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ABSTRACT

Modern neural architectures are fundamentally constrained by their reliance on
fixed activation functions, limiting their ability to adapt representations to task-
specific structure and efficiently capture high-order interactions. We introduce
deep low-rank separated neural networks (LRNNs), a novel architecture general-
izing MLPs that achieves enhanced expressivity by learning adaptive, factorized
activation functions. LRNNs generalize the core principles underpinning continu-
ous low-rank function decomposition to the setting of deep learning, constructing
complex, high-dimensional neuron activations through a multiplicative composi-
tion of simpler, learnable univariate transformations. This product structure inher-
ently captures multiplicative interactions and allows each LRNN neuron to learn
highly flexible, data-dependent activation functions. We provide a detailed the-
oretical analysis that establishes the universal approximation property of LRNNs
and their ability to mitigate the curse of dimensionality for functions with low-rank
structure. Moreover, the learnable product-structured activations enable LRNNs
to adaptively control their spectral bias, which is crucial for signal representa-
tion tasks. These theoretical insights are validated through extensive experiments
where LRNNs achieve state-of-the-art performance across diverse domains in-
cluding image and audio representation, numerical solution of PDEs, sparse-view
CT reconstruction, and supervised learning tasks. Our results demonstrate that
LRNNs provide a powerful and versatile building block with a distinct inductive
bias for learning compact yet expressive representations.

1 INTRODUCTION

Neural networks equipped with simple activation functions like ReLU, Tanh, and Sigmoid have
achieved remarkable success across a multitude of domains. While their simplicity is a strength,
with expressivity achieved through a deep composition of layers, these standard activations possess
inherent limitations. For instance, it is well known that the spectral bias of activations such as ReLU
can hinder the representation of high-frequency details in signals (Rahaman et al., 2019). This has
spurred a long line of research into alternative activation functions with enhanced expressivity and
improved optimization properties such as convergence and gradient propagation. Early efforts led to
activations such as Maxout (Goodfellow et al., 2013), which learns a piecewise linear function, while
others such as Leaky ReLU (Maas et al., 2013), PReLU (He et al., 2015), Swish/SiLU (Ramachan-
dran et al., 2018), E-Swish (Alcaide, 2018) and GELU (Hendrycks & Gimpel, 2016) often focus on
improved gradient flow or adaptive non-linearities. Kunc & Kléma (2024) provide a comprehensive
survey of activation functions in deep learning.

A significant leap in expressivity, particularly for representing complex, continuous signals, emerged
with the advent of implicit neural representations (INRs). The effectiveness of INRs stems from spe-
cialized activation functions designed to capture fine details and high frequencies, often providing
better results than standard activations combined with positional encodings (PE) (Mildenhall et al.,
2020). Pioneering work by Sitzmann et al. (2020) introduced neural networks with sinusoidal acti-
vations (SIREN), which achieves remarkable fidelity in representing images, 3D shapes, and numer-
ical solutions of partial differential equations (PDEs). Subsequent developments include Gaussian
functions (Ramasinghe & Lucey, 2022), wavelet representations (WIRE) (Saragadam et al., 2023),
semi-periodic damped activations (SPDER) (Shah & Sitawarin, 2024), hyperbolic oscillation func-
tions (HOSC) (Serrano et al., 2024), sinc activations (Saratchandran et al., 2024), and FINER (Liu
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et al., 2024); see Essakine et al. (2025) for a recent review. This body of work has demonstrated that
the choice and design of the non-linearity are crucial for high-fidelity signal representation.

While tailored activation functions are powerful, they are often designed to capture specific signal
properties such as periodicity and multi-scale behavior. This motivates the search for architectures
that can learn highly expressive and adaptive non-linearities, while maintaining computational ef-
ficiency and optimization stability. A recent development in this direction is Kolmogorov-Arnold
Networks (KANs) proposed by Liu et al. (2025), which incorporate learnable activation functions on
edges rather than using fixed activations at nodes. While KANs offer increased expressivity, they re-
quire significantly longer training times and can suffer from optimization instability with larger grid
sizes. The ActNet architecture (Ferreira Guilhoto & Perdikaris, 2025) which leverages Laczovich’s
variant of Kolmogorov’s superposition theorem has shown promise in addressing these challenges.

In the present work, we introduce deep low-rank separated neural networks (LRNNs), a novel archi-
tecture whose expressivity stems from a different principle: a multiplicative composition of learn-
able, univariate functions. LRNNs are inspired by work on low-rank separated representations,
originally proposed for approximating multivariate functions as sums of products of univariate basis
functions (Beylkin et al., 2009; Audouze & Nair, 2019). LRNNs generalize this idea to create a new
class of deep neural network architectures where the neurons are equipped with learnable product-
structured activations. This structure inherently captures multiplicative interactions and allows each
neuron to independently learn a highly flexible activation function, adapting its non-linearity to the
learning task, while maintaining computational efficiency.

The notion of low-rank function decomposition that our work builds upon has deep roots in tensor
algebra (Kolda & Bader, 2009). Low-rank decompositions of model weights have been successfully
applied to model compression (Novikov et al., 2015; Lebedev et al., 2015) and fine-tuning large
language models (LLMs) (Hu et al., 2022). However, our focus with LRNNs is distinct: rather than
using low-rank decompositions for compression, we leverage the multiplicative structure of low-
rank function decompositions to enhance expressivity. More specifically, LRNNs utilize adaptive
product-structured activations to efficiently capture high-order interactions in contrast to standard
neurons that compose features additively. Our main contributions are:

• We introduce the LRNN architecture, a generalization of MLPs where each neuron’s activation is
a product of learnable univariate functions applied to projected inputs, enabling highly adaptive
and expressive non-linearities beyond fixed scalar activations.

• We provide detailed theoretical analysis establishing universal approximation, the ability of
LRNNs to overcome the curse of dimensionality for functions with decaying functional ANOVA
structure, and insights into how LRNNs can adaptively control their spectral bias.

• We demonstrate that the unique theoretical advantages of LRNNs translate into practical impact
across diverse domains:

– Image representation: LRNNs achieve 100% success at a high-fidelity 40 dB target across
1,000 ImageNet images, a regime where the SPDER and SIREN baselines frequently fail.

– Audio representation: 3-11x lower MSE on audio tasks with superior spectral fidelity.
– Numerical solution of PDEs: LRNNs achieve 8x parameter reduction compared to SIREN

and 100-1000x lower error than KANs on a PDE benchmark.
– Sparse-view CT reconstruction: On this benchmark, LRNNs provide artifact-free reconstruc-

tion and superior performance with a small number of projections (50-100), a critical factor
for reducing patient radiation exposure.

2 LOW-RANK DECOMPOSITIONS IN LEARNING

Low-rank tensor decompositions provide a powerful framework for mitigating the curse of dimen-
sionality by representing high-dimensional tensors through interactions among their dimensions,
often as products of low-dimensional tensors. The origins of this topic can be traced to work
by Hitchcock (1927) on decomposing a tensor into a sum of rank-one tensors, which was later refined
by Cattell (1944) with parallel proportional and multi-axis analysis. The most widely used approach
is arguably the canonical polyadic (CP) decomposition (Carroll & Chang, 1970; Harshman, 1970).
The Tucker decomposition (Tucker, 1966) provides a more general family of decompositions that
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includes the CP decomposition as a special case. The tensor train (TT) decomposition (Oseledets,
2011) is a well-studied approach that combines the advantages of CP and Tucker decompositions.
It is worth noting that since the Eckart-Young-Mirsky theorem only holds for matrices, there is no
unique approach for generalizing the notion of singular value decomposition to higher-order ten-
sors (Kolda & Bader, 2009).

Low-rank tensor decompositions are now ubiquitous in many fields (Kolda & Bader, 2009), and
applications include scientific computing (Dolgov et al., 2021), dimensionality reduction (Papalex-
akis et al., 2015; Shashua & Levin, 2001; Acar et al., 2006), compression of deep learning mod-
els (Novikov et al., 2015), reducing memory footprint when fine-tuning LLMs (Hu et al., 2022), and
decomposition of LLM gradients to reduce training memory (Zhao et al., 2024).

The present work is motivated by the observation that a low-rank tensor decomposition can be inter-
preted as a discretization of a continuous low-rank decomposition of a multivariate function. This
observation underpins the separated rank decomposition (SRD) model (Beylkin et al., 2009), which
is a continuous generalization of the CP decomposition. For a d−dimensional function, the SRD
model takes the form: ŷ(x) =

∑r
i=1 si

∏d
j=1 gi,j(xj), where r is the separation rank, si are nor-

malization coefficients, and gi,j are approximated using a linear combination of univariate basis
functions. The basis functions are typically polynomials or radial basis functions and alternating
least squares is used for training (Beylkin et al., 2009; Chevreuil et al., 2015), which can result
in slow convergence and ill-conditioned subproblems when the support region of the basis is dis-
joint from the data points. Audouze & Nair (2019) proposed a sparse SRD approach that uses
ℓ1-regularization and a coordinate descent optimization algorithm to address these challenges.

Other models in the literature that use univariate component functions include projection pursuit
regression (Friedman & Stuetzle, 1981) and neural additive models (NAMs) (Agarwal et al., 2021).
Tree tensor networks (TTNs) (Shi et al., 2006; Cheng et al., 2019; Bachmayr et al., 2021; Ali &
Nouy, 2023) are another class of models that use compositions of low-dimensional functions that
are not restricted to be univariate. TTNs have a structure similar to an MLP equipped with a sparsity
mask. Despite the growing body of theoretical work on this topic, applications have so far been
restricted to simple test problems. This can be attributed to the fact that learning the optimal tree
structure from data is a challenging combinatorial problem.

3 LRNN ARCHITECTURE

In this section, we introduce the LRNN architecture in the supervised learning setting. Let D denote
a dataset of N observations, D := {(x(i),y(i))}Ni=1, where x(i) = (x

(i)
1 , . . . , x

(i)
d ) ∈ Rd is an input

vector with d feature dimensions and y(i) ∈ Y denotes a noisy observation containing either K
regression targets (i.e., Y ⊂ RK) or K class labels (i.e., Y ⊂ ZK). Our goal is to construct a
predictive model for the regression targets or class labels using the dataset D.

3.1 SHALLOW LRNNS

At the core of our approach is the LRNN neuron’s ability to capture multiplicative interactions
through product-structured activations. We begin with the shallow LRNN architecture—a single
layer that transforms inputs through learnable univariate functions—before extending to deeper com-
positions. For a dataset with K outputs, the shallow LRNN takes the form

ŷlrnn(x) =

r∑
ℓ=1

sℓ

d̄∏
j=1

(1 + γ gℓj(z
ℓ
j)), zℓ = Wℓx+ bℓ, (1)

where r ∈ N is the separation rank, sℓ ∈ RK are weight vectors, gℓj : R → R denotes a univariate
component function, γ = d̄−1/2 is a scaling factor, zℓ ∈ Rd̄, Wℓ ∈ Rd̄×d, and bℓ ∈ Rd̄.

It can be seen from (1) that LRNNs project the d-dimensional input to r latent vectors in Rd̄ and
produce an output using a sum-product operation. We introduce the term (1+γ gℓj(z

ℓ
j)) to ensure au-

tomatic relevance determination (ARD) and make initialization more convenient; see Appendix A.1
for details. The scaling factor γ = d̄−1/2 plays a crucial role analogous to Xavier/He initialization
in standard networks (Glorot & Bengio, 2010; He et al., 2015) and the scaling used in LoRA (Hu
et al., 2022). We formalize this by establishing the following result (see Appendix A.3 for proof):
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Lemma 1 (Variance-controlled initialization). Under mild assumptions on the component func-
tions at initialization (zero mean, finite variance), the product-structured LRNN activation
φ(z) =

∏d̄
j=1(1 + γ gj(zj)) satisfies the following bounds:

(i) Var[φ(z)] ≤ eσ
2
g − 1 and (ii)

d̄∑
k=1

Var[∂φ(z)/∂zk] ≤ σ2
g′ eσ

2
g (2)

where σ2
g and σ2

g′ denote the variance of the component functions and their first-order derivatives,
respectively, at initialization.

It follows from this result that the variance of the LRNN activation and the sum of the variances of its
gradients are bounded independently of the projection width d̄. This reveals an intrinsic mechanism
for ARD: as projection width d̄ increases, each coordinate’s gradient contribution Var[∂φ/∂zk] =
O(1/d̄) diminishes, while their collective impact remains constant. This ensures stable gradient
flow through arbitrarily wide product structures, enabling LRNNs to learn high-dimensional yet
well-conditioned representations.

The univariate LRNN component functions gℓj : R → R can be flexibly parametrized, with each
of the rd̄ functions typically being a small MLP, enabling them to adapt to complex patterns in the
data. The parameters of the component functions are learned along with the weight vectors sℓ ∈ RK

during training. The hyperparameters of a shallow LRNN are the separation rank, r, which controls
the model’s expressivity, and the dimensionality of the linear projection layer, d̄.

Connection to SRD: For the special case of scalar targets (i.e., K = 1), if we set the projection
layer to identity (i.e., zℓ = x) and replace (1 + γ gℓj(z

ℓ
j)) with gℓj(z

ℓ
j), we recover the SRD model

of Beylkin et al. (2009). The LRNN model can hence be viewed as a generalization of CP-based
function decomposition, which we will later generalize further to deeper architectures.

