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ABSTRACT

There is growing interest in understanding how real brains may approximate
gradients and how gradients can be used to train neuromorphic chips. However,
neither real brains nor neuromorphic chips can perfectly follow the loss gradient,
so parameter updates would necessarily use gradient estimators that have some
variance and/or bias. Therefore, there is a need to understand better how variance
and bias in gradient estimators impact learning dependent on network and task
properties. Here, we show that variance and bias can impair learning on the training
data, but some degree of variance and bias in a gradient estimator can be beneficial
for generalization. We find that the ideal amount of variance and bias in a gradient
estimator are dependent on several properties of the network and task: the size
and activity sparsity of the network, the norm of the gradient, and the curvature of
the loss landscape. As such, whether considering biologically-plausible learning
algorithms or algorithms for training neuromorphic chips, researchers can analyze
these properties to determine whether their approximation to gradient descent will
be effective for learning given their network and task properties.

1 INTRODUCTION

Artificial neural networks (ANNs) typically use gradient descent and its variants to update their
parameters in order to optimize a loss function (LeCun et al., 2015; Rumelhart et al., 1986). Impor-
tantly, gradient descent works well, in part, because when making small updates to the parameters,
the loss function’s gradient is along the direction of greatest reduction.1 Motivated by these facts, a
longstanding question in computational neuroscience is, does the brain approximate gradient descent
(Lillicrap et al., 2020; Whittington & Bogacz, 2019)? Over the last few years, many papers show
that, in principle, the brain could approximate gradients of some loss function (Murray, 2019; Liu
et al., 2021; Payeur et al., 2021; Lillicrap et al., 2016; Scellier & Bengio, 2017). Also inspired by the
brain, neuromorphic computing has engineered unique materials and circuits that emulate biological
networks in order to improve efficiency of computation (Roy et al., 2019; Li et al., 2018b). But, unlike
ANNs, both real neural circuits and neuromorphic chips must rely on approximations to the true
gradient. This is due to noise in biological synapses and memristors, non-differentiable operations
such as spiking, and the requirement for weight updates that do not use non-local information (which
can lead to bias) (Cramer Benjamin et al., 2022; M. Payvand et al., 2020b; Laborieux et al., 2021;
Shimizu et al., 2021; Neftci et al., 2017; N. R. Shanbhag et al., 2019). Thus, both areas of research

1If we assume a Euclidean metric in weight space.
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could benefit from a principled analysis of how learning is impacted by loss gradient variance and
bias.

In this work, we ask how different amounts of noise and/or bias in estimates of the loss gradient
affect learning performance. As shown in a simple example in Fig. 9, learning performance can be
insensitive to some degree of variance and bias in the gradient estimate, and even benefit from it,
but excessive amounts of variance and/or bias clearly hinder learning performance. Results from
optimization theory shed light on why imperfectly following the gradient—e.g. via stochastic gradient
descent (SGD) or other noisy GD settings—can improve generalization in ANNs (Foret et al., 2020;
Chaudhari et al., 2019; Yao et al., 2018; Ghorbani et al., 2019). However, most of these results treat
unbiased gradient estimators. In contrast, in this work, we are concerned with the specific case of
weight updates with intrinsic but known variance and bias, as is often the case in computational
neuroscience and neuromorphic engineering. Moreover, we also examine how variance and bias can
hinder training, because the amount of variance and bias in biologically-plausible and neuromorphic
learning algorithms is often at levels that impair, rather than improve, learning (Laborieux et al.,
2021), and sits in a different regime than that typically considered in optimization theory.

Figure 1: Train and test accuracy of a VGG-16 network trained for 50 epochs (to convergence) on
CIFAR-10 using full-batch gradient descent (with no learning rate schedule) with varying amount of
variance and bias (as a fraction of the gradient norm) added to the gradient estimates. These results
(avg of 20 seeds) indicate that excessive noise and bias harms learning, but a small amount can aid it.

The observations in Fig. 9 give rise to an important question for computational neuroscientists and
neuromorphic chip designers alike: what amount of variance and bias in a loss gradient estimate
is tolerable, or even desirable? To answer this question, we first observe how variance and bias in
gradient approximations impact the loss function in a single parameter update step on the training
data. (We also extend this to multiple updates in Appendix A.) We utilize an analytical and empirical
framework that is agnostic to the actual learning rule, and derive the factors that affect performance
in an imperfect gradient setting. Specifically, we assume that each update is comprised of the
contribution of the true gradient of the loss function with respect to the parameter, a fixed amount of
bias, and some noise. Similar to Raman et al. (2019), we derive an expression for the change in the
loss function after a discrete update step in parameter space: w(t+�t) = w(t) +�w(t)�t, where
�t is akin to learning rate in standard gradient descent algorithms. We then characterize the impact
on learning using the decrease in loss function under an approximate gradient setting as compared to
the decrease in loss function when following the true gradient.

