning the base frequencies \mathbf{f}_k and their corresponding amplitudes, the network im-
 1280 plicitly controls a rich set of derived frequencies, enabling efficient representation of complex spec-
 1281 tra with fewer parameters than additive approaches.
 1282

1283 B IMPLEMENTATION ASPECTS OF LRNNs

1284 B.1 PARAMETRIZATION OF LRNN COMPONENT FUNCTIONS

1285 In our architecture, the univariate component functions $g_j^{\ell, (k)} : \mathbb{R} \rightarrow \mathbb{R}$ are parameterized by small,
 1286 independent MLPs. Each such MLP, denoted $\text{MLP}(j, \ell, k)$, takes the scalar $z_j^{\ell, (k)}$ as its input, where
 1287 $z_j^{\ell, (k)}$ is the j -th component of the vector $\mathbf{z}^{\ell, (k)} = \mathbf{W}^{\ell, (k)} \phi^{(k-1)} + \mathbf{b}^{\ell, (k)}$ resulting from the linear
 1288 projection within the LRNN layer.
 1289

1290 A key design choice for these component MLPs, $\text{MLP}(j, \ell, k)$, is that their first effective operation on
 1291 the input $z_j^{\ell, (k)}$ is an activation function. Since $z_j^{\ell, (k)}$ is already the output of a linear transformation,
 1292 applying another linear layer as the immediate first step within $\text{MLP}(j, \ell, k)$ would be redundant.
 1293 Instead, the structure is:
 1294

$$1295 \quad g_j^{\ell, (k)}(z_j^{\ell, (k)}) = \text{MLP}(j, \ell, k)(z_j^{\ell, (k)}) \quad (8)$$

1296 where the MLP $g_j^{\ell, (k)}$ is structured such that its computation begins with an initial activation σ ,
 1297 which is chosen to a standard activation or an INR style activation. The output of first stage of
 1298 MLP(j, ℓ, k) is given by $\sigma(z_j^{\ell, (k)})$. This activated value is then processed by the subsequent hidden
 1299 layers and the final output layer of MLP(j, ℓ, k) which is a linear layer without a bias term.
 1300

1301 All learnable parameters, including those in $\mathbf{W}^{\ell, (k)}$, $\mathbf{b}^{\ell, (k)}$, and within all parts of $g_j^{\ell, (k)}$ are opti-
 1302 mized jointly. The set of all univariate MLPs is implemented efficiently for parallel computation
 1303 using block-diagonal weight matrices as a custom PyTorch layer. This design choice allows for ef-
 1304 ficient computation of the LRNN forward pass, as all the univariate functions in an LRNN layer can
 1305 be computed in parallel.

1306 B.2 MEMORY COMPLEXITY ANALYSIS AND OPTIMIZATION STRATEGIES

1307 While LRNNs demonstrate superior parameter efficiency and expressivity compared to standard
 1308 architectures, the product-structured activation introduces a distinct memory footprint profile. In this
 1309 section, we analyze the memory requirements for training LRNNs, focusing on the scaling behavior
 1310 with respect to the projection width \bar{d} , and discuss strategies for optimized implementation.
 1311

1312 To isolate the memory requirements when training LRNNs, consider a single LRNN layer with
 1313 separation rank r (analogous to r neurons in a standard MLP) and projection width \bar{d} . We assume the
 1314 univariate component functions $g_j^\ell(\cdot)$ are parameterized by a shared, shallow MLP with one hidden
 1315 layer of width h , a setup consistent with our experimental configuration. Let B denote the batch
 1316 size. In a standard backpropagation framework (e.g., PyTorch Autograd), intermediate activations
 1317 must be stored during the forward pass to compute gradients during the backward pass. We analyze
 1318 the storage requirements for the activations (excluding model parameters, which are negligible in
 1319 comparison).

1320 For a standard MLP layer with r neurons, the output takes the form $\mathbf{y} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$. The primary
 1321 memory cost is storing the pre-activation or post-activation vectors, leading to a memory require-
 1322 ment that scales as $\mathcal{M}_{\text{MLP}} \approx \mathcal{O}(Br)$.
 1323

1324 An LRNN neuron computes $\phi = \prod_{j=1}^{\bar{d}} (1 + \gamma g(z_j))$. The forward pass of this layer involves three
 1325 distinct stages of activations that must be stored for backpropagation:
 1326

1. **Input projection:** The linear projection creates intermediate vectors $\mathbf{z} \in \mathbb{R}^{\bar{d}}$ for each of
 1327 the r rank components leading to a memory cost of: $\mathcal{M}_{\text{proj}} = \mathcal{O}(Br\bar{d})$.
2. **Component function computations:** The component MLP $g(\cdot)$ applies a non-linearity to
 1328 each of the $r \cdot \bar{d}$ projections. If g has a hidden layer of width h , standard Autograd must
 1329 store the hidden states of these sub-networks to differentiate through them. This results in
 1330 a memory cost of: $\mathcal{M}_g = \mathcal{O}(Brdh)$.
3. **Product inputs:** The outputs of the component functions $u_j = 1 + \gamma g(z_j)$ must be stored
 1331 to compute the gradient of the product operation during backpropagation. This incurs a
 1332 memory cost of: $\mathcal{M}_{\text{prod}} = \mathcal{O}(Brd)$.

1333 The total memory requirement for a naive implementation of LRNNs therefore scales as: $\mathcal{M}_{\text{LRNN}} \approx$
 1334 $\mathcal{O}(Brdh)$. Compared to a standard MLP, the memory footprint is scaled by a factor of roughly $\bar{d} \cdot h$.
 1335 The primary bottleneck arises during the backward pass of the product term. For a single product
 1336 $\phi = \prod_{j=1}^{\bar{d}} u_j$, the partial derivative with respect to the k -th component is $\frac{\partial \phi}{\partial u_k} = \prod_{j \neq k} u_j$. To
 1337 compute this without re-evaluation, the expanded tensor of size $B \times r \times \bar{d}$ will be kept in memory
 1338 in a standard Autograd implementation.

1339 The *effective* memory cost can be significantly reduced by leveraging hardware-aware optimizations
 1340 that trade computation for memory as outlined below.

1341 **Gradient checkpointing.** The dependence on the component MLP hidden dimension h can be re-
 1342 moved via gradient checkpointing. Instead of storing the intermediate states of $g(\cdot)$ (the term \mathcal{M}_g),
 1343 we store only the projected inputs \mathbf{z} . During the backward pass, the forward pass of the component
 1344 MLPs is recomputed on-the-fly. Since $g(\cdot)$ is typically shallow, the computational overhead is mini-
 1345 mal, but the memory complexity reduces to: $\mathcal{M}_{\text{LRNN}}^{\text{ckpt}} \approx \mathcal{O}(B \cdot r \cdot \bar{d})$. This removes the multiplier h ,

1350 which is significant when using more expressive component functions. This is the strategy employed
 1351 in our experiments when training LRNNs with large projection widths.
 1352

1353 **Kernel fusion.** Our standard implementation calculates projections, component functions, and
 1354 products as separate kernel calls, necessitating repeated reads and writes of the large intermediate
 1355 tensor of size $B \times r \times \bar{d}$ to global memory. This can be alleviated through kernel fusion, where
 1356 multiple operations are combined into a single GPU kernel. By loading the projected inputs \mathbf{z} ,
 1357 computing $g(\mathbf{z})$, and reducing the product entirely within GPU registers, the intermediate tensors
 1358 need not be materialized in GPU memory. For the backward pass, the kernel can re-load \mathbf{z} , re-
 1359 compute the values, and generate gradients directly. This effectively shifts the bottleneck from
 1360 memory capacity to arithmetic intensity.

