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ABSTRACT

The design of optimizers for modern Large Language Models (LLMs) is governed
by the critical trade-off between performance, memory footprint, and compu-
tational throughput. High-accuracy methods, such as those exploiting gradient
preconditioning techniques, are often memory-intensive and may introduce sig-
nificant computational overhead, while efficient ones like Galore may not reach
the same performance level. In this work, we present Scaling with Architectural
Constraints (SAC), an optimizer wrapper that navigates these competing demands
for the first time. SAC enhances existing adaptive optimizers by modulating per-
parameter learning rates with lightweight, hierarchical constraints derived from
model architectures. On the C4 pre-training benchmark, SAC+AdamW achieves
state-of-the-art perplexity from 60M to 3B model sizes, converging faster without
incurring the high costs of complex preconditioning. It also enhances training
stability, showcasing robustness across varied learning rates and batch sizes. Quali-
tatively, empirical analysis shows that SAC fosters a more coordinated optimization
process, leading to improved gradient dynamics. Its versatility has been further
validated by the strong results across downstream tasks and domains, including
long sequence modeling, parameter-efficient fine-tuning, image classification with
diverse models like ViTs and CNNs, and evaluations on multimodal benchmarks.

1 INTRODUCTION
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Figure 1: The Optimizer Design Plane. We map the
landscape of optimizers along two key axes: Temporal
Smoothing (Y-axis), which describes how much an
optimizer relies on historical gradients for stability, and
Spatial Structuring (X-axis), which reflects the use
of architectural hierarchy to coordinate model updates.

Optimizing large-scale networks like Large
Language Models (LLMs) (Liu et al., 2024a;
Achiam et al., 2023) remains a core chal-
lenge in modern machine learning. As mod-
els grow from millions to billions of parame-
ters, the gap between architectural complex-
ity and optimizer simplicity widens. Most
training algorithms can be viewed through
two orthogonal design principles: (i) Tem-
poral smoothing refers to using historical
gradient moments (e.g., momentum, vari-
ance estimates) to stabilize the optimiza-
tion trajectory over time. Techniques like
Adam (Kingma & Ba, 2015) exploit this
principle to reduce oscillations and help con-
vergence. (ii) Spatial Structuring refers
to applying constraints, preconditioning, or
coordination across parameters that share
architectural relationships (e.g., within the
same block or layer), rather than treating
each weight independently.

The interplay of these principles gives rise to a design landscape as shown in Figure 1. Most widely
used optimizers, including Adam (Kingma & Ba, 2015), AdamW (Loshchilov & Hutter, 2019),
Lion (Chen et al., 2023), and Adan (Xie et al., 2023), occupy the Adaptive Stability Zone. Their
strength is exceptional temporal smoothing, which provides stable updates and robust parameter-
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wise adaptation. Yet they remain agnostic to the model’s architecture, leading to uncoordinated
updates between attention heads and feed-forward layers. Even memory-efficient variants like
Adafactor (Shazeer & Stern, 2018), Adam-mini (Zhang et al., 2024), CAME (Luo et al., 2023), and
APOLLO (Zhu et al., 2024a) cannot remedy this structural blindness; they simply reduce storage
while maintaining per-parameter independence.

At the opposite extreme lies the Preconditioned Space Zone, populated by second-order or geometric
optimizers such as Shampoo (Gupta et al., 2018), Muon (Jordan et al.), and MARS (Yuan et al., 2024).
These methods reshape the gradient space using matrix operations to align updates coherently within
layers or tensors. While theoretically elegant, they incur substantial computational and memory costs.
Furthermore, their focus is often limited to local, layer-wise structure and typically sacrifices the
robust temporal smoothing that makes Adam variants practical for large-scale training.

This leaves a critical quadrant unoccupied: the Coordinated Optimization Zone, which promises
the stability of temporal smoothing combined with the intelligence of spatial structuring. The
structural blindness of Adam is increasingly linked to training instabilities in deep models, such as
optimization discrepancies between shallow and deep layers and sudden loss spikes (Molybog et al.,
2023). As hardware acceleration (Dao, 2023) and distributed frameworks (Shoeybi et al., 2019) make
full-parameter training more feasible, the primary bottleneck is shifting from raw efficiency to the
effective coordination of parameter updates. In this work, we introduce Scaling with Architectural
Constraints (SAC), an optimizer wrapper designed to bridge this gap and inhabit the Coordinated
Optimization Zone. SAC’s core idea is to modulate the per-parameter adaptive learning rates of
an Adam-family optimizer with lightweight, hierarchically-derived constraints from the model’s
architecture. It retains the proven temporal stability of Adam while introducing intelligent spatial
coordination, with negligible computational overhead. Empirically, we find that both layer-wise
homogenization and block-wise heterogenization constraints could be beneficial for LLM training,
which aligns with previous findings (Molybog et al., 2023; Zhang et al., 2025).

To rigorously validate the effectiveness of SAC, we conduct extensive experiments across a com-
prehensive suite of tasks and models, including C4 pre-training, supervised fine-tuning (SFT) on
GLUE benchmark, parameter-efficient fine-tuning (PEFT) on commonsense reasoning tasks, and
multiple MLLM and vision benchmarks. In addition, to demonstrate its broader applicability, we
extend our evaluation to computer vision tasks, including classical image classification on CIFAR
and ImageNet. The results demonstrate that SAC consistently outperforms baseline optimizers and
relevant optimizers, achieves faster convergence, improves model performance, and exhibits robust
stability across various settings – yielding up to 30% improvements over baselines. These findings
demonstrate the substantial benefits and untapped potential of architectural constraints for LLM
optimization.

Our contributions can thus be summarized as follows:

• We identify and analyze two key orthogonal design principles, i.e., temporal smoothing and
spatial structuring, to systematically classify optimization algorithms. This framework reveals
a critical gap in the current landscape: the absence of a practical method that effectively combines
the stability of historical gradient smoothing with the intelligence of architectural coordination.

• To fill this gap, we propose SAC, an optimizer wrapper that pioneers the Coordinated Optimiza-
tion Zone. Implemented as a versatile wrapper, SAC seamlessly integrates with existing adaptive
optimizers and PEFT techniques, requiring no changes to model architectures and incurring
negligible overhead. We also provide CPU, GPU, and hybrid implementations to accommodate
different computational trade-offs for practical deployment.

• The consistent superiority of SAC across tasks and model sizes suggests the potential of learning
rate scaling with architectural priors. We suppose that it could still be beneficial in training
larger-scale models, and hope it can inspire further exploration in the community along this line.

