
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS CONSTRAINT-AWARE LEARNING FOR RE-
SOURCE ALLOCATION IN NFV-ENABLED NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Virtual Network Embedding (VNE) is a challenging combinatorial optimization
problem that refers to resource allocation associated with hard and multifaceted
constraints in network function virtualization (NFV). Existing works for VNE
struggle to handle such complex constraints, leading to compromised system per-
formance and stability. In this paper, we propose a CONstraint-Aware Learning
framework for VNE, named CONAL, to achieve efficient constraint management.
Concretely, we formulate the VNE problem as a constrained Markov decision pro-
cess with violation tolerance. This modeling approach aims to improve both re-
source utilization and solution feasibility by precisely evaluating solution quality
and the degree of constraint violation. We also propose a reachability-guided op-
timization with an adaptive reachability budget method that dynamically assigns
budget values. This method achieves persistent zero violation to guarantee the
feasibility of VNE solutions and more stable policy optimization by handling in-
stances without any feasible solution. Furthermore, we propose a constraint-aware
graph representation method to efficiently learn cross-graph relations and con-
strained path connectivity in VNE. Finally, extensive experimental results demon-
strate the superiority of our proposed method over state-of-the-art baselines. Our
code is available at https://github.com/GeminiLight/conal-vne.

1 INTRODUCTION

Network Function Virtualization (NFV) is a promising technique that facilitates the deployment
of multiple Virtual Networks (VNs) tailored to user network demands within a shared Physical
Network (PN) infrastructure (Yi et al., 2018). It is vital for domains such as cloud computing and
edge computing, where dynamic and efficient resource management is essential (Zhuang et al.,
2020). Virtual Network Embedding (VNE), a fundamental resource allocation problem in NFV, is
critical for maintaining high Quality of Service (QoS). This process, involving the mapping of VNs
to PNs, represents a significant challenge. It is an NP-hard Combinatorial Optimization Problem
(COP) characterized by intricate and hard constraints (Rost & Schmid, 2020).

Traditional solutions to VNE range from exact to heuristic methods often struggle with either exces-
sive computation times or limited performance in complex network scenarios (Zhang et al., 2018;
Dehury & Sahoo, 2019; Fan et al., 2023). Recently, Reinforcement Learning (RL) has been a poten-
tial direction for VNE, which learns effective solving policies without the need of labeled datasets. UPDATE
Typically, existing RL-based methods solve the VNE problem as a Markov Decision Process (MDP)
(Haeri & Trajković, 2017; Yan et al., 2020; Zhang et al., 2023b). They build feature extractors with
various neural networks, and then learn policies that iteratively select a physical node to place each
virtual node until the solution is completed or constraints are violated. However, in the RL frame-
work, due to the hard constraints of VNE, a persistent zero-violation is required at each decision
timestep. This strict adherence to constraints often results in numerous failure samples where con-
straints are violated. For failure samples, existing studies (e.g., Yao et al. (2020); Zhang et al. (2022))
consider them as noisy and only train with data that violate no constraint; or others, like Yan et al.
(2020) and He et al. (2023a), consider fixed penalties to them and discourage violations.

Although these RL-based algorithms (Zhang et al., 2022; He et al., 2023a; Zhang et al., 2023b) have
shown efficacy, they still suffer from several significant problems in handling complex constraints of
VNE. Firstly, ignoring failure samples makes policies prone to violating critical constraints, while
employing fixed penalties in reward signals does not accurately reflect the severity of constraint vi-
olations. Thus, these methods underestimate valuable sample information and hamper the learning
of constraint-aware policies, which results in low feasibility guarantees. Secondly, more seriously,

1

https://github.com/GeminiLight/conal-vne

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

it is hard to avoid to encounter unsolvable instances whose feasible sets are empty in practical sce-
narios, due to insufficient physical resource availability or excessive virtual resource requests. It is
impractical to distinguish solvable and unsolvable instances, since checking the instance solvability
of an NP-hard problem is time-consuming. Failure samples caused by unsolvable instances fur-
ther complicate the constraint learning process, and negatively impact the stability of training and
policy performance. We have conducted a preliminary study to highlight the negative impact of
unsolvable instances on training, please see Appendix C. Thirdly, VNE constraints are complex and
multifaceted, involving cross-graph status interactions and bandwidth-constrained path connectivity
assessments, which are not adequately captured by the feature extractors used in current studies. For
a more comprehensive discussion on related work, please refer to Appendix A.

To address these challenges, we propose a CONstraint-Aware Learning framework for VNE, named
CONAL, achieving high solution feasibility guarantee and training stability. Concretely, to optimize
performance while enhancing constraint satisfaction, we formulate the VNE problem as Constrained
MDP (CMDP) (Altman, 2021). However, in the process of solution construction, if any constraints
are violated, the process will be early terminated and lead to incomplete solutions. This challenges
precise measurement of both the quality of solutions and the degree of constraint violations. Thus,
we develop a violation-tolerant mapping method to ensure complete solution construction and a
measurement function to precisely evaluate constraint violations. Additionally, to achieve persistent
zero constraint violation required by VNE, we introduce a reachability analysis into the optimization
objective. During training, due to the existence of unsolvable instances whose constraints are impos-
sibly satisfied, we propose an adaptive reachability budget method to make the policy optimization
more stable. It dynamically decides the violations caused by a surrogate policy as budgets based
on the instance’s solvability, rather than always setting budgets to zero. Furthermore, to finely per-
ceive the complex constraints of VNE, we propose a constraint-aware graph representation method
tailored for VNE. Specifically, we design a heterogeneous modeling module for cross-graph status
interactions. We also devise several feasibility-consistency augmentations and utilize contrastive
learning to bring representations under different views close, which enhances the sensitivity of pol-
icy towards path-bandwidth constraints. Our contributions are summarized as follows.

• We propose a new CMDP modeling approach with constraint violation tolerance for VNE,
which precisely evaluate the quality of solution and the degree of constraint violation.

• We present a reachability-guided optimization objective to achieve persistent zero con-
straint violation required by VNE. Further to enhance the stability of policy optimization,
we propose a novel adaptive reachability budget method that dynamically decides budgets.

• We propose a constraint-aware graph representation method tailored for VNE, which con-
sists of a path-bandwidth contrast module with feasibility-consistency augmentations to
perceive connectivity and a heterogeneous modeling module for cross-graph status fusion.

• We conduct extensive experiments in various network scenarios, showing the CONAL’s
superiority on performance, training stability, generalization, scalability and practicability.

2 PROBLEM DEFINITION

System Modeling. In real-world network systems, as illustrated in Figure 1, user network services
are virtualized as VN requests that continuously seek resources from the PN. Each arrived VN
request, along with the current situation of the PN, constitutes an instance I , and we collect all such
instances with a set I. For each instance, I = (Gv,Gp) ∈ I, where the PN Gp and VN Gv are
modeled as undirected graphs, Gp = (Np, Lp) and Gv = (Nv, Lv, ω,ϖ), respectively. Here, Np

and Lp denote the sets of physical nodes and links, indicating servers and their interconnections; Nv

and Lv denote the sets of virtual nodes and links, representing services and their relationships; ω and
ϖ denote the arrival time and lifetime of VN request. We denote C(np) as the computing resource
availability for the physical node np ∈ Np, and B(lp) as the bandwidth resource availability of the
physical link lp ∈ Lp. Besides, C(nv) and B(lv) denote the demands for computing resource by a
virtual node nv ∈ Nv and bandwidth resource by a virtual link lv ∈ Lv . Like most VNE studies (Wu
et al., 2024), we focus mainly on bandwidth attributes in links, the generalizable critical bottleneck
in various network scenarios, ensuring that the proposed method is universal and extensible.

Mapping Process. For each instance I , embedding a VN onto the PN can be defined as a graph
mapping process, denoted fG : Gv → Gp′, where Gp′ is a subgraph of Gp that accommodates

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the VN Gv . This process comprises two sub-processes: node mapping and link mapping, where
intricate hard constraints should be satisfied. Node mapping, fN : nv → np, places each virtual
node nv onto a physical node np, while following the one-to-one placement constraints (i.e., virtual
nodes in the same VN must be placed in different physical nodes and each physical node only
hosts one virtual node at most) and the computing resource availability constraints must be satisfied:
∀nv ∈ Nv, C(nv) ≤ C(np), where np = fN (nv). Link mapping, fL : lv → pp, routes each
virtual link through a physical path pp that connects the physical nodes hosting the two endpoints of
virtual link lv . This process need fulfill bandwidth resource availability constraints: ∀lv ∈ Lv,∀lp ∈
pp,B(lv) ≤ B(lp), where pp = fL(lv). If violating any of these constraints, then the VN request is
rejected. Once embedded, the VN’s occupied resources are released until its lifetime expires.

Arriving VN Requests

PN
Infrastructure

VN

…

VNE Instance

40 10 50

2010

PN Infrastructure

30

20

40

VN Request Physical Server

Service Function

Computing Resource#

VN and its lifetime

Node Mapping

Link Mapping

Bandwidth Resource

Physical Link

Virtual Link
10 20

30

1010

20

10 30

3040

Success

Reject
Success

Online Network System

Figure 1: An brief example of VNE problem. In the network
system, VN requests arrive sequentially at the infrastructure
to require the resources of PN. For the VNE instance, em-
bedding a VN to the PN consists of node and link mapping
processes, while considering intricate and hard constraints.

VNE Objective. To address the ran-
domness of the network systems, same as
most existing works (e.g., Zhang et al.
(2022); He et al. (2023a); Zhang et al.
(2023b)), we aim to learn an optimal map-
ping, fG , that maximizes the resource uti-
lization of each VNE instance. This ob-
jective facilitates long-term resource uti-
lization and request acceptance. Revenue-
to-Consumption (R2C) ratio serves as a
widely used metric to measure the quality
of solution E = fG(I):

R2C(E)=κ · (REV(E)/CONS(E)) , (1)

where κ is a binary variable indicating the
solution’s feasibility; κ = 1 for a feasible solution and κ = 0 otherwise. When the solution is
feasible, REV(E) represents the revenue from the VN, calculated as

∑
nv∈Nv

C(nv)+
∑

lv∈lv
B(lv).

If κ = 1, CONS(E) denotes the resource consumption of PN, calculated as
∑

nv∈Nv
C(nv) +∑

lv∈Lv
(|fL(lv)| × B(lv)). Here, |fL(lv)| quantifies the length of the physical path pp routing the

virtual link lv . See Appendix B for the detailed problem formulation.

3 METHODOLOGY

In this section, we propose the CONstraint-Aware Learning framework to handle complex con-
straints of VNE, named CONAL, illustrated in Figure 2. Initially, we formulate the VNE problem
as a violation-tolerant CMDP, which ensures the acquisition of complete solutions and precise eval-
uation of solution quality and constraint violation (See the green area in Figure 2). Additionally,
we present a reachability-guided optimization objective to ensure persistent constraint satisfaction
while avoiding the over-conservatism of policy, which enhances both the quality and feasibility of
VNE solutions. Further to address the instability of policy optimization caused by instances with
no feasible solution, we propose an adaptive reachability budget method to improve the robustness
of training. This method dynamically decides the value of budgets rather than a fixed zero (See the
pink area in Figure 2). Furthermore, regarding the feature extractor, we propose a constraint-aware
graph representation method to finely perceive the complex constraints of VNE. Concretely, we con-
struct a heterogeneous graph to model the cross-graph status between VN and PN. We also devise
several augmentations that preserve solution feasibility while enhancing the model’s sensitivity of
bandwidth-constrained path connectivity through contrastive learning (See the orange area in Fig-
ure 2). Overall, we build the policy with the constraint-aware graph representation method and train
it with an actor-critic-based RL algorithm to achieve the reachability-guided optimization objective,
where the adaptive reachability budget improves the training stability. We provide the description of
both CONAL’s training and inference process in Algorithm 1 and 2, placed in Appendix E.

3.1 VIOLATION-TOLERANT CMDP FORMULATION.

To optimize resource utilization while guaranteeing solution’s feasibility, we formulate solution
construction of each VNE instance as a CMDP (Altman, 2021). However, VNE’s hard constraints
make constructing complete solutions difficult, hampering the precise assessment of solution quality

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Violation

Instance Environment
with Violation-tolerance

State Transition

!!
initialization

!"

Scheduled Update

Surrogate Policy π′
Instance Violation

caused by π′Adaptive Feasibility Budget

Constraint-aware Graph RepresentationValue
Critic

Network

Violation
Critic

Network

Policy $

State

Constraint-aware Graph Representation

Heterogeneous GATs with Link Feature Encoding

Virtual Link Addition %#

Physical Link Addition %$

&%#

&%$

'#

'$

Representation	$
Action

Probability
Distribution

Reward
Value

Violation
Value

Pa
th

-b
an

dw
id

th
Co

nt
ra

st

Node Mapping Link Mapping Decision-candidate LinkAlready-mapped Link

!&
solution

!'

To-be-placed Virtual Node Candidate Physical Node

Propagation & Aggregation

Reward

Action (sampling and greedy strategy for training and testing, respectively)

Lagrangian
multiplier

Lambda
Network

Solve the instance with greedy strategy

(e.g., timestep !!)

Heterogeneous
Graph

Construction
&%

Figure 2: Overview of the proposed CONAL framework.

and the extent of constraint violations. Thus, we propose a violation-tolerant mapping method to
ensure complete solution construction and customize a measurement function to evaluate violations.