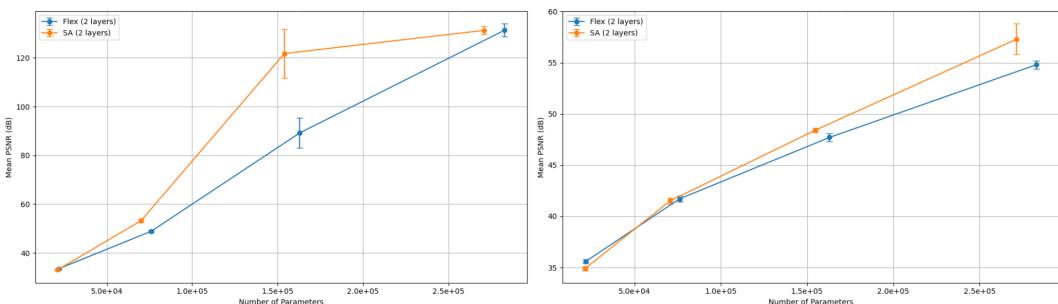
1361 **Mixed precision and stability.** Finally, we note that the variance-controlled initialization result
 1362 in Lemma 1 ensures that the product terms do not suffer from numerical instability (exploding or
 1363 vanishing values). This stability makes LRNNs well-suited for training in half-precision (FP16 or
 1364 BF16), thereby reducing the activation memory footprint by 50% compared to FP32 training.
 1365

1366 C ABLATION STUDIES

1367 C.1 ABLATION STUDIES ON PARAMETER-SHARING LRNN MODEL VARIANTS

1368 To investigate the effect of the parameter-sharing LRNN model variants, we perform an abla-
 1369 tion study. We compare the performance of the flexible LRNN-SPDER (Flex), with its reduced-
 1370 complexity variant with shared activation functions (SA) on the INR image representation task for
 1371 two images. For cameraman (Figure 11 left), we observe that for medium-sized models, the SA
 1372 variant has better parameter efficiency, achieving higher PSNR at the same complexity as the Flex
 1373 model. However, at higher parameter counts, the PSNR difference becomes negligible, suggesting
 1374 a tradeoff between expressivity and efficiency. For retina (Figure 11 right), the SA model has small
 1375 benefits in parameter efficiency at higher parameter counts. This study indicates while both flexible
 1376 and reduced-complexity LRNN models perform well, the variant selection is dependent on the task
 1377 and the computational budget available.

1378 Note that in terms of timing, a typical run of LRNN-SPDER variants with comparable hyperparam-
 1379 eters ran approximately 50 iterations per second for Flex and 37 iterations per second for SA.



1393 Figure 11: Model complexity neural scaling laws comparing flexible (Flex) and shared activation
 1394 (SA) variants of LRNN-SPDER on INR image representation tasks for cameraman (left) and retina
 1395 (right).

1396 C.2 ABLATION STUDIES ON THE USE OF LAYERNORM

1397 LayerNorm was applied only to LRNN in the numerical experiments and not to the baseline mod-
 1398 els. The reason for this highlights a key difference in architectural design. The stability of standard
 1399 SIREN/SPDER models comes from a carefully derived and principled weight initialization scheme
 1400 that preserves the distribution of activations through the network so that the final output at initializa-
 1401 tion does not depend on the number of layers. Without this, the accuracy and convergence of deep
 1402 SIREN/SPDER networks can be very poor.

1404 Our LRNN architecture, however, introduces a fundamentally different activation structure: a product
 1405 of univariate functions. While we use SIREN-style initialization for each individual component
 1406 function g_j , the statistical properties of their product are distinct and more complex than those of a
 1407 single sin function. The SIREN initialization scheme, on its own, is no longer sufficient to guarantee
 1408 that the final output of this product activation will be well-behaved, especially in deep networks.
 1409 Therefore, we employ LayerNorm as a necessary additional step. It acts as a dynamic normalization
 1410 layer that explicitly re-centers and re-scales the output of our product-structured activation after it
 1411 has been computed. This enforces stability by ensuring the inputs to the next layer are consistently
 1412 well-distributed, regardless of the complex interactions within the product.

1413 To quantify the necessity of this approach, we ran an ab-
 1414 lation study on the audio representation task. The result
 1415 in Table 3 shows that removing LayerNorm significantly
 1416 degrades performance, resulting in a final error that is
 1417 orders of magnitude higher. This confirms that normal-
 1418 ization is crucial for stabilizing the training dynamics of
 1419 deep LRNNs by controlling the scale of the activations
 1420 passed between layers.

1421 C.3 ABLATION STUDIES ON COMPONENT ACTIVATIONS

1423 To provide quantitative evidence on the role of component activations, we ran an ablation study on
 1424 the Cameraman and Retina tasks. We compared our standard LRNN-SPDER to an LRNN using
 1425 ReLU and Tanh activations in its component functions. The results in Tables 4a - 4b demonstrate

1427 Table 4: Activation ablation study on Cameraman and Retina images.

1428 (a) Cameraman image.

1429 LRNN Component Activation	1430 Final PSNR after 1000 steps (dB)
1431 SPDER	1432 107.94
1433 ReLU	14.40
1435 Tanh	14.42

1428 (b) Retina image.

1429 LRNN Component Activation	1430 Final PSNR after 1000 steps (dB)
1431 SPDER	1432 47.02
1433 ReLU	22.55
1435 Tanh	16.77

1436 that using bounded, periodic activations is key for high performance on INR tasks. This highlights a
 1437 clear design principle for applying LRNNs in practice. Lemma 2 provides further insight. It shows
 1438 that by learning the parameters of these component functions (e.g., their frequencies), LRNNs can
 1439 dynamically control their spectral bias, allowing them to represent a much richer set of frequencies
 1440 than fixed-activation models like SIREN. This is a key reason for their superior performance on
 1441 complex signals. The most important takeaway is that the LRNN structure itself provides a significant
 1442 performance boost, regardless of the component activation. Our experiments show LRNN-SIREN
 1443 outperforms SIREN and LRNN-SPDER outperforms SPDER. This demonstrates the general power
 1444 of our learnable, factorized activation framework.

1446 D SETUP FOR PRODUCT-STRUCTURED TEST FUNCTION SCALING STUDIES

1449 To evaluate the scaling properties of LRNNs on functions well-suited to their architecture, we de-
 1450 fined a test function with a sum-of-products structure: $y(\mathbf{x}) = \sum_{\ell=1}^{\tilde{r}} s_\ell \prod_{j=1}^d g_j^\ell(x_j)$. Here, we
 1451 define the component function as $g_j^\ell(x_j) = \sin(n\pi\xi_j^\ell x_j)$, $j = 1, 2, \dots, d$. For fixed (n, \tilde{r}, d) , we
 1452 randomly sample s_ℓ and ξ_j^ℓ each from a standard normal distribution. We used Sobol sampling to
 1453 generate N_{train} points as the training dataset for both LRNN and MLP architectures, and an inde-
 1454 pendent set of N_{test} points for evaluating model performance. To generate the scaling laws, N_{train}
 1455 was fixed at $\sim 3 \times 10^4$ and we trained LRNNs and MLPs with varying number of learnable parame-
 1456 ters. As shown in Figure 2 in the main paper, the shallow LRNN (with one hidden layer) architecture
 1457 achieves better generalization performance at lower model complexity than shallow MLP (with one
 hidden layer). A decrease in test error with increased model size was not observed for the shallow

1413 Table 3: LayerNorm ablation study on
 1414 bach audio for LRNN-SPDER.

1413 LayerNorm	1414 Final MSE 1415 after 1000 steps
1416 Yes	3.58e - 5
1417 No	2.41e - 2

1458 MLP, which implies that this model struggled to learn this particular function effectively. The ex-
 1459 pected trend of decreasing test error with increased model complexity was observed for MLPs when
 1460 using two hidden layers, with further improvement seen with three hidden layers. However, the shal-
 1461 low LRNN achieved lower test error using fewer parameters than even the three-layer MLP. This
 1462 indicates that LRNNs exhibit strong scaling capabilities for this class of functions, requiring lower
 1463 model complexity than standard MLPs to effectively learn data with an inherent sum-of-products
 1464 structure.

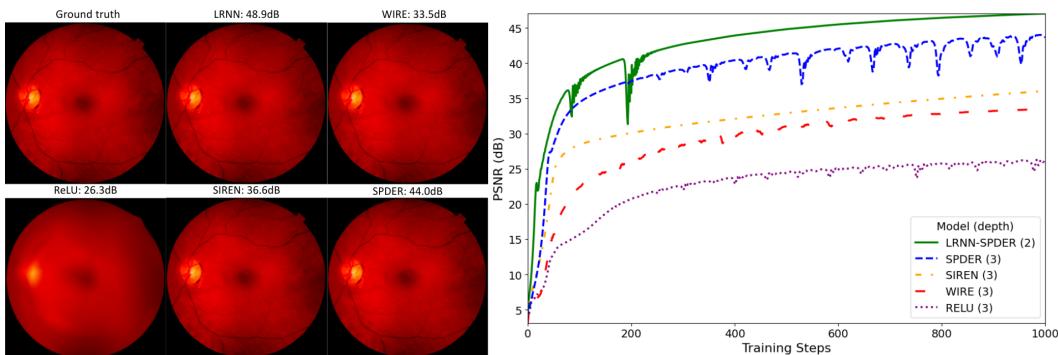
E IMAGE REPRESENTATION

1468 The implementation details to reproduce the results for the image representation studies on the
 1469 cameraman and retina images are presented in Table 5. Note that the author-recommended settings
 1470 were used for benchmark models, SIREN (Sitzmann et al., 2020) and SPDER (Shah & Sitawarin,
 1471 2024).