Our analysis demonstrates that the impact of variance and bias are independent of each other.
Furthermore, we empirically validate our inferences in ANNs, both toy networks, and various VGG
configurations (Vedaldi & Zisserman, 2016) trained on CIFAR-10 (Krizhevsky & Hinton, 2009). Our
findings can be summarized as follows:

1. The impact of variance is second order in nature. It is lower for networks with a threshold
non-linearity, as compared to parameter matched linear networks. Under specific conditions,
variance matters lesser for wider and deeper networks.

2. The impact of bias increases linearly with the norm of the gradient of the loss function, and
depends on the direction of the gradient as well as the eigenvectors of the loss Hessian.

3. Both variance and bias can help to prevent the system from converging to sharp minima,
which may improve generalization performance.
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Altogether, our results provide guidelines for what network and task properties computational
neuroscientists and neuromorphic engineers need to consider when designing and using noisy and/or
biased gradient estimators for learning.

2 ESTIMATING THE IMPACT OF VARIANCE AND BIAS ON TRAINING

Our analysis focuses on situations where the synaptic weights of a network, w, are trained to optimize
a loss, L[w]. We use an auxiliary variable, t, to denote different points in this optimization trajectory
and �t to denote a single step in this trajectory. (We extend to the multi-step case in Corollary A.2 of
the Appendix.) Compared to standard optimization protocols in the ANN literature, �t is akin to the
learning rate. Therefore, the loss as measured at one particular point in the trajectory is denoted as
L[w(t)], and the loss at the next point in the trajectory, i.e., after a weight update step, is denoted by
L[w(t+�t)]. In the rest of this work, we characterize L[w(t+�t)]�L[w(t)] as a function of the
variance and bias in the weight update.

We assume that L is twice differentiable and �t is small enough such that L[w(t + �t)] can be
effectively approximated around L[w(t)] using a second order Taylor series, i.e., higher order terms
beyond the second order can be ignored. Furthermore, we define a weight update equation that
consists of the gradient, a fixed bias, and some noise. We denote the bias vector as b

�!
� , where

�!
� is a

norm
p
N vector that indicates the direction of bias in the N -dimensional parameter space. A special

case of
�!
� would be

�!
� =

�!
1 when all parameters have the same bias. Similarly, we assume white

noise in the gradient estimates. With these assumptions, we define the weight update equation to be:

�w(t) := �rwL[w(t)] + b
�!
� + �

»
f(N)n̂ (1)

where rwL[w(t)] denotes the first derivative of the gradient of L evaluated at w(t) and n̂ is a unit
vector in the N -dimensional parameter space whose elements are zero-mean i.i.d. (see Appendix
A for generality of this assumption), such that the total variance of �w(t) is �2

f(N), where f(N)
denotes the dependence of variance on the total number of network parameters, N . Finally, we
define �Lt(b,�2) as the change in L[w(t)] when performing the aforementioned weight update as
compared to the change in L[w(t)] when the weight update step follows the true gradient, i.e.,

�Lt(b,�
2) = [L[w(t+�t)]� L[w(t)]](b,�2) � [L[w(t+�t)]� L[w(t)]](0,0) (2)

where [L[w(t+�t)]� L[w(t)]](b,�2) is the change in loss with bias b and variance �2. For brevity,
we drop the t is the subscript in the rest of the paper. Formally, we present the following Lemma:

Lemma 2.1. Second order Taylor series expansion. Assuming a small learning rate, the bias, b, and
variance, �2, in gradient estimates can be linked to changes in L upon one weight update step as
compared to the change in L under a true gradient descent weight update step:

En̂

⇥
�L(b,�2)

⇤
= En̂

î
[L[w(t+�t)]� L[w(t)]](b,�2) � [L[w(t+�t)]� L[w(t)]](0,0)
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Tr[r2

wL[w(t)]]�t
2

(3)

where h·, ·i denotes the dot product, Tr denotes the Trace operator of a square matrix, orange terms
indicate the impact of bias, and the green term indicates the impact of variance.

In the next section, we present an in-depth analysis of the impact of variance when f(N) is sublinear,
as is the case for some learning algorithms, e.g. Equilibrium Propagation (Laborieux et al., 2021).
We present a more general analysis along with the proofs of all lemmas and theorems in Appendix A.
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2.1 ANALYSIS OF THE IMPACT OF VARIANCE AND BIAS ON TRAINING LOSS

One of the corollaries that follow from Lemma 2.1 is that the impact of variance and bias on the
expected �Lt(b,�2) are independent of each other. Moreover, it is clear that the impact of variance
is directly proportional to the trace of r2

wL[w(t)], i.e., the loss Hessian, and inversely proportional
to N , i.e., the number of trainable parameters in the network.