CMDP for VNE. We consider each decision as identifying a proper physical node np for each virtual
node nv until all virtual nodes of VN are placed. Like existing works (Yan et al., 2020; Zhang et al.,
2022; 2023b), due to the large combinatorial space of link mapping process, we incorporate link
mapping into the state transitions, i.e., routing the prepared incident links δ′(nv) of virtual node nv .
Definition 1 (Prepared incident links of virtual node). Let N t

v denote the set of virtual nodes that
have already been placed, and nt

v denote the to-be-placed virtual node at decision timestep t. We
define δ(nt

v) as the set of virtual links incident to nt
v . For each virtual link lv ∈ δ(nt

v), if the link’s
opposite endpoint n′

v is already placed, i.e., n′
v ∈ N t

v , then we include lv in a subset δ′(nt
v). The

subset δ′(nt
v) consists of what we term as the prepared incident links of the virtual node nt

v . These
links are considered prepared because, upon the placement of nt

v , both endpoints of each link in
δ′(nt

v) are placed, necessitating the routing of these links. See Appendix D.1 for an example.

We formulate this sequential decision process as a CMDP, M = ⟨S,A,R,H,C, P, γ⟩, where S
denotes the state space. Each state s (s ∈ S) consists of the real-time embedding status of VN and
PN. A denotes the action space, i.e., the set of physical nodes. P : S × A → S is a state transition
function. For an action at = nt

p to host the current be-placed virtual node nt
v , the environment will

execute the node placing and link routing. nt
v is embeded into the nt

p, and the available resources
of nt

p are updated accordingly. Then, for the prepared incident links δ′(nt
v) of virtual nodes nt

v , we
utilize the k-shortest path algorithm to find physical paths to route them one by one. R : S×A→ R
is a reward function defined as follows. If the solution is completely constructed, we return its R2C
metric as the reward; for the intermediate steps, we set the reward to 0. H : S → R is a violation
function that measures violations of constraints. We separately consider computing and bandwidth
constraint violations in node placement and link routing, denoted HN and HL, respectively. We
define H(s) = max (HN (s) , HL (s)) and allow it negative, which indicates keeping distance from
nodes or links with insufficient resources. C : S → R+ is a cost function calculated as C(s) =
max(H(s), 0). γ : S × A × S → [0, 1) is a discount factor that balances immediate and future
rewards. Next, we describe the violation-tolerant mapping method used in state transition, and
explain the violation measurement functions tailored for H and C.

Violation-tolerant Mapping and Violation Measurement. Any violations of VNE constraints
result in incomplete allocation, which hinders the ability to estimate the final R2C metric and con-
straint violation degree of infeasible solutions. To address this issue, we consider violation tolerance
for both the node mapping and link mapping processes. This tolerance enables us to execute sus-
tainable resource allocation of VNE, despite encountering constraint violations. Concretely, at the
decision timestep t for placing the virtual node nt

v , we generates the action probability distribution
π(· | st) based on state st. If there are physical nodes with insufficient computing resources, we
apply a mask vector that replaces the selection probability of these physical nodes that have insuf-
ficient node resources with 0 to avoid unnecessary constraint violations; but if all physical nodes
are computing resource-insufficient, we also do not modify the action probability distribution; oth-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

erwise, we do nothing. Then, an action at (a physical node nt
p) is selected from this distribution. we

calculate the computing resource violations as ht
N = HN (st+1) = C(nt

v)− C(nt
p).

Subsequently, we route all prepared incident links δ′(nt
v) of virtual node nt

v sequentially. For each
virtual link lv ∈ δ′(nt

v), we use the k-shortest path algorithm to find a set of physical paths. If
there are available paths that do not violate constraints, we select the shortest one that consumes the
least resources. In this case, we consider the violation as HL(lv) = maxlp∈fL(lv)(B(lv) − B(lp)).
However, if all paths violate constraints, we calculate the extent of the constraint violation for each
path. The path with the least amount of violation is then selected to route the virtual link, whose
violation is calculated by HL(lv) =

∑
lp∈fL(lv)

(B(lv)− B(lp)). After δ′(nt
v) are routed, we define

the bandwidth violations as ht
L = HL(st+1) = maxlv∈δ′(nt

v)
HL(lv). During training, we always

set the solution feasibility flag κ to 1 to measure the final R2C metric until the solution is complete.

3.2 REACHABILITY-GUIDED OPTIMIZATION WITH ADAPTIVE BUDGET

Standard CMDPs focus on optimizing discounted cumulative costs to meet long-term safety, which
fails to meet the consistent satisfaction requirements of VNE in all states (Liu et al., 2021). To
guarantee the solution feasibility of VNE, we consider reachability analysis into CMDP to achieve
state-wise zero-violation optimization (Yu et al., 2022). This objective significantly expands the
feasible set of policies and mitigates the conservativeness of the policy. Additionally, to enhance
the stability of policy optimization, we propose a novel adaptive reachability budget method that
dynamically decides budgets, rather than always zero budget for unsolvable instances. For policy
training, we leverage the Lagrange version of the PPO algorithm (Ray et al., 2019).

Reachability-guided Optimization Objective (REACH). In each decision timestep t, based on
state st, we play an action at ∼ π(·|st). Then, the network system transits into the next state ac-
cording to st+1 ∼ P (st, at), and feedback a reward rt = R(at, st), a violation ht = H(st+1) and a
cost ct = C(st+1). In each episode, we collect all sampled states and actions with a trajectory mem-
ory τ = (so, a0, s1, a1, · · ·). Due to hard constraints of VNE, we should achieve state-wise zero
violations to ensure the solution’s feasibility. An intuitive way is to maximize the expected cumula-
tive rewards Jr(π) = Eτ∼π[

∑
t γ

tR(st, at))], while restricting expected cumulative costs Jc(π) =
Eτ∼π[

∑
t γ

tC(st)] below zero at each decision state, i.e., maxπ Eτ∼π [Jr(π)] , s.t. Eτ∼π [Jc(π)] ≤
0. Existing safe RL methods learn the state and cost value functions, V π

r (s) and V π
c (s), that estimate

the cumulative rewards and costs from state s, to solve this problem as follows.

max
π

Es [V
π
r (s)] , s.t. Es [V

π
c (s)] ≤ 0, (2)

However, since the non-negativity of C, the optimization focuses on constraint satisfaction rather
than reward maximization, which causes a highly conservative policy. Thus, we consider the
Hamilton-Jacobi (HJ) reachability analysis (Bansal et al., 2017) into the CMDP to obtain a pol-
icy with the best possible performance and least violations, improving both quality and feasibility
of VNE solutions. We need the following concepts to further present our optimization objective.
Definition 2 (Feasible value function). The feasible value function of a specific policy π measures
the worst long-term constraint violation, defined as V π

h (s) ≜ maxt∈N H (st | s0 = s). Through op-
timizing π, the optimal feasible state-value function can achieve the least violation of the constraints,
which is defined as V ⋆

h (s) ≜ minπ maxt∈N H (st | s0 = s).
Definition 3 (Feasible region). The feasible region Sf consists of all feasible states, where at least
one policy satisfies the hard constraint, defined as Sf ≜ {s ∈ S | V ⋆

h (s) ≤ 0}. The feasible region
of a specific policy π can be defined as Sf ≜ {s ∈ S | V π

h (s) ≤ 0}.

The feasible value function V π
h (s) measures the most serious constraint violation of state s on the

trajectory obtained by π. Specifically, if V π
h (s) ≤ 0, we have ∀st, t ∈ N, h (st) ≤ 0, i.e., starting

from the state s, all the states are feasible on this trajectory and the policy π can satisfy the hard
constraints. Otherwise, V π

h (s) > 0 indicates π may violate constraints in the future states. We call
V π
h (s) ≤ 0 the reachability constraint, ensuring that the π is inside the feasible set since the state

constraint could be persistently satisfied. For the VNE problem, we aim to maximize the cumulative
rewards while satisfying reachability constraints to ensure persistent zero violations, formulated as,

max
π

Es

[
V π
r (s) · Is∈Sf

− V π
h (s) · Is/∈Sf

]
, s.t. Es [V

π
h (s)] ≤ 0,∀s ∈ Sf , (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where I is the indicator function. Compared to the problem (2), our reachability-guided optimization
problem (3) finds the largest feasible sets, bringing less conservativeness and better performance.

To solve the problem (3), we reformulate it in the Lagrangian version as follows:

min
λ

max
π

Es

[
V π
r (s) · Is∈Sf

− V π
h (s) · Is/∈Sf

+ λV π
h (s) · Is∈Sf

]
. (4)

Adaptive Reachability Budget (ARB). During training, it is hard to avoid the existence of some
unsolvable VNE instances without any feasible solution, whose all states are infeasible, i.e., ∀s, s /∈
Sf . For example, incoming VN requires excessive resources that surpass the resource availability
of PN. Judging the solvability of an instance in an NP-hard problem is a time-consuming task,
which makes it difficult to distinguish between two types of states: s ∈ Sf and s /∈ Sf . In this
case, training with samples related to these unsolvable instances, due to violating the Karush-Kuhn-
Tucker conditions, the Lagrange multiplier may become large and even converge to infinity.
Proposition 1. During online training, if there exists an instance without any feasible solution (i.e.
H(s) > 0,∀s ∈ S), then the Lagrange multiplier can become infinite.

For its proof see Appendix D.2. The fluctuation of λ induces instability in policy optimization. This
instability arises from significant shifts in the optimization focus, alternating between maximizing
rewards and satisfying constraints. To address this challenge, we propose an adaptive reachability
budget method to improve the stability of training, which determines an appropriate reachability
budget for each VNE instance. To avoid the impractical determination of the solvability of each
instance, we relax the zero-violation of reachability constraints with a dynamic reachability budget
based on the instance solvability. Specifically, we employ a surrogate policy π′ derived from the
main policy π, and synchronize its parameters at specified steps, i.e., π′ ← π. During the training
process, both the main policy π and the surrogate policy π′ attempt to solve the same incoming
instance I . π uses the sampling decoding strategy for exploration to generate the trajectory τ ∼ π,
while π′ employs the greedy decoding strategy for prioritizing constraint satisfaction to produce the
trajectory τ ′ ∼ π′. The max cost in τ ′ caused by the surrogate policy π′ is considered for estimating
the reachability budget Dπ′

h (s) for all states s ∈ τ sampled by policy π, formulated as follows:

∀s ∈ τ,Dπ′

h (s) = max
s′∈τ ′

C(s′). (5)

During the training process, we update the surrogate policy π′ ← π over multiple iterations. With
the reachability guidance of π′, the main policy π gradually improves constraint-aware decision-
making, enhancing the stability of training. Through this iterative learning, both policies π and π′

achieve better constraint satisfaction while maintaining the exploration for better solutions. Finally,
we obtained the refined Lagrangian objective with the adaptive reachability budget as follows:

min
λ

max
π

Es

[
V π
r (s)− λ

(
V π
h (s)−Dπ′

h (s)
)]

. (6)

Here, considering the varying extent of violation in different states, we introduce a neural lambda
network λ = Λ(s) to dynamically adjust Lagrangian multipliers during training, similar to Ma
et al. (2021). To optimize the policy, we leverage the actor-critic framework with Proximal Policy
Optimization (PPO) as the training algorithm (Ray et al., 2019), similar to works (Yu et al., 2022;
Ma et al., 2021). See Appendix D.5 for the details of this training method. Next, we will introduce
our proposed constraint-aware graph networks used as the feature encoder of policy.

3.3 CONSTRAINT-AWARE GRAPH REPRESENTATION

The VNE processing is governed by complex and multifaceted constraints, presenting challenges in
representation learning. These include the interaction of cross-graph status and the assessment of
bandwidth-constrained path connectivity. To address this issue, we propose a constraint-aware graph
representation method with a heterogeneous modeling module for cross-graph status fusion and a
contrastive learning-based module to enhance path connectivity awareness. This method efficiently
perceives the complex constraints of VNE, providing a higher feasibility guarantee of solutions.

Heterogeneous Modeling (HM). Instead of separate feature extraction of VN Gv and PN Gp, we
integrate them into a heterogeneous graph GI by introducing several hypothetical cross-graph links.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

GI comprises two distinct node types: virtual and physical nodes, and we denote their attributes as
Xn

v and Xn
p . These node attributes include computing resource demands or availability, link counts,

and the aggregated bandwidth characteristics (maximum, minimum, and average) of adjacent links.
Similarly, there are two link types: virtual and physical links, whose attributes are link bandwidth de-
mands or availability. We denote these link attributes as X l

v and X l
p, respectively. Additionally, we

introduce specialized heterogeneous links to capture the current embedding state: already-mapped
links, which connect virtual nodes to their hosting physical nodes, and imaginary decision links,
which connect the current yet-to-be-decided virtual node with all potential physical nodes. Here,
potential physical node refers to one that hosts no virtual nodes and has enough computing resources
available. We group these heterogeneous links into sets Lv,p,m for already-mapped links and Lv,p,d

for decision-candidate links. We uniformly set these two types of links’ attributes to 1, denoted as
X l

v,p,m and X l
v,p,d, respectively. To encode this graph’s topological and attribute information, we

enhanced widely-used graph attention networks (GAT) (Veličković et al., 2018) by integrating het-
erogeneous link fusion and link attribute encoding in the propagation process. See Appendix D.3 for
its details. Inputting the heterogeneous graph’s features into this network, we obtain the final node
representations Z = {Zv, Zp}, where Zv and Zp denote physical and virtual node representations.