1472 Table 5: Implementation details for image representation experiments.

1475 Setting	1476 Details
1476 Iteration count	All models were trained for 1000 steps.
1477 Optimizer	Adam (Kingma & Ba, 2015) was used for all models.
1478 Learning rate	$lr = 1 \times 10^{-4}$ for SIREN and SPDER, as recommended in (Sitzmann et al., 2020; Shah & Sitawarin, 2024). $lr = 1 \times 10^{-3}$ for LRNN.
1479 Scheduler	No scheduler for SIREN and SPDER, consistent with (Sitzmann et al., 2020; Shah & Sitawarin, 2024). ¹⁴⁸⁰ LRNN used StepLR from the standard torch.optim package with step size 100 and decay factor $\gamma = 0.8$ for Cameraman, $\gamma = 0.9$ for color images.
1481 Benchmark	Three layers of 256 neurons with $\omega_0 = 30$ for both SIREN and SPDER, per (Sitzmann et al., 2020; Shah & Sitawarin, 2024).
1482 hyperparameters	
1483 LRNN hyperparameters	Two LRNN layers, each of rank 106, $\omega_0 = 30$, $\bar{d} = 16$. Component functions were single-layer neural networks with one hidden neuron and the SPDER activation function $(\sin(x)\sqrt{ x })$ with $\omega = 30$, yielding a parameter count comparable to the other models.

1493 Following the encouraging results on the grayscale image, we conducted a similar scaling study on
 1494 a color image. The aforementioned models were evaluated on the 256×256 retina image. Figure
 1495 12 shows the reconstructed images of all models compared to the ground truth image and the PSNR
 1496 convergence plot. We observe that LRNN still outperforms the benchmark models, although the
 1497 margin of improvement is smaller than in the grayscale case.



1510 Figure 12: Retina image: ground truth (left), reconstructed images using LRNN, SPDER, SIREN
 1511 and WIRE models (middle), PSNR convergence history (right).

To evaluate computational efficiency, we measured time-to-solution for specific PSNR targets and presented the results in Tables 6-7. The results for the retina image show that while baseline models may be faster to reach low-quality targets, LRNN achieves the fastest wall-clock time for higher-quality results (over 35dB). This trend is even more pronounced on the cameraman image. While the per-iteration cost of LRNNs can be higher, the time required for high-quality results is significantly better, demonstrating a clear advantage for challenging tasks where quality is paramount.

Table 6: Wall-clock time analysis on cameraman image (seconds).

Model	Max PSNR	Time to reach		
		30dB	35dB	40dB
SIREN	35.27	8.0	N/A	N/A
SPDER	48.97	2.0	8.3	N/A
LRNN-SPDER	107.94	5.2	6.2	8.7

Table 7: Wall-clock time analysis on retina image (seconds).

Model	Max PSNR	Time to reach		
		30dB	35dB	40dB
SIREN	36.04	3.5	14.1	N/A
SPDER	43.99	2.9	4.8	12.8
LRNN-SPDER	47.02	5.1	5.9	9.3

We present the iteration time for each model for both the cameraman and retina images in Table 8. It is observed that while LRNN achieves the highest performance in terms of PSNR, it does require more compute time per iteration compared to some benchmarks like SIREN and WIRE (for Retina).

Table 8: Time taken per iteration when training comparably-sized models for INR image representation.

Image	LRNN	WIRE	SIREN	SPDER
Cameraman	0.0453	0.0324	0.0174	0.0332
Retina	0.0504	0.0220	0.0072	0.0434

Studies were performed on higher-resolution images, kodak and parrot, using the code-base from (Saragadam et al., 2023) for the methods we benchmark against. For these experiments, we ran the benchmarks using models with three hidden layers containing 256 neurons. For SIREN and SPDER, we set $\omega_0 = 30$ and for WIRE, we set $\omega_0 = 20, \sigma_0 = 30$, following the respective author’s recommendations. The GAUSS and ReLU+PE models from (Saragadam et al., 2023) also used architectures of three hidden layers with 256 neurons each. To match this parameter count, we chose a two-layer LRNN model with each layer being rank 106, $\omega_0 = 30, \bar{d} = 16$, and the component functions being single-layer neural networks with one hidden neuron. As in the previous studies, we used the SPDER activation function $\sin(x)\sqrt{|x|}$ for the MLPs in the LRNNs’ product-structured activation function. Each model was trained for 1000 epochs using the Adam optimizer with a batch size of 16384. The LRNN models were trained with a initial learning rate of 10^{-3} and a learning rate scheduler (StepLR) from torch.optim with a step size of 100 and a decay rate $\gamma = 0.9$. All other models used the LambdaLR scheduler from the torch.optim package to reduce the learning rate to $0.1 \times$ the initial learning rate in the final epoch, as used in the WIRE experiments (Saragadam et al., 2023).

For the higher-resolution kodak image, we compared the LRNN model’s reconstructed image and the corresponding gradients at iterations 10 and 500 in Figure 13. We observe a fair reconstruction and gradients at step 10, and by step 500, the reconstructed image is virtually indistinguishable. Comparing the training loss and PSNR of LRNN and the 5 benchmarks (SIREN, WIRE, GAUSS,

ReLU (with positional encoding), and SPDER) in Figure 14, we observe that LRNN achieves lower training loss and higher PSNR than the benchmark models throughout training.

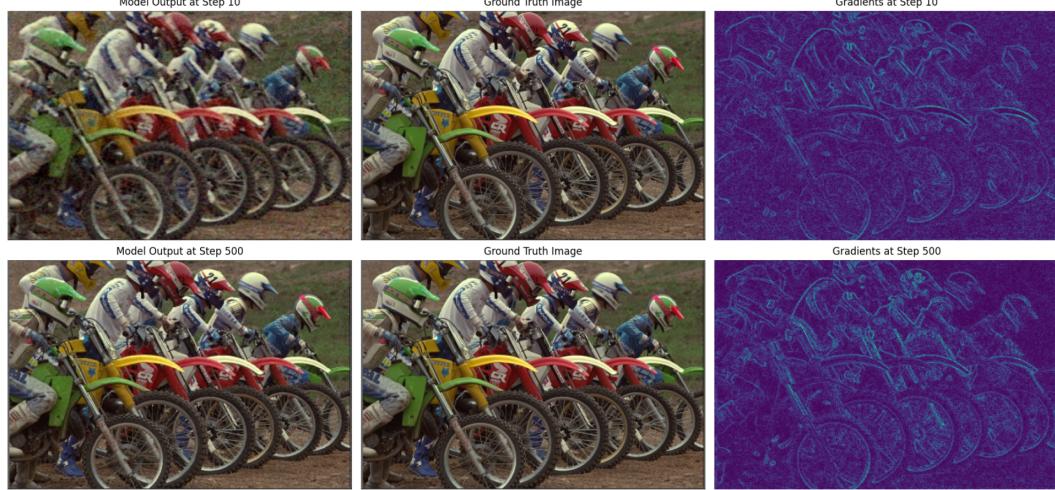


Figure 13: Model output, ground truth and gradient of kodak image at steps 10 and 500.

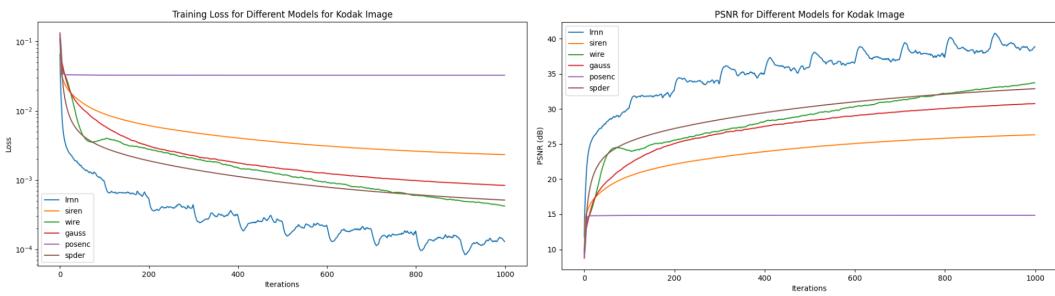


Figure 14: Training loss and PSNR for kodak image over 1000 iterations. The performance of LRNN is compared against SIREN, WIRE, GAUSS, ReLU (with positional encoding), and SPDER.