2 METHODOLOGY

As established, the design of modern optimizers can be deconstructed into two orthogonal principles:
temporal smoothing and spatial structuring. Canonical adaptive optimizers compute parameter-wise
adaptive learning rates αt ∈ Rm×n that impose historical gradient constraints on the optimization
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Figure 2: The SAC Optimization Pipeline. (a) Left: SAC is wrapped upon an adaptive learning rate
optimizer. At each step t, the base adaptive optimizer controls the update of gradients Gt to model
weights Wt+1 by computing parameter-wise learning rates αt with historical constraints to modulate
the first-order moments Mt. SAC introduces parallel scale factors St with architectural constraints.
(b) Right: The scale factors estimation pipeline. Taking the hybrid model with a Mamba block (Gu &
Dao, 2023) and a self-attention block as an example, the model can be partitioned into four types of
blocks (Yu et al., 2024), i.e., Tokenizer, Token Mixer, Channel Mixer, and Output Head. Scale factors
are then applied at multiple granularities: parameter-wise, group-wise, layer-wise, and block-wise.

trajectory over time. However, they lack the latter. SAC systematically unifies both principles by
introducing a structured, coarse-grained scale factor St that imposes spatial architectural constraints
as shown in Figure 2. Our SAC braids these signals into a hierarchical weight update rule:

Wt+1 = Wt − η · αt ·Mt︸ ︷︷ ︸
Temporally-Smoothed

·
Spatial Structured Scale Factor︷︸︸︷

St (1)

where (η · αt ·Mt) is the standard update from a base Adam-like optimizer. Mt represents the
first moment, and αt = (

√
Vt + ϵ)−1 is the per-parameter adaptive learning rate derived from the

second moment Vt. The key lies in the scale factor St, which is computed by partitioning the model’s
parameters according to its architecture and then deriving statistics from these structurally meaningful
groups. The core idea is to factorize the learning rate for each parameter into components that capture
adaptation at different architectural granularities. In particular, by allowing αt to vary within blocks
while normalizing it via a partition-aware St that is uniform across blocks, SAC simultaneously (i)
realizes heterogeneous, adaptive rates inside blocks and (ii) enforces uniform scaling constraints
across blocks. Concretely, SAC couples multi-resolution LR modulation aligned with model topology
(parameter → group → layer → block) with a dual-objective design that preserves cross-layer
coherence without sacrificing locality. To precisely define these structural groups and compute St,
we first introduce our method for Architecture-Aware Parameter Partitioning.

2.1 ARCHITECTURE-AWARE PARAMETER PARTITIONING

As aforementioned, SAC requires a structured view of the model. We treat neural network topology
as a multi-resolution index over its parameter space Θ. This is achieved by partitioning the model
parameters along two primary axes: network depth (layers) and intra-layer functional roles (blocks).

Let L be the ordered set of layers within the model (e.g., Transformer blocks, embedding layers, and
output head). Each layer l∈L is composed of macro blocks Bl, such as a token mixer (self-attention)
and a channel mixer (MLP). For each block b∈Bl, we define a parameter set Pl,b ⊂ Θ containing
its core weight matrices (e.g., Wq,Wk,Wv,Wo,Win,Wout), excluding scalar parameters like biases.
This yields a complete and disjoint partition of all model weights as:

Θ =
⊎
l∈L

⊎
b∈Bl

Pl,b, (2)

This provides well-defined scopes for computing statistics, from fine-grained (parameter-wise) to
coarse-grained (block-wise, layer-wise, group-/subspace-wise (e.g., heads, rows/columns, low-rank

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

subspaces of W ∈ Rm×n)). It also admits constant-time indexers πlayer, πblock which aligns with
distributed training schemes (e.g., tensor parallelism) and allows for efficient aggregation of statistics
with negligible overhead, adding only O(|L|+

∑
l |Bl|) scalars of state.

Subsequently, we attach Structured Learning Rates (SLR) to this topology. The effective learning rate
αθ for each parameter θ ∈ Pl,b is factorized as a product of hierarchical components as:

αθ = η · cl · sb · rθ, (3)
where rθ captures within-block heterogeneity from local curvature/scale estimates (e.g., per-head or
low-rank row/column groups); sb imposes block-level calibration distinguishing token vs. channel
mixers; and cl enforces cross-layer coherence via normalization constraints (e.g., Eθ∈Pl,b

[rθ] = 1).
This factorization separates global consistency, regulated by (sb, cl), from fine-grained adaptation,
tracked by rθ, while regulating signal magnitudes for stability and hardware efficiency.

2.2 MULTI-RESOLUTION SCALE FACTORS

Algorithm 1 SAC Optimizer Wrapper
Require: Global learning rate η, decay rates β1, β2, ε,

weight decay λ, scale bounds [Smin, Smax].
Require: Parameters Θ = {θi}, gradients G = {Gi}.
Ensure: Updated model parameters Θ.
1: Initialize: time step t← 0, m, v ← 0,M,S ← ∅

Recursive Scale Factor Computation
2: t← t+ 1
3: δglobal ← GlobalMAD(θ,G,S)
4: function PROCESSPARAM(θi, Gi, li, bi)
5: If first call:M[θi]← (li, bi,dim(θi) > 1) ▷

Cache parameter metadata
6: If first call: S[li][bi]← S[li][bi] ∪ {θi} ▷ Group

by layer/block/param
7: δl ← LayerMAD(li,S)
8: madl,b ← BlockMAD(li, bi,S)
9: sl,b ← mean

(
log(1 + |G− µ|/madl,b)

)
10: si ← max

(
Smin,min(Smax, (δglobal/δl) · sl,b)

)
▷

Hierarchical scaling

11: si ←

{
si if dim(θi) > 1

1 otherwise
(e.g., AdamW)

12: mi ← β1mi + (1− β1)Gi

13: vi ← β2vi + (1− β2)G
2
i

14: m̂i ← mi/(1− βt
1)

15: v̂i ← vi/(1− βt
2)

16: θi ← θi − η · si · m̂i√
v̂i+ε

− η · λ · θi
17: return Θ← {θi}
18: end function

With the model partitioned, SAC computes
scale factors to achieve two complementary
objectives: (i) Inter-layer Uniformity: Main-
tain comparable signal strength and update
magnitudes across all layers to promote sta-
ble training in deep networks; and (ii) Intra-
layer Heterogeneity: Allow different func-
tional blocks within a layer (e.g., attention vs.
MLP) to adapt at different rates according to
their specific roles and gradient statistics. To
achieve this, we introduce two factors, cl and
sl,b, derived from gradient statistics at step
t. Let gtl,b ∈ Rdl,b be the gradient vector for
the block b in layer l; write gtl be the concate-
nated gradient for the entire layer l, and gt

be the gradient for the entire model. We use
the median absolute deviation (MAD) as a
robust, outlier-resistant measure of statistical
dispersion:

D(X) = median
(
|X −median(X)|

)
,

(4)

Layer Factor for Uniformity. To equal-
ize update scales across depth, we compute
a layer-specific factor ctl that compares the
dispersion of the layer’s gradient gtl to that of
the global gradient gt as:

ctl =
(D(gt) + ε

D(gtl ) + ε

)γ

, γ ∈ [0, 1], (5)

where a small constant ε > 0 is used for numerical stability. This factor is then optionally smoothed
over time using an exponential moving average (EMA) with decay rate ρ to produce c̃tl as:

c̃tl = (1− ρ) c̃t−1
l + ρ ctl , ρ ∈ (0, 1]. (6)

Note that layers with smaller relative dispersion (D(gtl )≪ D(gt)) receive a factor c̃tl > 1, effectively
mitigating depth imbalance with negligible computational and communication overhead.