Path-bandwidth Contrast (PC). Bandwidth constraints of VNE significantly impact solution fea-
sibility, particularly in the context of path routing complexity. At each decision timestep, we need
to carefully select a physical node nt

p for placing the current virtual node nt
v . This selection is dom-

inated by ensuring that feasible connective paths exist to all other physical nodes hosting the virtual
node’s neighbors. Here, the feasibility of the path is dominated by the bandwidth availability of
physical links to support the bandwidth requirements of all prepared incident links δ′(nt

v). GNNs
build up on the propagation mechanism along links to increase awareness of the topology informa-
tion. However, not all physical links contribute positively to this awareness; some with insufficient
bandwidths may even introduce noise into node representations. This emphasizes the necessity to
integrate bandwidth constraint awareness within GNNs to perceive the path feasibility.

To address this challenge, we propose a novel path-bandwidth contrast method to enhance bandwidth
constraint awareness through contrastive learning, whose core idea is creating augmented views with
feasibility-consistency augmentations and making node representations in these views close.

Definition 4 (Feasibility-consistency Augmentations). Let Φ denote a set of augmentation methods
and F denote the function indicating the feasibility of solutions. Given any VNE instance I and a
solution E = fG(I), we have F(E) = F(ϕ(E)),∀I ∈ I, ϕ ∈ Φ.

These augmentations generate multiple views of the original heterogeneous graph, which main-
tain the same feasibility semantics before and after their application. Following this principle, we
develop several augmentation methods by modifying the topology of either VN or PN without im-
pacting solution feasibility, which are described as follows. (a) Physical Link Addition ϕA. We add
a specific number ϵ · |Np| of physical links in PN, whose bandwidth resources are equal to the differ-
ence between the smallest requirements among all virtual links and 1, i.e., minlv∈Lv B(lv)− 1. (b)
Virtual Link Addition ϕB . We add a specific number ϵ · |Nv| of virtual links that require a zero band-
width resource to enhance the complexity and connectivity of the VN. Here, ϵ is an augment ratio
that determines the proportion of links to be added based on the number of nodes in the network.

After applying these augmentations, we create two new views GA
I = ϕA(GI) and GB

I = ϕB(GI),
which have same feasibility semantics of VNE instance I . Using our heterogeneous graph network,
we extract node representations under views GA

I and GB
I , denoted as ZA and ZB , respectively.

Subsequently, we utilize contrastive learning to enhance the proximity of node representations under
the augmented views GA

I and GB
I . This necessitates that the model precisely discerns the noisy

implications of those links with less bandwidth that play no impact on solution feasibility. Through
this method, we aim to enhance the model’s sensitivity towards link bandwidth, effectively mitigate
the influence of irrelevant links in the GNN propagation process, and bolster its overall awareness of
bandwidth constraints. In this work, we adopt the Barlow Twins method (Zbontar et al., 2021) for its
simplicity and effectiveness, which circumvents negative sample selection and maintains the original
network architecture. Given the embeddings under two augmented views, Ha and Hb, we use this
contrastive loss LCL to reduce redundancy between embedding components by aligning their cross-
correlation matrix with the identity matrix. This unsupervised loss can be seamlessly integrated into
the training process of RL. See Appendix D.4 for the details of Barlow Twins method.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Results in overall evaluation and ablation study. Each value consists of the mean and standard error.
VN RAC ↑ LT R2C ↑ LT REV (×107) ↑ C VIO (×103) ↓ AVG ST (×10−1 s) ↓

NRM-VNE 0.675 ± 0.011 0.461 ± 0.003 7.649 ± 0.089 - 1.285 ± 0.042
GRC-VNE 0.694 ± 0.020 0.468 ± 0.004 7.888 ± 0.081 - 2.737 ± 0.056
NEA-VNE 0.732 ± 0.017 0.558 ± 0.007 8.635 ± 0.183 - 4.471 ± 0.656
GA-VNE 0.735 ± 0.043 0.477 ± 0.007 8.355 ± 0.082 - 47.462 ± 1.117
PSO-VNE 0.723 ± 0.025 0.456 ± 0.004 7.854 ± 0.060 - 51.955 ± 3.512

MCTS-VNE 0.700 ± 0.085 0.477 ± 0.006 7.809 ± 0.394 - 15.512 ± 8.096
PG-CNN 0.682 ± 0.020 0.487 ± 0.004 7.523 ± 0.156 - 3.906 ± 0.057

DDPG-ATT 0.707 ± 0.021 0.469 ± 0.003 7.961 ± 0.091 - 2.991 ± 0.054
A3C-GCN 0.743 ± 0.019 0.540 ± 0.006 8.814 ± 0.223 - 3.585 ± 0.200
GAL-VNE 0.776 ± 0.014 0.495 ± 0.003 9.267 ± 0.162 - 6.881 ± 0.785

CONALw/o HM 0.804 ± 0.044 0.584 ± 0.004 9.597 ± 0.107 3.410 ± 0.080 3.754 ± 0.124
CONALw/o PC 0.735 ± 0.036 0.573 ± 0.002 8.407 ± 0.128 5.960 ± 0.068 4.117 ± 0.273

CONALw/o HM & PC 0.789 ± 0.058 0.585 ± 0.006 9.446 ± 0.084 4.053 ± 0.072 3.909 ± 0.104
CONALw/o REACH 0.792 ± 0.049 0.611 ± 0.007 9.607 ± 0.073 3.954 ± 0.045 4.052 ± 0.069
CONALw/o ARB 0.806 ± 0.034 0.596 ± 0.003 9.639 ± 0.065 3.656 ± 0.087 4.074 ± 0.093

CONAL 0.813 ± 0.042 0.614 ± 0.006 9.842 ± 0.091 2.773 ± 0.083 4.180 ± 0.104

3.4 COMPUTATIONAL COMPLEXITY ANALYSIS

Note that CONAL solely uses its surrogate policy and path-bandwidth contrast module for pol-
icy optimization during training. During inference, CONAL has a computational complexity of
O
(
|Nv| ·K ·

(
|Lp|d+ |Np +Nv|d2

))
, while the complexities of baseline methods based on RL

and GNNs are O
(
|Nv| ·K ·

(
|Lp|d+ |Np|d2

))
. See Appendix D.6 for detailed explanations. While

CONAL slightly increases the complexity compared to existing RL and GNN-based methods due to
its heterogeneous modeling approach, it achieves significant performance improvements.

4 EXPERIMENTS

In this section, we describe the experimental setup. To evaluate the effectiveness of CONAL, we
compare it with several variations and state-of-the-art baselines in various network scenarios.

4.1 EXPERIMENTAL SETTINGS

Simulation Configurations. Similar to most previous works (Geng et al., 2023; Yan et al., 2020),
we evaluate the proposed framework in the simulation benchmarks that mimic various network
systems. We adopt a Waxman topology with 100 nodes and nearly 500 links (Waxman, 1988) as the
physical network, named WX100. Computing resources of physical nodes and bandwidth resources
of physical links are uniformly distributed within the range of [50, 100] units. In default settings, for
each simulation run, we create 1000 VN with varying sizes from 2 to 10. The computing resource
demands of the nodes and the bandwidth requirements of the links within each VN are uniformly
distributed within the range of [0, 20] and [0, 50] units, respectively. The virtual nodes in each
VN are randomly interconnected with a probability of 50%. The lifetime of each VN follows an
exponential distribution with an average of 500 time units. The arrival of these VNs follows a
Poisson process with an average rate η, where η denotes the average arrived VN count per unit of
time. In the subsequent experiments, we manipulate the distribution settings of VNs and change the
PN topologies to simulate various network systems.

Implementation Settings. We describe the details of CONAL implementations, simulation for
training and testing, and computer resources in Appendix F.1. Notably, in scenarios where the PN
topology remains unchanged, we employ the pre-trained models developed under default settings to
investigate the adaptability and generalization across diverse conditions in network systems.

Compared Baselines. We compare CONAL with both heuristic and RL-based methods. The heuris-
tic baselines includes node ranking-based methods (i.e., NRM-VNE (Zhang et al., 2018), GRC-
VNE (Gong et al., 2014), NEA-VNE (Fan et al., 2023)) and meta-heuristics (i.e., GA-VNE (Zhang
et al., 2019), PSO-VNE (Jiang & Zhang, 2021)). The learning-based baselines are PG-CNN (Ma
et al., 2023), DDPG-ATT (He et al., 2023a), A3C-GCN (Zhang et al., 2023b), and GAL-VNE (Geng
et al., 2023). See Appendix F.2 for their descriptions.

Evaluation Metrics. Following most previous research (Fischer et al., 2013; Yan et al., 2020), we
evaluate the effectiveness of VNE algorithms with widely used key performance metrics: VN Ac-
ceptance Rate (VN ACR); Long-Term REVenue (LT REV); Long-Term Revenue-to-Consumption

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ratio (LT R2C). We also consider AVeraGe Solving Time (AVG ST) as an additional metric to
measure the computational efficiency, due to the real-time demands of online network systems. Ad-
ditionally, for CONAL and its variations, we employ Constraint VIOlation (C VIO) to measure the
degree of constraint satisfaction. See Appendix F.4 for their definitions.

4.2 RESULTS AND ANALYSIS

Overall Evaluation. The results of VNE algorithms under default settings are shown in Table 1.
We observe that CONAL outperforms baselines across three key performance metrics. This is due
to CONAL’s ability to effectively perceive and handle the complex constraints of VNE. Among
baselines, NEA-VNE, GA-VNE, and GAL-VNE are the best node-ranking-based heuristics, meta-
heuristics, and RL-based methods. However, GA-VNE which relies on extensive search in the
solution space has a longer running time, while GAL-VNE exhibits lower R2C metrics. Compared
to NEA-VNE, GA-VNE and GAL-VNE, CONAL achieves improvements of (10.04%, 11.07%,
13.99%), (10.61%, 28.72%, 17.80%) and (4.77%, 24.04%, 6.21%) in term of (VN ACR, LT R2C,
and LT REV), respectively. We also observe that CONAL outperforms all RL-based baselines
across key performance metrics, demonstrating the superiority of its modeling, optimization, and
representation methods. Although CONAL’s running time is not the lowest, it remains competitive,
comparable to NEA-VNE and A3C-GCN, and outperforms other baselines such as GA-VNE and
MCTS-VNE. These results underscore the effectiveness of CONAL for VNE in providing high-
quality and feasible solutions to improve resource utilization and request acceptance.

Ablation Study. We design several variations to manifest the efficacy of each proposed component:
CONALw/o HM, CONALw/o PC, CONALw/o HM & PC, CONALw/o REACH, and CONALw/o ARB. See Ap-
pendix F.3 for their descriptions. The results of CONAL and its variations are presented in Table 1.
Compared to the first three variants, CONAL achieves superior results across various performance
metrics. This indicates that our constraint-aware graph representation method enhances the con-
straint awareness of policy. Notably, CONALw/o PC shows the most significant performance declines,
even worse than CONALw/o HM & PC. This may be due to heterogeneous graph modeling methods in-
creasing the link complexity of graph, which highlights the necessity for improving bandwidth con-
straint sensitivity. Furthermore, CONALw/o REACH and CONALw/o ARB also decrease performance,
which demonstrates that our optimization method facilitates both resource utilization and constraint
satisfaction. This study shows that each component of CONAL contributes to its overall perfor-
mance, enhancing the its ability to handle and perceive the complex constraints of VNE.

0 20 40
Number of Simulations

0.5

0.6

0.7

Av
er

ag
e

Ep
is

od
 R

et
ur

n

(a) Learning Curves

CONAL
CONAL w/o ARB

0.14 0.18 0.22 0.26
Arrival Rate for Training

0.65

0.70

0.75

0.80

0.85

V
N

_R
A

C

(b) VN_RAC vs.

CONAL
A3C-GCN

0.14 0.18 0.22 0.26
Arrival Rate for Training

0.45

0.50

0.55

0.60

0.65

LT
_R

2C

(c) LT_R2C vs.

CONAL
A3C-GCN

0.14 0.18 0.22 0.26
Arrival Rate for Training

7

8

9

10

LT
_R

EV
 (×

10
7)

(d) LT_REV vs.

CONAL
A3C-GCN

Figure 3: Results in Training Stability Study.

Training Stability Study. To study the
training stability of CONAL, we first com-
pare the learning curves of CONAL and
CONALw/o ARB, followed by an analysis of
how different training conditions impact test-
ing performance. (A) Learn curves analysis.
We compare the learning curves of CONAL
and CONALw/o ARB, depicted in Figure 3. We
average the episode returns of 1000 VNs in
one simulation as the metric, due to inher-
ent differences of return resulting from VN
size. We observe that while the performance
of CONALw/o ARB fluctuates during the train-
ing process, CONAL exhibits greater stabil-
ity. This stability is attributed to our adap-
tive reachability budget method, which effec-
tively addresses unsolvable instances during
training, thus enhancing overall training stability. (B) Training Conditions vs. Testing Performance
Analysis. Similar to our preliminary study, we further explore the impact of training conditions
on CONAL performance. We train CONAL and A3C-GCN under different arrival rates λ of VN
requests from 0.14 to 0.26, as higher arrival rates increase the frequency of unsolvable instances.
After training, we evaluate the models using a fixed arrival rate of λ = 0.14 with a random seed
of 0 as the benchmark. The results are shown in Figures 3(b)(c)(d). We observe that as the arrival
rate λ of training conditions increases, CONAL maintains a more stable testing performance while
A3C-GCN shows an obvious decline. This analysis shows that CONAL is more stable in learning a
high-quality policy by efficiently handling unsolvable instances and perceiving complex constraints.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Generalizability Study. In practical network systems, fluctuations in traffic patterns and resource
demands are inevitable due to varying service requirements and dynamic user behaviors. To study
the generalizability, we test the trained CONAL model in various network conditions via the follow-
ing experiments. See Appendix G.1 for details. (A) Request Frequency Sensitivity Study. We assess
the sensitivity of CONAL to varying arrival rates of VN requests by adjusting the average request
frequency η. As illustrated in Figure 5, CONAL consistently outperforms the baseline algorithms
across all tested η values, demonstrating its superior adaptability to changes in network traffic. This
analysis highlights CONAL’s effectiveness in handling network scenarios with fluctuating request
rates, ensuring stable performance even as competition for resources increases. (B) Dynamic Re-
quest Distribution Study. To simulate more realistic network conditions, we evaluate CONAL’s per-
formance under varying VN request distributions by modifying resource demands and node sizes in
different stages. As shown in Figure 6, CONAL demonstrates strong adaptability across all stages,
outperforming the baseline algorithms even as the complexity of requests increases. This study
shows CONAL’s ability to generalize effectively in dynamic networks with shifting requirements.