For the parrot image, we again compare the LRNN model output and gradients at steps 10 and 500 in Figure 15. The model captures the parrot in the foreground well, and significantly detailed by step 500. We observe that the LRNN-reconstructed image at step 500 is virtually indistinguishable from the ground truth. Comparing the training loss and PSNR of LRNN and the 5 benchmarks in Figure 16, we observe that LRNN outperforms the benchmark models throughout training.

E.1 IMAGENET STUDY

We provide additional analysis of the ImageNet representation study presented in the main paper, where all models were configured with comparable parameter complexity of 200k. Figure 17 illustrates the distribution of PSNR values at multiple training checkpoints. We observe that LRNNs exhibit significantly lower performance variance compared to the baselines. The distributions for SIREN and SPDER show a prevalence of low-PSNR outliers, indicating that these models frequently fail to reach high fidelity. In contrast, LRNNs consistently attain high PSNR values across seeds and images. This indicates that LRNNs offer superior representational capacity and robustness at this parameter budget, consistently satisfying high-precision requirements where baseline architectures often fall short.

Table 9 summarizes the success rates and average wall-clock time required for each model to reach specific PSNR thresholds (33 dB, 35 dB, and 40 dB) across the 1,000 test images. The results highlight that while baseline models like SIREN may have lower per-iteration costs, they struggle to

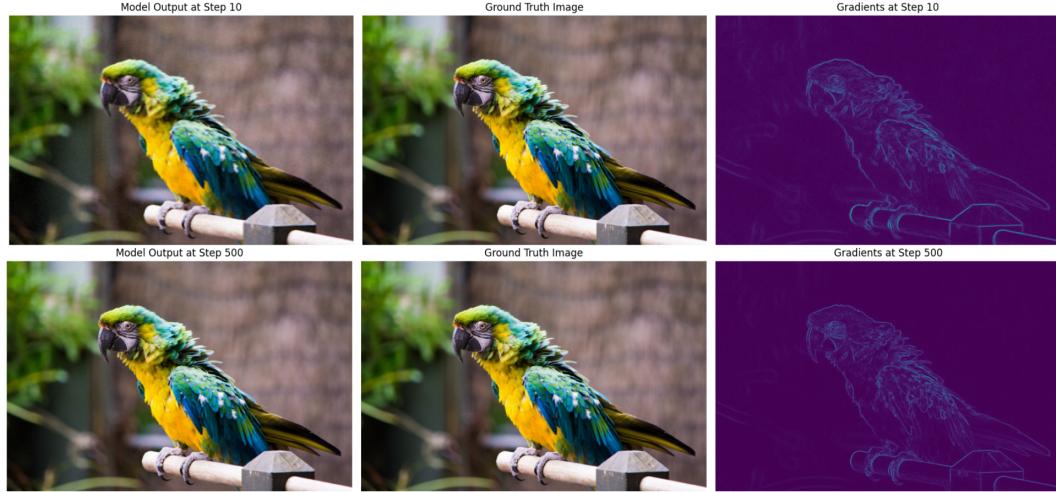


Figure 15: Model output, ground truth and gradient of parrot image at steps 10 and 500.

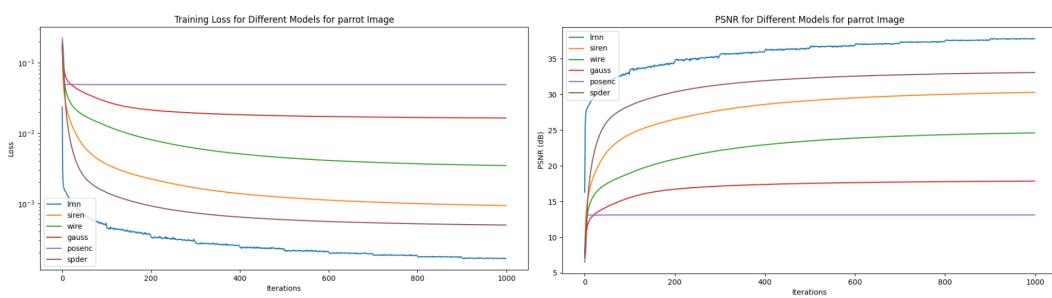


Figure 16: Training loss and PSNR for parrot image over 1000 iterations. The performance of LRNN is compared against SIREN, WIRE, GAUSS, ReLU (with positional encoding), and SPDER.

scale to high precision; for the 40 dB target, LRNN achieves a 100% success rate, whereas SPDER and SIREN succeed in only 26.4% and 1.8% of cases, respectively.

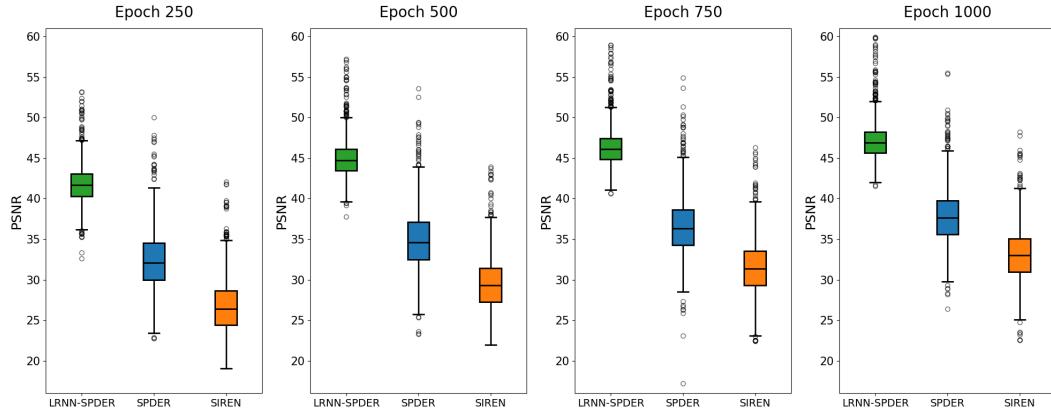


Figure 17: PSNR distribution after different epoch numbers for different models run on 1000 ImageNet images for three seeds each.

Table 9: Time to reach target PSNR for different models on ImageNet (average over 1000 images and 3 seeds). Values show average time \pm standard deviation in seconds, with success rate in parentheses.

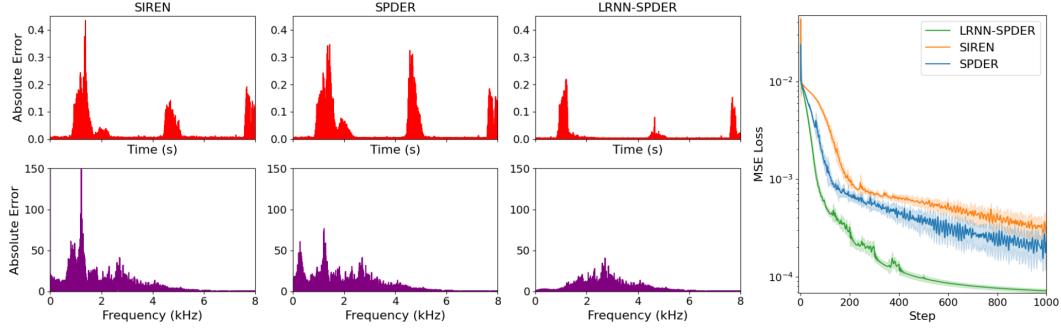
Target PSNR (dB)	Model	Avg Time \pm Std (Success %)	Failures
33	LRNN-SPDER	4.55 \pm 2.87 (100.0%)	0
	SPDER	4.58 \pm 2.29 (96.7%)	99
	SIREN	3.87 \pm 1.23 (50.7%)	1480
35	LRNN-SPDER	4.92 \pm 2.90 (100.0%)	0
	SPDER	5.48 \pm 2.47 (83.8%)	487
	SIREN	4.17 \pm 1.28 (26.5%)	2204
40	LRNN-SPDER	7.01 \pm 3.27 (100.0%)	0
	SPDER	6.90 \pm 2.11 (26.4%)	2207
	SIREN	4.27 \pm 2.03 (1.8%)	2947