Block Factor for Heterogeneity. Within each layer l, we aim to allocate the “update budget” based
on the relative importance or signal strength of each block. Thus, we first calculate a scalar statistic
ϕt
l,b for each block, such as the logarithm of its gradient Root Mean Square (RMS), as:

ϕt
l,b = log

(
RMS(gtl,b) + ε

)
, RMS(x) =

√√√√ 1

m

m∑
i=1

x2
i , m = dim(x), (7)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) (b)

10 3

Learning Rate (Log Scale)

0

2

4

6

8

10

12

14

De
ns

ity

Self Attention Scaled LR
60M Params
130M Params
350M Params

(c)
Figure 3: Analysis of SAC-Modulated Learning Rate Distributions with LLaMA-350M pre-
trained on C4. (a–b) SAC applies distinct modulation to different blocks. For a 130M LLaMA, kernel
density estimates of per-parameter learning rates in Self-Attention (a) and MLP (b). Solid curves
show effective (scaled) rates under SAC and LAMB; dashed curves show the corresponding original
step sizes from the AdamW inner optimizer. (c) For Self-Attention blocks, SAC-scaled learning rate
distributions at step 10,000 show a clear size-dependent shift as model size increases, where the rates
for 60M/130M concentrate below 10−3, while 350M’s distribution is displaced toward higher rates.

We then employ a budgeted softmax with temperature β ≥ 0 to assign multiplicative weights and
derive the block-specific scale factors:

stl,b = |Bl|
exp

(
β ϕt

l,b

)∑
b′∈Bl

exp
(
β ϕt

l,b′

) . (8)

This ensures that the factors average to one within each layer as 1
|Bl|

∑
b∈Bl

stl,b = 1. As such, blocks
with stronger signals receive stl,b > 1 while others receive stl,b < 1, redistributing learning capacity
without altering the layer’s average update magnitude, which is illustrated in Figure 3.

Composition & Scaling. The layer and block factors, c̃tl and stl,b are composed multiplicatively to
form the complete architectural scale factor tensor St from the main update rule (Eq. 1). In practice,
this is implemented as a straightforward plug-and-play multiplicative correction. The effective
learning rate ηtl,b for all parameters within block b of layer l is modulated as:

ηtl,b ← ηtl,b
(
c̃tl s

t
l,b

)
, (9)

This is compatible with standard techniques like mixed-precision and distributed training. Further-
more, it preserves important sanity cases: if all layers have similar gradient dispersion, ctl ≈ 1, and if
all blocks within a layer are statistically similar, block factors stl,b also approach 1, thereby recovering
the behavior of the base optimizer. Hyperparameters (γ, β, ρ) serve as intuitive knobs to control
inter-layer uniformity and intra-layer contrast, offering a path toward stable training.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

To rigorously evaluate the effectiveness and versatility of SAC, we conducted experiments on various
public datasets, including LLM, Visual Question Answering (VQA), and multimodal LLM (MLLM)
benchmarks. (1) LLM Pre-training with short/long sequence modeling: We used the en subset
of the C4 dataset (a large cleaned web corpus from Common Crawl filtered for safety (Köpf et al.,
2023)) for LLaMA pre-training, while adopting the 100B subset of the FineWeb-Edu dataset (Penedo
et al., 2024) for long-sequence modeling with Gated DeltaNet variants (Yang et al., 2025). (2)
Image Classification with various architectures: Sharing the Metaformer macro designs (Yu et al.,
2024), we trained the typical Transformer, CNNs, and hybrid models from scratch on CIFAR-
100 (Krizhevsky et al., 2009) and ImageNet-1K (Krizhevsky et al., 2012) datasets to provide a standard
measurement of generalization to different networks. (3) PEFT on Commonsense Reasoning:
Leveraging the LLM-Adapters framework (Hu et al., 2023), we evaluated SAC’s compatibility
and performance with pre-trained models and PEFT methods across 8 Commonsense Reasoning
(CS) datasets: BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),
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Table 1: LLaMA Pre-training Comparison on the C4 Dataset with model sizes ranging from
60M to 1B. We report three key metrics: the validation perplexity (PPL)↓, GPU memory (Mem.)↓
(including model weights and optimization states), and the averaged running Time (s)↓ of optimizer
step. For all metrics, lower is better. The practical hyperparameters are clearly tuned and reported for
all optimizers. Bold denotes the best results in each category, while green and red types denote the
performance gains↓ of SAC (blue background) over related baselines (gray background). Note that
SAC+AdamW achieves the best performance over all compared optimizers.
Optimizer Venue Betas Eps. 60M 130M 350M 1B

PPL #M(G) Time(s) PPL #M(G) Time(s) PPL #M(G) Time(s) PPL #M(G) Time(s)
AdamW ICLR’19 (0.9, 0.99) 1e-8 29.19 0.25 0.0018 22.64 0.55 0.0023 16.97 1.43 0.0045 14.40 5.11 0.0762
Adabelief NeurIPS’19 (0.9, 0.999) 1e-12 29.49 0.46 0.0099 22.92 1.04 0.0156 17.46 2.80 0.0614 16.85 10.1 0.2448
Adamp ICLR’21 (0.9, 0.98) 1e-8 29.34 0.25 0.0263 22.52 0.55 0.0397 17.04 1.43 0.1139 14.41 5.11 0.2836
LAMB ICLR’20 (0.9, 0.99) 1e-6 29.08 0.25 0.0168 22.57 0.55 0.0274 16.89 1.43 0.0897 15.32 5.11 0.2269
Nadam ICLR’18 (0.9, 0.99) 1e-8 32.75 0.25 0.0029 24.04 0.55 0.0040 17.57 1.43 0.0065 16.48 5.11 0.0879
Radam ICLR’20 (0.9, 0.99) 1e-8 29.23 0.25 0.0024 22.67 0.55 0.0031 16.94 1.43 0.0053 14.30 5.11 0.0994
Adan TPAMI’23 (0.9, 0.92, 0.99) 1e-8 29.40 0.46 0.0042 22.30 1.04 0.0041 17.01 2.80 0.0158 14.70 10.1 0.1787
Prodigy ICML’23 (0.9, 0.95) 1e-8 32.33 0.46 0.0141 29.56 1.04 0.0257 17.96 2.80 0.0814 14.94 10.1 0.2298
MARS+AdamW ICML’25 (0.9, 0.99) 1e-8 29.10 0.32 0.0147 22.26 0.75 0.0290 16.65 2.06 0.0804 14.76 7.48 0.2333
SGG+AdamW ACL’25 (0.9, 0.99) 1e-8 29.98 0.46 0.0392 22.13 1.04 0.0631 16.97 1.43 0.0714 14.34 4.77 0.3526
SAC+AdamW Ours (0.9, 0.99) 1e-8 28.63 0.25 0.0169 21.85 0.55 0.0213 16.16 1.43 0.0401 13.58 5.11 0.1089
∆Gains -0.56 +0 +0.0152 -0.79 +0 0.0190 -0.81 +0 0.0363 -0.82 +0 0.0329
Adam8bit ICLR’22 (0.9, 0.99) 1e-8 29.47 0.14 0.0091 22.74 0.30 0.0189 17.35 0.76 0.0652 14.49 2.66 0.2286
Adam-mini ICLR’25 (0.9, 0.99) 1e-8 29.63 0.14 0.0106 23.08 0.30 0.0152 19.25 0.75 0.0599 16.44 2.62 0.1868
Adafactor ICML’18 (0.9,) 1e-30 29.07 0.24 0.0059 22.38 0.61 0.0082 16.96 1.53 0.0447 16.25 6.65 0.1725
CAME ACL’23 (0.9, 0.98) 1e-6 29.26 0.18 0.0068 22.55 0.38 0.0084 16.84 1.08 0.0451 15.76 3.83 0.1794
APOLLO MLSys’25 (0.9, 0.99) 1e-6 29.82 0.24 0.0061 22.18 0.52 0.0090 16.54 1.22 0.0453 13.91 4.38 0.1809
Lion arXiv’23 (0.9, 0.98) − 34.80 0.14 0.0049 24.95 0.30 0.0057 18.84 0.75 0.0400 17.01 2.62 0.1684
Sophia arXiv’23 (0.9, 0.99) 1e-8 35.14 0.25 0.0080 25.09 0.55 0.0105 18.42 1.43 0.0478 17.62 5.11 0.1843
MARS+Lion ICML’25 (0.9, 0.98) 1e-8 31.50 0.32 0.0139 25.02 0.75 0.0247 18.36 2.06 0.0753 16.94 7.48 0.1804
SAC+Adam-mini Ours (0.9, 0.99) 1e-8 29.49 0.14 0.0131 22.62 0.30 0.0157 16.66 0.75 0.0605 14.23 2.62 0.1873
∆Gains -0.14 +0 0.0025 -0.46 +0 0.0005 -2.59 +0 0.0006 -2.21 +0 0.0005
Shampoo arXiv’18 (0.9, 0.999) 1e-8 29.30 0.18 0.0364 22.01 0.35 0.0526 16.71 1.37 0.1465 14.34 4.77 0.8762
Muon (kimi) arXiv’25 (0.9, 0.95) 1e-8 28.91 0.14 0.0336 22.19 0.30 0.0486 16.72 0.75 0.1370 14.52 2.62 0.8870
SOAP arXiv’24 (0.9, 0.95) 1e-8 28.60 0.17 0.0747 22.15 0.34 0.1028 16.79 1.35 0.1943 14.58 4.72 0.9205
MARS+Shampoo ICML’25 (0.9, 0.99) 1e-8 29.13 0.32 0.0491 21.96 0.75 0.0768 16.49 2.06 0.1537 13.75 7.48 0.8823
SAC+Shampoo Ours (0.9, 0.999) 1e-8 29.22 0.18 0.0376 21.96 0.35 0.0541 16.61 1.37 0.1481 14.07 4.77 0.8785
∆Gains -0.08 +0 0.0012 -0.05 +0 0.0015 -0.09 +0 0.0016 -0.27 +0 0.0023

HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC (ARC-Easy and ARC-
Challenge) (Clark et al., 2018), and OBQA (Mihaylov et al., 2018). (4) MLLM Validation: (i) VQA
benchmarks such as GQA (Hudson & Manning, 2019), TextVQA (Singh et al., 2019), SciVQAI

(evaluation on the imageset of ScienceVQA) (Lu et al., 2022), VQAv2 (Goyal et al., 2017), and
Vizwiz (Gurari et al., 2018). (ii) MLLM evaluation benchmarks including POPE (F1 score) (Li
et al., 2023b), MMBench (Liu et al., 2025), MMBench-Chinese (MMBenchCN) (Liu et al., 2025),
SEEDI (Li et al., 2023a), and MME (Perception) (Yin et al., 2023). As for implementations, we
applied SAC as an optimizer wrapper upon popular optimizer baselines (AdamW, Adam-mini,
and Shampoo) in PyTorch, ensuring compatibility with existing optimizers through minimal code
integration. Its key hyperparameters were empirically tuned, allowing for robust use of the default
values for optimal accuracy-efficiency trade-off.

3.2 COMPARISON RESULTS WITH TRAINING FROM SCRATCH

We validate our SAC in various LLM tasks, including pre-training, supervised fine-tuning (SFT), and
parameter-efficient fine-tuning (PEFT). SAC consistently improves performance with negligible extra
cost, showcasing its potential as a versatile optimizer wrapper for effective LLM training.

Pre-training on C4 Benchmark. Following Galore (Zhao et al., 2024a), we reproduce LLaMA
pre-training in Table 1 with a comprehensive comparison of popular LLM optimizers. There are
lots of optimizers that achieve a well-done performance on the C4 dataset, since they heavily rely
on the optimal hyperparameters. To ensure a fair evaluation, we further conducted experiments
under relatively standardized and controlled settings across different model scales. The remaining
open question is the trade-off between performance (perplexity) and parallelism. Memory-efficient
optimizers, e.g., MARS and Muon, achieve superior performance by employing complex matrix
operations, but this inevitably leads to reduced parallelism. In contrast, others like AdamW offer
higher throughput but may yield slightly lower performance. The AdamW runs faster around ×32
than Muon on LLaMA 350M. As a lightweight wrapper, SAC is designed to navigate this trade-off,
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Table 2: Image classification on CIFAR-100
and ImageNet-1K. Comparing SAC+AdamW with
adaptive LR optimizers upon various architectures
that are trained from scratch and evaluated by top-1
accuracy (%)↑, bold, (underline) denote the best
and second results, while green types denote the
performance gains↑ upon AdamW baseline.

Optimizer CIFAR-100 ImageNet-1K
DeiT-S Swin-T CNX-T CA-S12 R-50 DeiT-S

AdamW 72.15 81.30 83.52 83.60 79.88 80.38
NAdam 72.75 81.80 83.06 82.83 78.16 78.26
AdamP 71.55 80.91 84.47 83.40 79.83 79.71
Adan 76.33 83.35 84.65 84.89 79.79 80.81
AdaFactor 74.02 80.36 82.82 82.36 79.71 79.98
AdaBelief 70.66 80.98 83.31 83.56 79.48 75.32
RAdam 72.41 79.84 82.18 82.35 77.96 78.54
LAMB 75.39 83.47 84.13 83.74 79.84 80.23
LION 74.57 81.84 82.29 79.59 77.36 78.78
Sophia 71.47 80.61 83.76 82.96 79.32 79.65
SAC+AdamW 76.05 83.43 84.58 84.58 80.12 80.87
∆ Gains +3.90 +2.13 +1.06 +0.98 +0.24 +0.49

Table 3: Long-sequence modeling with Gated
DeltaNet variants of 1.3B on FineWeb-Edu
dataset (100B). Perplexity (PPL↓) on Wiki-
text and LAMBDADA datasets, and zero-shot
top-1 accuracy (%)↑ on commonsense reason-
ing datasets are reported, where SAC+AdamW
shows consistent performance improvements.

Task Metric Gated DeltaNet Gated DeltaNet-H1
AdamW Muon SAC AdamW Muon SAC

Wiki. PPL↓ 16.42 16.31 15.95 16.07 15.98 15.70
LMB. 12.17 12.12 12.03 12.12 12.08 11.98
LMB. 46.65 46.75 46.87 47.73 47.21 48.03
PIQA 72.25 72.38 72.45 72.57 72.60 72.65
Hella. 55.76 55.82 56.01 56.53 56.64 56.78
Wino. Acc.↑ 57.45 57.61 57.80 58.40 58.39 58.51
ARC-E 71.21 71.25 71.36 71.75 71.92 72.13
ARC-C 38.39 38.44 38.52 40.10 40.25 40.28
SIQA 40.63 40.70 40.85 41.40 41.35 41.62
BoolQ 60.24 60.36 61.29 63.21 63.28 63.31
AVG. Acc.↑ 55.32 55.41 55.64 56.46 56.46 56.66
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Figure 4: Validation loss curve of LLaMA 3B
pre-trained on C4, where both SAC+AdamW
with long (120K) and short (80K) training bud-
gets show better performances and faster con-
vergences than AdamW and the recent Muon.