Scalability Analysis. To assess the scalability of CONAL, we explore its performance in large-scale
network systems and its time consumption to adapt to varying network sizes. See Appendix G.2 for
details. In summary: (A) Large-scale Network Validation. We evaluate CONAL on a Waxman
topology with 500 nodes and about 1300 links mimicking a large-scale cloud cluster. The results
are shown in Figure 8. We observe that CONAL outperforms the baselines in most metrics in such a
larger topology. This demonstrates the efficiency of CONAL in large-scale network scenarios. Re-
sults demonstrate that CONAL consistently outperforms all baseline models, even in this large-scale
network system scenario. (B) Solving Time Scale Analysis. To investigate solving time scalability
of CONAL, we increase the size of physical network from 200 to 1,000 nodes to simulate network
systems of varying scales. The results, depicted in Figure 7, show that even at larger network scales,
CONAL maintains efficient solving times while delivering excellent performance. This efficiency
make CONAL a viable solution for real-time decision-making in large-scale network systems.

Real-world Network Topology Validation. To verify the effectiveness of CONAL in real-world UPDATE
network systems, we conduct experiments on two well-known networks (Yan et al., 2020; He et al.,
2023a): GEANT, a 40-node academic research network with 64 edges, and BRAIN, a 161-node
high-speed data network with 166 edges. The results shown in Table 3 reveals that CONAL outper-
forms all baselines across both network systems on performance metrics. This validation shows the
effectiveness of CONAL in practical systems and various topologies. See Appendix G.2 for details.

Hyperparameter Sensitivity Study. We explore the impact of the following two key hyperpa-
rameters on performance. (A) Update interval µ of surrogate policy. The results are shown in
Figure 9. We observe that extremely frequent updates potentially lead to instability and divergence
in the learning process. Additionally, too slow updates do not offer significant further benefits and
may even increase computational overhead. (B) Augment ratio ϵ used in the path-bandwidth con-
trast module. The results shown in Figure 10 reveal that a reasonable augment ratio ϵ enhances the
model’s sensitivity to bandwidth constraints. However, excessively high values of ϵ yield minimal
improvements or may even harm performance. See Appendix G.4 for details.

5 CONCLUSION

In this paper, we proposed the CONAL for VNE to enhance constraint management and training
robustness, which is critical to the performance and reliability of network systems. Specifically, we
formulated the VNE problem as a violation-tolerant CMDP to optimize both the quality and feasibil-
ity of solutions. This method allows us to always obtain complete solutions to precisely evaluate the
quality of the solution. Additionally, we presented a reachability-guided optimization objective with
an adaptive feasibility budget method to ensure persistent constraint satisfaction while alleviating the
conservativeness of policy. This approach also address the instability of policy optimization caused
by unsolvable instances. Furthermore, to finely perceive the complex constraints of VNE, we pro-
posed a constraint-aware graph representation method, which consists of a heterogeneous modeling
module for indicating cross-graph relations and a path-bandwidth contrast module that enhances the
sensitivity to bandwidth constraints. Finally, we conducted extensive experiments to verify the effec-
tiveness of our proposed methods. In the future, we plan to tackle additional constraints in specific
networking scenarios, e.g., latency-aware edge computing and energy-efficient green computing.
This will require specialized design efforts to address scenario-specific challenges effectively.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pp. 2242–2253. IEEE, 2017.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607, 2020.

N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual network embedding with coordi-
nated node and link mapping. In IEEE International Conference on Computer Communications,
pp. 783–791, 2009.

Chinmaya Kumar Dehury and Prasan Kumar Sahoo. DYVINE: Fitness-based dynamic virtual net-
work embedding in cloud computing. IEEE Journal on Selected Areas in Communications, 37
(5):1029–1045, 2019.

Weibei Fan, Fu Xiao, Mengjie Lv, Lei Han, Junchang Wang, and Xin He. Node essentiality assess-
ment and distributed collaborative virtual network embedding in datacenters. IEEE Transactions
on Parallel and Distributed Systems, 34(4):1265–1280, 2023.

Xincai Fei, Fangming Liu, Hong Xu, and Hai Jin. Adaptive VNF Scaling and Flow Routing with
Proactive Demand Prediction. In IEEE INFOCOM 2018 - IEEE Conference on Computer Com-
munications, pp. 486–494, 2018.

Xincai Fei, Fangming Liu, Hai Jin, and Baochun Li. FlexNFV: Flexible Network Service Chaining
with Dynamic Scaling. IEEE Network, 34(4):203–209, 2020.

Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann de Meer, and Xavier Hesselbach.
Virtual network embedding: A survey. IEEE Communications Surveys Tutorials, 15(4):1888–
1906, 2013.

Haoyu Geng, Runzhong Wang, Fei Wu, and Junchi Yan. Gal-vne: Solving the vne problem with
global reinforcement learning and local one-shot neural prediction. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 531–543, 2023.

Long Gong, Yonggang Wen, Zuqing Zhu, and Tony Lee. Toward profit-seeking virtual network em-
bedding algorithm via global resource capacity. In IEEE International Conference on Computer
Communications, pp. 1–9, 2014.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Lin Gu, Deze Zeng, Wei Li, Song Guo, Albert Y. Zomaya, and Hai Jin. Intelligent vnf orchestration
and flow scheduling via model-assisted deep reinforcement learning. IEEE Journal on Selected
Areas in Communications, 38(2):279–291, 2020.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and
Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Soroush Haeri and Ljiljana Trajković. Virtual network embedding via Monte Carlo tree search.
IEEE Transactions on Cybernetics, 48(2):510–521, 2017.

Nan He, Song Yang, Fan Li, Stojan Trajanovski, Liehuang Zhu, Yu Wang, and Xiaoming Fu. Lever-
aging deep reinforcement learning with attention mechanism for virtual network function place-
ment and routing. IEEE Transactions on Parallel and Distributed Systems, 34(4):1186–1201,
2023a.

Tairan He, Weiye Zhao, and Changliu Liu. Autocost: Evolving intrinsic cost for zero-violation rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 14847–14855, 2023b.

Chunxiao Jiang and Peiying Zhang. VNE-HPSO Virtual Network Embedding Algorithm Based on
Hybrid Particle Swarm Optimization, pp. 129–152. Springer Singapore, Singapore, 2021.

Panpan Jin, Xincai Fei, Qixia Zhang, Fangming Liu, and Bo Li. Latency-aware vnf chain deploy-
ment with efficient resource reuse at network edge. In IEEE INFOCOM 2020 - IEEE Conference
on Computer Communications, pp. 267–276, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yongshuai Liu, Avishai Halev, and Xin Liu. Policy learning with constraints in model-free reinforce-
ment learning: A survey. In The 30th International Joint Conference on Artificial Intelligence
(IJCAI), 2021.

Haitong Ma, Yang Guan, Shegnbo Eben Li, Xiangteng Zhang, Sifa Zheng, and Jianyu Chen. Feasi-
ble actor-critic: Constrained reinforcement learning for ensuring statewise safety. arXiv preprint
arXiv:2105.10682, 2021.

Sihan Ma, Haipeng Yao, Tianle Mai, Jingkai Yang, Wenji He, Kaipeng Xue, and Mohsen Guizani.
Graph convolutional network aided virtual network embedding for internet of thing. IEEE Trans-
actions on Network Science and Engineering, 10(1):265–274, 2023.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Yuxin Pan, Yize Chen, and Fangzhen Lin. Adjustable robust reinforcement learning for online 3d bin
packing. In Advances in Neural Information Processing Systems, volume 36, pp. 51926–51954,
2023.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

Matthias Rost and Stefan Schmid. On the hardness and inapproximability of virtual network em-
beddings. IEEE/ACM Transactions on Networking, 28(2):791–803, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Nashid Shahriar, Shihabur Rahman Chowdhury, Reaz Ahmed, Aimal Khan, Siavash Fathi, Raouf
Boutaba, Jeebak Mitra, and Liu Liu. Virtual network survivability through joint spare capacity
allocation and embedding. IEEE Journal on Selected Areas in Communications, 36(3):502–518,
2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Tianfu Wang, Qilin Fan, Xiuhua Li, Xu Zhang, Qingyu Xiong, Shu Fu, and Min Gao. DRL-SFCP:
Adaptive service function chains placement with deep reinforcement learning. In IEEE Interna-
tional Conference on Communications, pp. 1–6, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tianfu Wang, Li Shen, Qilin Fan, Tong Xu, Tongliang Liu, and Hui Xiong. Joint admission con-
trol and resource allocation of virtual network embedding via hierarchical deep reinforcement
learning. IEEE Transactions on Services Computing, pp. 1–14, 2023.

B.M. Waxman. Routing of multipoint connections. IEEE Journal on Selected Areas in Communi-
cations, 6(9):1617–1622, 1988.

Sheng Wu, Ning Chen, Ailing Xiao, Peiying Zhang, Chunxiao Jiang, and Wei Zhang. Ai-empowered
virtual network embedding:a comprehensive survey. IEEE Communications Surveys & Tutorials,
2024.

Yikai Xiao, Qixia Zhang, Fangming Liu, Jia Wang, Miao Zhao, Zhongxing Zhang, and Jiaxing
Zhang. NFVdeep: Adaptive Online Service Function Chain Deployment with Deep Reinforce-
ment Learning. In Proceedings of the 27th IEEE/ACM International Symposium on Quality of
Service (IWQoS), pp. 1–10, 2019.

Zhongxia Yan, Jingguo Ge, Yulei Wu, Liangxiong Li, and Tong Li. Automatic virtual network
embedding: A deep reinforcement learning approach with graph convolutional networks. IEEE
Journal on Selected Areas in Communications, 38(6):1040–1057, 2020.

Long Yang, Jiaming Ji, Juntao Dai, Linrui Zhang, Binbin Zhou, Pengfei Li, Yaodong Yang, and
Gang Pan. Constrained update projection approach to safe policy optimization. Advances in
Neural Information Processing Systems, 35:9111–9124, 2022.

Haipeng Yao, Sihan Ma, Jingjing Wang, Peiying Zhang, Chunxiao Jiang, and Song Guo. A
continuous-decision virtual network embedding scheme relying on reinforcement learning. IEEE
Transactions on Network and Service Management, 17(2):864–875, 2020.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant
systems for combinatorial optimization. Advances in Neural Information Processing Systems, 36,
2023.

Bo Yi, Xingwei Wang, Keqin Li, Min Huang, et al. A comprehensive survey of network function
virtualization. Computer Networks, 133:212–262, 2018.

Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
learning. In International Conference on Machine Learning, pp. 25636–25655. PMLR, 2022.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In International conference on machine learning, pp. 12310–
12320. PMLR, 2021.

Yue Zeng, Zhihao Qu, Song Guo, Baoliu Ye, Jie Zhang, Jing Li, and Bin Tang. SafeDRL: Dynamic
Microservice Provisioning With Reliability and Latency Guarantees in Edge Environments. IEEE
Transactions on Computers, 73(1):235–248, 2024.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to
dispatch for job shop scheduling via deep reinforcement learning. Advances in neural information
processing systems, 33:1621–1632, 2020.

David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
gflownets. In International Conference on Learning Representations, 2023a.

Peiying Zhang, Haipeng Yao, and Yunjie Liu. Virtual network embedding based on computing,
network, and storage resource constraints. IEEE Internet of Things Journal, 5(5):3298–3304,
2018.

Peiying Zhang, Haipeng Yao, Maozhen Li, and Yunjie Liu. Virtual network embedding based on
modified genetic algorithm. Peer-to-Peer Networking and Applications, 12(2):481–492, 2019.

Peiying Zhang, Yu Su, Jingjing Wang, Chunxiao Jiang, Ching-Hsien Hsu, and Shigen Shen. Rein-
forcement learning assisted bandwidth aware virtual network resource allocation. IEEE Transac-
tions on Network and Service Management, 19(4):4111–4123, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Qixia Zhang, Yikai Xiao, Fangming Liu, John C. S. Lui, Jianxin Guo, and Tao Wang. Joint Op-
timization of Chain Placement and Request Scheduling for Network Function Virtualization. In
2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 731–
741, 2017.

Xiaoquan Zhang, Lin Cui, Fung Po Tso, Zhetao Li, and Weijia Jia. Dapper: Deploying service func-
tion chains in the programmable data plane via deep reinforcement learning. IEEE Transactions
on Services Computing, pp. 1–14, 2023b.

Hang Zhao, Qijin She, Chenyang Zhu, Yin Yang, and Kai Xu. Online 3d bin packing with con-
strained deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 35, pp. 741–749, 2021.

Weiye Zhao, Tairan He, and Changliu Liu. Model-free safe control for zero-violation reinforcement
learning. In Proceedings of the 5th Conference on Robot Learning, volume 164, pp. 784–793.
PMLR, 2022.