F AUDIO REPRESENTATION

The implementation details for the audio representation study presented in the main paper are outlined here. The code used to produce these results is based on the script provided with (Shah & Sitawarin, 2024) which provides results for baseline models, SIREN (Sitzmann et al., 2020) and SPDER (Shah & Sitawarin, 2024). We create LRNN-SIREN and LRNN-SPDER by using $\sin(x)$ (Sitzmann et al., 2020) and $\sin(x) \arctan(x)$ (Shah & Sitawarin, 2024) activations, respectively, within their MLP-based univariate component functions, comparing them against their baseline counterparts. The benchmark models, SIREN and SPDER have five layers of 256 neurons each. To match this complexity, the LRNN models have three layers, each of rank 118, with $\bar{d} = 10$ and component functions being single-layer neural networks with four hidden neurons. For all models, we set $\omega_0 = 30$ (with inputs normalized to $[-100, +100]$ following (Shah & Sitawarin, 2024) and trained them for 1000 iterations of the Adam (Kingma & Ba, 2015) optimizer with initial learning rate set to 1×10^{-4} . While SIREN and SPDER had no scheduler on the learning rate to match the original authors' implementation, we chose a StepLR scheduler from the torch.optim package for LRNN with a step size of 100 and $\gamma = 0.8$.

We present the absolute error between the prediction and the ground truth in the time domain and the frequency domain. We observe that for both audio clips (bach in Figure 7 and counting in Figure 18), the LRNN model predictions match the ground truth more closely than the respective

1728
 1729
 1730
 1731
 1732
 1733
 baseline model and hence their error magnitudes are smaller than that of the baselines in both time
 and frequency domains. This is consistent with the statistical results presented in Table 3 in the main
 paper. Note that the y-axis for these absolute error frequency domain plots is clipped at 150 for ease
 of presentation, which excludes a few outliers of higher errors in SIREN and SPDER predictions;
 despite this, LRNN variants exhibit visibly lower error profiles.



1745
 1746 Figure 18: Absolute error in time and frequency domain and convergence of training MSE loss
 1747 (mean $\pm 1\sigma$) for counting audio representation tasks for comparably sized models.

1748
 1749 Table 10: Comparison of MSE loss and ρ_{AG} (mean \pm stddev) across architectures and audio clips
 1750 at different training steps averaged over 10 runs.

Metric	Audio	Step	LRNN-SPDER	SIREN	SPDER
Loss (\downarrow)	bach	50	$1.07 \pm 0.12 \times 10^{-3}$	$4.98 \pm 0.44 \times 10^{-3}$	$2.43 \pm 0.27 \times 10^{-3}$
		100	$2.36 \pm 0.55 \times 10^{-4}$	$2.00 \pm 0.18 \times 10^{-3}$	$1.51 \pm 0.71 \times 10^{-3}$
		500	$1.70 \pm 0.17 \times 10^{-5}$	$4.40 \pm 0.39 \times 10^{-4}$	$3.58 \pm 0.24 \times 10^{-4}$
		1000	$1.01 \pm 0.08 \times 10^{-5}$	$1.21 \pm 0.28 \times 10^{-4}$	$1.12 \pm 0.05 \times 10^{-4}$
	counting	50	$1.87 \pm 0.26 \times 10^{-3}$	$7.24 \pm 0.14 \times 10^{-3}$	$4.10 \pm 0.34 \times 10^{-3}$
		100	$5.45 \pm 0.45 \times 10^{-4}$	$4.27 \pm 0.33 \times 10^{-3}$	$1.43 \pm 0.22 \times 10^{-3}$
		500	$9.92 \pm 0.82 \times 10^{-5}$	$5.72 \pm 0.47 \times 10^{-4}$	$3.92 \pm 0.75 \times 10^{-4}$
		1000	$7.15 \pm 0.33 \times 10^{-5}$	$2.77 \pm 0.56 \times 10^{-4}$	$2.29 \pm 0.55 \times 10^{-4}$
	reggae	50	$1.03 \pm 0.35 \times 10^{-2}$	$1.57 \pm 0.16 \times 10^{-2}$	$1.33 \pm 0.19 \times 10^{-2}$
		100	$5.69 \pm 0.67 \times 10^{-3}$	$1.37 \pm 0.15 \times 10^{-2}$	$1.14 \pm 0.38 \times 10^{-2}$
		500	$1.21 \pm 0.14 \times 10^{-3}$	$5.02 \pm 0.78 \times 10^{-3}$	$4.29 \pm 0.51 \times 10^{-3}$
		1000	$7.93 \pm 0.01 \times 10^{-4}$	$2.15 \pm 0.63 \times 10^{-3}$	$2.48 \pm 0.77 \times 10^{-3}$
	reading	50	$2.72 \pm 0.09 \times 10^{-3}$	$3.72 \pm 0.01 \times 10^{-3}$	$3.09 \pm 0.03 \times 10^{-3}$
		100	$1.98 \pm 0.09 \times 10^{-3}$	$3.45 \pm 0.02 \times 10^{-3}$	$2.58 \pm 0.09 \times 10^{-3}$
		500	$5.63 \pm 0.08 \times 10^{-4}$	$1.67 \pm 0.07 \times 10^{-3}$	$1.41 \pm 0.14 \times 10^{-3}$
		1000	$1.86 \pm 0.03 \times 10^{-4}$	$9.98 \pm 0.16 \times 10^{-4}$	$8.88 \pm 0.25 \times 10^{-4}$
ρ_{AG} (\uparrow)	bach	50	0.9860 ± 0.0017	0.9078 ± 0.0094	0.9614 ± 0.0052
		100	0.9964 ± 0.0010	0.9658 ± 0.0028	0.9727 ± 0.0147
		500	0.9998 ± 0.0000	0.9930 ± 0.0007	0.9943 ± 0.0041
		1000	0.9999 ± 0.0000	0.9986 ± 0.0005	0.9988 ± 0.0003
	counting	50	0.9281 ± 0.0099	0.5020 ± 0.0205	0.7989 ± 0.0254
		100	0.9765 ± 0.0014	0.7789 ± 0.0276	0.9425 ± 0.0115
		500	0.9959 ± 0.0002	0.9768 ± 0.0021	0.9861 ± 0.0014
		1000	0.9967 ± 0.0002	0.9906 ± 0.0015	0.9937 ± 0.0006
	reggae	50	0.7786 ± 0.0114	0.6107 ± 0.0055	0.6896 ± 0.0055
		100	0.8974 ± 0.0072	0.6816 ± 0.0039	0.7475 ± 0.0090
		500	0.9809 ± 0.0005	0.9330 ± 0.0062	0.9449 ± 0.0035
		1000	0.9860 ± 0.0002	0.9769 ± 0.0011	0.9729 ± 0.0010
	reading	50	0.6315 ± 0.0171	0.3100 ± 0.0075	0.5246 ± 0.0081
		100	0.7430 ± 0.0133	0.3883 ± 0.0070	0.6301 ± 0.0210
		500	0.9508 ± 0.0082	0.8069 ± 0.0070	0.8476 ± 0.0088
		1000	0.9862 ± 0.0031	0.9193 ± 0.0094	0.9324 ± 0.0104

1782 **G NUMERICAL SOLUTION OF PDEs**
1783

1784 For the task of PDE solution approximation with INR models, we use the Poisson equation
 1785 $u_{xx} + u_{yy} = f$ on the square domain $\Omega = [-1, 1]^2$, subject to zero Dirichlet boundary conditions
 1786 from (Liu et al., 2025). The source term is defined as $f(x, y) = -\pi^2(1 + 4y^2)\sin(\pi x)\sin(\pi y^2) +$
 1787 $2\pi\sin(\pi x)\cos(\pi y^2)$ and the exact solution is given by $u(x, y) = \sin(\pi x)\sin(\pi y^2)$. The training
 1788 objective is composed of two parts: a residual loss over the PDE interior and a boundary loss,
 1789 formulated as $\mathcal{L}_{\text{PDE}} = \alpha\mathcal{L}_{\text{int}} + \mathcal{L}_{\text{bdry}}$, where
 1790

$$1791 \mathcal{L}_{\text{int}} = \frac{1}{n_i} \sum_{i=1}^{n_i} |u_{xx}(z_i) + u_{yy}(z_i) - f(z_i)|^2 \quad \text{and} \quad \mathcal{L}_{\text{bdry}} = \frac{1}{n_b} \sum_{i=1}^{n_b} u^2(z_i).$$