Table 4: Pre-training LLaMA 3B on C4 dataset for
150K iterations with validation perplexity (PPL), op-
timization memory (weights and optimization states),
and average running times of the optimization step
are reported. Bold, green, and red types denote the
best results, performance gains, and throughput de-
creases compared to the baselines.

Optimizer Memory Time 40K 80K 120K 160K
AdamW 10.2G 0.203s 16.97 14.45 13.51 13.45
Adam-mini 5.2G 0.249s 20.61 15.07 14.43 14.26
Muon 5.2G 1.023s 16.91 14.46 13.5 13.44
APOLLO 5.2G 0.240s 17.62 14.59 14.36 13.81
SAC+Adam-mini 5.2G 0.251s 16.58 13.67 13.15 12.92
∆Gains +0G +0.002 -4.03 -1.40 -1.28 -1.34
SAC+AdamW 10.2G 0.235s 14.73 12.73 12.02 12.00
∆Gains +0G +0.032 -2.24 -1.72 -1.49 -1.45

enhancing base optimizers to improve performance with a lower time cost than MARS (lower 0.69
Mem (G) and 0.0227 time (s) on LLaMA 130M). Moreover, SAC can be aggregated with different
optimizers to achieve a trade-off between performance and cost for specific tasks. e.g., SAC+AdamW
achieves the 16.16 PPL with no extra memory, which is more efficient than MARS+AdamW.

Long Sequence Modeling Pre-training on C4 Benchmark. For fair comparison, we follow Gated
DeltaNet (GDN) (Yang et al., 2025) to train the pure GRN and the hybrid variant (H1) of GRN
and Sliding-window Attention (H1) modules under identical conditions with 1.3B parameters on
100B tokens sampled from the FineWeb-Edu dataset. We follow the default optimization setups,
i.e., AdamW optimizer with a peak learning rate of 4e-4, a weight decay of 0.1, and the epsilon of
1e-15. The learning rate follows a cosine annealing schedule with a 1B token warm-up period and a
batch size of 0.5M tokens. As shown in Table 3, SAC consistently improves the pre-training PPL and
zero-shot accuracy of AdamW and Muon on CS reasoning datasets. View Appendix A for details.

Image Classification with Vision Architectures. Following BOCB benchmarks (Li et al., 2024b),
we verify the generalization abilities of the SAC wrapper with typical vision backbones on CIFAR-100
and ImageNet-1K with 200 and 300 epochs of training with advanced setups (Wightman et al., 2021).
The benchmarked architectures include CNNs (ResNet-50 (He et al., 2016) and ConvNeXt-T (Liu
et al., 2022)), Transformers (DeiT-S (Touvron et al., 2021) and Swin-T (Liu et al., 2021)), hybrid
model (CAFormer-S12 (Yu et al., 2024)), which are shown in Table 2 with abbreviations of model
names. It provides strong evidence that SAC+AdamW could be migrated to heterogeneous networks
by applying the architectural constraints at the macro-design levels.

PEFT on Commonsense Reasoning. Following LLM-Adapters, we assess SAC in CS tasks with
top-1 accuracy and GPU memory, where LLaMA-7B is fine-tuned by AdamW+LoRA (r = 32) on a
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Table 5: LLaMA-7B PEFT on commonsense reasoning datasets with top-1 accuracy (%) ↑, where
LoRA+SAC is compared against PEFT baselines and memory-efficient optimizers, bold and green
types denote the best results and performance gains↑ compared to the LoRA baseline.
Optimizer PEFT Params. Memory BoolQ PIQA SIQA HellaS. WinoG. ARC-E ARC-C OBQA Average
AdamW Prefix low-rank 0.05G 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
AdamW Series low-rank 0.42G 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8
AdamW Parallel low-rank 1.49G 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.3
AdamW LoRA low-rank 0.35G 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
AdamW DoRA low-rank 0.26G 69.7 83.4 78.6 87.2 81.0 81.9 66.2 79.2 78.4
AdamW Fira low-rank 0.26G 69.4 82.6 78.0 76.8 81.2 82.2 64.4 80.8 76.9
GaLore − full-rank 0.26G 69.5 82.0 75.1 32.2 18.0 80.7 65.8 78.0 62.7
APOLLO (SVD) − full-rank 0.37G 69.4 82.2 78.7 68.6 80.6 81.8 66.2 79.9 75.9
SGG+AdamW LoRA low-rank 0.35G 70.3 83.6 78.8 81.7 80.9 81.5 65.3 79.0 77.6
SAC+AdamW LoRA low-rank 0.35G 70.5 83.7 78.5 81.6 81.1 81.7 65.4 79.3 77.7
∆Gains +0G 1.6 3.0 1.1 3.5 2.3 3.9 4.1 4.5 3.0

Table 6: Full Comparison Results on LLaVA-v1.5 7B Benchmark. Compared with their
counterparts, top-1 accuracy (%) ↑ is reported. AVG is the average result of the nine benchmarks,
except for MME. Green types denote the performance gains↑ of SAC over baselines.

Optimizer Image Question Answering Benchmarks AVG. Gain
VQAv2 GQA VizWiz SciVQAI TextVQA MME MMBench MMBenchCN POPE SEEDI

AdamW 78.5 62.0 50.0 66.8 58.2 1510.7 64.3 58.3 85.8 66.2 65.56 −
Adafactor 79.29 62.7 48.15 69.76 57.1 1462.5 66.15 60.39 86.11 66.79 66.27 +0.71
LAMB 71.78 51.0 45.54 66.19 50.81 1309.99 54.03 49.48 82.76 55.64 58.58 -6.98
RAdam 79.15 62.49 51.92 69.46 57.77 1475.23 66.4 61.25 86.24 67.27 66.88 +1.32
NAdam 79.2 62.53 48.77 69.16 57.6 1467.68 66.49 60.99 86.10 66.59 66.38 +0.82
Adan 78.77 62.17 48.39 70.3 57.74 1491.08 66.06 60.22 86.08 66.39 66.23 +0.67

Shampoo (Muon) 79.34 62.67 50.34 69.06 57.71 1461.7 67.1 59.87 85.94 67.01 66.56 +1.0
SOAP 79.36 62.51 47.85 69.71 57.98 1475.09 66.58 60.13 86.24 67.43 66.42 +0.86
Sophia 78.29 61.48 49.8 69.56 56.44 1476.13 66.75 60.13 85.87 65.49 65.98 +0.42
LION 78.98 62.28 48.81 69.91 56.7 1517.03 66.66 60.39 86.52 66.46 66.30 +0.74
CAME 78.62 62.24 45.32 67.58 52.86 1419.53 64.69 52.14 86.33 65.99 63.97 -1.59
SGD 74.55 56.29 40.65 68.27 53.72 1358.18 60.22 53.09 84.11 60.9 61.31 -4.25