Generalization of MLPs: LRNNs generalize the familiar MLP architecture. If we set d̄ = 1 and
replace gℓj with a standard activation function, LRNNs reduce to a standard shallow MLP. To see
this generalization clearly, consider a shallow MLP with r neurons in the hidden layer: ymlp(x) =∑r

ℓ=1 vℓ σ(zℓ), where zℓ = wT
ℓ x + bℓ is a scalar projection of the input with wℓ ∈ Rd,vℓ ∈ RK ,

and bℓ ∈ R denoting the weights and biases, respectively, and σ : R → R is a standard MLP
activation function. The shallow LRNN in (1) can be rewritten in the same form: ylrnn(x) =∑r

ℓ=1 sℓ φℓ(z
ℓ), where φℓ(z

ℓ) =
∏d̄

j=1(1 + γ gℓj(z
ℓ
j)) is the LRNN product-structured activation

function with zℓ = Wℓx + bℓ. The key distinctions are: (i) each LRNN neuron learns its own
distinct learnable activation function φℓ : Rd̄ → R, whereas all MLP neurons share the same fixed
activation σ : R → R operating on scalar projections;1 (ii) LRNN activations achieve this vector-
to-scalar mapping through multiplicative compositions, enabling efficient representation of higher-
order interactions that additive architectures struggle to capture (see Section 3.3).

3.2 DEEP LRNNS

We now extend LRNNs to deeper architectures, enabling them to learn hierarchical representations
through composed transformations. Deep LRNNs stack multiple layers, creating a sequence of
maps from input to output space, i.e., x(0) → x(1) → . . . → x(L) → ŷ for a model with L layers;
see Figure 10 for a graphical illustration. This hierarchy progressively transforms inputs into latent
representations amenable to efficient low-rank approximation, combining deep learning’s composi-
tional power with the expressivity of low-rank function decomposition.

A deep LRNN architecture with L layers and rk neurons in the kth hidden layer for mapping a
d-dimensional input to a K-dimensional output can be represented as

ŷ(x) = Sout(ϕ(L) ◦ ϕ(L−1) ◦ . . . ◦ ϕ(1))(x), (3)
where Sout ∈ RK×rL and ϕ(k) : Rrk−1 → Rrk , with r0 = d and ϕ(0) = x. The output of the k-th
hidden layer can be written as ϕ(k) = (φ

(k)
1 (z1,(k)), φ

(k)
2 (z2,(k)), . . . , φ

(k)
rk (zrk,(k)))T , where

φ
(k)
ℓ (zℓ,(k)) =

d̄k∏
j=1

(1 + γ g
ℓ,(k)
j (z

ℓ,(k)
j )), ℓ = 1, 2, . . . , rk, k = 1, 2, . . . , L. (4)

1Maxout networks (Goodfellow et al., 2013) are a notable exception, also using vector-to-scalar mappings
but through max operations rather than products.
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In the preceding equation zℓ,(k) = Wℓ,(k)ϕ(k−1) + bℓ,(k) ∈ Rd̄k , and Wℓ,(k) ∈ Rd̄k×rk−1 , and
bℓ,(k) ∈ Rd̄k denote the weight matrix and bias vector for the ℓ-th neuron, respectively, gℓ,(k)j :
R → R are learnable univariate component functions, and φ

(k)
ℓ : Rd̄k → R.

Each LRNN neuron ℓ in layer k applies a product-structured activation φ
(k)
ℓ to a d̄k-dimensional

projection of the previous layer’s output. The matrix Sout maps ϕ(L) to the target space. Similar
to the shallow LRNN, the deep generalization also introduces distinct product-structured activation
functions within and across layers that operate on distinct d̄k-dimensional projections.2

Parameter sharing can be used to reduce the parameter complexity of deep LRNNs, e.g., sharing the
activation function across LRNN neurons in each layer, the term φ

(k)
ℓ can be rewritten as

φ
(k)
ℓ (zℓ,(k)) =

d̄k∏
j=1

(1 + γ g
(k)
j (z

ℓ,(k)
j )), where zℓ,(k) = Wℓ,(k)ϕ(k−1) + bℓ,(k). (5)

The use of shared activations for the neurons in each hidden layer reduces the number of learnable
univariate component functions from rkd̄k to d̄k (i.e., g(k)j shared across all neurons in the k-th
layer). Note that each hidden layer is equipped with a distinct learnable product-structured activa-
tion function. We evaluate the trade-offs of this approach in Appendix C. (Figure 11), comparing
this shared activation variant against the standard flexible LRNN architecture. Our results indicate
that while parameter sharing improves efficiency at lower parameter counts, distinct activations are
necessary to maximize fidelity for complex high-frequency signals. Another possibility is to share
the projection layer across neurons in each layer; however, we found that this approach leads to
significant loss in expressivity.

Implementation aspects: In our implementation, each univariate component function g
ℓ,(k)
j

within the LRNN’s product-structured activation is parametrized by a small shallow MLP. Impor-
tantly, these component networks—not the LRNN neurons themselves—employ traditional scalar
activation functions; for implicit neural representation tasks, we use either SPDER activations (e.g.,
sin(x)

√
|x|, sin(x) arctan(x)) or SIREN’s sinusoidal activation (sin(x)) within these component

networks. To ensure stable learning dynamics in deep architectures, we apply LayerNorm to the
output vector ϕ(k) after each LRNN layer’s product-structured computation; see Appendix C.2 for
details. This normalization strategy proves crucial for consistent convergence in deeper networks.
Implementation details and ablation studies are provided in Appendices B and C, respectively.

3.3 THEORETICAL ASPECTS

We establish fundamental theoretical properties of LRNNs that provide insight into their empirical
success: universal approximation, mitigation of the curse of dimensionality for structured functions,
and adaptive spectral bias control.

Theorem 1 (Universal approximation). If f : [0, 1]d → R is a continuous function, then
for every ε > 0, there exists an LRNN with suitably chosen separation rank r such that
maxx∈[0,1]d

∣∣f(x)− flrnn(x)
∣∣ ≤ ε.

This result, establishing universality analogous to that of standard MLPs, follows from the Stone-
Weierstrass theorem and the fact that LRNNs can represent arbitrary polynomial expansions (see
Appendix A.4 for proof). Just as the width of an MLP may grow with 1/ε, the separation rank r of
an LRNN can grow arbitrarily large to capture complex functions. Thus, “universal” here does not
guarantee a small r unless the target function has low-rank or near-separable structure.

Beyond universal approximation, the stability of LRNN training is crucial. It follows from Lemma 1
(Section 3.1), the variance-controlled initialization ensures variance-controlled learning for LRNNs:

The scaling factor γ = d̄−1/2 ensures that both forward and backward propagation remain stable
regardless of projection width d̄, with activation variance and gradient variance sum both bounded
from above by constants independent of d̄.

This property enables automatic relevance determination and stable optimization even for wide prod-
uct structures (detailed analysis in Appendix A.3).

2In practice, we set d̄k to be the same across layers, i.e., d̄k = d̄ ∀k.
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Theorem 2 (Curse of dimensionality mitigation). For functions whose ANOVA decomposition is
dominated by terms involving at most m ≪ d variables, LRNNs achieve approximation error ε with
parameter complexity O(poly(d)/ε) rather than exponential in d.

Figure 1: Test RMSE vs. parameter count for
LRNN and ReLU MLP.

Theorem 2 shows that LRNNs can circumvent the
curse of dimensionality for a class of structured
functions since the parameter complexity grows
only polynomially with d rather than the exponen-
tial scaling typical of generic approximators. Ap-
pendix A.5 provides a more precise statement of
this result with the technical assumptions and proof.
The key insight is that LRNNs naturally encode
sum-of-products structures matching ANOVA de-
compositions. Functions arising from physical sys-
tems often exhibit such decay in interaction order,
making LRNNs particularly suitable for scientific
computing applications. Figure 1 illustrates this in
practice for a synthetic test function with product-
structure; see Appendix D for details.

Lemma 2 (Adaptive spectral bias control). When equipped with periodic activations (e.g., SIREN,
SPDER), LRNNs with d̄ > 1 generate rich frequency spectra through combinatorial frequency syn-
thesis. A single LRNN neuron with d̄ components generates not only the d̄ fundamental frequencies
but also all 2d̄ − 1 possible sum and difference combinations.

This multiplicative frequency synthesis contrasts with MLPs’ additive synthesis, where each neuron
contributes a single frequency pair. Consequently, LRNNs can represent complex spectra with fewer
parameters, particularly for signals with harmonic relationships or intermodulation products. This
explains their superior performance on audio and image representation tasks where the ability to
capture high-frequency details is crucial (see Appendix A.7 for proof and detailed discussion).

4 NUMERICAL EXPERIMENTS

We evaluate LRNNs across diverse domains, including image and audio representation, numeri-
cal solution of PDEs, and sparse-view CT reconstruction. All models were implemented in Py-
Torch (Paszke et al., 2019) and trained using the Adam optimizer (Kingma & Ba, 2015) on a single
NVIDIA 4090 GPU. An anonymized repository containing the LRNN codebase is available at:
https://anonymous.4open.science/r/iclr_lrnn-9C35.

Prior to presenting task-specific results, we summarize key architectural insights gained through
extensive ablation studies (detailed in Appendices C–H): (i) Stability: The multiplicative structure
of LRNNs alters activation statistics compared to additive networks, making LayerNorm essential
for convergence (Appendix C.2); (ii) Component selection: Using periodic activations (e.g., SIREN,
SPDER) within the univariate components is crucial for minimizing spectral bias in high-frequency
tasks (Appendix C.3); and (iii) Robustness: LRNNs provide excellent performance in the sparse-
data regime, maintaining high reconstruction fidelity (Appendix H).

Image representation: We conducted experiments to study how the performance, measured
by peak signal-to-noise ratio (PSNR) scales with parameter count for LRNN, SPDER (Shah &
Sitawarin, 2024), and MLPs. We refer to our LRNN implementation for this case as LRNN-SPDER,
since we use the SPDER activation function sin(x)

√
|x| in the MLP parametrizations of the LRNN

univariate component functions; see Appendix E for details.

As shown in Figure 2, on both the cameraman image (grayscale 256 × 256) and the retina image
(RGB 256× 256), a 2-layer LRNN-SPDER consistently outperforms deeper 3- and 5-layer SPDER
models and 5-layer MLP models with both ReLU and tanh activations across all tested parameter
counts. For cameraman, the performance gap widens between LRNN-SPDER and SPDER up to
∼300k parameters, suggesting that LRNN-SPDER achieves superior parameter efficiency compared
to its baseline. Similarly, for retina, 2-layer LRNN-SPDER shows increasing performance gains as
model size grows compared to both SPDER models. These scaling plots highlight LRNN-SPDER’s

6
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Figure 2: Scaling laws for image representation task.

Figure 3: Cameraman image results: ground truth and reconstructed images from LRNN-SPDER,
SPDER, SIREN, WIRE and ReLU (left); and PSNR convergence history over iterations (right).

expressivity and learning capacity, surpassing the corresponding benchmark on which the LRNN
activations are based, even at shallower depth.

We compare the performance of LRNN-SPDER to an MLP with ReLU activations, SIREN (Sitz-
mann et al., 2020), WIRE (Saragadam et al., 2023) and SPDER (Shah & Sitawarin, 2024) on the
cameraman image. All models are chosen to have ∼197k parameters. LRNN-SPDER outperformed
all the baselines, achieving a PSNR of 107.9 dB–a margin of 58.9 dB over the next best, SPDER
(49.0 dB). While such extreme fidelity exceeds visual distinguishability, it confirms that LRNNs
avoid the spectral saturation limiting standard architectures. Figure 3 shows the qualitative image
reconstructions and PSNR convergence history for all models. The PSNR convergence plot shows
LRNN-SPDER achieving the highest PSNR early on in training and continuing to climb even while
the other models show signs of convergence.

Figure 4: Average success rate and time
for models to reach PSNR targets on
1000 ImageNet images.

We conducted a large-scale robustness study on 1,000 im-
ages from the ImageNet dataset, each postprocessed to
256 × 256. LRNN-SPDER, SIREN, and SPDER mod-
els with ∼200k parameters were trained for 1,000 epochs
using three random seeds per image, totaling 3,000 runs
per model. Figure 4 reports the success rate and average
wall-clock time required to reach PSNR targets of 33 dB,
35 dB, and 40 dB. We observe that LRNNs consistently
outperform the baselines. For the challenging 40 dB
target, LRNNs achieved a 100% success rate, whereas
SIREN and SPDER failed to reach this target in 98.2%
and 73.6% of cases, respectively. Even at lower targets,
LRNNs surpass SPDER in both success rate and time-to-
solution. While SIREN has shorter runtimes, its success
rate significantly drops at higher fidelity targets. See Ap-
pendix E.1 for further analysis. Figure 5 compares repre-
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sentative reconstructions at epoch 250. LRNN reconstructions are virtually indistinguishable from
the ground truth, whereas SPDER exhibits mild degradation and SIREN produces blurrier outputs.

Figure 5: Qualitative comparison of ImageNet reconstructions after 250 epochs. Selected examples
demonstrate that LRNNs capture fine details significantly earlier in training than baseline models.

We demonstrate the capabilities of LRNN-SPDER on images from the DIV2K dataset. We down-
sample the original image with a scaling factor of 4, train the model on the downsampled image,
then reconstruct the image by upsampling the model output back to the full resolution. The fre-
quency factor ω0 within the MLP component functions of our LRNN-SPDER model was chosen
following de Avila Belbute-Peres & Kolter (2023). The upsampled reconstruction is compared to
the ground truth in Figure 6. Additional studies on color images are presented in Appendix E.

Figure 6: LRNN-SPDER upsampled image reconstruction demonstrated on DIV2K image.

Table 1: MSE loss and ρAG across architectures. Values show
mean(std) over 10 runs.