1794 Here, $\{z_i = (x_i, y_i)\}$ are collocation points sampled uniformly within the domain for the interior
 1795 loss, and on the boundary for the boundary loss. Following (Liu et al., 2025), we set $\alpha = 0.01$.
 1796

1797 For the LRNN model, we used a two-layer architecture with $\bar{d} = 12$ and an MLP with one hidden
 1798 layer with one neuron for each component function together with the SIREN ($\sin(x)$) activation
 1799 function. SPDER was not considered as a benchmark for this problem as we were unable to achieve
 1800 competitive performance with the $\sqrt{|x|}$ damping factor. The rank of the LRNN layers were chosen
 1801 from the set $\{16, 32, 48, 64\}$ to study the scaling properties of LRNNs. For both the LRNN and
 1802 SIREN models, we chose $\omega = 6.0$ as the frequency parameter for all layers. The MLP used the
 1803 SiLU activation function following the setting in (Liu et al., 2025). We used a spatial grid of 41×41
 1804 collocation points to compute the loss function. We used a learning rate of 10^{-3} for LRNNs and
 1805 MLPs and a learning rate of 10^{-4} for SIREN. All models were trained for 1000 epochs using the
 1806 Adam optimizer.
 1807

1808 Table 11: Comparison of different methods for the two-dimensional Poisson equation (ℓ_2 error).
 1809 Results for KAN are taken from Liu et al. (2025).

1811 Method	n_{params} ($\times 10^3$)	1812		
		1813 $n = 1$	1814 ℓ_2 error \downarrow	1815 $n = 2$
1813 MLP [2,128,128,128,1]	1814 34	1815 6.4×10^{-6}	1816 1.9×10^{-2}	1817 4.6×10^{-2}
1813 MLP [2,256,256,256,1]	1814 132	1815 3.6×10^{-6}	1816 1.7×10^{-5}	1817 2.9×10^{-3}
1813 SIREN [2,128,128,128,1]	1814 34	1815 5.0×10^{-7}	1816 1.2×10^{-4}	1817 1.9×10^{-3}
1813 SIREN [2,256,256,256,1]	1814 132	1815 1.3×10^{-7}	1816 8.9×10^{-6}	1817 5.5×10^{-4}
1818 KAN [2,10,1] $G = 10$	1819 -	1820 0.006	1821 0.135	1822 0.729
1818 KAN [2,10,1] $G = 20$	1819 -	1820 0.221	1821 0.082	1822 0.295
1818 KAN [2,100,1] $G = 10$	1819 -	1820 0.001	1821 0.006	1822 0.099
1818 KAN [2,100,1] $G = 20$	1819 -	1820 0.326	1821 0.135	1822 0.090
1818 KAN [2,10,10,10,1] $G = 10$	1819 -	1820 0.012	1821 0.117	1822 0.576
1818 KAN [2,10,10,10,1] $G = 20$	1819 -	1820 0.995	1821 0.993	1822 0.982
1824 LRNN [2,16,16,1]	1825 5	1826 8.9×10^{-7}	1827 1.5×10^{-5}	1828 3.7×10^{-3}
1824 LRNN [2,32,32,1]	1825 16	1826 1.5×10^{-7}	1827 2.7×10^{-6}	1828 5.5×10^{-4}
1824 LRNN [2,48,48,1]	1825 34	1826 1×10^{-7}	1827 8.3×10^{-7}	1828 1.5×10^{-4}
1824 LRNN [2,64,64,1]	1825 57	1826 9×10^{-8}	1827 6.6×10^{-7}	1828 6.6×10^{-5}

1829 The excellent performance of LRNNs on this particular problem (see Table 11 and Figure 8) is
 1830 consistent with their architectural design, which inherently captures multiplicative interactions. The
 1831 exact solution possesses a product-separable structure, making it particularly well-suited for approx-
 1832 imation by LRNNs. We provide a graphical comparison of results obtained using LRNN, MLP and
 1833 SIREN models in Figure 19. For LRNNs we used forward mode AD to efficiently compute the
 1834 Laplacian – this was crucial to prevent memory issues arising from the effective number of inter-
 1835 mediate activations associated with its product-structured activation function when the model size is
 1836 increased.

1836

1837

1838

1839

1840

1841

1842

1843

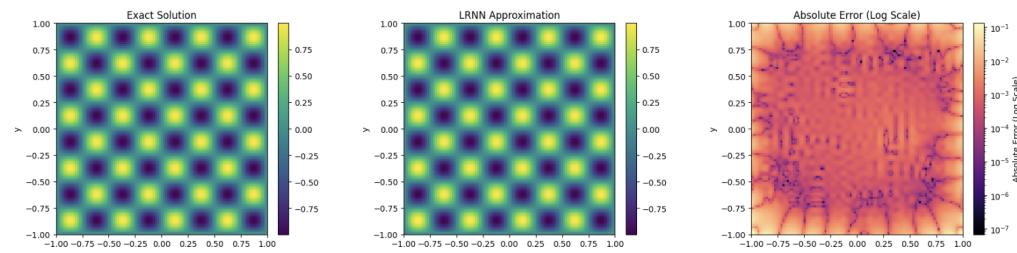
1844

1845

1846

1847

High-Frequency Poisson (n=4) - LRNN vs Exact (Epochs: 1000)



1856

1857

1858

1859

1860

1861

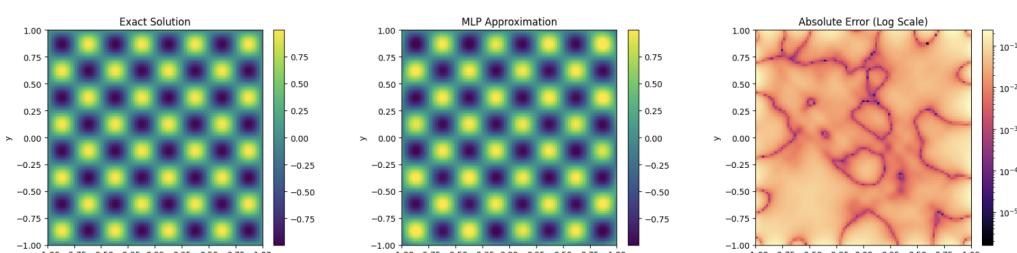
1862

1863

1864

1865

High-Frequency Poisson (n=4) - MLP vs Exact (Epochs: 1000)



1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Figure 19: Comparison of approximations obtained using LRNN model with $64k$ parameters and the MLP and SIREN models with $132k$ parameters for the Poisson PDE ($n = 4$). The first row shows the LRNN approximation, the second row shows the MLP approximation, and the third row shows the SIREN approximation. As shown in Table 2 in the main paper, the small LRNN model significantly outperforms the MLP and SIREN models in terms of the ℓ_2 error norm.

1890 Note that the results for KAN in Table 11 of the main paper were taken directly from (Liu et al.,
 1891 2025), as we encountered difficulties in reproducing their reported results using the publicly avail-
 1892 able code.
 1893

1894 H CT RECONSTRUCTION ABLATION STUDIES

1895 These experiments were performed by adapting the script for CT reconstruction provided by Sar-
 1896 agadam et al. (2023), who introduced this benchmark problem. All models were run for 5000 itera-
 1897 tions. The learning rates for the benchmarks were consistent with those recommended by Saragadam
 1898 et al. (2023): 5×10^{-3} for WIRE, 1×10^{-4} for ReLU with positional encoding, and 1×10^{-3} for
 1899 SIREN and Gauss. We also chose $lr = 1 \times 10^{-3}$ for LRNN. For the study presented in the main
 1900 paper and the ablation study presented below for number of projections, the model sizes are as fol-
 1901 lows: 3 layers of 256 neurons each for all benchmarks, and for LRNN, a two-layer model with
 1902 each layer being rank 82, $\bar{d} = 10$, and the component functions being single-layer neural networks
 1903 with four hidden neurons to match the complexity of the benchmarks. For only the LRNN model,
 1904 a ReduceLRonPlateau scheduler from the torch.optim package was used with a factor of 0.5 and a
 1905 patience of 25. All other models used the LambdaLR scheduler from the torch.optim package to
 1906 reduce the learning rate to $0.1 \times$ the initial learning rate in the final epoch, as used in the WIRE
 1907 paper experiments. For the study in the main paper and the ablation study on model complexity, all
 1908 models were provided with 100 CT projections. The results of the two ablation studies are discussed
 1909 below.
 1910