MARS+AdamW 79.25 62.82 49.24 69.11 56.43 1451.05 66.75 59.45 86.14 67.46 66.29 +0.73
MARS+Shampoo 78.43 62.48 48.63 69.01 55.91 1426.37 66.88 59.86 85.9 67.45 66.06 +0.5
SGG+AdamW 79.31 62.65 49.91 69.76 57.61 1462.69 66.32 60.48 85.92 67.18 66.57 +1.01
SGG+Adafactor 79.2 62.78 50.63 69.71 57.32 1445.5 66.24 60.74 85.91 66.26 66.53 +0.97
SGG+Shampoo 79.36 62.79 50.56 69.26 57.67 1451.57 66.06 59.27 86.27 67.38 66.51 +0.95
SAC+AdamW 79.34 62.69 51.38 69.11 57.44 1480.05 66.4 60.99 86.53 67.19 66.79 +1.23
SAC+Shampoo 79.35 62.7 50.74 69.41 58.0 1493.1 66.49 61.15 86.35 67.45 66.85 +1.29

unified training dataset, followed by evaluation on each specific subset. As shown in Table 5, SAC
improves LoRA by an average of +2.9%, with up to +4.2% gains on specific tasks like OBQA. It
matches or surpasses PEFT baselines, e.g., Prefix (Li & Liang, 2021), Series(Houlsby et al., 2019),
and Parallel (He et al., 2021), and more recent DoRA, GaLore, and Fira (Chen et al., 2024). Please
view Table 5 and Appendix 5 for more details.

Comparison Results with MLLMs Following the supervised fine-tuning setting of LLaVA-v1.5-
7B. We use a pretrained Vicuna-v1.5-7B (Chiang et al., 2023) as decoder, a pretrained CLIP (Radford
et al., 2021) as vision encoder, and a pretrained 2 ×MLP for aligning the visual to text. We choose
some mainstream optimizers as the baseline. The results in Table 6 show that SAC boosts AdamW
by +1.23% on average, and gains +1.29% on Muon optimizer. Please view Appendix A for details.

3.3 ABLATION STUDIES Table 7: Ablation of different
granularity configurations.

Configuration 130M↓ 350M↓
P+B 21.92 16.78
P+L 22.03 17.12
P+L+B 21.85 16.16
G+L+B 22.62 16.66
P+G+L+B 21.68 16.05

Then, we further analyze the key designs of SAC with the ex-
perimental setup on C4, where P, L, and B denote param-wise,
layer-wise, and block-wise learning rates, respectively.

Granularity ablation. The full hierarchy (group + layer + block)
achieves the best PPL of 21.38 (130M) and 16.41 (350M) with a
small but consistent edge over layer+block in Table 7, indicating a modest yet reliable gain from the
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global controller. Removing block heterogeneity (layer-only) hurts (22.03/17.12); block-only helps
(21.63/16.78) but still trails layer+block. Thus, block-wise allocation drives most gains; layer-wise
equalization is synergistic; a lightweight group term stabilizes at scale.

Table 8: Ablation of statistics for com-
puting scale factors.

Statistics for SAC 130M↓ 350M↓
MAD (median abs. dev.) 21.38 16.41
Huber scale (δ = 1) +0.07 +0.04
IQR (Q3–Q1) +0.11 +0.06
Mean absolute deviation +0.16 +0.08
L1 norm (per-block) +0.20 +0.11
Std. deviation +0.29 +0.22
L2 norm (per-block RMS) +0.41 +0.37
Variance +0.77 +0.64
Max absolute (per-block) +0.94 +0.80

Dispersion statistic. MAD (21.38/16.41) is the best choice
verified in Table 8. As robustness to heavy tails decreases,
PPL worsens: Huber/IQR (small penalties), mean-abs/L1
(larger), and std/L2–RMS/variance/max-abs (worst, up to
+0.94/+0.80). This monotonic trend supports a rule of thumb:
median-centered, robust dispersion preserves cross-layer
normalization and within-layer budgets; outlier-amplifying
measures mis-scale updates and harm coordination.

4 RELATED WORK

Modern LLM Optimizers. Modern LLM training confronts an “impossible quadrangle” balancing
performance, memory, parallelism, theoretical compute. Existing optimizers trade these dimensions:
curvature-aware methods (Muon (Jordan et al.), MARS (Yuan et al., 2024)) speed convergence but
increase FLOPs and synchronization; memory-reduced approaches (Adafactor (Shazeer & Stern,
2018), GaLore (Zhao et al., 2024a), APOLLO (Zhu et al., 2024a)) save memory but risk accuracy
or parallelism; quantized/small-state variants (BAdam (Luo et al., 2025), Adam-mini (Zhang et al.,
2024), LISA (Pan et al., 2025)) improve throughput at potential accuracy cost. Scaling laws further
reveal non-monotonic optimal hyperparameters, highlighting the brittleness of static settings (Zhao
et al., 2024b; Zhang et al., 2025; Li et al., 2024a). Recent stabilizers (Huang et al., 2025; Luo
et al., 2023) mitigate training drift via momentum resets or confidence cues. SAC addresses this by
incorporating architecture-aware, adaptive constraints per-level, achieving a robust balance across the
quadrangle while maintaining drop-in simplicity.

Traditional Adam-Style Optimizers. Classical adaptive methods like Adam follow a simple recipe:
maintain exponential moving averages of past gradients to set per-parameter learning rates based on
temporal constraints (Kingma & Ba, 2015). Variants differ mainly in the signal used to govern the step
size, including gradient variance (Adam), gradient differences (e.g., AdaBelief (Zhuang et al., 2020),
Adan (Xie et al., 2023)), or sign-based schemes operate on quantized directions with momentum
(e.g., SignSGD (Bernstein et al., 2018), Lion (Chen et al., 2023)). These designs yield a low memory
footprint, stable plug-and-play behavior, and broad applicability without intricate controller stacks (Li
et al., 2024b). However, the core limitation lies in their reliance on the temporal dimension. By
treating parameters as a flat, independent set, they ignore models’ rich structure, i.e., the hierarchy of
layers, blocks, and functional components. We thus propose augmenting temporal constraint with
an orthogonal set of architectural constraints, which retains the simplicity of Adam-style parameter
update while improving efficiency and final accuracy at scale.

5 CONCLUSION

Contribution. This work presents Scaling with Architectural Constraints (SAC), a fresh optimiza-
tion framework that leverages the inherent architectural hierarchy of deep neural networks to address
the optimizer quadrilemma of performance, GPU memory, computational efficiency, and parallel
scalability. By imposing constraints at block and layer levels, SAC achieves a globally coordinated
training process. Extensive evaluations on language, vision, and multimodal benchmarks show that
SAC consistently outperforms strong baselines, delivering improved convergence and performance.
These show that architecture-aware optimization could be helpful for training complex deep models.

Limitation and Future Work. Despite its promising performance, SAC still has several limitations
for future research. Key directions include moving beyond the current hand-designed constraints
to methods that learn them dynamically, for example, via meta-learning. Moreover, a rigorous
theoretical analysis would be beneficial to understand the mechanisms, particularly their effects on
model conditioning. Finally, exploring the integration of SAC with more recent optimizers, such as
Lion or Muon, could unlock further performance gains and push the frontier of large model training.
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DECLARATION OF LLM USAGE

We use the Large Language Models (LLMs) for this paper to serve one purpose: to aid and polish
the paper writing. We use the LLMs in a very limited capacity, restricted to minor editing of
grammar, phrasing, and readability. We do not involve the LLMs in designing the method, developing
theoretical results, or conducting experiments.