Method MSE Loss (×10−4)

bach counting reggae reading

SIREN 1.21(0.28) 2.77(0.56) 21.5(6.3) 9.98(1.57)
SPDER 1.12(0.05) 2.29(0.55) 24.8(7.7) 8.88(2.45)
LRNN-SPDER 0.10(0.01) 0.72(0.03) 7.93(0.11) 1.86(0.30)

ρAG (std ×10−4)

SIREN 0.9986(5) 0.9906(15) 0.9769(11) 0.9193(94)
SPDER 0.9988(3) 0.9937(6) 0.9729(10) 0.9324(104)
LRNN-SPDER 0.9999(0) 0.9967(2) 0.9860(2) 0.9862(31)

Audio Representation: We
tested LRNNs on audio sig-
nal representation using four
diverse clips: instrumental
classical music (bach) and
male human speech (count-
ing) as used in Sitzmann
et al. (2020); reggae music
with singing (reggae) from
the GTZAN dataset (Tzane-
takis et al., 2001); and fe-
male human speech (reading)
from the LibriSpeech dataset
(Panayotov et al., 2015). We
used sin(x) arctan(x) (Shah
& Sitawarin, 2024) activations for the MLP-based component functions of LRNN-SPDER and com-
pare against the baseline models, SIREN and SPDER.
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Table 1 presents MSE loss and frequency similarity (ρAG), while Figure 7 shows time and frequency
domain absolute errors and loss convergence for the bach audio. Additional results and implementa-
tion details are presented in Appendix F. The results consistently demonstrate LRNNs’ superiority:
LRNN-SPDER significantly outperforms all other models, including its SPDER baseline, achiev-
ing 3x–11x lower final MSE and higher ρAG across all the datasets. LRNN-SPDER also exhibits
faster convergence compared to the baselines. The error distributions in the frequency domain show
that LRNN-SPDER preserves spectral integrity essential to human perception (e.g., timbre, pitch,
harmonics). This demonstrates superior generalization across both temporal and spectral represen-
tations compared to baselines.

Figure 7: Absolute error in time and frequency domain and convergence of training MSE loss (mean
±1σ) for bach audio representation tasks for comparably sized models.

PDE benchmark: We evaluate LRNNs (with sin(x) activations for the MLP component func-
tions) on the high-frequency Poisson PDE benchmark (Liu et al., 2025), comparing against SIREN,
MLPs, and KANs. Figure 8 compares the ℓ2 error obtained using LRNN, MLP, and SIREN with
different model parameter counts when the frequency parameter is set to n = 2 and n = 4. Results
for KAN1 ([100] G = 10) and KAN2 ([100] G = 20) are from Liu et al. (2025) and are displayed as
horizontal lines since the parameter counts are unknown. It can be seen from the results that LRNNs
exhibit exceptional performance, particularly in parameter efficiency. For instance, a 16k-parameter
2-layer LRNN achieves a significantly lower error for frequency n = 2 and comparable error at
n = 4 relative to a 132k-parameter SIREN with three hidden layers (an 8x parameter reduction).

Furthermore, a 57k-parameter LRNN reduces the error by nearly an order of magnitude compared to
the 132k-parameter SIREN when n = 4. Compared to KANs, LRNNs achieve orders of magnitude
lower error across all tested frequencies. These results underscore LRNNs’ superior expressivity for
complex PDE solutions with compact models; see Appendix G for additional details and results.

Figure 8: Results for the PDE benchmark.

CT Reconstruction: Sparse-view Computed Tomography (CT) is vital for reducing patient radia-
tion exposure, and INRs can reconstruct high-fidelity images from such limited data. We compared
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Figure 9: Comparison of CT ground truth and recon-
structed images by similarly complex models.

Table 2: Comparison of model per-
formance.

Model PSNR SSIM

LRNN 29.13 0.7455
WIRE 28.83 0.6413
Gauss 27.84 0.6855
SIREN 27.46 0.6877
ReLU 26.89 0.6341

LRNN against WIRE, SIREN, Gaussian-activated networks (Gauss), and ReLU with positional en-
coding (ReLU+PE) on a 256 × 256 chest CT image task (Saragadam et al., 2023), using ∼180k
parameters for all models.

Table 2 shows that LRNN achieves the highest PSNR (29.13 dB) and SSIM (0.7455). Qualitatively,
Figure 9 demonstrates LRNNs’ superior reconstruction fidelity: its output is sharper and closer to
the ground truth than the blurry results from SIREN and ReLU+PE. Notably, while the training
loss of the LRNN converges similarly to WIRE (the next best in PSNR), the LRNN reconstruc-
tion is free from the high-frequency artifacts present in WIRE’s output. This suggests that LRNNs
find solutions that better correspond to perceptually accurate image features. Appendix H further
details ablation studies, confirming the suitability of LRNNs for sparse-view CT. This artifact-free
reconstruction from limited projections has direct clinical implications for reducing patient radiation
exposure while maintaining diagnostic quality.

5 CONCLUDING REMARKS

We introduced deep low-rank separated neural networks (LRNNs), a novel architecture that gener-
alizes MLPs, achieving enhanced expressivity through learnable product-structured activation func-
tions. This design allows LRNN neurons to effectively capture complex high-order interactions with
a compact parameterization. Our theoretical analysis established LRNNs’ universal approximation
capabilities, their potential to overcome the curse of dimensionality for functions with low-rank
structure, and their ability to adaptively control spectral bias—crucial for signal representation tasks.

Our extensive experiments demonstrate that LRNNs hold significant potential across several do-
mains. They set new benchmarks on a challenging PDE test-case, achieving orders of magnitude
lower error with significantly fewer parameters than SIREN, MLPs, and KANs. In INR tasks,
LRNNs delivered state-of-the-art image reconstruction quality, outperforming SPDER and SIREN
even when using their respective component activations. They also produced superior audio fidelity
with faster convergence and yielded higher-quality, artifact-free CT reconstructions.

Exciting avenues for future research include extending LRNNs to domains such as video modeling
and unsteady PDEs. We view 3D scene reconstruction (NeRFs) as a particularly promising direc-
tion; we hypothesize that the multiplicative structure of LRNNs is naturally suited for capturing the
high-frequency, view-dependent effects. Additionally, experiments in Appendix I on classification
benchmarks suggest that LRNNs’ applicability extends beyond continuous signal representation.

While remarkably effective, LRNNs present opportunities for further refinement. For instance, while
our use of forward-mode AD proved highly efficient for Laplacian computations in PDE tasks,
the general backward pass currently incurs a higher memory footprint than standard MLPs due
to intermediate product storage. However, as detailed in Appendix B.2, strategies such as kernel
fusion and mixed-precision training offer clear paths to mitigate this. In summary, LRNNs provide
a versatile and powerful building block for learning compact and expressive representations across
a broad spectrum of machine learning challenges.
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REPRODUCIBILITY STATEMENT

We provide complete architectural specifications, hyperparameters, and training procedures in Sec-
tions 3 and 4 and Appendices B-I. Our implementation uses PyTorch and runs on a single NVIDIA
4090 GPU. The anonymous repository at https://anonymous.4open.science/r/iclr_
lrnn-9C35 contains the core LRNN implementation and sample scripts. All experimental config-
urations, including learning rates, and model architectures for each benchmark, are detailed in the
respective appendices. Full scripts to reproduce all experiments and figures will be made available
upon publication.

ETHICS STATEMENT

Our work introduces a new deep learning architecture with demonstrated advantages in medical
imaging (CT reconstruction) and scientific computing (numerical solution of PDEs). While these
applications have clear benefits—reducing patient radiation exposure and advancing computational
science—we acknowledge that powerful representation learning tools can be misused. The improved
efficiency of LRNNs could potentially lower barriers to applications requiring careful ethical con-
sideration. We encourage responsible deployment with appropriate domain expertise and ethical
oversight, particularly in medical applications.

During the preparation of this work, the authors used LLMs for proofreading the text and for debug-
ging code.
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A THEORETICAL ANALYSIS OF LRNNS

A.1 LRNN MODEL STRUCTURE

Consider an LRNN with one layer and separation-rank r, i.e., f(x) =
∑r

ℓ=1 sℓ
∏d

j=1(1+γ gℓj(xj)),
where x ∈ [0, 1]d and each gℓj : [0, 1] → R is a univariate function. The factors (1 + γ gℓj(xj)) in
our LRNN model explicitly separate a constant offset of 1 from the learnable component γ gℓj(xj).
This is a specific parameterization of the more general multiplicative factors in classical separated-
rank decompositions. While this choice does not change the fundamental expressive power, it yields
tangible advantages in model initialization, learning dynamics, and interpretation, as we detail next.
For simplicity, we will drop the γ scaling in the following discussion – we will study the role of γ
in Section A.3.

1. Built-in additive terms. Expanding
∏d

j=1(1 + gℓj(xj)) automatically includes (i) a constant off-
set 1, (ii) purely additive terms

∑
j g

l
j(xj), (iii) all possible higher-order products. Although one

can mimic this in a purely multiplicative model by adding a constant or bias term inside each
factor, the (1 + gj) notation makes these offsets more explicit.

2. Initialization and automatic relevance determination. Setting each gℓj(·) to zero at initialization
yields an initial product of 1, a natural baseline. The network can then gradually learn interac-
tions by adapting specific gℓj(·) functions. If a feature xj is unimportant, the network can keep
gℓj(·) ≈ 0, which in our experience often leads to more stable training while providing an in-built
automatic relevance determination mechanism.

3. Connection to functional ANOVA decompositions. The expanded form
d∏

j=1

(1 + gℓj(xj)) = 1 +

d∑
j=1

gℓj(xj) +
∑
j<k

gℓj(xj)g
ℓ
k(xk) + · · ·+

d∏
j=1

gℓj(xj)

is reminiscent of a functional ANOVA decomposition. In principle, a single rank-1 factor can
capture constant, additive, pairwise, and all higher-order interactions. Rank-r LRNN is equiv-
alent to a functional ANOVA decomposition whose component functions are weighted linear
combinations of products of univariate functions.

We discuss below some additional reasons why the (1 + ·) factorization can be advantageous in
practice, even though it is not a fundamentally different decomposition than classic CP.

Modeling sparse interactions. Suppose we want f to capture a product of only a few relevant
coordinates (e.g.,

∏
j∈S xj for some small subset S). In a purely multiplicative model

∏d
j=1 hj(xj),

one typically sets hj(xj) = xj for j ∈ S and hj(xj) = 1 for j /∈ S. With LRNNs, we can
do the same by setting glj(xj) = xj − 1 for j ∈ S and gℓj(xj) = 0 for j /∈ S. Hence, the factor∏d

j=1[1+gℓj(xj)] becomes
∏

j∈S xj , while all factors corresponding to irrelevant coordinates default
to 1. This offset-based parameterization can be more natural to train or initialize.

Compact representation of polynomial features. One can also view (1+gℓj(xj)) as a generating
function in each coordinate. When gℓj is a complete polynomial, the product term when expanded
yields constant, linear, and higher-order powers of xj . A classical fact (see, e.g., Kolda & Bader
(2009) for a tensor viewpoint) is that polynomials with fully factorable coefficient structure can be
captured in a single rank-1 product. Although this observation is not novel (it dates back to standard
generating-function ideas and CP decompositions), it illustrates how (1 + gℓj) can unify constant,
additive, and multiplicative terms in one factor.

In summary, the (1+ γ gℓj(·)) construction is mostly for notational and practical convenience, rather
than a departure from classical multiplicative low-rank expansions. From a theoretical perspective,
an LRNN is equivalent in representational power to a standard rank-r CP model

∑r
ℓ=1

∏d
j=1 h

ℓ
j(xj)

that permits each hl
j to have a constant offset. However, specifying these offsets explicitly by (1+gℓj)

often simplifies initialization (starting from a constant baseline), captures additive terms by default,
and can improve interpretability regarding how interactions are learned during training. Later in this
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section, we will provide some theoretical analysis to show how the normalization constant γ ensures
that the variance of the LRNN output is controlled, which can be beneficial for training.

The deep LRNN architecture is illustrated in Figure 10.

Figure 10: Deep LRNN architecture.

A.2 INTERPRETABILITY AND INTERACTION ANALYSIS

A significant challenge in deep learning is the opaque nature of standard architectures. In a standard
MLP, feature interactions are entangled within dense matrix multiplications, making it difficult to
isolate the contribution of specific variables. The LRNN architecture, by virtue of its separable
product structure, offers a more structured view of how features are combined, similar in spirit to
generalized additive models (GAMs) such as neural additive models (NAMs) proposed by Agarwal
et al. (2021).

GAMs approximate a function as a sum of univariate functions: f(x) =
∑

fj(xj). LRNNs gener-
alize this by allowing for multiplicative interactions. Each LRNN neuron ℓ computes a product of
univariate transformations on projected features: ϕℓ(z) =

∏d̄
j=1(1 + γgℓj(zj)). Since the compo-

nent functions gℓj : R → R are univariate, they can be visualized directly. By plotting the learned
curves gℓj(z), practitioners can inspect the nonlinear transformation applied to each projected fea-
ture dimension (e.g., whether the model has learned an approximately linear trend, a threshold-like
response, or a periodic modulation) before these features are combined multiplicatively.

Beyond visualizing individual components, the LRNN structure enables an explicit, architecture-
level notion of which features participate in a given interaction. In the product above, each factor(
1 + γ gℓj(zj)

)
acts as a modulator. If, over the data distribution, a component function learns a

nearly constant mapping gℓj(z) ≈ 0, then the corresponding factor is close to 1 and effectively does
not influence the product. Conversely, if gℓj(z) varies substantially, it actively modulates the neuron
output.
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This observation suggests a simple diagnostic: by computing the empirical variance of each com-
ponent function, Var[gℓj(zj)], over a validation set, one can construct “interaction heatmaps” that
indicate which coordinates are active for each neuron. For example, if a specific neuron ℓ exhibits
high variance predominantly for components j = 1 and j = 4, this provides evidence that this
neuron is primarily sensitive to joint variation in feature dimensions 1 and 4 and relatively invariant
to the others.

Standard MLPs with conventional activation functions can, in principle, be analyzed using post-hoc
attribution or sensitivity methods, but their parameterization does not make such interaction structure
explicit. In contrast, LRNNs build this structure into the architecture: the univariate components gℓj
and their variances provide a direct handle for probing which dimensions and interactions a given
neuron is using.