Weiye Zhao, Tairan He, Rui Chen, Tianhao Wei, and Changliu Liu. State-wise safe reinforcement
learning: A survey. In International Joint Conference on Artificial Intelligence, 2023.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
pp. 42769–42789. PMLR, 2023.

Weihua Zhuang, Qiang Ye, Feng Lyu, Nan Cheng, and Ju Ren. SDN/NFV-empowered future IoV
with enhanced communication, computing, and caching. Proceedings of the IEEE, 108(2):274–
291, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

CONTENTS OF APPENDIX

A Related Work 16

B Problem Formulation 17

B.1 Optimization Objectives . 17

B.2 Constraint Conditions . 17

C Preliminary Study 18

D Model Details 18

D.1 Illustrative Explanation of Prepared Incident Links 18

D.2 Proof of Lagrange Multiplier Convergence . 19

D.3 Heterogeneous Graph Network . 19

D.4 Barlow Twins Loss Function . 20

D.5 Lagrangian-based PPO Training Method. 20

D.6 Detailed Analysis of Computational Complexity 21

E Descriptions of Training and Inference Process 21

E.1 Training Process of CONAL . 21

E.2 Inference Process of CONAL . 21

F Experimental Details 23

F.1 Implementation Details . 23

F.2 Baseline Descriptions . 23

F.3 Variations Descriptions . 24

F.4 Metric Definitions . 24

G Additional Evaluation 25

G.1 Generalizability Study . 25

G.2 Scalability Analysis . 27

G.3 Real-world Network Topology Validation . 27

G.4 Hyperparameter Impact Study . 29

G.5 Convergence Analysis of Lagrange Multiplier . 29

H Detailed Information on Used Assets 30

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A RELATED WORK

In this section, we discuss related work on VNE algorithms, RL for COPs, and safe RL methods.

VNE Algorithms. Resource management is a critical research direction in NFV, including tasks as
Scaling (Fei et al., 2018; 2020) and scheduling (Zhang et al., 2017). Among these, VNE plays a
key role in resource allocation. To solve this challenging and significant problem, many approaches NEW
have been designed for VNE, which can be classified as exact, heuristics, and learning-based meth-
ods. Initially, exact algorithms formulate the VNE problem as integer linear programming (Shahriar
et al., 2018) or mixed integer linear programming (Chowdhury et al., 2009), and then solve them
with exact solvers. However, this is impractical due to extensive computations and time consump-
tion. Thus, numerous heuristic algorithms have been proposed to offer solutions within an acceptable
time, such as node ranking strategies (Zhang et al., 2018; Gong et al., 2014; Fan et al., 2023) (Jin
et al., 2020), meta-heuristics (Dehury & Sahoo, 2019; Zhang et al., 2019; Jiang & Zhang, 2021), etc. NEW
However, they heavily rely on manual heuristic design and merely for specific scenarios. Recently,
reinforcement learning has emerged as a promising solution for VNE and many RL-based VNE al-
gorithms have been proposed (Haeri & Trajković, 2017; Wang et al., 2021; Zhang et al., 2022; He
et al., 2023a; Zhang et al., 2023b; Geng et al., 2023) (Xiao et al., 2019). In general, they model the NEW
solution construction process of each VNE instance as an MDP, but do not consider the fine-grained
constraint violations. Then, they leverage existing network networks (e.g., convolutional neural
network, GNN, etc.) to extract features from PN and VN, separately. Finally, they optimize the
model with different RL methods (e.g., asynchronous advantage actor-critic, PPO, etc.). In particu-
lar, Gu et al. (2020) proposed a model-assisted DRL framework that leverages heuristic solutions to
guide the training process, reducing reliance on the agent’s blind exploration of actions. However,
they struggle to handle such complex constraints of VNE thereby compromising performance. Zeng
et al. (2024) introduced the SafeDRL algorithm that corrects constraint violations using high-quality
feasible solutions through expert intervention. But this reliance on external corrections ignore the
aspects of policy-level constraints awareness, limiting its adaptability and performance. To address
these challenges, we explore to learn a constraint-aware VNE policy by innovating existing MDP
modeling, representation learning, and policy optimization NEW

RL for COPs. The application of RL to solve COPs has emerged as a hot topic in decision-making,
which aims to learn efficient solving strategies from data (Bengio et al., 2021). Many efforts have
been directed toward classic COPs such as routing (Zhou et al., 2023; Ye et al., 2023), schedul-
ing (Zhang et al., 2023a; 2020), bin packing (Pan et al., 2023; Zhao et al., 2021), etc. These ap-
proaches can be broadly categorized into two types based on their solving processes: construction
and improvement. While improvement methods start with an initial solution and use an RL policy
to iteratively refine it, construction methods build a solution incrementally from scratch (Mazyavk-
ina et al., 2021). Construction methods typically employ RL to guide the sequential selection to
form a complete solution. Given the real-time requirements of practical network systems, most ex-
isting RL-based VNE algorithms are designed as construction methods to provide solutions within
an acceptable time (Zhang et al., 2022; He et al., 2023a; Zhang et al., 2023b). In contrast to these
classic COPs, VNE presents unique complexities in representation learning due to its multifaceted
and hard constraints, such as the interaction of cross-graph status and the assessment of bandwidth-
constrained path connectivity. Furthermore, the existence of unsolvable instances in the training
process can compromise robustness, potentially causing ineffective policies.

Safe RL Methods. Safe RL aims to maximize the expected rewards while ensuring safety con-
straints are not violated (Gu et al., 2022). Early efforts in safe RL focus on keeping cumulative
constraint violations below a fixed cost budget (Achiam et al., 2017; Ray et al., 2019; Yang et al.,
2022). To address the stricter constraint requirements of practical applications, recent works have
proposed achieving state-wise safety, which ensures the satisfaction of instantaneous constraints at
each decision timestep (Zhao et al., 2023; 2022; He et al., 2023b; Yu et al., 2022). One promising
approach involves incorporating reachability analysis into the CMDP framework (Yu et al., 2022).
This method employs a reachability function to assess the state feasibility, which significantly ex-
pands the feasible set of policy, and mitigates the conservativeness of the policy. However, modeling
VNE as a reachability-guided CMDP presents challenges. Concretely, In the process of solution
construction, if any constraints are violated, the process will be early terminated and lead to incom-
plete solutions. This hinders precise measurement of both the quality of solutions and the degree of
constraint violations. Additionally, these methods typically assume a non-empty feasible set. But

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

for VNE, where it is hard to avoid facing unsolvable instances without any feasible solution, these
approaches often confront the challenges of unstable policy optimization, since the constraints of
these instances are impossibly satisfied.

B PROBLEM FORMULATION

In this section, we provide the mathematical programming formulation of the VNE problem.

B.1 OPTIMIZATION OBJECTIVES

The main goal of VNE is to make full use of the physical network resources to improve the revenue
of ISPs while satisfying the service requests of users as much as possible. To address the stochastic
nature of online networking, we and existing studies (Wang et al., 2021; He et al., 2023a; Zhang
et al., 2023b), aim to minimize the embedding cost of each arriving VN request onto the physical
network. This way enhances resource utilization and improves the VN request acceptance rate. To
evaluate the quality of solution E = fG(I), we employ the widely used indicator, Revenue-to-
Consumption ratio (R2C), defined as follows:

R2C (E) = (κ · REV (E)) /CONS (E) . (7)
Here, κ is a binary variable representing the feasibility of a solution: κ = 1 if the solution E for
the instance I is accepted, and κ = 0 otherwise. REV(E) denotes the revenue generated by the VN
request Gv and CONS(E) denotes the embedding consumption, which are computed as follows:

REV(E) =
∑

nv∈Nv

C(nv) +
∑

lv∈Lv

B(lv), (8)

CONS(E) =
∑

nv∈Nv

C(nv) +
∑

lv∈Lv

|fL(lv)|B(lv), (9)

where |fL(lv)| denotes the hop count of the physical path pp = fL(lv) routing the virtual link lv .

B.2 CONSTRAINT CONDITIONS

The process of embedding a VN request Gv onto the physical network is represented by a mapping
function fG : Gv → Gp. In this process, we need to decide two types of boolean variables: (1)
xm
i = 1 if virtual node nm

v is placed in physical node ni
p, and 0 otherwise; (2) ym,w

i,j = 1 if virtual
link lvm,w = (nm

v , nw
v) traverses physical link lpi,j = (ni

p, n
j
p), and 0 otherwise. Here, m and w

are identifiers for virtual nodes, while i and j are identifiers for physical nodes. A VN request is
successfully embedded if a feasible mapping solution is found, satisfying the following constraints:∑

ni
p∈np

xm
i = 1,∀nm

v ∈ nv, (10)

∑
nm
v ∈Nv

xm
i ≤ 1,∀ni

p ∈ Np, (11)

xm
i C(nm

v) ≤ C(ni
p),∀nm

v ∈ Nv, n
i
p ∈ Np, (12)∑

ni
p∈Ω(nk

p)

ym,w
i,k −

∑
nj
p∈Ω(nk

p)

ym,w
k,j = xm

k − xw
k ,∀lvm,w ∈ Lv, n

k
v ∈ Np, (13)

ym,w
i,j + ym,w

j,w ≤ 1,∀lvm,w ∈ Lv, l
p
i,j ∈ Lp, (14)∑

lvm,w∈Lv

(ym,w
i,j + ym,w

j,i)B(lvm,w) ≤ B((l
p
i,j)),∀(l

p
i,j) ∈ Lp. (15)

Here, Ω(nk
p) denotes the neighbors of nk

p . Constraint (10) ensures that every virtual node is mapped
to one and only one physical node. Conversely, constraint (11)limits each physical node to hosting

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

at most one virtual node, thus enforcing a unique mapping relationship. Constraint (12) verifies
that virtual nodes are allocated to physical nodes with adequate resources. Following the principle
of flow conservation, constraint 13 guarantees that each virtual link (nm

v , nw
v) is routed along a

physical path from ni
p (the physical node where nm

v is placed) to nj
p (the physical node where

nw
v is placed). Constraint (14) eliminates the possibility of routing loops, thereby ensuring that

virtual links are routed acyclically. Lastly, constraint 15 ensures that the bandwidth usage on each
physical link remains within its available capacity. Overall, constraints (10,11,12) enforce the one-
to-one placement and computing resource availability required in the node mapping process. And
constraints (13,14,15) ensure the path connectivity and bandwidth resource availability asked in the
link mapping process.

C PRELIMINARY STUDY

We have conducted a preliminary study to highlight the motivation to handle failure samples and
unsolvable instances. In this study, we trained a representative baseline model, A3C-GCN Zhang
et al. (2023b), which shares a solution construction paradigm similar to our approach and uses a
penalty mechanism to handle all failure samples. The training was conducted with various arrival
rates for VN requests because it is evident that increasing the arrival rate of VN requests leads to a
higher frequency of unsolvable instances. After training, we tested the models using a fixed arrival
rate λ = 0.14 (the same as in Section 4.1: Experimental Settings) with a seed of 0 as the benchmark.

λ for Training VN RAC ↑ LT R2C ↑ LT REV (×107) ↑
0.14 0.734 0.537 8.707
0.18 0.721 0.455 8.699
0.22 0.679 0.488 7.578
0.26 0.666 0.482 7.397

Table 2: The testing performance of baseline A3C-GCN trained under various λ values.

The results are shown in Figure 2. We observe that as the arrival rate of VN requests increases,
the A3C-GCN model trained under higher arrival rates exhibits worse performance. Due to the
increased proportion of unsolvable instances, the caused failure samples interfere more strongly
with the center of policy optimization, making it difficult to learn a high-quality solution strategy.
This indicates that this method struggles to effectively handle unsolvable instances during training,
which negatively impacts the optimization robustness and overall performance.

D MODEL DETAILS

In this section, we present the key concepts, theoretical foundations, explanation of CONAL’s com-
ponents, and descriptions of both the training and inference processes for CONAL.

D.1 ILLUSTRATIVE EXPLANATION OF PREPARED INCIDENT LINKS

40 10 50

2010

PN Infrastructure

30

20

40

VN Request

Completed Node Mapping

Completed Link Mapping

10 20

30

1010

20

10 30

3040
!!" !!#!!$

!!% !!&

!!$

!!"

!!#

#!!# Placed Virtual Node

#!!# To-be-placed Virtual Node

Current Node Mapping

Prepared Incident Links

Routed Virtual Link

Current Link Mapping

Figure 4: An illustrative example of prepared in-
cident links.

To make reader clearly understand the prepared in-
cident links, we provide a brief illustrative example
of this concept in Figure 4. Considering the third de-
cision timestep, after mapping virtual nodes n1

v and
n2
v onto physical nodes n1

p and n2
p, we aim to find a

physical node to host the to-be-placed virtual node
n3
v . When attempting to place n3

v onto n3
p, we need

to consider the routing of virtual links (n1
v , n3

v) and
(n2

v , n3
v) whose endpoints are now both placed. In

this example, (n1
v , n3

v) and (n2
v , n3

v) are called pre-
pared incident links. For current decision timestep,
we need to route all of them with connective physi-
cal paths while ensuring resource constraints are met.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D.2 PROOF OF LAGRANGE MULTIPLIER CONVERGENCE

Proposition 1. During online training, if there exists an instance without any feasible solution (i.e.
H(s) > 0,∀s ∈ S), then the Lagrange multiplier can become infinite.