1911 **Number of CT Projections.** The CT problem was solved by all five models of similar complexity
 1912 (1.8×10^5 parameters) for different numbers of CT measurements. We compare both the PSNR
 1913 and SSIM in Table 12. We also consider the reconstructed images in Figure 20 compared to the
 1914 ground truth in Figure 7 in the main paper. None of the models have a clear reconstruction with only
 1915 20 projections, however LRNN and SIREN perform decently well with only 50 projections. As
 1916 demonstrated in Figure 21, LRNN is the top performer in PSNR at both 50 and 100 projections and
 1917 in SSIM at 100 and 150 projections. When more projections (150, 200, 300) are available, WIRE
 1918 achieves the highest PSNR and LRNN is second-best by a small margin of at most 1.53dB. This
 1919 indicates that while LRNN has some limitations, it is a good choice for this problem, particularly in
 1920 sparse-view cases with less CT measurements to limit exposure to patients.
 1921

1922 Table 12: Comparison of PSNR and SSIM across models for different numbers of CT measurements.
 1923

Number of CT Meas.	LRNN		SIREN		WIRE		Gauss		ReLU+PE	
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
20	25.60	0.5449	25.59	0.5646	20.86	0.2199	22.18	0.3351	25.75	0.5926
50	28.26	0.6766	27.44	0.6817	24.63	0.4006	26.54	0.5680	26.23	0.6180
100	29.13	0.7455	27.46	0.6877	28.83	0.6413	27.84	0.6855	26.89	0.6341
150	29.43	0.7557	27.45	0.6854	30.42	0.7470	27.79	0.6945	26.97	0.6327
200	29.71	0.7578	27.34	0.6874	31.24	0.7849	27.80	0.6926	26.94	0.6221
300	29.77	0.7713	27.53	0.6970	30.59	0.7739	27.99	0.7044	27.05	0.6094

1931 **Model Complexity.** An ablation study was also performed to determine the impact of model com-
 1932 plexity, as defined by total number of model parameters, on performance on the CT reconstruction
 1933 task. All models were provided 100 CT measurements. The range of model size tested varied from
 1934 5.9×10^4 to 19.9×10^4 . Based on Table 13 and Figure 22, we observe that all models with the
 1935 exception of WIRE do not exhibit any significant difference in PSNR over the range of model
 1936 complexities—they stay within the same 1dB range. For this reason, the reconstructed images are not
 1937 presented since they would be difficult to differentiate with the human eye. The models tend to
 1938 follow a trend of marginal increase in PSNR with significant increase in parameter count. There are
 1939 some outliers to this trend, most notably the largest WIRE model. This may be explained by the fact
 1940 that the smaller models had a depth of two, while the largest benchmark models comprised three
 1941 layers, which may not be well-suited to the WIRE framework. We observe that for 100 projections,
 1942 LRNN achieves the highest PSNR at all tested model sizes. Overall, this ablation study suggests
 1943 that model complexity does not have significant impact on performance once a certain minimum
 complexity is achieved. This is useful to note in problems limited by computational budget.

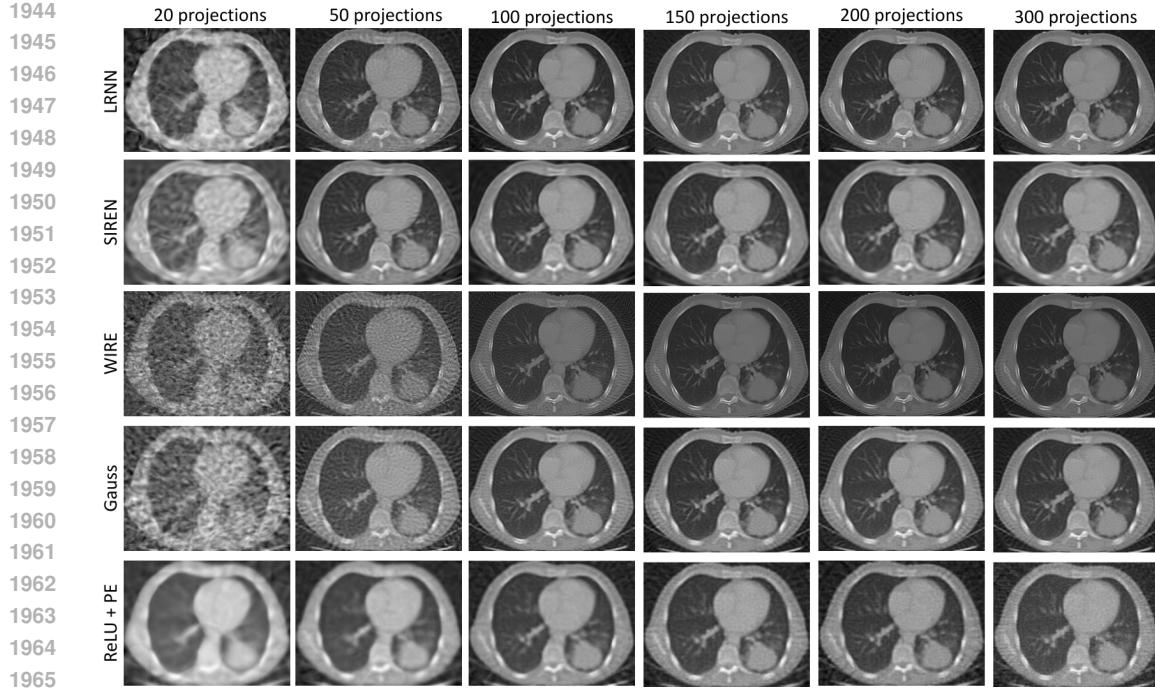


Figure 20: Comparison of CT reconstructed image by similarly complex models for different numbers of projections.

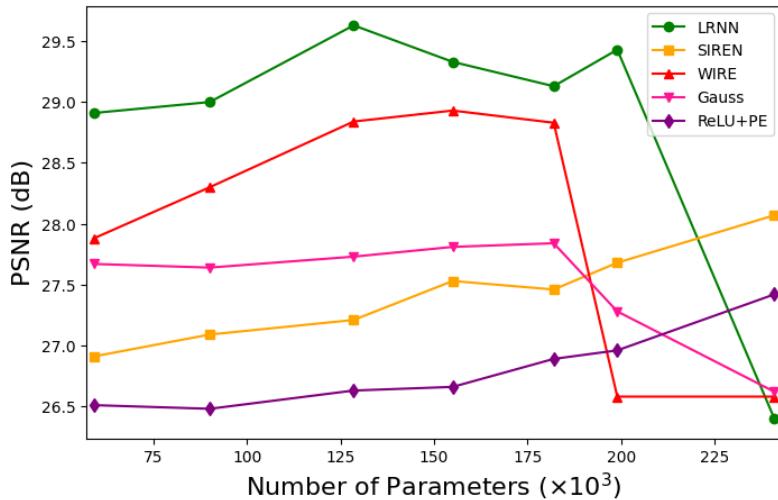


Figure 21: Comparison of PSNR for similarly complex models given different numbers of CT measurements.

Table 13: Comparison of PSNR and SSIM across models for different number of parameters (100 projections).