A.3 VARIANCE–CONTROLLED INITIALIZATION: PROOF OF LEMMA 1

In this section, we provide a proof for Lemma 1 in Section 3.1 and discuss its implications. The
proof is broken down into a lemma (see Lemma 3) and a corollary (see Corollary 1). An LRNN
neuron acting on the d̄-dimensional projection z = (z1, . . . , zd̄) is defined by the product–structured
activation φ(z) =

∏d̄
j=1

(
1 + γ gj(zj)

)
, where γ = 1√

d̄
. Let zj = w⊤

j x + bj , with weights
initialized such that for a fixed input x, E[zj ] = 0 and Var[zj ] = σ2

z for each j. In addition, let each
gj : R → R be a twice-differentiable, learnable univariate function. We theoretically analyze the
role of the scaling parameter γ under the following standard assumptions at initialization:
Assumption 1 (Independence across dimensions). For any distinct indices j, k ∈ {1, . . . , d̄}, the
random variables zj and zk are independent. In other words, gj(zj) is independent of gk(zk), and
g′j(zj) is independent of g′k(zk) for j ̸= k, as gj are deterministic functions of zj at initialization.

Assumption 2 (Properties of component functions). For every j ∈ {1, . . . , d̄}, E[gj(zj)] = 0,
Var

[
gj(zj)

]
= σ2

g , E[g′j(zj)] = 0, and Var
[
g′j(zj)

]
= σ2

g′ , where σg and σg′ are finite constants.

Assumption 2 ensures that the expected partial derivatives E[∂φ/∂zk] are zero, simplifying variance
calculations. We note that while the main conclusion regarding the sum of gradient variances being
O(1) holds more broadly (see discussion after Lemma 3), these specific assumptions lead to the
following variance bounds.
Lemma 3 (Gradient-variance stabilization). Under Assumptions 1 and 2, the partial derivatives of
the LRNN product-structured activation φ(z) =

∏d̄
j=1

(
1 + γ gj(zj)

)
, where γ = 1√

d̄
satisfy

E
[
∂φ

∂zk

]
= 0, and E

[(
∂φ

∂zk

)2
]

≤
σ2
g′

d̄
eσ2

g ∀k ∈ {1, . . . , d̄}.

and consequently the sum of the variances of the first-order partial derivatives satisfies the following
bound that is independent of d̄, i.e.,

∑d̄
k=1 Var

[
∂φ
∂zk

]
≤ σ2

g′ eσ
2
g .

Proof. From the definition of φ, we have ∂φ/∂zk = γ g′k(zk)
∏

j ̸=k(1+ γ gj(zj)). Using Assump-
tion 1 to separate expectations and Assumption 2 for the properties of gj and g′j , we have

E
[
∂φ

∂zk

]
= γ E[g′k(zk)]

∏
j ̸=k

E[1 + γ gj(zj)] = γ · 0 ·
∏
j ̸=k

(1 + γ · 0) = 0.

For the second moment, we have

E
[( ∂φ

∂zk

)2]
= γ2 E

[
g′k(zk)

2
] ∏

j ̸=k

E
[
(1 + γ gj(zj))

2
]

= γ2 (Var[g′k(zk)] + (E[g′k(zk)])2)
∏
j ̸=k

(1 + 2γE[gj(zj)] + γ2E[gj(zj)2])

=
1

d̄
(σ2

g′ + 02)
∏
j ̸=k

(1 + 0 +
1

d̄
(Var[gj(zj)] + (E[gj(zj)])2)) =

1

d̄
σ2
g′

(
1 +

σ2
g

d̄

)d̄−1

.
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Using the inequality (1 + a
m )m−1 ≤ ea for a,m > 03, we have E

[(
∂φ
∂zk

)2] ≤ (σ2
g′/d̄) eσ

2
g . Since

E[∂φ/∂zk] = 0, it follows that Var[∂φ/∂zk] = E[(∂φ/∂zk)2]. Summing this variance bound over
k = 1, . . . , d̄ yields the following upper bound independent of the projection width d̄.

d̄∑
k=1

Var[∂φ/∂zk] ≤
d̄∑

k=1

σ2
g′

d̄
eσ

2
g = σ2

g′ eσ
2
g

Remark 1 (Relaxing Assumption 2). If E[g′j(zj)] = µg′ ̸= 0, then E[∂φ/∂zk] = γµg′ . The sum

of variances
∑

k Var[∂φ/∂zk] would then be bounded by [(σ2
g′ + µ2

g′)eσ
2
g − µ2

g′ ], which is still an
O(1) constant independent of d̄. Thus, the primary conclusion of width-independent total gradient
variance still holds, though Assumption 2 simplifies the constant and ensures zero-mean gradients.

We now prove a corollary showing that the variance of the output of the LRNN neuron remains O(1)
as d̄ increases.

Corollary 1 (Activation variance). Under Assumptions 1 and 2, the variance of the LRNN activation
satisfies the inequality Var[φ(z)] ≤ eσ

2
g − 1.

Proof. Using Assumptions 1 and 2, we have E[φ(z)] =
∏d̄

j=1 E[1+γ gj(zj)] =
∏d̄

j=1(1+γ·0) = 1.

For the second moment, it follows from Assumption 2 that E[gj(zj)2] = σ2
g , which gives

E[φ(z)2] =
d̄∏

j=1

E[(1 + γ gj(zj))
2] =

d̄∏
j=1

(1 + 2γE[gj(zj)] + γ2E[gj(zj)2])

=

d̄∏
j=1

(1 + γ2σ2
g) =

(
1 +

σ2
g

d̄

)d̄

.

Therefore, Var[φ(z)] = E[φ(z)2] − (E[φ(z)])2 =
(
1 +

σ2
g

d̄

)d̄

− 1. Using the inequality (1 +

a/m)m ≤ ea that holds for a,m > 0, yields the stated result.

Remark 2 (Implications). Lemma 3 demonstrates that while the variance of each individual
coordinate-gradient ∂φ/∂zk decays like 1/d̄, their cumulative variance sum remains constant.
This suggests an intrinsic mechanism for automatic relevance determination: as projection width d̄
grows, the influence of any single projected coordinate zk on the output’s gradient variance dimin-
ishes. Together with Corollary 1, which ensures O(1) activation variance, this analysis establishes
that the scaling factor γ = 1/

√
d̄ plays a crucial role analogous to initialization approaches for

additive NNs (Glorot & Bengio, 2010; He et al., 2015) or the 1/
√
r scaling in LoRA adapters (Hu

et al., 2022), ensuring stable propagation in both forward and backward passes for LRNN neurons,
regardless of product width.

A.4 UNIVERSAL APPROXIMATION THEOREM: PROOF OF THEOREM 1

Theorem 1 (Universal approximation theorem). If f : [0, 1]d → R is a continuous function, then
for every ε > 0, there exists an LRNN model f̂lrnn(x) =

∑r
ℓ=1 sℓ

∏d
j=1(1 + gℓj(xj)) with suitably

chosen separation rank r ≤ R(ε) and univariate component functions glj : [0, 1] → R such that

max
x∈[0,1]d

∣∣f(x)− f̂lrnn(x)
∣∣ ≤ ε.

Proof. We provide a proof based on classical tensor-product expansions and polynomial approxima-
tions; see, for example, Hornik (1991); Pinkus (1999); Cybenko (1989) for analogous MLP proofs.

3This follows from the fact that (1 + a
m
)m−1 = (1+a/m)m

1+a/m
≤ ea

1
as 1 + a/m ≥ 1.
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It follows from the Stone-Weierstrass theorem that any continuous function on the compact domain
[0, 1]d can be uniformly approximated by a multivariate polynomial. Thus, there exist N ∈ N,
real coefficients aα, and univariate polynomials {ϕj,α(xj) : [0, 1] → R}dj=1, such that f̂(x) =∑N

ℓ=1 aℓ
∏d

j=1 ϕj,ℓ(xj), with supx∈[0,1]d | f(x)− f̂(x)| ≤ ε/2

Noting that
∑N

ℓ=1 aℓ
∏d

j=1 ϕj,ℓ(xj) is a sum of product terms representation, we will set r := N ,
sℓ := aℓ, and define the univariate functions gℓj(xj) := ϕj,ℓ(xj) − 1 in the LRNN representation
such that

r∑
ℓ=1

sℓ

d∏
j=1

[
1 + gℓj(xj)

]
=

r∑
ℓ=1

aℓ

d∏
j=1

ϕj,ℓ(xj).

It follows from standard universal approximation results (see, for example Hornik (1991)) that
each component function gℓj can be approximated by a univariate neural network g̃ℓj(xj) such that
maxxj∈[0,1]

∣∣gℓj(xj)− g̃ℓj(xj)
∣∣ ≤ δ. Using a telescoping product approach yields the inequality

∣∣∣ r∑
ℓ=1

sℓ

d∏
j=1

(1 + gℓj(xj)) −
r∑

ℓ=1

sℓ

d∏
j=1

(1 + g̃ℓj(xj))
∣∣∣ ≤ rdSmaxM

d−1δ,

where M := maxj,ℓ supz∈[0,1] |1+gℓj(z)| is bounded by construction and Smax = max |sℓ|. Choos-
ing δ ≤ ε/(2rdSmaxM

d−1) completes the proof.

A.5 STRUCTURED FUNCTIONS WITH DECAYING ANOVA INTERACTIONS: PROOF OF
THEOREM 2

We show that LRNNs can mitigate the curse of dimensionality for a class of high-dimensional
functions whose functional ANOVA decomposition exhibits a decay in the importance of higher-
order interaction terms, and whose significant low-order terms are themselves approximable by
sums of factorized components. The analysis presented here focuses on the case when the LRNN
component functions are univariate MLPs. To prove our main result, we first establish a lemma on
the approximation of functions that are already sums of products of univariate functions, where each
product involves a limited number of variables.

Lemma 4 (LRNN approximation of separable low-rank functions). Let f : [0, 1]d → R denote a
continuous function that admits the representation f(x) =

∑r
ℓ=1 αℓ

∏
j∈Sℓ

Φj,ℓ(xj), where Sℓ ⊆
{1, 2, . . . , d} with |Sℓ| ≤ m for some m ≤ d, Φj,ℓ : [0, 1]→R, j ∈ Sℓ are continuous univariate
functions such that |αℓ| ≤ c and ∥Φj,ℓ∥∞ ≤ 1, where c ≥ 0 is a constant. Then for any ε >

0, there exists an LRNN approximation, f̂lrnn, with O(rm2/P (c, r,m, ε)) parameters such that
supx∈[0,1]d

∣∣f(x)− f̂lrnn(x)
∣∣ ≤ ε, where P (c, r,m, ε) = ln(1 + ε

rc ).

Proof. We begin by noting that the target function admits exact representation by an LRNN by
appropriately defining the scale and univariate component functions, i.e., f(x) = flrnn(x) =∑r

ℓ=1 sℓ
∏d

j=1(1 + g̃ℓj(xj)) with sℓ = αℓ and g̃ℓj(xj) = Φj,ℓ(xj)− 1 ∀j ∈ Sℓ and g̃ℓj = 0 ∀j /∈ Sℓ.

Each non-trivial g̃ℓj is approximated by a univariate MLP gℓj : R → R with sufficient capacity such
that ∥gℓj − g̃ℓj∥∞ ≤ δ. It follows from standard universal approximation results (Hornik, 1991;
Pinkus, 1999) that the number of parameters needed for each gℓj is O(1/δ).

Since ∥Φj,ℓ∥∞ ≤ 1, we have |1+ g̃ℓj(xj)| ≤ 1, and |1+gℓj(xj)| = |1+ g̃ℓj(xj)+gℓj(xj)− g̃ℓj(xj)| ≤
1 + δ ∀j ∈ Sℓ, xj ∈ [0, 1], while |1 + g̃ℓj(xj)| = 1 and |1 + gℓj(xj)| = 1 ∀j /∈ Sℓ, xj ∈ [0, 1] (since
g̃ℓj = 0 for j /∈ Sℓ).

Let kℓ = |Sℓ| ≤ m be the number of interacting variables in the ℓ-th term. To bound the error
between f and f̂lrnn, we first consider the error for the ℓ-th term in the sum, i.e., Eℓ := |

∏
j∈Sℓ

(1+

gℓj(xj)) −
∏

j∈Sℓ
(1 + g̃ℓj(xj))|. Let {p1, p2, . . . , pkℓ

} be an ordered enumeration of the indices in
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Sℓ. Using a telescoping product argument, we have

Eℓ ≤
kℓ∑
k=1

∣∣gℓpk
(xpk

)− g̃ℓpk
(xpk

)
∣∣ k−1∏
i=1

∣∣1 + gℓpi
(xpi

)
∣∣ kℓ∏
i=k+1

∣∣1 + g̃ℓpi
(xpi

)
∣∣

≤
kℓ∑
k=1

δ · (1 + δ)k−1 = δ

kℓ−1∑
j=0

(1 + δ)j = (1 + δ)kℓ − 1.

Since kℓ ≤ m, we have Eℓ ≤ (1 + δ)m − 1. The total approximation error can be bounded as:

sup
x∈[0,1]d

∣∣f(x)− f̂lrnn(x)
∣∣ ≤

r∑
ℓ=1

|αℓ|Eℓ ≤
r∑

ℓ=1

c ((1 + δ)m − 1) = rc ((1 + δ)m − 1) .

We need to choose δ such that the total approximation error to be less than or equal to ε, i.e.,
rc((1 + δ)m − 1) ≤ ε. Using the inequality (1 + y)k ≤ eyk for y ≥ 0, k ≥ 1 with y = δ and
k = m in the preceding equation, we have rc

(
emδ − 1

)
≤ ε. Taking the logarithm of both sides

and rearranging gives δ = (1/m) ln (1+ ε
rc ). Noting that we have at most rm non-trivial univariate

functions, with each requiring O(1/δ) parameters, we obtain the stated parameter complexity.