Proof. According to the optimality condition of Karush-Kuhn-Tucker (KKT), any optimal solution
to the constrained optimization problem (4) must satisfy three conditions: the feasibility condition,
the non-negativity condition, and the complementary slack condition, expressed as follows:

H(s) ≤ 0,

λ ≥ 0,

λ ·H(s) = 0.

(16)

Given that H(s) > 0,∀s ∈ S, the primal feasibility condition is violated; there are no feasible solu-
tions that satisfy H(s) ≤ 0. The complementary slackness condition requires that for each s ∈ S,
either λ = 0 or H(s) = 0. Since H(s) > 0, we must have λ = 0 to satisfy this condition. How-
ever, setting λ = 0 does not penalize the constraint violation, and the primal feasibility condition
remains unsatisfied. This leads to a contradiction: there is no finite λ ≥ 0 that satisfies all the KKT
conditions when H(s) > 0,∀s ∈ S. The optimization problem is infeasible because the constraints
cannot be met. In practical online training, the Lagrange multiplier λ is adjusted iteratively to en-
force the constraints by increasing λ whenever the constraints are violated. Since H(s) > 0 always
holds, the Lagrange multiplier λ will continually increase in an attempt to penalize the constraint
violations. As a result, λ can become arbitrarily large, theoretically approaching infinity.

D.3 HETEROGENEOUS GRAPH NETWORK

To encode the topological and attribute information of GI , we enhance widely-used graph attention
networks (GAT) (Veličković et al., 2018) by integrating heterogeneous link fusion and link attribute
encoding in the propagation process. We begin by using the MLPs to generate the representations
of virtual and physical nodes, i.e., H0

v = MLP(Xn
v), H

0
p = MLP(Xn

p). Then, we leverage K
layers of GNNs to assimilate the topological and bandwidth information. At each κ-th layer, a link
feature-aware GAT extracts all node latent representations independently across different link types:

H̄κ
v = GAT(Hκ−1

v , Lv, X
l
v), H̄p = GAT(Hκ−1

p , Lp, X
l
p), (17)

Zκ
v,m, Zκ

p,m = GAT
([
Zκ−1
v ;Zκ−1

p

]
, Lv,p,m, X l

v,p,m

)
, (18)

Zκ
v,d, Z

κ
p,d = GAT

([
Zκ−1
v ;Zκ−1

p

]
, Lv,p,d, X

l
v,p,d

)
. (19)

Here, ; denotes the combination operator. Particularly, when calculating the attention weight be-
tween node i and j using their representation hi and hj , we also apply the MLP to their link attribute
xl
i,j , i.e., hi,j = MLP(xl

i,j), and incorporate it into this process to perceive bandwidth resources:

ai,j =
exp(MLP(zi + zj + zi,j))∑

k∈N (i) exp(MLP(zi + zk + zi,k))
, (20)

where N (i) indicates the neighbor set of node i.

Then, to aggregate the diverse information presented through different link perspectives, we apply
the sum pooling method to produce the node representations for each GNN layer:

Zκ
v = Z̄κ

v + Zκ
v,m + Zκ

p , Zκ
p = Z̄κ

p + Zκ
p,m + Zκ

p,d. (21)

Finally, leveraging the final layer representations, HK
v and HK

p , alongside residual connections to
bolster initial feature representation, we obtain the final representations of all nodes Z = {Zv, Zp}:

Zv = ZK
v + Z0

v , Zp = ZK
p + Z0

p . (22)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.4 BARLOW TWINS LOSS FUNCTION

In this work, we utilize the contrastive learning method to bring the representations under augmented
views close to enhance the awareness of bandwidth-constrained path connectivity. One of the main
directions of contrastive learning is to utilize both positive and negative sample distinctions (Oord
et al., 2018; Chen et al., 2020). However, in our application, generating and selecting negative sam-
ples that are markedly different in terms of feasibility semantics is significantly challenging. This
difficulty can adversely affect the learning quality and the generalizability of the models. Therefore,
considering multiple views of the graph with the same feasibility semantics, we focus on eschew-
ing negative samples altogether while preventing feature collapse, an emerging direction of con-
trastive learning (Grill et al., 2020; Zbontar et al., 2021). Specifically, we adopt the Barlow Twins
method (Zbontar et al., 2021) for its simplicity and effectiveness, which circumvents negative sam-
ple selection and maintains the original network architecture. Given the node embeddings under two
augmented views, Ha and Hb, we reduce redundancy between embedding components by aligning
their cross-correlation matrix with the identity matrix:

LCL =
∑
i

(1− Cii)
2
+ w

∑
i

∑
i ̸=j

C2
ij , (23)

where the first one is the invariance term and the second one is the redundancy reduction term. w is
tradeoff weight. Cij is the cross-correlation matrix computed between the output node representa-

tions of the two identical networks along the batch dimension: Cij =
∑

b ZA
b,iZ

B
b,j√∑

b(ZA
b,i)

2
√∑

b(ZB
b,j)

2
. Here,

b indexes node samples. i, j index the node representation dimension, respectively. Subsequently,
we will equip our final optimization objective with this unsupervised learning loss function.

D.5 LAGRANGIAN-BASED PPO TRAINING METHOD.

To optimize the policy for VNE solving, we adopt the Lagrangian-based actor-critic framework with
PPO (Ray et al., 2019) objective as our training algorithm, which incorporates constraint guarantees
within the RL training process (Schulman et al., 2017). In practical implementation, we derive the
node representations Zv and Zp from the state s, with our constraint-aware graph representation
method. These representations serve as inputs to a policy network, which generates an action distri-
bution, π(s) = MLP(Zp) ∈ R|Np|, used for the action selection. Additionally, we employ three ad-
ditional networks: the value critic network V π

r , the reachability critic network V π
h , and the Lambda

network Λπ . They have similar architectures, ∀V ∈ {V π
r , V π

h ,Λπ}, V (s) = MLP
(∑

z∈Zp
z
)
∈

R1. They estimate cumulative rewards, constraint violations, and the Lagrangian multiplier λ, re-
spectively. We optimize V π

r and V π
h with mean squared error (MSE) losses, denoted as Lr and

Lh, comparing predicted values against actual results for cumulative rewards and violations, re-
spectively. The Lambda network (Ma et al., 2021) is updated to optimize the balance between
performance and safety, according to:

LLAM = Λπ(s) · (V π
h (s)−Dπ′

h (s)). (24)

The objective function for the policy network within the PPO framework is expressed as:

LPPO(π) = E[min(r(π)At,CLIP(r(π), 1− ϵ, 1 + ϵ)At)], (25)

where At represents the advantage function at time step t, and r(π) = π(st,at)

πold(st,at)
calculates the ratio

of the probabilities for the selected action between the current and previous policies. The CLIP
function limits policy updates to enhance stability.

Finally, integrating the unsupervised contrastive learning objective LCL in the path-bandwidth con-
trast method, our comprehensive loss function in the training process is formulated as follows:

L = wPPO · LPPO + wr · Lr + wh · Lh + wLAM · LLAM + wCL · LCL, (26)

where all w(·) denote the weights of loss objectives.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.6 DETAILED ANALYSIS OF COMPUTATIONAL COMPLEXITY

CONAL exhibits a computational complexity of O
(
|Nv| ·K ·

(
|Lp|d+ |Np +Nv|d2

))
, which the

complexities other baseline methods based on RL and GNNs are O
(
|Nv| ·K ·

(
|Lp|d+ |Np|d2

))
.

Here, Nv and Lv denote the number of virtual nodes and links, Np and Lp denote the number
of physical nodes and links, K denotes the number of GNN layers, and d denotes the embed-
ding dimension. Concretely, When constructing a solution for one VNE instance, CONAL per-
forms inference Nv times with the GNN policy, similar to most RL and GNN-based methods.
The difference in complexity between CONAL and RL/GNN-based baselines mainly arises from
the different neural network structures used, such as GAT and GCN. One GAT and one GCN
layer have the same complexity, both O

(
|L|d+ |N |d2

)
, where |N | and |L| denote the num-

ber of nodes and links [a]. In CONAL, we enhance the GAT with the heterogeneous model-
ing for the interactions of cross-graph status. Each heterogeneous GAT layer consists of three
types of GAT layers for VN, PN, and cross-graph interactions (the number of links between vir-
tual and physical nodes is always Np). The complexities for these layers are O

(
|Lv|d+ |Nv|d2

)
,

O
(
|Lp|d+ |Np|d2

)
, and O

(
|Np|d+ |Np +Nv|d2

)
, respectively. Each heterogeneous GAT layer

consists of three types of GAT layers for VN, PN, and cross graph (the number of links
between virtual and physical node always is Np), whose complexity is O

(
|Lv|d+ |Nv|d2

)
,

O
(
|Lp|d+ |Np|d2

)
, and O

(
|Np|d+ |Np +Nv|d2

)
. Considering that |Nv| is significantly smaller

than |Lv| and typically Lp > Np in practical network systems, the overall complexity of CONAL
is O

(
|Nv| ·K ·

(
|Lp|d+ |Np +Nv|d2

))
. In comparison, other RL and GNN-based methods sep-

arately encode VN and PN with GAT or GCNs, without considering GNN layers for cross-graph
interactions, leading to their complexities being O

(
|Nv| ·K ·

(
|Lp|d+ |Np|d2

))
. Overall, while

CONAL slightly increases the complexity compared to existing RL and GNN-based methods due to
its heterogeneous modeling approach, it achieves significant performance improvements.

E DESCRIPTIONS OF TRAINING AND INFERENCE PROCESS

In this section, we summarize the training process of CONAL in Algorithm 1 and the inference
process of CONAL in Algorithm 2.

E.1 TRAINING PROCESS OF CONAL

The training process of CONAL begins by randomly initializing the neural networks: the policy
network π, value critic network V π

r , feasibility critic network V π
h , and lambda network Λπ . The

training involves two key stages: experience collection and policy optimization. Through these
stages, we iteratively update the neural networks and ultimately learn the policy. This training
process is outlined in Algorithm 1.

During the experience collection stage, for each incoming instance I ∈ I, we utilize the surrogate
policy π′ to preemptively solve this instance I . The maximum constraint violation caused by π′ is
regarded as adaptive reachability budgets Dπ′

h (s) for the following states s sampled by main policy
π. At each decision timestep t, we build a heterogeneous graph GI based on the current situation
of instance I . We also construct two augmented views, GA

I and GB
I , with the proposed feasibility-

consistency augmentations, which will be used in the calculation of contrastive loss. The state st
is then extracted from GI , GA

I and GB
I . Based on the state st, the policy π extracts information

with the heterogeneous graph network and selects an action at. Then, the environment executes this
action, transits into the next state st, and returns the reward rt, violations ht and costs ct. These items
collectively form a transition (st, at, rt, st+1, ht, ct, D

π′

h (st) and stored in a trajectory memory τ .

In the subsequent policy optimization stage, we iteratively sample batches of transitions from the
trajectory memory τ to update neural networks. Then, we calculate various losses, including the
PPO loss LPPO, value critic loss Lr, reachability critic loss Lh, and Lambda network loss LLAM. Ad-
ditionally, we integrate our proposed unsupervised contrastive loss LCL in path-bandwidth contrast
during training. Overall, we calculate the weighted sum of these losses as the final loss L and update
neural networks. If necessary, we synchronize surrogate policy π′ with the main policy π.

E.2 INFERENCE PROCESS OF CONAL

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 1 Training process of CONAL.

1: Input: A set of VNE instances I
2: Output: A learned policy π
3: Initialize the policy network π, value critic network V π

r , feasibility critic network V π
h , and

lambda network Λπ with random weights
4: Initialize the surrogate policy network π′ same as the policy network π
5: # Stage 1: Experience Collection
6: for each VNE instance I ∈ I do
7: Compute adaptive reachability budget Dπ′

h (s) for the following sampled state s using π′

8: Initialize state s0 from the heterogeneous graph GI and its augmented views GA
I and GB

I
9: for timestep t = 0 to T do

10: Generate the action probability distribute and select action at ∼ π(·|st)
11: Execute action at, observe reward rt and next state st+1

12: Compute constraint violation ht = H(st+1) and cost ct = C(st+1)

13: Store transition (st, at, rt, st+1, ht, ct, D
π′

h (st)) in trajectory memory τ
14: end for
15: end for
16: # Stage 2: Policy Optimization
17: for each update step do
18: Sample a batch of transitions from the trajectory memory τ
19: Calculate the PPO objective LPPO for policy π with Eq. 25
20: Calculate the value critic loss Lr and reachability critic loss Lh
21: Calculate the loss of Lambda network with Eq. 24
22: Calculate the contrastive loss LCL with the Barlow Twins method, i.e., Eq. 23
23: Obtain the final loss with Eq. 25 and update π, V π

r , V π
h , and Λπ

24: if update the surrogate policy then
25: Synchronize the parameters of π′ with π, i.e., π′ ← π
26: end if
27: end for
28: return: The learned policy π

Algorithm 2 Inference process of CONAL.

1: Input: An arrived VNE instance I; The learned policy π
2: Output: The solution status

Initialize state s0 from the heterogeneous graph GI

3: for timestep t = 0 to T do
4: Generate the action probability distribute and select action at ∼ π(·|st)
5: Execute action at: Map the to-be-decided virtual node nt

v onto the selected physical node at
6: Transit to next state st+1: Route all prepared incident links nt

v
7: Compute constraint violation ht = H(st+1) and cost ct = C(st+1)
8: if any constraints are violated, i.e., ct > 0 then
9: return FALSE

10: end if
11: end for
12: return TRUE

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

During the inference process, we use the learned policy π to solve newly arrived VNE instances.
Note that the surrogate policy and the path-bandwidth contrast module are not utilized in this pro-
cess. The inference process is outlined in Algorithm 2.