A IMPLEMENTATION DETAILS

We provide details of task backgrounds, datasets, training & evaluation settings, and experiment
results with more baselines for various LLM/MLLM downstream tasks (Wang, 2018; Hu et al., 2023;
Liu et al., 2024b).

A.1 LLM PRE-TRAINING ON C4

We conduct extensive pre-training on LLaMA-based language models using the C4 corpus—a
rigorously cleaned derivative of Common Crawl that has become a standard benchmark for large-
scale pre-training and word-representation learning. To mimic real-world training conditions, we
adopt a no-repeat sampling protocol over a large data volume and scale model sizes up to 7B
parameters. We also summarize the LLaMA architecture and the pre-training hyperparameters.
Unless noted otherwise, hyperparameters are held fixed across sizes: maximum sequence length
of 256 tokens and a token-batch of 131,072 tokens (≈ 131k; 512 samples ×256 tokens). For all
optimizers, we warm up the learning rate for the first 10% of steps and then apply cosine annealing
down to 10% of the initial rate.

For learning-rate selection, we run a systematic sweep on models between 60M and 1B parameters
over {1e−2, 2e−2, 1e−3, 3e−3}, choosing the best setting by validation perplexity. Notably, SAC
exhibits strong hyperparameter robustness, maintaining competitive performance across sizes under
a single learning rate. The complete results of the C4 pretraining are reported in Table 1. We
include popular baselines from prior work—Adam, Adam-mini (Zhang et al., 2024), APOLLO (Zhu
et al., 2024a), LoRA (Hu et al., 2021)—and we reproduce additional optimizers under the same
experimental setup, including Adafactor (Shazeer & Stern, 2018), NAdam (Reddi et al., 2018),
RAdam (Liu et al., 2020), Adan (Xie et al., 2023), LAMB (You et al., 2020), LION (Chen et al.,
2023), CAME (Luo et al., 2023), and Muon (Jordan et al.). Looking ahead, the observed stability of
SAC suggests lower tuning overhead as models scale beyond 7B and provides a practical recipe for
web-scale pre-training under tight compute or data-throughput constraints.

Table A1: Details of the hyperparameters for the included optimizers and experiment settings.
Method AdamW Shampoo

Modules and datasets
LLM Vicuan-v1.5-7B

Vision encoder CLIP-L-336px
Connector 2×MLP

Pretrain data LCS-558K
SFT data llava-v1.5-mix665k

Basic SFT settings
Learning rate 2e−5 2e−5

Batch size 64 64
Betas (0.9, 0.999) (0.9, 0.999)

Epsilon 1e−8 1e−8

Weight decay ✗ ✗
LR scheduler Cosine Cosine
Warmup ratio 0.03 0.03
Scale Bound (0.5, 1.0) (0.1, 10.0)
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Table A2: Detailed hyperparameters of various optimizers for C4 benchmark.
Optimizer β1 β2 β3 Eps. 60M 130M 350M 1B 3B
APOLLO 0.9 0.99 − 1e-6 2e-2 1e-2 1e-2 1e-2 1e-2
Adabelief 0.9 0.999 − 1e-12 1e-2 1e-2 1e-2 1e-3 1e-3
Adafactor 0.9 − − − 2e-3 2e-3 1e-3 5e-4 5e-4
AdamW 0.9 0.99 − 1e-8 3e-3 1e-3 1e-3 5e-4 5e-4

Adam8bit 0.9 0.99 − 1e-8 3e-3 1e-3 5e-4 5e-4 5e-4
Adam-mini 0.9 0.99 − 1e-8 3e-3 1e-3 5e-4 5e-4 1e-3

Adamp 0.9 0.98 − 1e-8 5e-3 1e-3 1e-3 5e-4 5e-4
Adan 0.9 0.92 0.99 1e-8 3e-3 3e-3 3e-3 1e-3 1e-3

CAME 0.9 0.98 − 1e-6 5e-3 2e-3 1e-3 5e-4 5e-4
LAMB 0.9 0.99 − 1e-6 5e-3 3e-3 1e-3 1e-3 1e-3
Lion 0.9 0.98 − − 2e-4 2e-4 2e-4 1e-4 1e-4

MARS+AdamW 0.95 0.99 − 1e-8 5e-3 5e-3 5e-3 1e-3 1e-3
MARS+Lion 0.9 0.98 − 1e-8 5e-4 2e-4 2e-4 1e-4 1e-4

MARS+Shampoo 0.95 0.99 − 1e-8 5e-2 2e-2 1e-2 1e-2 1e-2
Muon 0.9 0.95 − 1e-8 4e-3 2e-3 1e-3 1e-3 1e-3
Nadam 0.9 0.99 − 1e-8 1e-3 1e-3 1e-3 5e-4 5e-4
Prodigy 0.9 0.95 − 1e-8 5e-1 1e-0 2e-0 2e-0 1e-0
Radam 0.9 0.99 − 1e-8 3e-3 1e-3 1e-3 5e-4 5e-4
SOAP 0.9 0.95 − 1e-8 3e-3 2e-3 1e-3 5e-4 5e-4

Shampoo 0.9 0.999 − 1e-8 5e-2 5e-2 2e-2 1e-2 1e-2
Sophia 0.9 0.99 − 1e-8 2e-4 2e-4 2e-4 1e-4 1e-4

SGG+AdamW 0.9 0.99 0.9 1e-8 3e-3 1e-3 1e-3 1e-3 1e-3
SAC+Adam-mini 0.9 0.99 − 1e-8 1e-2 5e-3 5e-3 5e-3 5e-3

SAC+AdamW 0.9 0.99 − 1e-8 1e-2 1e-2 1e-2 1e-2 1e-2
SAC+Shampoo 0.9 0.999 − 1e-8 5e-2 5e-2 3e-2 1e-2 1e-2

A.2 LONG SEQUENCE PRE-TRAINING

We follow Gu & Dao (2023); Yang et al. (2025) for the standard long sequence modeling setups with
1.3B parameters. We adopt the 100B tokens sampled from the FineWeb-Edu dataset Penedo et al.
(2024). The standard optimization setup is using the AdamW optimizer with a peak learning rate of
4e-4, weight decay of 0.1, and gradient clipping of 1.0. We employed the training setting with the
tuned learning rate for different optimizers. A cosine annealing schedule with a 1B token warm-up
period and a batch size of 0.5M tokens is used. All models employ the LLaMA 2 tokenizer with a
vocabulary size of 32,000.

A.3 IMAGE CLASSIFICATION

We follow BOCB benchmarks (Li et al., 2024b) for the fair comparison of popular optimizers on
image classification tasks. We apply consistent setups for image classification tasks on CIFAR-
100 (Krizhevsky et al., 2009) and ImageNet-1K (Krizhevsky et al., 2012) based on OpenMixup (Li
et al., 2022b) codebase with 1 or 8 Nvidia A100 GPUs. Following the widely used modern training
recipes, we consider three regular training settings for ImageNet-1K classification experiments for
various backbones and optimizers, which could be transplanted to the proposed CIFAR-100 bench-
marks. ResNet-50 is trained by the RSB-A2 setup for 300 epochs with advanced data augmentations
in DeiT variants (Touvron et al., 2021), while DeiT-S is optimized with the standard DeiT training
configuration. CIFAR-100 benchmarks adopt similar settings to the ImageNet-1K.