Remark 3 (Simplified parameter complexity). If ε ≪ rc the parameter count simplifies to
O(r2m2c/ε). The parameter complexity grows as m2 (m ≤ d) for fixed (r, c), thereby circum-
venting the curse of dimensionality.
Remark 4 (Assumption ∥Φj,ℓ∥∞ ≤ 1). The assumption ∥Φj,ℓ∥∞ ≤ 1 is a common approach to
normalize components in approximation theory. In practical machine learning scenarios, this is of-
ten justified since the target function f(x) is typically normalized. The constants r and c (governing
|αℓ|) characterize a specific sum-of-products decomposition assumed to exist for this normalized
target function, where its constituent univariate functions Φj,ℓ have norms bounded by 1. If such a
representation exists for the normalized target, this condition is met.

We now prove our main theorem for a general continuous function f : [0, 1]d → R whose functional
ANOVA decomposition takes the form:

f(x) =
∑
S⊆[d]

fS(xS), (6)

where each fS depends only on variables xS with S ⊆ {1, . . . , d} and xS :=(xj)j∈S). We assume
that standard ANOVA orthogonality conditions hold, e.g.,

∫ 1

0
fS(xS)dxj = 0 for any j ∈ S and

f∅ =
∫
f(x)dx. Our theoretical analysis uses the following assumptions:

Assumption 3 (Decay of ANOVA components). The norms of ANOVA components decay suffi-
ciently fast. Specifically, for a given ε1 > 0, let Itrunc = {S ⊆ [d] : ∥fS∥∞ ≥ τS} be a collection of
index sets such that the truncated sum ftrunc(x) =

∑
S∈Itrunc

fS(xS) satisfies ∥f−ftrunc∥∞ ≤ ε1.
Let Na = |Itrunc| be the number of significant ANOVA terms, and let ma = maxS∈Itrunc

|S| be
their maximum interaction order. In addition, let ma ≪ d, and let Na grow at most polynomially
with d.
Assumption 4 (Factorizability of ANOVA components). Each ANOVA component can be ap-
proximated by a sum-product representation. Specifically, for each ANOVA component fS(xS)

∀S ∈ Itrunc, there exists ε2 > 0 such that the sum-product representation f̂S(xS) =∑kS

β=1 αS,β

∏
j∈S ϕj,S,β(xj) satisfies the error bound ∥fS − f̂S∥∞ ≤ ε2, kS ≤ kmax for some

kmax ≥ 1, |αS,β | ≤ c and ∥ϕj,S,β∥∞ ≤ 1.
Remark 5 (The assumption ∥ϕj,S,β∥∞ ≤ 1). Each significant ANOVA term fS(xS) is itself a
function of at most ma variables. If the target function is pre-normalized, its ANOVA components
fS (which are defined through integrals of f ) also inherit scaling properties. It is then plausible
that these (scaled) fS terms can be well-approximated by a sum-of-products representation where
the individual univariate components ϕj,S,β are also normalized. The practical strength of this
assumption rests on whether such a ‘normalized-component’ sum-of-products approximation for
each relevant fS exists with a simultaneously controlled number of terms and bounded coefficients.
For ANOVA terms fS that are smooth and depend on a small number of variables (small ma), this
is often considered a reasonable modeling assumption.
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Theorem 2. If f : [0, 1]d → R satisfies Assumption 3 and Assumption 4, then for any tar-
get accuracy ε > 0, there exists an LRNN approximation, f̂lrnn, with parameter complexity
O( (Nakmax)

2 m2
a c

ε ) such that supx∈[0,1]d

∣∣f(x)− f̂lrnn(x)
∣∣ ≤ ε.

Proof. It follows from Assumption 3 that truncating the ANOVA expansion of f gives f(x) ≈
ftrunc(x) =

∑
S∈Itrunc

fS(xS) such that ∥f−ftrunc∥∞ ≤ ε1. From Assumption 4, we can approx-
imate fS as f̂S(xS) =

∑kS

β=1 αS,β

∏
j∈S ϕj,S,β(xj) such that the error is ∥fS − f̂S∥∞ ≤ ε2.

Let h(x) =
∑

S∈Itrunc
f̂S(xS). Then ∥ftrunc − h∥∞ ≤

∑
S∈Itrunc

∥fS − f̂S∥∞ ≤ Naε2. We
now approximate h using an LRNN, f̂lrnn, such that ∥h − f̂lrnn∥∞ ≤ εlrnn. The total error is
∥f − f̂lrnn∥∞ ≤ ε1 + Naε2 + εlrnn. We set ε1 = ε/3, Naε2 = ε/3 (i.e., ε2 = ε/(3Na)), and
εlrnn = ε/3 to ensure that the total error is at most ε.

To bound the parameter complexity of f̂lrnn, we note that

h(x) =
∑

S∈Itrunc

kS∑
β=1

αS,β

∏
j∈S

ϕj,S,β(xj)

is a sum of products involving
∑

S∈Itrunc
kS ≤ Nakmax terms. Each product

∏
j∈S ϕj,S,β(xj)

involves |S| ≤ ma univariate functions with coefficients αS,β , where |αS,β | ≤ c. Moreover, the
univariate functions ϕj,S,β satisfy the bound ∥ϕj,S,β∥∞ ≤ 1. Thus, h matches the form required
by Lemma 4, with parameters: r = R ≤ Nakmax and m = ma. It therefore follows that h can be
approximated by an LRNN f̂lrnn to an accuracy εlrnn = ε/3, with the number of parameters (using
the simplified parameter count) given by O( (Nakmax)

2 m2
a c

ε/3 ). Absorbing the constant 1/3 into the O
notation yields the stated complexity.

Remark 6 (Special cases). If ma and kmax are small constants (or grow very slowly with d),
and c is small, the complexity depends primarily on N2

a/ε. If the ANOVA decay is such that
Na ≈

∑ma

k=0

(
d
k

)
≈ O(dma), then the parameter complexity becomes O((d2mak2max m

2
a c)/ε).

This complexity is polynomial in d if ma is constant, demonstrating mitigation of the exponential
growth in parameter complexity.

A.6 REMARKS ON THEOREM 2

Theorem 2 establishes that if a high-dimensional function admits a functional ANOVA decomposi-
tion dominated by low-complexity terms, LRNNs can approximate it with a number of parameters
that scales polynomially with the effective dimension d. To provide further insight, we examine the
intuition behind Assumptions 3 and 4 and the specific function classes they encompass.

Assumption 3 requires that the number of significant ANOVA terms, Na, grows at most polyno-
mially with dimension d. This implicitly constrains the maximum interaction order ma. Since a
full ANOVA decomposition contains 2d terms, for the truncated sum to scale polynomially (e.g.,
Na ≈ O(dk)), the interaction order ma must generally be small relative to d (i.e., ma = O(1)).
This characterizes functions with a low effective superposition dimension Caflisch et al. (1997), a
property common in physical systems dominated by main effects and low-order (pairwise or triplet)
interactions.

Assumption 4 posits that significant high-order interaction terms can be approximated by a tensor
product with limited rank kmax. This can be viewed as a conservation of complexity principle; the
curse of dimensionality is constrained rather than eliminated. Specifically, if ANOVA terms involve
few variables (ma ≪ d), Assumption 4 is easily satisfied as low-dimensional functions typically
admit efficient low-rank approximations. Conversely, if a term involves all variables (ma ≈ d),
Assumption 4 requires it to be rank-deficient (small kmax).

Thus, LRNNs efficiently represent functions that are either interaction-sparse (small ma) or
interaction-dense but rank-sparse (small kmax). Theorem 2 implies that if a function has both
global interactions (ma ≈ d) and high separation rank, kmax would necessarily scale exponentially
with d, reintroducing the curse of dimensionality.
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• Pairwise potentials (illustrates Assumption 3): Functions such as Coulomb or gravitational
potentials V (x) =

∑
i̸=j ϕ(∥xi − xj∥) are dominated by pairwise interactions (ma = 2).

Even for large d, the number of significant ANOVA terms Na grows quadratically in d,
satisfying the polynomial-growth requirement in Assumption 3.

• Separable functions (illustrates Assumption 4): A product state f(x) =
∏d

i=1 sin(xi) has
maximum interaction order (ma = d), so it does not have low interaction order. However,
it is exactly rank-1 as a product of univariate factors (kmax = 1), satisfying Assumption 4
with a single significant ANOVA term (Na = 1). In this case the parameter bound in
Theorem 2 still scales polynomially in d because both Na and kmax are constants.

• Sign-parity function (violates Assumptions 3 and 4): The parity function f(x) =∏d
i=1 sgn(xi) possesses both full interaction order (ma = d) and high separation rank.

It cannot be approximated by a small sum of smooth product terms and therefore falls
outside the scope of Theorem 2.

In summary, when a function satisfies these structural assumptions (as in the first two examples),
the LRNN architecture naturally aligns with its decomposition. As established in Lemma 4, this
alignment allows LRNNs to learn the representation efficiently, achieving a parameter complexity
that scales polynomially rather than exponentially with dimension. This theoretical result provides
an insight into the empirical success of LRNNs on tasks where underlying low-order interaction
structures are likely present.

A.7 SPECTRAL REPRESENTATION ANALYSIS OF LRNNS: PROOF OF LEMMA 2

Here, we study the spectral representation capabilities of LRNNs, particularly when equipped with
periodic activation functions commonly found in the INR literature, such as SIREN (σ(z) = sin(z))
or SPDER (e.g., σ(z) = sin(z)

√
|z|). We use ω to denote a scalar frequency parameter, which can

be specific to each univariate function (ωk) or shared.

For simplicity, we do not consider the normalization term γ in our analysis. We begin by recalling
the observation in Section 3.1 that LRNNs with d̄ = 1 recover standard MLPs. Writing the LRNN
activation function as φ(x) =

∏d̄
k=1(1 + gk(zk)), where zk = vT

k x + ck and setting d̄ = 1, we
have φ(z1) = 1 + g1(z1). Let g1(z1) = σ(ω1z1) be a periodic activation function, where z1 =
vT
1 x + c1. The full LRNN model is a sum of r such rank-1 terms, each with its own scaling factor

sℓ: flrnn(x) =
∑r

ℓ=1 sℓφℓ(x) =
∑r

ℓ=1 sℓ(1+g1,ℓ(z1,ℓ)). Substituting g1,ℓ(z1,ℓ) = σ(ω1,ℓ(v
T
1,ℓx+

c1,ℓ)) leads to

flrnn(x) =

r∑
ℓ=1

sℓ +

r∑
ℓ=1

sℓ σ(ω1,ℓ(v
T
1,ℓ x+ c1,ℓ)).

The second term in the preceding equation is an MLP with r neurons in the hidden layer, where
v1,ℓ are the input-to-hidden weights, c1,ℓ are the hidden biases, σ is the activation function (scaled
by ω1,ℓ), and sℓ are the hidden-to-output weights. The first term,

∑r
ℓ=1 sℓ, is a constant, acting as

an overall output bias for the MLP. Thus, an MLP with a given periodic activation function can be
viewed as a special case of an LRNN with d̄ = 1 and the same base activation. This observation
forms the basis for comparing their spectral properties. The key distinction of LRNNs with d̄ > 1
lies in their product structure, which leads to a richer spectral synthesis than the purely additive
nature of MLPs which we establish in the following lemma.

Lemma 2 (Combinatorial frequency generation by LRNNs). Consider the LRNN product-
structured activation function φ(x) =

∏d̄
k=1(1 + gk(x)), where gk(x) = σk(ωk(v

T
k x + ck)) is

a univariate function with characteristic frequencies ±fk in the Fourier domain. Then, the Fourier
transform of φ(x) contains spectral components at not only the fundamental frequencies ±fk but
also at all possible sum and difference combinations, i.e., frequencies of the form

∑
k∈S skfk where

S ⊆ {1, . . . , d̄} and sk ∈ {+1,−1}.

Proof. The Fourier transform of hk(x) = 1 + gk(x) can be written as

F{hk}(ξ) = F{1}(ξ) + F{gk}(ξ) = δ(ξ) +Gk(ξ), (7)
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where δ(ξ) is the Dirac delta representing the DC component (zero frequency), and Gk(ξ) is the
Fourier transform of gk(x), which by assumption has significant energy at ±fk.

Since the LRNN activation is a product of these hk(x) terms, i.e., φ(x) =
∏d̄

k=1 hk(x), its Fourier
transform takes the form

F{φ}(ξ) = F{h1} ∗ F{h2} ∗ · · · ∗ F{hd̄} =
(
∗d̄k=1F{hk}

)
(ξ),

where ∗ denotes convolution. Using equation 7 we have

F{φ}(ξ) =
(

d̄∗
k=1

(δ(·) +Gk(·))
)
(ξ).

Now, expanding the product in the LRNN activation yields

φ(x) =

d̄∏
k=1

(1 + gk(x)) = 1 +
∑
i

gi(x) +
∑
i<j

gi(x)gj(x) + · · ·+
d̄∏

k=1

gk(x).

The Fourier transform of the first term is F{1} = δ(ξ) (the DC component). The second term,
F{

∑
i gi(x)} =

∑
i Gi(ξ), contributes the fundamental frequencies ±fi from each gi. The

third term, F{
∑

i<j gi(x)gj(x)} =
∑

i<j(Gi ∗ Gj)(ξ) leads to pairwise combination frequen-
cies, e.g., ±fi ± fj . This pattern continues for higher-order terms since a product of p functions
gk1(x) . . . gkp(x) will have a Fourier transform of the form (Gk1 ∗ · · · ∗ Gkp)(ξ), generating fre-
quencies corresponding to all combinations ±fk1 ±· · ·± fkp . Thus, a single LRNN activation with d̄

components generates up to 2d̄−1 distinct frequency combinations from just d̄ base frequencies.