At each decision timestep t in the inference process, we attempt to place the virtual node nt
v , and

route its prepared incident links δ′(nt
v), until the solution is successfully completed or any con-

straints are violated. Concretely, we extract the state features st from the heterogeneous graph, and
input them into the policy network to produce an action probability distribution π(at | st). The
action at, representing the selected physical node, is chosen using a greedy strategy that picks the
action with the highest probability. Then, we execute the selected action, i.e., mapping the virtual
node nt

v onto the physical node at. Once the action is executed, the network system transitions to
the next state st+1, where all prepared incident links δ′(nt

v) are routed. Subsequently, the system
computes the corresponding constraint violations ht and costs ct for the current state. If any con-
straints are violated during the process, the inference is terminated early, and the instance is rejected.
Otherwise, the process continues until a complete and feasible solution is found.

F EXPERIMENTAL DETAILS

In this section, we provide the details of implementations and hyperparameter settings, the descrip-
tions of compared baselines and CONAL’s variations, and the definition of metrics.

F.1 IMPLEMENTATION DETAILS

CONAL Implementation. We implement the GNNs in CONAL with PyG and other neural net-
works of CONAL with PyTorch. Each neural network has a hidden dimension of 128 and GAT
modules are composed of 3 layers. We set the both reward and cost discounted factor λ of CMDP
to 0.99. We set the augment ratio ϵ in the path-bandwidth contrast method to 1. We use a batch
size of 128 and the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001. We use
the sampling strategy and greedy strategy for the action section in the training and testing processes,
respectively. For the k-shortest path algorithm used in link routing, we set the maximum path length
k to 5. The loss weights are set as follows: wPPO = 1.0, wLAM = 0.1, wCL = 0.001, wr = 0.5 and
wh = 0.5.

Simulation for Training and Testing. For RL-based methods and CONAL, we train policies for
each average arrival rate η, where running seeds are randomly set in every simulation. During
testing, we evaluate the performance of all algorithms by repeating the tests with 10 different seeds
(i.e., 0, 1111, 2222, · · · , 9999) for each average arrival rate η to ensure statistical significance.

Computer Resources. All experiments were conducted on a Linux server equipped with one
NVIDIA A100 Tensor Core GPU, 24 AMD EPYC 7V13 CPUs, and 128GB of memory.

F.2 BASELINE DESCRIPTIONS

We introduce the compared baselines, which cover the most perspectives of VNE solving strategies:

• NRM-VNE (Zhang et al., 2018) is a node ranking-based heuristic method. It first uses a
Node Resource Management (NRM) metric to rank both virtual and physical nodes and
employs a greedy matching approach for node mapping. Then, for link mapping, this
method utilizes the k-shortest path algorithm, similar to our approach.

• GRC-VNE (Gong et al., 2014) is a node ranking-based heuristic method. It sorts nodes
with a Global Resource Control (GRC) strategy based on random walk and maps them
accordingly. Then, it conducts the link mapping using k-shortest path algorithm.

• NEA-VNE (Fan et al., 2023) is a node ranking-based heuristic that employs a Node Es-
sentiality Assessment (NEA) metric to rank nodes and follows a similar mapping as NRM-
VNE and GRC-VNE.

• GA-VNE (Zhang et al., 2019) is a meta-heuristic method based on genetic algorithms. It
models each node mapping solution as a chromosome and iteratively explores the solution
space by simulating the process of natural selection and genetic evolution.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

• PSO-VNE (Jiang & Zhang, 2021) is a meta-heuristic method that employs particle swarm
optimization. It explores the VNE solution space by simulating the behavior of particles.

• MCTS-VNE (Haeri & Trajković, 2017) is a model-based RL method. It utilizes the Monte
Carlo Tree Search (MCTS) algorithm to explore possible solutions with upper confidence
bound strategies.

• PG-CNN (Zhang et al., 2022) is a model-free RL method. It models the solution construc-
tion of each VNE instance as MDP. Then, it develops a policy network with Convolutional
Neural Network (CNN) and trains it using the Policy Gradient (PG) algorithm. Specifically,
during training, only samples related to feasible solutions are used for optimization.

• A3C-GCN (Zhang et al., 2023b) is a model-free RL method. It constructs a policy network
with a Graph Convolutional Network (GCN) and a Multi-Layer Perceptron (MLP). The
Asynchronous Advantage Actor-Critic (A3C) algorithm is used for training. Particularly,
during training, if encountering failure samples, customized negative rewards are returned.

• DDPG-ATT (He et al., 2023a) is a model-free RL method that builds an ATTention-based
(ATT) policy network and uses the Deep Deterministic Policy Gradient (DDPG) algorithm
for training. Similar to A3C-GCN, it introduces the penalty into reward shaping.

• GAL-VNE (Geng et al., 2023) is a model-free RL method that formulates VNE into both
Global learning across requests And Local prediction within requests (GAL). It first uses
supervised learning to develop a GNN policy to solve VNE in one shot. Then, in online
perspective, they use the RL to finetune this policy to improve the overall performance.

Regarding the baseline implementation, we use the official code of GAL-VNE and reproduce
DDPG-ATT following the original paper. For the other baselines, we derive their implementa-
tions from the Virne1 library. Furthermore, for their hyperparameter settings, we follow the original
papers for heuristic baselines. For RL-based baselines, we set the same hidden size of their neural
networks as us and other hyperparameters according to their original papers. In the link mapping
process, all baselines use the same k-shortest path algorithm as ours.

F.3 VARIATIONS DESCRIPTIONS

To verify the individual performance contributions of each CONAL’s components, we design the
following variations as additional baselines:

• CONALw/o HM discards the proposed heterogeneous modeling (HM) module. Instead, it
independently extracts the features of VN and PN using GAT. The global representation of
VN is obtained using the sum pooling method. Then, we produce the final node representa-
tion of PN by adding this global representation, which is enhanced with the path-bandwidth
contrast module and used to produce the final action probability distribution.

• CONALw/o PC removes the proposed path-bandwidth contrast (PC) module.
• CONALw/o HM & PC omits both the HM and PC modules, utilizing independent feature ex-

tractions of VN and PN and an addition-based fusion method, same as CONALw/o HM.
• CONALw/o REACH replaces our reachability-guided optimization objective (i.e., Eq. 3) with

the traditional cumulative cost optimization objective (i.e., Eq. 2), which restricts expected
cumulative costs below zero. It extend the proposed adaptive reachability budget, i.e.,
Eq. 5, to calculate adaptive cost budget, defined as follows:

∀s ∈ τ,Dπ′

c (s) =
∑
s′∈τ ′

C(s′). (27)

• CONALw/o ARB removes the proposed adaptive reachability budget (ARB) module and uses
zero as a fixed reachability budget.

F.4 METRIC DEFINITIONS

We provide detailed definitions of key evaluation metrics that are widely used to evaluate the effec-
tiveness of VNE algorithms comprehensively (Fischer et al., 2013; Yan et al., 2020):

1https://github.com/GeminiLight/virne

24

https://github.com/GeminiLight/virne

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

• VN Acceptance Rate (VN ACR) measures the proportion of VN requests that are success-
fully accepted by the system. It evaluates the ability of network provider to satisfy user
service requests, defined as

VN ACR =

∑T
t=0 |Ĩ(t)|∑T
0 |I(t)|

, (28)

where I(t) and Ĩ(t) denote the set of totally arrived and accepted VNE instances at the
unit of time slot t. The operation |I| means the number of VN requests in the set I.

• Long-term Revenue (LT REV) evaluates the total revenue generated over a specified pe-
riod, serving as an indicator of the financial gains derived from the VN requests processed
by the system. It reflects the economic impact of decisions on network operations.

LT REV =

T∑
t=0

∑
I∈Ĩ(t)

REV(E)×ϖ, where E = fG(I). (29)

Here, ϖ the lifetime of the tackled VN Gv , where I = {Gv, Gp}.
• Long-term Revenue-to-Consumption Ratio (LT R2C) quantifies the economic efficiency

of the system by comparing the revenue generated to the resources consumed. It offers
insights into the operational cost-effectiveness of the VNE solutions implemented.

LT R2C =

∑T
t=0

∑
I∈Ĩ(t) REV(E)×ϖ∑T

t=0

∑
I∈Ĩ(t) CONS(E)×ϖ

, where E = fG(I). (30)

• Average Solving Time (AVG ST) measures the computational efficiency of VNE algorithm
in online inference. We define it as the average wall-clock time required to solve a single
instance during one simulation, and use second (s) as the time unit.

• Constraint Violation (C VIO) assesses the constraint satisfaction ability of the VNE algo-
rithm, which is used to compare the constraint awareness of CONAL and its variations. It
is defined as cumulative constraint violations over all VNE instances in one simulation:

C VIO =

T∑
t=0

∑
I∈(I(t)−Ĩ(t))

∑
s∼τ

C(s), (31)

where τ is the trajectory produced by the policy π with greedy selection and C(s) is the
caused violations in state s.

∑
s∼τ C(s) means the sum of violations in the trajectory τ .

G ADDITIONAL EVALUATION
UPDATE

In this section, we present additional experiments to evaluate the generalizability, scalability, and
practicability of CONAL, as well as investigate the impact of two key hyperparameters.

G.1 GENERALIZABILITY STUDY

To evaluate the robustness and adaptability of CONAL’s trained policy across various network con-
ditions, we conduct a series of experiments to test its generalizability in different dynamic and
fluctuating environments, i.e. , under varying request frequencies and changing resource demands.

Request Frequency Sensitivity Study. We analyze the sensitivity of CONAL and other VNE al-
gorithms to varying arrival rates of VN requests by adjusting the value of η. This manipulation
simulates different network system scenarios with varying traffic throughputs. Specifically, we con-
duct experiments with η values ranging from 0.08 to 0.20, in increments of 0.02. The results are
illustrated in Figure 5. As request frequency η increases, we observe all algorithms exhibit a clear
downward trend in VN ACR. This is mainly because the increase in request frequency intensifies
resource competition among VN requests at the same moment, resulting in more rejections of VNs.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0.08 0.12 0.16 0.20
Average Arrival Rate

0.5

0.6

0.7

0.8

0.9

1.0
V

N
_A

C
R

(a) VN Acceptance Rate

NRM-VNE
GRC-VNE

NEA-VNE
GA-VNE

PSO-VNE
MCTS-VNE

PG-CNN
DDPG-ATT

A3C-GCN
GAL-VNE

CONAL

0.08 0.12 0.16 0.20
Average Arrival Rate

0.45

0.50

0.55

0.60

0.65

LT
_R

2C
(b) Long-term R2C Ratio

0.08 0.12 0.16 0.20
Average Arrival Rate

0.50

0.75

1.00

1.25

1.50

LT
_R

EV

1e8

(c) Long-term Revenue

Figure 5: Results in the sensitivity study on varying average arrival rate η.

0 2500 5000 7500 10000
Simulation Time

0.5

0.6

0.7

0.8

0.9

1.0

V
N

_A
C

R

(a) VN Acceptance Rate

NRM-VNE
GRC-VNE

NEA-VNE
GA-VNE

PSO-VNE
MCTS-VNE

PG-CNN
DDPG-ATT

A3C-GCN
GAL-VNE

CONAL

0 2500 5000 7500 10000
Simulation Time

0.5

0.6

0.7

0.8

0.9

LT
_R

2C

(b) Long-Term R2C Ratio

0 2500 5000 7500 10000
Simulation Time

0.00

0.25

0.50

0.75

1.00

1.25

LT
_R

EV

1e8

(c) Long-Term Revenue

Figure 6: Results in the dynamic request distribution testing. The gray vertical lines roughly partition the
request processing stages into four groups with different distributions.

In particular, CONAL consistently outperforms the compared baseline algorithms across all tested
values of η. This indicates that CONAL is more effective and adaptable to changes in request fre-
quency, maintaining superior performance. Overall, this analysis highlights the effectiveness of
CONAL in handling complex network environments with fluctuating traffic throughput.

Dynamic Request Distribution Testing. In practical scenarios, the node size and resource require-
ments distributions of VN requests may vary due to different service demands. To simulate such
situations, similar to previous work (Geng et al., 2023), we equally divided 1000 VN requests into
four sub-groups. In comparison to the default simulation settings, we modified one parameter related
to the distribution of VN resource demand or VN node size for each sub-group: For the first group,
the node and link resource distributions of VN are changed to [0, 30] and [0, 75], respectively; For
the second group, the node and link resource distributions of VN are adjusted to [0, 40] and [0,
100], respectively; For the third group, the VN node size distribution is changed to [2, 15]; For the
fourth group, the VN node size distribution is altered to [2, 20]. We evaluate the CONAL and other
RL-based methods trained in the default settings. The results are illustrated in Figure 6. We observe
that CONAL exhibits superior performance across all metrics, indicating its strong adaptability to
dynamic request distributions. Regarding the VN ACR, all algorithms experience a rapid decrease
in the early stages of the simulation due to the quick consumption of resources. Subsequently, their
VN ACR becomes relatively stable. It is worth noting that in the fourth stage, most algorithms show
a clear downward trend in VN ACR. This is because embedding larger VNs with more complex
topologies and greater resource demands becomes increasingly challenging. This testing shows that
CONAL is highly adaptable across varying VN request distributions, which underscores CONAL’s
generalization in dynamic network environments.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

G.2 SCALABILITY ANALYSIS

In this section, we assess the scalability of CONAL by exploring its performance in large-scale
network environments and its time consumption to adapt to varying network sizes.