Parameters ($\times 10^4$)	LRNN		SIREN		WIRE		Gauss		ReLU+PE	
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
5.90	28.91	0.7167	26.91	0.6530	27.88	0.6041	27.67	0.6670	26.51	0.6142
9.00	29.00	0.7297	27.09	0.6655	28.30	0.6358	27.64	0.6727	26.48	0.6111
12.85	29.63	0.7392	27.21	0.6705	28.84	0.6479	27.73	0.6702	26.63	0.6280
15.50	29.33	0.7547	27.53	0.6907	28.93	0.6425	27.81	0.6860	26.66	0.6269
18.20	29.13	0.7455	27.46	0.6877	28.83	0.6413	27.84	0.6855	26.89	0.6341
19.90	29.43	0.7668	27.68	0.6966	26.58	0.5005	27.28	0.5694	26.96	0.6587

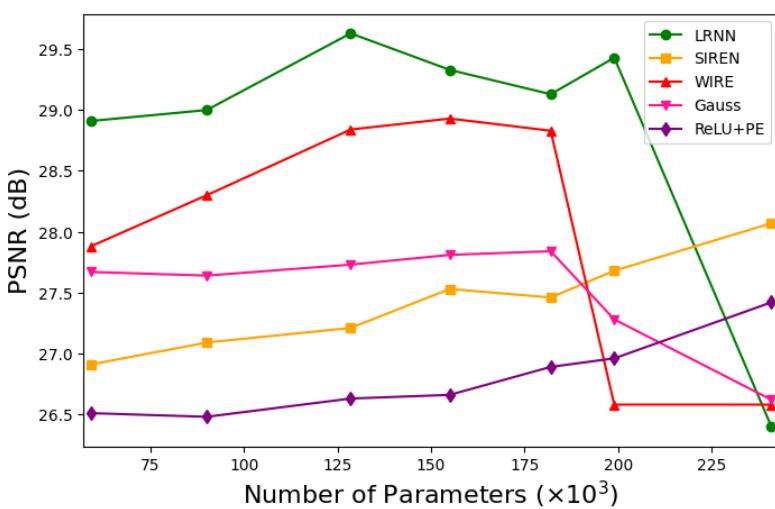


Figure 22: Comparison of PSNR for models of varying complexity given the same numbers of CT measurements.

I STUDIES ON IMAGE CLASSIFICATION DATASETS

We present controlled experiments on classification benchmarks to isolate and evaluate the contribution of the LRNN layer as a building block. Our goal is not to achieve state-of-the-art on large-scale datasets—which would require sophisticated architectures and training protocols—but rather to perform rigorous ablation studies comparing LRNN layers directly against their MLP, CNN, and KAN counterparts under identical conditions. We selected MNIST and MNIST-1D datasets for these experiments since they enable controlled comparisons with well-understood baselines and the computational efficiency allows extensive ablation studies. Furthermore, MNIST-1D’s procedural generation and shuffle variant specifically test architectural biases.

We consider LRNN models which take the vectorized image as input as well as a ConvLRNN model similar to a standard CNN which involves convolutional and pooling layers followed by an LRNN layer (instead of an MLP block).⁴ Our numerical experiments demonstrate that:

1. **MNIST-1D benchmark:** On the MNIST-1D benchmark, both LRNN models consistently outperform their direct MLP and CNN counterparts; see Table 14 and Figure 23.
2. **Shuffled pixels test-case:** On the MNIST-1D benchmark with shuffled pixels, both LRNN models maintain higher accuracy than their counterparts, suggesting they learn different feature representations (see Table 14).
3. **General-Purpose Layer (LRNN vs. MLP vs. KAN):** When treating MNIST as a vector task, our LRNN achieves 98.1% accuracy, which improves upon the standard MLP’s 97.0% accuracy and matches the accuracy of a much larger KAN model while being $\approx 50x$ faster to train (Table 15).
4. **As a Component in a CNN (ConvLRNN vs. a baseline CNN):** The ConvLRNN model matches the 99.1% accuracy of the baseline CNN on MNIST, but with only one-third of the parameters (77k vs. 225k, Table 15).

We now present the detailed experimental setup and results. We first evaluated LRNN and ConvLRNN on MNIST-1D (Greydanus & Kobak, 2024) against CNN and MLP baselines. All models were run with 5 different random seeds and the average results are presented in Table 14. We observe that ConvLRNN outperforms the CNN in terms of test accuracy on the unshuffled data as well as train and test accuracy on the shuffled data. The CNN has high accuracy on unshuffled data, but struggles

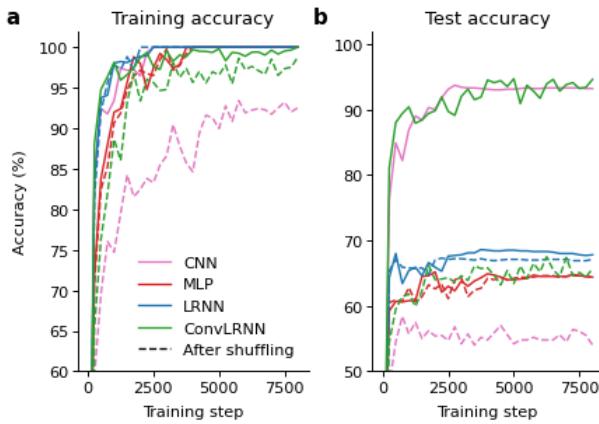
⁴Note that it is also possible to modify the LRNN neuron to entirely replace the convolutional layers and incorporate positional encoding instead of typical CNN’s fixed encoding. We leave this for future work.

2052 to perform on shuffled data. Although ConvLRNN’s performance also degrades on shuffled data,
 2053 it maintains 98.48% train accuracy (vs CNN’s 94.46%) and achieves 64.04% test accuracy—a 7
 2054 percentage point improvement over CNN’s 57.16%.
 2055

2056 Table 14: Classification accuracies on MNIST-1D.
 2057

2058 Model	n_{params}	Unshuffled		Shuffled	
		2059 Train Acc (%)	2060 Test Acc (%)	2061 Train Acc (%)	2062 Test Acc (%)
CNN	5.21×10^3	100.00 \pm 0.00	93.06 \pm 0.80	94.46 \pm 1.48	57.16 \pm 1.29
MLP	1.52×10^4	100.00 \pm 0.00	65.00 \pm 1.30	100.00 \pm 0.00	65.20 \pm 1.42
ConvLRNN	1.79×10^4	100.00 \pm 0.00	94.12 \pm 0.47	98.48 \pm 1.44	64.04 \pm 2.49
LRNN	4.63×10^4	100.00 \pm 0.00	67.18 \pm 0.78	100.00 \pm 0.00	67.34 \pm 0.85

2063 MLPs on the other hand perform consistently whether the data is shuffled or unshuffled, although
 2064 the unshuffled test accuracy is much lower than that of the convolutional models. LRNN outper-
 2065 forms MLP by 2-3% on both the shuffled and unshuffled data. Overall, ConvLRNN has the highest
 2066 performance on the unshuffled data while LRNN does the best of these benchmarks on the shuffled
 2067 data. To graphically illustrate this, we present plots of the train and test accuracy for a typical run in
 2068 Figure 23. We use this example to demonstrate the versatility of LRNNs and their applicability as a
 2069 general-purpose layer as illustrated by the broad range of tasks it performs well on.
 2070

2088 Figure 23: Train and test accuracies on MNIST-1D.
 2089

2090 We evaluated five models on standard MNIST: three using the flattened 784-dimensional vector
 2091 representation (MLP, KAN, LRNN) and two using the 2D image structure (CNN, ConvLRNN).
 2092 Results are presented in Table 15.
 2093

2094 For the vector-based models, LRNN achieves 98.1% test accuracy, outperforming MLP (97.0%)
 2095 while matching KAN’s accuracy. Critically, LRNN trains in 19.38 seconds—comparable to MLP’s
 2096 16.65 seconds and 55x faster than KAN’s 1064 seconds. Despite having fewer parameters than
 2097 KAN (1.04M vs 1.11M), LRNN delivers equivalent accuracy with dramatically better computational
 2098 efficiency.
 2099

2100 For the convolutional models, ConvLRNN matches CNN’s 99.1% accuracy while using only 77k
 2101 parameters—a 3x reduction from CNN’s 225k parameters. This demonstrates that LRNN layers can
 2102 serve as efficient drop-in replacements in standard architectures, maintaining performance while
 2103 significantly reducing model complexity.
 2104

2105 These controlled experiments demonstrate that the LRNN layer provides tangible benefits—parameter efficiency and computational speed—when used as a drop-in replacement for standard layers. While we do not claim state-of-the-art on classification (our focus remains on continuous signal representation), these results validate LRNNs as versatile building blocks that could

Table 15: Model performance on MNIST.

Model	n_{params}	Train Loss	Train Accuracy (%)	Test Accuracy (%)	Wall Time(s)
MLP	7.95×10^4	9.72×10^{-2}	98.6	97.0	16.65
KAN	1.11×10^6	9.24×10^{-3}	100.0	98.1	1063.99
CNN	2.25×10^5	7.05×10^{-3}	99.8	99.1	382.51
LRNN	1.04×10^6	1.19×10^{-2}	100.0	98.1	19.38
ConvLRNN	7.68×10^4	8.30×10^{-3}	99.8	99.1	422.31

benefit future architectural designs. Exploring LRNN integration in modern architectures for complex classification tasks remains an interesting direction for future work.