Lemma 2 provides some useful insights into differences between how LRNNs and MLPs represent
functions in the frequency domain. Standard MLPs (equivalent to LRNNs with d̄ = 1) synthe-
size functions additively in the spectral domain. Each neuron, with activation slσ(ωl(v

T
l x + bl)),

contributes primarily to a specific frequency pair ±fl = ±ωlvl (for SIREN) or a narrow band
around these (for SPDER-like activations). The overall spectrum of an MLP is the linear super-
position of these individual contributions: F{fMLP } =

∑
l slGl(ξ). To represent a complex

spectrum with many frequencies, an MLP typically requires a corresponding number of neurons.
In contrast, LRNNs with d̄ > 1 employ a multiplicative synthesis within each rank-1 term. As
shown in Lemma 2, a single rank-1 term can generate a combinatorial set of frequencies from just d̄
base projected features gk. The full LRNN then additively combines these rank-1 components, i.e.,
F{flrnn} =

∑
l slF{φl}(ξ).

This combinatorial frequency synthesis mechanism provides LRNNs with adaptive spectral bias
control—by learning the base frequencies fk and their corresponding amplitudes, the network im-
plicitly controls a rich set of derived frequencies, enabling efficient representation of complex spec-
tra with fewer parameters than additive approaches.

B IMPLEMENTATION ASPECTS OF LRNNS

B.1 PARAMETRIZATION OF LRNN COMPONENT FUNCTIONS

In our architecture, the univariate component functions gℓ,(k)j : R → R are parameterized by small,

independent MLPs. Each such MLP, denoted MLP(j, ℓ, k), takes the scalar zℓ,(k)j as its input, where

z
ℓ,(k)
j is the j-th component of the vector zℓ,(k) = Wℓ,(k)ϕ(k−1) + bℓ,(k) resulting from the linear

projection within the LRNN layer.

A key design choice for these component MLPs, MLP(j, ℓ, k), is that their first effective operation on
the input zℓ,(k)j is an activation function. Since zℓ,(k)j is already the output of a linear transformation,
applying another linear layer as the immediate first step within MLP(j, ℓ, k) would be redundant.
Instead, the structure is:

g
ℓ,(k)
j (z

ℓ,(k)
j ) = MLP(j, ℓ, k)(zℓ,(k)j ) (8)
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where the MLP g
ℓ,(k)
j is structured such that its computation begins with an initial activation σ,

which is chosen to a standard activation or an INR style activation. The output of first stage of
MLP(j, ℓ, k) is given by σ(z

ℓ,(k)
j ). This activated value is then processed by the subsequent hidden

layers and the final output layer of MLP(j, ℓ, k) which is a linear layer without a bias term.

All learnable parameters, including those in Wℓ,(k), bℓ,(k), and within all parts of gℓ,(k)j are opti-
mized jointly. The set of all univariate MLPs is implemented efficiently for parallel computation
using block-diagonal weight matrices as a custom PyTorch layer. This design choice allows for ef-
ficient computation of the LRNN forward pass, as all the univariate functions in an LRNN layer can
be computed in parallel.

B.2 MEMORY COMPLEXITY ANALYSIS AND OPTIMIZATION STRATEGIES

While LRNNs demonstrate superior parameter efficiency and expressivity compared to standard
architectures, the product-structured activation introduces a distinct memory footprint profile. In this
section, we analyze the memory requirements for training LRNNs, focusing on the scaling behavior
with respect to the projection width d̄, and discuss strategies for optimized implementation.

To isolate the memory requirements when training LRNNs, consider a single LRNN layer with
separation rank r (analogous to r neurons in a standard MLP) and projection width d̄. We assume the
univariate component functions gℓj(·) are parameterized by a shared, shallow MLP with one hidden
layer of width h, a setup consistent with our experimental configuration. Let B denote the batch
size. In a standard backpropagation framework (e.g., PyTorch Autograd), intermediate activations
must be stored during the forward pass to compute gradients during the backward pass. We analyze
the storage requirements for the activations (excluding model parameters, which are negligible in
comparison).

For a standard MLP layer with r neurons, the output takes the form y = σ(Wx+ b). The primary
memory cost is storing the pre-activation or post-activation vectors, leading to a memory require-
ment that scales as MMLP ≈ O(Br).

An LRNN neuron computes ϕ =
∏d̄

j=1(1 + γg(zj)). The forward pass of this layer involves three
distinct stages of activations that must be stored for backpropagation:

1. Input projection: The linear projection creates intermediate vectors z ∈ Rd̄ for each of
the r rank components leading to a memory cost of: Mproj = O(Brd̄).

2. Component function computations: The component MLP g(·) applies a non-linearity to
each of the r · d̄ projections. If g has a hidden layer of width h, standard Autograd must
store the hidden states of these sub-networks to differentiate through them. This results in
a memory cost of: Mg = O(Brd̄h).

3. Product inputs: The outputs of the component functions uj = 1 + γg(zj) must be stored
to compute the gradient of the product operation during backpropagation. This incurs a
memory cost of: Mprod = O(Brd̄).

The total memory requirement for a naive implementation of LRNNs therefore scales as: MLRNN ≈
O(Brd̄h). Compared to a standard MLP, the memory footprint is scaled by a factor of roughly d̄ ·h.
The primary bottleneck arises during the backward pass of the product term. For a single product
ϕ =

∏d̄
j=1 uj , the partial derivative with respect to the k-th component is ∂ϕ

∂uk
=

∏
j ̸=k uj . To

compute this without re-evaluation, the expanded tensor of size B × r × d̄ will be kept in memory
in a standard Autograd implementation.

The effective memory cost can be significantly reduced by leveraging hardware-aware optimizations
that trade computation for memory as outlined below.

Gradient checkpointing. The dependence on the component MLP hidden dimension h can be re-
moved via gradient checkpointing. Instead of storing the intermediate states of g(·) (the term Mg),
we store only the projected inputs z. During the backward pass, the forward pass of the component
MLPs is recomputed on-the-fly. Since g(·) is typically shallow, the computational overhead is mini-
mal, but the memory complexity reduces to: Mckpt

LRNN ≈ O(B · r · d̄). This removes the multiplier h,
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which is significant when using more expressive component functions. This is the strategy employed
in our experiments when training LRNNs with large projection widths.

Kernel fusion. Our standard implementation calculates projections, component functions, and
products as separate kernel calls, necessitating repeated reads and writes of the large intermediate
tensor of size B × r × d̄ to global memory. This can be alleviated through kernel fusion, where
multiple operations are combined into a single GPU kernel. By loading the projected inputs z,
computing g(z), and reducing the product entirely within GPU registers, the intermediate tensors
need not be materialized in GPU memory. For the backward pass, the kernel can re-load z, re-
compute the values, and generate gradients directly. This effectively shifts the bottleneck from
memory capacity to arithmetic intensity.

Mixed precision and stability. Finally, we note that the variance-controlled initialization result
in Lemma 1 ensures that the product terms do not suffer from numerical instability (exploding or
vanishing values). This stability makes LRNNs well-suited for training in half-precision (FP16 or
BF16), thereby reducing the activation memory footprint by 50% compared to FP32 training.

C ABLATION STUDIES

C.1 ABLATION STUDIES ON PARAMETER-SHARING LRNN MODEL VARIANTS

To investigate the effect of the parameter-sharing LRNN model variants, we perform an abla-
tion study. We compare the performance of the flexible LRNN-SPDER (Flex), with its reduced-
complexity variant with shared activation functions (SA) on the INR image representation task for
two images. For cameraman (Figure 11 left), we observe that for medium-sized models, the SA
variant has better parameter efficiency, achieving higher PSNR at the same complexity as the Flex
model. However, at higher parameter counts, the PSNR difference becomes negligible, suggesting
a tradeoff between expressivity and efficiency. For retina (Figure 11 right), the SA model has small
benefits in parameter efficiency at higher parameter counts. This study indicates while both flexible
and reduced-complexity LRNN models perform well, the variant selection is dependent on the task
and the computational budget available.

Note that in terms of timing, a typical run of LRNN-SPDER variants with comparable hyperparam-
eters ran approximately 50 iterations per second for Flex and 37 iterations per second for SA.

Figure 11: Model complexity neural scaling laws comparing flexible (Flex) and shared activation
(SA) variants of LRNN-SPDER on INR image representation tasks for cameraman (left) and retina
(right).

C.2 ABLATION STUDIES ON THE USE OF LAYERNORM

LayerNorm was applied only to LRNN in the numerical experiments and not to the baseline mod-
els. The reason for this highlights a key difference in architectural design. The stability of standard
SIREN/SPDER models comes from a carefully derived and principled weight initialization scheme
that preserves the distribution of activations through the network so that the final output at initializa-
tion does not depend on the number of layers. Without this, the accuracy and convergence of deep
SIREN/SPDER networks can be very poor.
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Our LRNN architecture, however, introduces a fundamentally different activation structure: a prod-
uct of univariate functions. While we use SIREN-style initialization for each individual component
function gj , the statistical properties of their product are distinct and more complex than those of a
single sin function. The SIREN initialization scheme, on its own, is no longer sufficient to guaran-
tee that the final output of this product activation will be well-behaved, especially in deep networks.
Therefore, we employ LayerNorm as a necessary additional step. It acts as a dynamic normalization
layer that explicitly re-centers and re-scales the output of our product-structured activation after it
has been computed. This enforces stability by ensuring the inputs to the next layer are consistently
well-distributed, regardless of the complex interactions within the product.

Table 3: LayerNorm ablation study on
bach audio for LRNN-SPDER.

LayerNorm Final MSE
after 1000 steps

Yes 3.58e− 5
No 2.41e− 2

To quantify the necessity of this approach, we ran an ab-
lation study on the audio representation task. The result
in Table 3 shows that removing LayerNorm significantly
degrades performance, resulting in a final error that is
orders of magnitude higher. This confirms that normal-
ization is crucial for stabilizing the training dynamics of
deep LRNNs by controlling the scale of the activations
passed between layers.

C.3 ABLATION STUDIES ON COMPONENT ACTIVATIONS

To provide quantitative evidence on the role of component activations, we ran an ablation study on
the Cameraman and Retina tasks. We compared our standard LRNN-SPDER to an LRNN using
ReLU and Tanh activations in its component functions. The results in Tables 4a - 4b demonstrate

Table 4: Activation ablation study on Cameraman and Retina images.

(a) Cameraman image.

LRNN Component
Activation

Final PSNR after
1000 steps (dB)

SPDER 107.94
ReLU 14.40
Tanh 14.42

(b) Retina image.

LRNN Component
Activation

Final PSNR after
1000 steps (dB)

SPDER 47.02
ReLU 22.55
Tanh 16.77

that using bounded, periodic activations is key for high performance on INR tasks. This highlights a
clear design principle for applying LRNNs in practice. Lemma 2 provides further insight. It shows
that by learning the parameters of these component functions (e.g., their frequencies), LRNNs can
dynamically control their spectral bias, allowing them to represent a much richer set of frequencies
than fixed-activation models like SIREN. This is a key reason for their superior performance on com-
plex signals. The most important takeaway is that the LRNN structure itself provides a significant
performance boost, regardless of the component activation. Our experiments show LRNN-SIREN
outperforms SIREN and LRNN-SPDER outperforms SPDER. This demonstrates the general power
of our learnable, factorized activation framework.

D SETUP FOR PRODUCT-STRUCTURED TEST FUNCTION SCALING STUDIES

To evaluate the scaling properties of LRNNs on functions well-suited to their architecture, we de-
fined a test function with a sum-of-products structure: y(x) =

∑r̃
ℓ=1 sℓ

∏d
j=1 g

ℓ
j(xj). Here, we

define the component function as gℓj(xj) = sin(nπξℓjxj), j = 1, 2, . . . , d. For fixed (n, r̃, d), we
randomly sample sℓ and ξℓj each from a standard normal distribution. We used Sobol sampling to
generate Ntrain points as the training dataset for both LRNN and MLP architectures, and an inde-
pendent set of Ntest points for evaluating model performance. To generate the scaling laws, Ntrain

was fixed at ∼ 3×104 and we trained LRNNs and MLPs with varying number of learnable parame-
ters. As shown in Figure 2 in the main paper, the shallow LRNN (with one hidden layer) architecture
achieves better generalization performance at lower model complexity than shallow MLP (with one
hidden layer). A decrease in test error with increased model size was not observed for the shallow
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MLP, which implies that this model struggled to learn this particular function effectively. The ex-
pected trend of decreasing test error with increased model complexity was observed for MLPs when
using two hidden layers, with further improvement seen with three hidden layers. However, the shal-
low LRNN achieved lower test error using fewer parameters than even the three-layer MLP. This
indicates that LRNNs exhibit strong scaling capabilities for this class of functions, requiring lower
model complexity than standard MLPs to effectively learn data with an inherent sum-of-products
structure.

E IMAGE REPRESENTATION

The implementation details to reproduce the results for the image representation studies on the
cameraman and retina images are presented in Table 5. Note that the author-recommended settings
were used for benchmark models, SIREN (Sitzmann et al., 2020) and SPDER (Shah & Sitawarin,
2024).

Table 5: Implementation details for image representation experiments.

Setting Details
Iteration count All models were trained for 1000 steps.
Optimizer Adam (Kingma & Ba, 2015) was used for all models.
Learning rate lr = 1× 10−4 for SIREN and SPDER, as recommended

in (Sitzmann et al., 2020; Shah & Sitawarin, 2024).
lr = 1× 10−3 for LRNN.

Scheduler No scheduler for SIREN and SPDER, consistent with (Sitzmann
et al., 2020; Shah & Sitawarin, 2024).
LRNN used StepLR from the standard torch.optim package with
step size 100 and decay factor γ = 0.8 for Cameraman, γ = 0.9
for color images.

Benchmark
hyperparameters

Three layers of 256 neurons with ω0 = 30 for both SIREN and
SPDER, per (Sitzmann et al., 2020; Shah & Sitawarin, 2024).

LRNN hyperparameters Two LRNN layers, each of rank 106, ω0 = 30, d̄ = 16.
Component functions were single-layer neural networks with
one hidden neuron and the SPDER activation function
(sin(x)

√
|x|) with ω = 30, yielding a parameter count

comparable to the other models.