Large-scale Network Validation. Similar to previous work (Wang et al., 2023), we generate a ran-
dom Waxman topology (Waxman, 1988) with 500 nodes and nearly 13,000 links, named WX500.
This mimics the modern large-scale cloud cluster, which is more challenging due to the increased
complexity of the topology. Additionally, we increase the VNE size distribution to a uniform range
from 2 to 20 nodes, and set the arrival rate of VN requests η to 0.5. All other simulation and
hyperparameter settings remain consistent with those outlined in Section 4.1. To adapt the pre-
trained CONAL model for WX100 to this larger scenario, we fine-tune it on WX500 via transfer
learning. The pretraining on WX100 takes approximately 7.274 hours, and the fine-tuning stage
on WX500 consumes an additional 4.326 hours. By leveraging transfer learning, we accelerate the
training efficiency of CONAL, facilitating the rapid acquisition of a CONAL model suitable for
large-scale scenarios. The results are illustrated in Figure 8. We observe that CONAL consistently
outperforms the baselines in terms of both VN ACR and LT REV. CONAL also demonstrates su-
perior performance in the LT R2C, which is only marginally lower than NEA-VNE. Regarding the
AVG ST, NEA-VNE, MCTS-VNE, and PSO-VNE exhibit significantly higher time consumption,
whereas CONAL maintains a competitive running efficiency similar to PG-CNN, A3C-GCN, and
DDPG-ATT. Despite the increased complexity of the WX500 topology, CONAL maintains a bal-
ance between performance and computational efficiency. This analysis demonstrates the scalability
and efficiency of CONAL in large-scale network scenarios.

200 400 600 800 1000
Size of Physical Network

0

50

100

150

200

250

300

Av
er

ag
e

So
lv

in
g

Ti
m

e
(s

)

NRM-VNE
GRC-VNE
NEA-VNE
GA-VNE
PSO-VNE
MCTS-VNE
PG-CNN
DDPG-ATT
A3C-GCN
GAL-VNE
CONAL

Figure 7: Solving Time Scale with Network Size.

Solving Time Scale Analysis. We investi-
gate solving time across different physical net-
work sizes to evaluate CONAL’s time scalabil-
ity. Specifically, we increase the size of physi-
cal network from 200 to 1,000 nodes with a step
of 200 to simulate networks of varying scales.
Due to more enough link connectivity of large-
scale network system, we set the we set the
maximum path length k to 4. Figure 7 shows
that as the size increases, NRM-VNE, GRC-
VNE and GAL-VNE show the most sightly in-
creased average solving time. In contrast, PSO-
VNE and GA-VNE experience a rapid growth
in solving time due to their reliance on exten-
sive search. CONAL exhibits the similar trend
with A3C-GCN and DDPG-ATT, since they are
all based on constructive solution paradigm. As the size of physical network increases, the solution
time of these algorithms does not explode, still competitive with MCTS and NEA-VNE. Overall,
the solving time of CONAL remains efficient even at larger network scales while offering great
performance, making it a viable solution for real-time decision-making in large-scale environments.

G.3 REAL-WORLD NETWORK TOPOLOGY VALIDATION UPDATE

To verify the effectiveness of our proposed algorithm in real-world network topologies, we con-
ducted experiments on realistic network topologies. Similar to previous works (He et al., 2023a;
Wang et al., 2023), we employed two widely-used topologies from SDNlib2:

• GEANT is the academic research network that interconnects Europe’s national research
and education networks, comprising 40 nodes, 64 edges, and a density of 0.0821.

• BRAIN is the largest real-world network topology in SDNlib, consisting of 161 nodes and
166 edges with a density of 0.0129. It is the high-speed data network for scientific and
cultural institutions in Berlin.

2https://sndlib.put.poznan.pl

27

https://sndlib.put.poznan.pl

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.5

0.6

0.7

0.8

0.9
V

N
_A

C
R

(a) VN Acceptance Rate

GRC-VNE
NRM-VNE

NEA-VNE
GA-VNE

PSO-VNE
MCTS-VNE

PG-CNN
DDPG-ATT

A3C-GCN
GAL-VNE

CONAL

0.50

0.55

0.60

0.65

LT
_R

2C

(b) Long-term R2C Ratio

N
R

M
-V

N
E

G
R

C
-V

N
E

N
EA

-V
N

E

G
A

-V
N

E

PS
O

-V
N

E

M
C

TS
-V

N
E

PG
-C

N
N

D
D

PG
-A

TT

A
3C

-G
C

N

G
A

L-
V

N
E

C
O

N
A

L

1

2

3

4

LT
_R

EV

(c) Long-term Revenue
N

R
M

-V
N

E

G
R

C
-V

N
E

N
EA

-V
N

E

G
A

-V
N

E

PS
O

-V
N

E

M
C

TS
-V

N
E

PG
-C

N
N

D
D

PG
-A

TT

A
3C

-G
C

N

G
A

L-
V

N
E

C
O

N
A

L

10 1

100

101

102

R
_T

IM
E

(d) Average Solving Time (s)

Figure 8: Results in scalability validation.

Table 3: Results in real-world system validation.

GEANT BRAIN
VN ACR ↑ LT R2C ↑ LT REV ↑ VN ACR ↑ LT R2C ↑ LT REV ↑

NRM-VNE (Fan et al., 2023) 0.568 0.626 4.169 0.627 0.696 5.189
GRC-VNE (Gong et al., 2014) 0.396 0.574 2.276 0.644 0.652 5.725
NEA-VNE (Fan et al., 2023) 0.739 0.628 7.525 0.656 0.682 5.907
GA-VNE (Zhang et al., 2019) 0.585 0.592 4.362 0.450 0.550 2.512

PSO-VNE (Jiang & Zhang, 2021) 0.525 0.504 3.729 0.415 0.475 2.164
MCTS-VNE (Haeri & Trajković, 2017) 0.573 0.524 4.443 0.494 0.566 2.733

PG-CNN (Ma et al., 2023) 0.639 0.576 5.712 0.538 0.651 3.804
DDPG-ATT (He et al., 2023a) 0.625 0.533 5.449 0.572 0.657 4.326

A3C-GCN (Zhang et al., 2023b) 0.747 0.692 8.135 0.577 0.715 4.473
GAL-VNE (Geng et al., 2023) 0.804 0.613 9.915 0.591 0.729 4.922

CONAL 0.916 0.761 11.946 0.683 0.835 6.339
∗ Values in the LT REV column are scaled by 107.

Due to the limited resource supply in these topologies, we adjust the average arrival rate η of VN
requests to 0.0005 in GEANT and 0.001 in BRAIN. We keep other network system simulation pa-
rameters as same as those discussed in Section 4.1. As shown in Table 3, CONAL outperforms
all baselines across both network systems in terms of performance metrics. Notably, in the sparser
BRAIN topology, RL-based VNE algorithms (e.g., A3C-GCN and GAL-VNE) performed worse
compared to node ranking-based methods (e.g., GRC-GCN and NEA-VNE). The increased chal-
lenge of satisfying routing constraints in sparser topologies likely accounts for this performance
discrepancy. These RL-based methods with less constraint awareness, result in a low solution feasi-
bility guarantee and tend to exhibit lower performance. Meanwhile, CONAL still achieves the best
performance, showing its effectiveness in these real-world network topologies. Furthermore, in the
GEANT topology, CONAL achieve an average solving time of just 0.09 seconds, while maintain-
ing efficient performance with an average solving time of 0.2 seconds in the larger-scale BRAIN
topology. These results highlight CONAL’s capability to deliver rapid solutions, making it highly
suitable for low-latency applications in small to medium-sized network environments. NEW

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 10 20 30
0.70

0.75

0.80

0.85

V
N

_A
C

R

(a) VN Acceptance Rate

0 10 20 30
0.55

0.60

0.65

LT
_R

2C

(b) Long-term Revenue

0 10 20 30
8.0

8.5

9.0

9.5

10.0

10.5

LT
_R

EV

(c) Long-term R2C Ratio

Figure 9: The impact of update interval µ of surrogate policy proposed in the ARB method.

0.0 0.5 1.0 1.5 2.0
0.70

0.75

0.80

0.85

V
N

_A
C

R

(a) VN Acceptance Rate

0.0 0.5 1.0 1.5 2.0
0.55

0.60

0.65

LT
_R

2C

(b) Long-term Revenue

0.0 0.5 1.0 1.5 2.0
8.0

8.5

9.0

9.5

10.0

10.5

LT
_R

EV

(c) Long-term R2C Ratio

Figure 10: The impact of augument ratio ϵ used in the path-bandwidth contrast module.

G.4 HYPERPARAMETER IMPACT STUDY

In this section, we explore the impact of two proposed key hyperparameters on the performance of
CONAL, including the update interval µ of surrogate policy proposed in the ARB method and the
augment ratio (ϵ) used in the path-bandwidth contrast module.

The impact of update interval of surrogate policy. This parameter µ controls the update interval of
surrogate policy π′ during training. We vary µ within the range [1, 5, 10, 20, 30] to explore its impact
on key performance metrics, as shown in Figure 9. We observe that increasing µ initially leads
to an improvement in all metrics. This suggests that extremely frequent updates of the surrogate
policy make the budget values change rapidly, potentially leading to instability and divergence in
the learning process. As µ increases beyond nearly 10, the improvements across these metrics
tend to be stable and show minimal variation. This implies that while a moderate update interval
enhances the model’s performance, too-slow updates do not offer a significant further improvement
on performance metrics and may even increase computational overhead for training.

The impact of the augment ratio. This parameter determines the proportion of links to be added
based on the number of nodes in the network. We change the augment ratio ϵ within the range
[0, 0.5, 1.0, 1.5, 2.0] and the results are illustrated in Figure 10. As the augment ratio initially
increases from 0 to 1.0, we observe improvements across performance metrics. However, when
the augment ratio is increased beyond 1.0, these improvements become marginal or even negative.
This indicates that excessive enhancement of the graph structure can increase learning difficulty.
The increasing disparity between the enhanced and original graph topologies may also negatively
impact performance. This study reveals that a reasonable augment ratio ϵ benefits the model by
improving its sensitivity to bandwidth constraints. However, excessively high ϵ values provide only
slight improvements or can even degrade performance. Generally, setting ϵ = 1.0 or a value close to
it provides a balanced trade-off between performance enhancement and model robustness. NEW

G.5 CONVERGENCE ANALYSIS OF LAGRANGE MULTIPLIER NEW

To evaluate the behavior of the Lagrange multiplier λ during training, we conducted experiments
under arrival rates η = 0.14 of VN requests, corresponding to moderate proportions of unsolvable
instances. Specifically, we compared the performance of CONAL with and without the ARB mech-
anism. The Lagrange multiplier λ was monitored over 300 training steps on the WX100 topology,
with results shown in Figure 11. NEW

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 100 200 300
Update Steps

0.0

2.5

5.0

7.5

10.0

La
gr

an
ge

 m
ul

tip
lie

r

(a) = 0.14 on WX100

CONAL
CONAL w/o ARB

Figure 11: Convergence curves of La-
grange multiplier λ during training.

The results shown in Figure 11 reveal a clear distinction in the
convergence behavior of λ. Without ARB, λ diverges rapidly
to extreme values. This divergence reflects instability in the op-
timization process and leads to unreliable policy updates. In
contrast, CONAL with ARB effectively stabilizes λ through-
out training. By dynamically adjusting the feasibility budget,
ARB mitigates the impact of unsolvable instances, ensuring sta-
ble training even under challenging conditions. These findings
demonstrate the crucial role of ARB in preventing numerical
instability and enabling robust policy learning in scenarios with
high constraint violations. NEW

H DETAILED INFORMATION ON USED ASSETS

In this work, we list the used assets along with their version and license as follows:

• Virne is a Virtual Network Embedding (VNE) algorithm library, offering many heuris-
tic and machine learning-based methods for VNE. The source code can be accessed at
https://github.com/GeminiLight/virne. It is licensed under Apache 2.0. In this work, we
derived baseline implementations from Virne and developed our method using this library,
specifically version 0.5.0.

• SNDlib is a library for telecommunication network design, which offers a collection
of realistic network system topologies. This library is open-source and available at
https://sndlib.put.poznan.pl, although the specific licensing terms are not clearly stated. In
our real-world network validation (see Appendix G.2), we utilize network topologies such
as GEANT and BRAIN, which are from SNDlib.

All datasets and codebases are publicly accessible. They focus on networking and communication.
They are not directly related to human identities and include no offensive content and bias.

30

https://github.com/GeminiLight/virne
https://sndlib.put.poznan.pl

	Introduction
	Problem Definition
	Methodology
	Violation-tolerant CMDP Formulation.
	Reachability-guided Optimization with Adaptive Budget
	Constraint-aware Graph Representation
	Computational Complexity Analysis

	Experiments
	Experimental Settings
	Results and Analysis

	Conclusion
	Related Work
	Problem Formulation
	Optimization Objectives
	Constraint Conditions

	Preliminary Study
	Model Details
	Illustrative Explanation of Prepared Incident Links
	Proof of Lagrange Multiplier Convergence
	Heterogeneous Graph Network
	Barlow Twins Loss Function
	Lagrangian-based PPO Training Method.
	Detailed Analysis of Computational Complexity

	Descriptions of Training and Inference Process
	Training Process of CONAL
	Inference Process of CONAL

	Experimental Details
	Implementation Details
	Baseline Descriptions
	Variations Descriptions
	Metric Definitions

	Additional Evaluation
	Generalizability Study
	Scalability Analysis
	Real-world Network Topology Validation
	Hyperparameter Impact Study
	Convergence Analysis of Lagrange Multiplier

	Detailed Information on Used Assets