A.4 LLM PEFT WITH COMMONSENSE REASONING TASKS

Following LLM-Adaptor (Hu et al., 2023), we evaluate eight Commonsense Reasoning tasks with
top-1 accuracy (%) and GPU memory consumption, including BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2021), ARC-Easy (ARC-E) and ARC-Challenge (ARC-C) (Clark et al., 2018), and OBQA (Mihaylov
et al., 2018). As SFT setups in LLM-Adaptor, we combine the training datasets from all sub-tasks to
fine-tune the pre-trained LLaMA-7B for 3 epochs using the AdamW optimizer with a basic learning
rate of 1e-4, a batch size of 32, and the rank r = 32. Then, we evaluate each sub-task individually
using its respective testing dataset. Three classical PEFT baselines, Prefix-tuning (Li & Liang, 2021),
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Table A3: Details of the hyperparameters for the included optimizers and experiment settings. The
N/A denotes that without this hyperparameter, the Defaults denotes other parameters set as
defaults, M denotes the momentum, the params1D denotes the 1-dimensional parameters, Ic and
ncdenotes cluster iteration and number of SGG, and SB denotes scale bound.

Optimizer Lr Betas Epsilon Weight decay Others params
AdamW 2e-5 (0.9, 0.999) 1e-8 N/A Defaults
Adafactor 2e-5 (0.9, 0.999) 1e-8 N/A Defaults
LAMB 2e-4 (0.9, 0.999) 1e-8 N/A Defaults
RAdam 2e-5 (0.9, 0.999) 1e-8 N/A Defaults
NAdam 2e-5 (0.9, 0.999) 1e-8 N/A Defaults
Adan 2e-5 (0.98, 0.92, 0.99) 1e-8 N/A Defaults

Shampoo 2e-5 (0.9, 0.999) 1e-8 N/A Defaults
SOAP 2e-5 (0.9, 0.999) 1e-8 N/A Defaults
Sophia 2e-6 (0.9, 0.999) 1e-8 N/A Defaults
LION 2e-6 (0.9, 0.98) 1e-8 N/A Defaults
CAME 4e-5 (0.9, 0.999) 1e-8 N/A Defaults
SGD 1e-5 N/A N/A 1e-5 M=0.99

MARS+AdamW 2e-5 (0.9, 0.999) 1e-8 N/A params1D: AdamW defaults
MARS+Shampoo 1e-4 (0.9, 0.999) 1e-8 N/A params1D: Shampoo defaults
SGG+AdamW 2e-5 (0.9, 0.999) 1e-8 N/A Ic=1k, nc=5, beta3=0.9
SGD+Adafactor 2e-5 (0.9, 0.999) 1e-8 N/A Ic=1k, nc=3, beta3=0.95
SGD+Shampoo 2e-5 (0.9, 0.999) 1e-8 N/A Ic=1k, nc=5, beta3=0.9, SB=(0.5, 10.0)

SAC+AdamW 2e-5 (0.9, 0.999) 1e-8 N/A SB=(0.5, 1.0)
SAC+Shampoo 2e-5 (0.9, 0.999) 1e-8 N/A SB=(0.1, 10.0)

Series Adapter (Series) (Houlsby et al., 2019), and Parallel Adapter (Parallel) (He et al., 2021), and
three popular PEFT methods, DoRA (Liu et al., 2024d), GaLore (Zhao et al., 2024a), and Fira (Chen
et al., 2024), are compared in Table 5. Our SAC consistently improves eight sub-tasks over LoRA
without extra GPU memory, achieving competitive performances with well-designed PEFT methods
with LoRA+SAC.

A.5 MLLM SFT WITH LLAVA VARIANTS

To evaluate the generalization of the SAC-equipped optimizer, we conduct supervised fine-tuning
on multiple LLaVA variants (Liu et al., 2024c)—i.e., LLaVA-v1.5-7B, LLaVA-LoRA, and LLaVA-
v1.3—and compare against mainstream multimodal LLMs, e.g., BLIP (Li et al., 2022a), Instruct-
BLIP (Dai et al., 2023), Qwen-VL (Bai et al., 2023), Qwen-VL-Chat, mPLUG-Owl2 (Ye et al.,
2024), as well as LLaVA-family variants: Tiny-LLaVA (Zhou et al., 2024), MoE-LLaVA (Lin et al.,
2024), LLaVA-Phi (Zhu et al., 2024b), LLaVA-NeXT (Liu et al., 2024b), LLaVA-MOD (Shu et al.,
2024), and LLaVA-KD-2B (Cai et al., 2024). Setup and settings. Following LLaVA-v1.5, we
use a pre-trained Vicuna-v1.5-7B (Chiang et al., 2023) as the language decoder. A pre-trained
2×MLP serves as the connector to align visual tokens to text tokens; it is trained for one epoch on the
LCS-558K dataset. For the visual encoder, we adopt CLIP (Radford et al., 2021) to extract image
representations. We validate three optimizers—AdamW, Adafactor, and LAMB—and additionally
reproduce results for Muon (Jordan et al.) and MARS (Yuan et al., 2024). Optimizer hyperparameters
and training details are summarized in Table A3.

Supervised fine-tuning. We freeze the visual encoder and update the connector and LLM parameters.
For full-rank SFT, we use a learning rate of 2e−5, a batch size of 64, and train for one epoch on the
llava-v1.5-mix665k dataset. To assess SAC under parameter- and memory-efficient regimes,
we further evaluate Low-Rank Adaptation (LoRA) and 8-bit Quantized LoRA (Q-LoRA (Dettmers
et al., 2024)). For both LoRA and Q-LoRA, we set the rank r = 128, scaling factor α = 256, batch
size 64, and train for one epoch; these configurations are based on LLaVA-v1.5.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 Modern LLM Optimizer (Inner Optimizer & Wrapper)
Require: Learning rate η, decay rates β1, β2, constant ε, weight decay λ, parameters θ, gradients G
Ensure: Updated parameters θ

1: Initialize: m0 ← 0, v0 ← 0, t← 0
2: Define groups: Phidden (2D matrices), Pother (scalars, vectors)

3: function MODERN LLM OPT(θ,G, η, β1, β2, ε, λ)
4: t← t+ 1 ▷ Timestep increment

Wrapper: Gradient Adjustment
5: for θi ∈ θ do
6: G′

i ← Gi ▷ Initialize with raw gradient
7: if θi ∈ Phidden then
8: G′

i ← RefineGradient(Gi, θi, η) ▷ Apply gradient refinement for 2D weights
9: end if

Inner Optimizer: Parameter Update (e.g., AdamW)
10: mi ← β1mi + (1− β1)G

′
i

11: vi ← β2vi + (1− β2)(G
′
i)

2

12: m̂i ← mi/(1− βt
1)

13: v̂i ← vi/(1− βt
2)

14: θi ← θi − η · m̂i/(
√
v̂i + ε)− η · λ · θi

15: end for
16: return θ ▷ Return updated parameters
17: end function
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