Following the encouraging results on the grayscale image, we conducted a similar scaling study on
a color image. The aforementioned models were evaluated on the 256 × 256 retina image. Figure
12 shows the reconstructed images of all models compared to the ground truth image and the PSNR
convergence plot. We observe that LRNN still outperforms the benchmark models, although the
margin of improvement is smaller than in the grayscale case.

Figure 12: Retina image: ground truth (left), reconstructed images using LRNN, SPDER, SIREN
and WIRE models (middle), PSNR convergence history (right).
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To evaluate computational efficiency, we measured time-to-solution for specific PSNR targets and
presented the results in Tables 6-7. The results for the retina image show that while baseline models
may be faster to reach low-quality targets, LRNN achieves the fastest wall-clock time for higher-
quality results (over 35dB). This trend is even more pronounced on the cameraman image. While the
per-iteration cost of LRNNs can be higher, the time required for high-quality results is significantly
better, demonstrating a clear advantage for challenging tasks where quality is paramount.

Table 6: Wall-clock time analysis on cameraman image (seconds).

Model Max
PSNR

Time to reach

30dB 35dB 40dB

SIREN 35.27 8.0 N/A N/A
SPDER 48.97 2.0 8.3 N/A
LRNN-SPDER 107.94 5.2 6.2 8.7

Table 7: Wall-clock time analysis on retina image (seconds).

Model Max
PSNR

Time to reach

30dB 35dB 40dB

SIREN 36.04 3.5 14.1 N/A
SPDER 43.99 2.9 4.8 12.8
LRNN-SPDER 47.02 5.1 5.9 9.3

We present the iteration time for each model for both the cameraman and retina images in Table 8.
It is observed that while LRNN achieves the highest performance in terms of PSNR, it does require
more compute time per iteration compared to some benchmarks like SIREN and WIRE (for Retina).

Table 8: Time taken per iteration when training comparably-sized models for INR image represen-
tation.

Image LRNN WIRE SIREN SPDER

Cameraman 0.0453 0.0324 0.0174 0.0332
Retina 0.0504 0.0220 0.0072 0.0434

Studies were performed on higher-resolution images, kodak and parrot, using the code-base from
(Saragadam et al., 2023) for the methods we benchmark against. For these experiments, we ran
the benchmarks using models with three hidden layers containing 256 neurons. For SIREN and
SPDER, we set ω0 = 30 and for WIRE, we set ω0 = 20, σ0 = 30, following the respective
author’s recommendations. The GAUSS and ReLU+PE models from (Saragadam et al., 2023) also
used architectures of three hidden layers with 256 neurons each. To match this parameter count,
we chose a two-layer LRNN model with each layer being rank 106, ω0 = 30, d̄ = 16, and the
component functions being single-layer neural networks with one hidden neuron. As in the previous
studies, we used the SPDER activation function sin(x)

√
|x| for the MLPs in the LRNNs’ product-

structured activation function. Each model was trained for 1000 epochs using the Adam optimizer
with a batch size of 16384. The LRNN models were trained with a initial learning rate of 10−3 and a
learning rate scheduler (StepLR) from torch.optim with a step size of 100 and a decay rate γ = 0.9.
All other models used the LambdaLR scheduler from the torch.optim package to reduce the learning
rate to 0.1× the initial learning rate in the final epoch, as used in the WIRE experiments (Saragadam
et al., 2023).

For the higher-resolution kodak image, we compared the LRNN model’s reconstructed image and
the corresponding gradients at iterations 10 and 500 in Figure 13. We observe a fair reconstruction
and gradients at step 10, and by step 500, the reconstructed image is virtually indistinguishable.
Comparing the training loss and PSNR of LRNN and the 5 benchmarks (SIREN, WIRE, GAUSS,
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ReLU (with positional encoding), and SPDER) in Figure 14, we observe that LRNN achieves lower
training loss and higher PSNR than the benchmark models throughout training.

Figure 13: Model output, ground truth and gradient of kodak image at steps 10 and 500.

Figure 14: Training loss and PSNR for kodak image over 1000 iterations. The performance of
LRNN is compared against SIREN, WIRE, GAUSS, ReLU (with positional encoding), and SPDER.

For the parrot image, we again compare the LRNN model output and gradients at steps 10 and 500
in Figure 15. The model captures the parrot in the foreground well, and significantly detailed by
step 500. We observe that the LRNN-reconstructed image at step 500 is virtually indistinguishable
from the ground truth. Comparing the training loss and PSNR of LRNN and the 5 benchmarks in
Figure 16, we observe that LRNN outperforms the benchmark models throughout training.

E.1 IMAGENET STUDY

We provide additional analysis of the ImageNet representation study presented in the main paper,
where all models were configured with comparable parameter complexity of 200k. Figure 17 il-
lustrates the distribution of PSNR values at multiple training checkpoints. We observe that LRNNs
exhibit significantly lower performance variance compared to the baselines. The distributions for
SIREN and SPDER show a prevalence of low-PSNR outliers, indicating that these models fre-
quently fail to reach high fidelity. In contrast, LRNNs consistently attain high PSNR values across
seeds and images. This indicates that LRNNs offer superior representational capacity and robust-
ness at this parameter budget, consistently satisfying high-precision requirements where baseline
architectures often fall short.

Table 9 summarizes the success rates and average wall-clock time required for each model to reach
specific PSNR thresholds (33 dB, 35 dB, and 40 dB) across the 1,000 test images. The results
highlight that while baseline models like SIREN may have lower per-iteration costs, they struggle to
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Figure 15: Model output, ground truth and gradient of parrot image at steps 10 and 500.

Figure 16: Training loss and PSNR for parrot image over 1000 iterations. The performance of LRNN
is compared against SIREN, WIRE, GAUSS, ReLU (with positional encoding), and SPDER.
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scale to high precision; for the 40 dB target, LRNN achieves a 100% success rate, whereas SPDER
and SIREN succeed in only 26.4% and 1.8% of cases, respectively.

Figure 17: PSNR distribution after different epoch numbers for different models run on 1000 Ima-
geNet images for three seeds each.

Table 9: Time to reach target PSNR for different models on ImageNet (average over 1000 images
and 3 seeds). Values show average time ± standard deviation in seconds, with success rate in
parentheses.

Target PSNR (dB) Model Avg Time ± Std (Success %) Failures

33
LRNN-SPDER 4.55 ± 2.87 (100.0%) 0

SPDER 4.58 ± 2.29 (96.7%) 99
SIREN 3.87 ± 1.23 (50.7%) 1480

35
LRNN-SPDER 4.92 ± 2.90 (100.0%) 0

SPDER 5.48 ± 2.47 (83.8%) 487
SIREN 4.17 ± 1.28 (26.5%) 2204

40
LRNN-SPDER 7.01 ± 3.27 (100.0%) 0

SPDER 6.90 ± 2.11 (26.4%) 2207
SIREN 4.27 ± 2.03 (1.8%) 2947

F AUDIO REPRESENTATION

The implementation details for the audio representation study presented in the main paper are out-
lined here. The code used to produce these results is based on the script provided with (Shah
& Sitawarin, 2024) which provides results for baseline models, SIREN (Sitzmann et al., 2020)
and SPDER (Shah & Sitawarin, 2024). We create LRNN-SIREN and LRNN-SPDER by using
sin(x) (Sitzmann et al., 2020) and sin(x) arctan(x) (Shah & Sitawarin, 2024) activations, respec-
tively, within their MLP-based univariate component functions, comparing them against their base-
line counterparts. The benchmark models, SIREN and SPDER have five layers of 256 neurons each.
To match this complexity, the LRNN models have three layers, each of rank 118, with d̄ = 10 and
component functions being single-layer neural networks with four hidden neurons. For all models,
we set ω0 = 30 (with inputs normalized to [−100,+100] following (Shah & Sitawarin, 2024) and
trained them for 1000 iterations of the Adam (Kingma & Ba, 2015) optimizer with initial learning
rate set to 1 × 10−4. While SIREN and SPDER had no scheduler on the learning rate to match the
original authors’ implementation, we chose a StepLR scheduler from the torch.optim package for
LRNN with a step size of 100 and γ = 0.8.

We present the absolute error between the prediction and the ground truth in the time domain and
the frequency domain. We observe that for both audio clips (bach in Figure 7 and counting in
Figure 18), the LRNN model predictions match the ground truth more closely than the respective
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baseline model and hence their error magnitudes are smaller than that of the baselines in both time
and frequency domains. This is consistent with the statistical results presented in Table 3 in the main
paper. Note that the y-axis for these absolute error frequency domain plots is clipped at 150 for ease
of presentation, which excludes a few outliers of higher errors in SIREN and SPDER predictions;
despite this, LRNN variants exhibit visibly lower error profiles.

Figure 18: Absolute error in time and frequency domain and convergence of training MSE loss
(mean ±1σ) for counting audio representation tasks for comparably sized models.

Table 10: Comparison of MSE loss and ρAG (mean ± stddev) across architectures and audio clips
at different training steps averaged over 10 runs.

Metric Audio Step LRNN-SPDER SIREN SPDER

Loss (↓)

bach

50 1.07± 0.12× 10−3 4.98± 0.44× 10−3 2.43± 0.27× 10−3

100 2.36± 0.55× 10−4 2.00± 0.18× 10−3 1.51± 0.71× 10−3

500 1.70± 0.17× 10−5 4.40± 0.39× 10−4 3.58± 0.24× 10−4

1000 1.01± 0.08× 10−5 1.21± 0.28× 10−4 1.12± 0.05× 10−4

counting

50 1.87± 0.26× 10−3 7.24± 0.14× 10−3 4.10± 0.34× 10−3

100 5.45± 0.45× 10−4 4.27± 0.33× 10−3 1.43± 0.22× 10−3

500 9.92± 0.82× 10−5 5.72± 0.47× 10−4 3.92± 0.75× 10−4

1000 7.15± 0.33× 10−5 2.77± 0.56× 10−4 2.29± 0.55× 10−4

reggae

50 1.03± 0.35× 10−2 1.57± 0.16× 10−2 1.33± 0.19× 10−2

100 5.69± 0.67× 10−3 1.37± 0.15× 10−2 1.14± 0.38× 10−2

500 1.21± 0.14× 10−3 5.02± 0.78× 10−3 4.29± 0.51× 10−3

1000 7.93± 0.01× 10−4 2.15± 0.63× 10−3 2.48± 0.77× 10−3

reading

50 2.72± 0.09× 10−3 3.72± 0.01× 10−3 3.09± 0.03× 10−3

100 1.98± 0.09× 10−3 3.45± 0.02× 10−3 2.58± 0.09× 10−3

500 5.63± 0.08× 10−4 1.67± 0.07× 10−3 1.41± 0.14× 10−3

1000 1.86± 0.03× 10−4 9.98± 0.16× 10−4 8.88± 0.25× 10−4

ρAG (↑)

bach

50 0.9860± 0.0017 0.9078± 0.0094 0.9614± 0.0052
100 0.9964± 0.0010 0.9658± 0.0028 0.9727± 0.0147
500 0.9998± 0.0000 0.9930± 0.0007 0.9943± 0.0041
1000 0.9999± 0.0000 0.9986± 0.0005 0.9988± 0.0003

counting

50 0.9281± 0.0099 0.5020± 0.0205 0.7989± 0.0254
100 0.9765± 0.0014 0.7789± 0.0276 0.9425± 0.0115
500 0.9959± 0.0002 0.9768± 0.0021 0.9861± 0.0014
1000 0.9967± 0.0002 0.9906± 0.0015 0.9937± 0.0006

reggae

50 0.7786± 0.0114 0.6107± 0.0055 0.6896± 0.0055
100 0.8974± 0.0072 0.6816± 0.0039 0.7475± 0.0090
500 0.9809± 0.0005 0.9330± 0.0062 0.9449± 0.0035
1000 0.9860± 0.0002 0.9769± 0.0011 0.9729± 0.0010

reading

50 0.6315± 0.0171 0.3100± 0.0075 0.5246± 0.0081
100 0.7430± 0.0133 0.3883± 0.0070 0.6301± 0.0210
500 0.9508± 0.0082 0.8069± 0.0070 0.8476± 0.0088
1000 0.9862± 0.0031 0.9193± 0.0094 0.9324± 0.0104
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G NUMERICAL SOLUTION OF PDES

For the task of PDE solution approximation with INR models, we use the Poisson equation
uxx + uyy = f on the square domain Ω = [−1, 1]2, subject to zero Dirichlet boundary conditions
from (Liu et al., 2025). The source term is defined as f(x, y) = −π2(1 + 4y2) sin(πx) sin(πy2) +
2π sin(πx) cos(πy2) and the exact solution is given by u(x, y) = sin(πx) sin(πy2). The train-
ing objective is composed of two parts: a residual loss over the PDE interior and a boundary loss,
formulated as LPDE = αLint + Lbdry, where

Lint =
1

ni

ni∑
i=1

|uxx(zi) + uyy(zi)− f(zi)|2 and Lbdry =
1

nb

nb∑
i=1

u2(zi).

Here, {zi = (xi, yi)} are collocation points sampled uniformly within the domain for the interior
loss, and on the boundary for the boundary loss. Following (Liu et al., 2025), we set α = 0.01.

For the LRNN model, we used a two-layer architecture with d̄ = 12 and an MLP with one hidden
layer with one neuron for each component function together with the SIREN (sin(x)) activation
function. SPDER was not considered as a benchmark for this problem as we were unable to achieve
competitive performance with the

√
|x| damping factor. The rank of the LRNN layers were chosen

from the set {16, 32, 48, 64} to study the scaling properties of LRNNs. For both the LRNN and
SIREN models, we chose ω = 6.0 as the frequency parameter for all layers. The MLP used the
SiLU activation function following the setting in (Liu et al., 2025). We used a spatial grid of 41×41
collocation points to compute the loss function. We used a learning rate of 10−3 for LRNNs and
MLPs and a learning rate of 10−4 for SIREN. All models were trained for 1000 epochs using the
Adam optimizer.

Table 11: Comparison of different methods for the two-dimensional Poisson equation (ℓ2 error).
Results for KAN are taken from Liu et al. (2025).

.

Method nparams

(×103)
n = 1 n = 2 n = 4

ℓ2 error ↓ ℓ2 error ↓ ℓ2 error ↓
MLP [2,128,128,128,1] 34 6.4× 10−6 1.9× 10−2 4.6× 10−2

MLP [2,256,256,256,1] 132 3.6× 10−6 1.7× 10−5 2.9× 10−3

SIREN [2,128,128,128,1] 34 5.0× 10−7 1.2× 10−4 1.9× 10−3

SIREN [2,256,256,256,1] 132 1.3× 10−7 8.9× 10−6 5.5× 10−4

KAN [2,10,1] G = 10 - 0.006 0.135 0.729
KAN [2,10,1] G = 20 - 0.221 0.082 0.295
KAN [2,100,1] G = 10 - 0.001 0.006 0.099
KAN [2,100,1] G = 20 - 0.326 0.135 0.090
KAN [2,10,10,10,1] G = 10 - 0.012 0.117 0.576
KAN [2,10,10,10,1] G = 20 - 0.995 0.993 0.982

LRNN [2,16,16,1] 5 8.9× 10−7 1.5× 10−5 3.7× 10−3

LRNN [2,32,32,1] 16 1.5× 10−7 2.7× 10−6 5.5× 10−4

LRNN [2,48,48,1] 34 1× 10−7 8.3× 10−7 1.5× 10−4

LRNN [2,64,64,1] 57 9× 10−8 6.6× 10−7 6.6× 10−5

The excellent performance of LRNNs on this particular problem (see Table 11 and Figure 8) is
consistent with their architectural design, which inherently captures multiplicative interactions. The
exact solution possesses a product-separable structure, making it particularly well-suited for approx-
imation by LRNNs. We provide a graphical comparison of results obtained using LRNN, MLP and
SIREN models in Figure 19. For LRNNs we used forward mode AD to efficiently compute the
Laplacian – this was crucial to prevent memory issues arising from the effective number of inter-
mediate activations associated with its product-structured activation function when the model size is
increased.
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Figure 19: Comparison of approximations obtained using LRNN model with 64k parameters and
the MLP and SIREN models with 132k parameters for the Poisson PDE (n = 4). The first row
shows the LRNN approximation, the second row shows the MLP approximation, and the third row
shows the SIREN approximation. As shown in Table 2 in the main paper, the small LRNN model
significantly outperforms the MLP and SIREN models in terms of the ℓ2 error norm.
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Note that the results for KAN in Table 11 of the main paper were taken directly from (Liu et al.,
2025), as we encountered difficulties in reproducing their reported results using the publicly avail-
able code.

H CT RECONSTRUCTION ABLATION STUDIES

These experiments were performed by adapting the script for CT reconstruction provided by Sara-
gadam et al. (2023), who introduced this benchmark problem. All models were run for 5000 itera-
tions. The learning rates for the benchmarks were consistent with those recommended by Saragadam
et al. (2023): 5 × 10−3 for WIRE, 1 × 10−4 for ReLU with positional encoding, and 1 × 10−3 for
SIREN and Gauss. We also chose lr = 1 × 10−3 for LRNN. For the study presented in the main
paper and the ablation study presented below for number of projections, the model sizes are as fol-
lows: 3 layers of 256 neurons each for all benchmarks, and for LRNN, a two-layer model with
each layer being rank 82, d̄ = 10, and the component functions being single-layer neural networks
with four hidden neurons to match the complexity of the benchmarks. For only the LRNN model,
a ReduceLRonPlateau scheduler from the torch.optim package was used with a factor of 0.5 and a
patience of 25. All other models used the LambdaLR scheduler from the torch.optim package to
reduce the learning rate to 0.1× the initial learning rate in the final epoch, as used in the WIRE
paper experiments. For the study in the main paper and the ablation study on model complexity, all
models were provided with 100 CT projections. The results of the two ablation studies are discussed
below.

Number of CT Projections. The CT problem was solved by all five models of similar complexity
(1.8 × 105 parameters) for different numbers of CT measurements. We compare both the PSNR
and SSIM in Table 12. We also consider the reconstructed images in Figure 20 compared to the
ground truth in Figure 7 in the main paper. None of the models have a clear reconstruction with only
20 projections, however LRNN and SIREN perform decently well with only 50 projections. As
demonstrated in Figure 21, LRNN is the top performer in PSNR at both 50 and 100 projections and
in SSIM at 100 and 150 projections. When more projections (150, 200, 300) are available, WIRE
achieves the highest PSNR and LRNN is second-best by a small margin of at most 1.53dB. This
indicates that while LRNN has some limitations, it is a good choice for this problem, particularly in
sparse-view cases with less CT measurements to limit exposure to patients.

Table 12: Comparison of PSNR and SSIM across models for different numbers of CT measurements.

Number of
CT Meas.

LRNN SIREN WIRE Gauss ReLU+PE

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

20 25.60 0.5449 25.59 0.5646 20.86 0.2199 22.18 0.3351 25.75 0.5926
50 28.26 0.6766 27.44 0.6817 24.63 0.4006 26.54 0.5680 26.23 0.6180
100 29.13 0.7455 27.46 0.6877 28.83 0.6413 27.84 0.6855 26.89 0.6341
150 29.43 0.7557 27.45 0.6854 30.42 0.7470 27.79 0.6945 26.97 0.6327
200 29.71 0.7578 27.34 0.6874 31.24 0.7849 27.80 0.6926 26.94 0.6221
300 29.77 0.7713 27.53 0.6970 30.59 0.7739 27.99 0.7044 27.05 0.6094

Model Complexity. An ablation study was also performed to determine the impact of model com-
plexity, as defined by total number of model parameters, on performance on the CT reconstruction
task. All models were provided 100 CT measurements. The range of model size tested varied from
5.9 × 104 to 19.9 × 104. Based on Table 13 and Figure 22, we observe that all models with the
exception of WIRE do not exhibit any significant difference in PSNR over the range of model com-
plexities–they stay within the same 1dB range. For this reason, the reconstructed images are not
presented since they would be difficult to differentiate with the human eye. The models tend to
follow a trend of marginal increase in PSNR with significant increase in parameter count. There are
some outliers to this trend, most notably the largest WIRE model. This may be explained by the fact
that the smaller models had a depth of two, while the largest benchmark models comprised three
layers, which may not be well-suited to the WIRE framework. We observe that for 100 projections,
LRNN achieves the highest PSNR at all tested model sizes. Overall, this ablation study suggests
that model complexity does not have significant impact on performance once a certain minimum
complexity is achieved. This is useful to note in problems limited by computational budget.
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Figure 20: Comparison of CT reconstructed image by similarly complex models for different num-
bers of projections.

Figure 21: Comparison of PSNR for similarly complex models given different numbers of CT mea-
surements.

Table 13: Comparison of PSNR and SSIM across models for different number of parameters (100
projections).

Parameters
(×104)

LRNN SIREN WIRE Gauss ReLU+PE

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

5.90 28.91 0.7167 26.91 0.6530 27.88 0.6041 27.67 0.6670 26.51 0.6142
9.00 29.00 0.7297 27.09 0.6655 28.30 0.6358 27.64 0.6727 26.48 0.6111
12.85 29.63 0.7392 27.21 0.6705 28.84 0.6479 27.73 0.6702 26.63 0.6280
15.50 29.33 0.7547 27.53 0.6907 28.93 0.6425 27.81 0.6860 26.66 0.6269
18.20 29.13 0.7455 27.46 0.6877 28.83 0.6413 27.84 0.6855 26.89 0.6341
19.90 29.43 0.7668 27.68 0.6966 26.58 0.5005 27.28 0.5694 26.96 0.6587
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Figure 22: Comparison of PSNR for models of varying complexity given the same numbers of CT
measurements.

I STUDIES ON IMAGE CLASSIFICATION DATASETS

We present controlled experiments on classification benchmarks to isolate and evaluate the contri-
bution of the LRNN layer as a building block. Our goal is not to achieve state-of-the-art on large-
scale datasets—which would require sophisticated architectures and training protocols—but rather
to perform rigorous ablation studies comparing LRNN layers directly against their MLP, CNN, and
KAN counterparts under identical conditions. We selected MNIST and MNIST-1D datasets for
these experiments since they enable controlled comparisons with well-understood baselines and the
computational efficiency allows extensive ablation studies. Furthermore, MNIST-1D’s procedural
generation and shuffle variant specifically test architectural biases.

We consider LRNN models which take the vectorized image as input as well as a ConvLRNN model
similar to a standard CNN which involves convolutional and pooling layers followed by an LRNN
layer (instead of an MLP block).4 Our numerical experiments demonstrate that:

1. MNIST-1D benchmark: On the MNIST-1D benchmark, both LRNN models consistently
outperform their direct MLP and CNN counterparts; see Table 14 and Figure 23.

2. Shuffled pixels test-case: On the MNIST-1D benchmark with shuffled pixels, both LRNN
models maintain higher accuracy than their counterparts, suggesting they learn different
feature representations (see Table 14).

3. General-Purpose Layer (LRNN vs. MLP vs. KAN): When treating MNIST as a vector
task, our LRNN achieves 98.1% accuracy, which improves upon the standard MLP’s 97.0%
accuracy and matches the accuracy of a much larger KAN model while being ≈50x faster
to train (Table 15).

4. As a Component in a CNN (ConvLRNN vs. a baseline CNN): The ConvLRNN model
matches the 99.1% accuracy of the baseline CNN on MNIST, but with only one-third of
the parameters (77k vs. 225k, Table 15).

We now present the detailed experimental setup and results. We first evaluated LRNN and ConvL-
RNN on MNIST-1D (Greydanus & Kobak, 2024) against CNN and MLP baselines. All models were
run with 5 different random seeds and the average results are presented in Table 14. We observe that
ConvLRNN outperforms the CNN in terms of test accuracy on the unshuffled data as well as train
and test accuracy on the shuffled data. The CNN has high accuracy on unshuffled data, but struggles

4Note that it is also possible to modify the LRNN neuron to entirely replace the convolutional layers and
incorporate positional encoding instead of typical CNN’s fixed encoding. We leave this for future work.
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to perform on shuffled data. Although ConvLRNN’s performance also degrades on shuffled data,
it maintains 98.48% train accuracy (vs CNN’s 94.46%) and achieves 64.04% test accuracy—a 7
percentage point improvement over CNN’s 57.16%.

Table 14: Classification accuracies on MNIST-1D.

Model nparams Unshuffled Shuffled

Train Acc (%) Test Acc (%) Train Acc (%) Test Acc (%)

CNN 5.21× 103 100.00 ± 0.00 93.06 ± 0.80 94.46 ± 1.48 57.16 ± 1.29
MLP 1.52× 104 100.00 ± 0.00 65.00 ± 1.30 100.00 ± 0.00 65.20 ± 1.42
ConvLRNN 1.79× 104 100.00 ± 0.00 94.12 ± 0.47 98.48 ± 1.44 64.04 ± 2.49
LRNN 4.63× 104 100.00 ± 0.00 67.18 ± 0.78 100.00 ± 0.00 67.34 ± 0.85

MLPs on the other hand perform consistently whether the data is shuffled or unshuffled, although
the unshuffled test accuracy is much lower than that of the convolutional models. LRNN outper-
forms MLP by 2-3% on both the shuffled and unshuffled data. Overall, ConvLRNN has the highest
performance on the unshuffled data while LRNN does the best of these benchmarks on the shuffled
data. To graphically illustrate this, we present plots of the train and test accuracy for a typical run in
Figure 23. We use this example to demonstrate the versatility of LRNNs and their applicability as a
general-purpose layer as illustrated by the broad range of tasks it performs well on.

Figure 23: Train and test accuracies on MNIST-1D.

We evaluated five models on standard MNIST: three using the flattened 784-dimensional vector
representation (MLP, KAN, LRNN) and two using the 2D image structure (CNN, ConvLRNN).
Results are presented in Table 15.

For the vector-based models, LRNN achieves 98.1% test accuracy, outperforming MLP (97.0%)
while matching KAN’s accuracy. Critically, LRNN trains in 19.38 seconds—comparable to MLP’s
16.65 seconds and 55x faster than KAN’s 1064 seconds. Despite having fewer parameters than
KAN (1.04M vs 1.11M), LRNN delivers equivalent accuracy with dramatically better computational
efficiency.

For the convolutional models, ConvLRNN matches CNN’s 99.1% accuracy while using only 77k
parameters—a 3x reduction from CNN’s 225k parameters. This demonstrates that LRNN layers can
serve as efficient drop-in replacements in standard architectures, maintaining performance while
significantly reducing model complexity.

These controlled experiments demonstrate that the LRNN layer provides tangible bene-
fits—parameter efficiency and computational speed—when used as a drop-in replacement for stan-
dard layers. While we do not claim state-of-the-art on classification (our focus remains on con-
tinuous signal representation), these results validate LRNNs as versatile building blocks that could
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Table 15: Model performance on MNIST.

Model nparams Train Loss
Train

Accuracy
(%)

Test
Accuracy

(%)
Wall Time(s)

MLP 7.95× 104 9.72× 10−2 98.6 97.0 16.65
KAN 1.11× 106 9.24× 10−3 100.0 98.1 1063.99
CNN 2.25× 105 7.05× 10−3 99.8 99.1 382.51
LRNN 1.04× 106 1.19× 10−2 100.0 98.1 19.38
ConvLRNN 7.68× 104 8.30× 10−3 99.8 99.1 422.31

benefit future architectural designs. Exploring LRNN integration in modern architectures for com-
plex classification tasks remains an interesting direction for future work.
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