Previous work investigating the object categorization loss landscape for feedforward ANNs demon-
strated a pronounced effect of width, i.e., increasing width leads to smoother loss landscapes (Li et al.,
2018a), thereby leading to lower trace of Hessian (Hochreiter & Schmidhuber, 1994). This empirical
observation in deep ANNs implies that increasing the width both lowers the trace of the Hessian
in addition to its obviously increasing the number of trainable network parameters. Therefore, we
can say directly from Lemma 2.1 that the impact of variance is lower for wider networks. However,
the role of depth is more complicated. Notably, increasing depth (with no skip connections) could
theoretically make the loss landscape less smooth (Li et al., 2018a). Thus, we begin by analyzing
the case of increasing depth in linear feedforward networks. We prove that, in fact, increasing depth
leads to lower values for Tr[r2

wL]
N , thereby implying a lower impact of variance.

Theorem 2.2. Increasing depth lowers impact of variance For linear feedforward ANNs, the impact
of variance on �Lt(0,�2) for a (L+ 1) layer network is less than that of a L layer network, i.e.,

�Lt(0,�
2)(L+1)�layer  �L(0,�2)L�layer (4)

where each layer has d units and weights initialized by the Xavier initialization strategy and the
total variance in gradient estimates does not grow with the size of the network, i.e., f(N) is some
constant2

Although these assumptions on layer weights may not strictly hold over the course of training,
empirical experience suggests that there exists a loose correspondence among these quantities if the
conditions hold true during initialization. Taken together, overparameterization in either width or
depth leads to a lower impact of variance in gradient estimates on the network’s training.

Besides the network architecture, the non-linearity used in the network also impacts the function
implemented by the network, and therefore affects the trace of the loss Hessian. Specifically, we
demonstrate that the trace of the loss Hessian is lower for networks with a threshold non-linearity with
gain less than or equal to 1, such as a ReLU operation, as compared to a linear network. Formally,
Theorem 2.3. ReLU lowers impact of variance Let �(.) denote a threshold non-linearity function.
The impact of variance on �Lt(0,�2) for a network with such non-linearities is less than that of an
equivalent linear network, i.e.,

�Lt(0,�
2)�  �Lt(0,�

2)Linear (5)

where the gain of �(.) is less than or equal to 1 (e.g. ReLU).

Summarily, the standard practices in deep neural networks, like overparameterized networks or the use
of ReLU as a non-linearity, lead to a lower impact of variance on the network’s training. Interestingly,
brains are also arguably overparameterized and characterized by threshold non-linearities that lead to
sparse activations. These properties could offer a potential solution to countering any negative impact
of variance in gradient estimates in the brain and allow biological agents to reliably train complex
tasks despite not being able to actually conduct true gradient descent (Lillicrap et al., 2020). It also
suggests neuromorphic chips could tolerate more noise in gradient estimators if they are made larger.

In contrast to the impact of variance, the impact of bias is more nuanced and depends on the norm and
direction of gradient, the direction of the bias vector, as well as the eigenvectors of the loss Hessian.
Using a few algebraic manipulations, Lemma 2.1 can be extended to show that:
Theorem 2.4. The impact of bias on �Lt(b, 0) grows linearly with the norm of the gradient.

�Lt(b, 0) =
1

2
b
2
Q�t

2 + bkrwL[w(t)]kP�t (6)

where P,Q are terms that are independent of the norm of the gradient, krwL[w(t)]k.
2Check Appendix A for an extension to the general case where variance changes with number of parameters.
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This result implies that initialization and architectural considerations could play important roles in
mitigating the impact of bias on training by limiting the norm of the gradient. In the next section, we
will empirically validate these results in linear and shallow networks trained on toy datasets as well
as in VGG networks trained on CIFAR-10.

2.2 EMPIRICAL VERIFICATION OF THE VARIANCE AND BIAS RESULTS

Our experimental setup (illustrated in Fig. 2) is motivated by Raman et al. (2019), and follows the
standard student-teacher framework. A “teacher” ANN is initialized with fixed parameters. The
task is for a randomly initialized “student” network to learn the input-output mapping defined by the
teacher. We defer the reader to the Appendix B for experimental details.

Figure 2: Experimental setup for empirical validation of our results, focusing on �Lt(b,�2) to
understand how gradient approximations impact learning in one update step. (A) The student-teacher
framework motivated by Raman et al. (2019). (B) Illustration of �Lt(b,�2) (defined in Eq. (2))

First, we validate our analytical results pertaining to the impact of variance, i.e., Theorems 2.2 and 2.3
in relatively shallow (1-8 hidden layers) fully connected ANNs. We fix the teacher network archi-
tecture and use a ReLU non-linearity to threshold the intermediate layer activations. Subsequently,
we vary the depth and width of the student network with no non-linearity and observe �Lt(0,�2)
at different points in the loss landscape. For each such setting, we add a ReLU non-linearity to the
student network to validate the effect of a threshold non-linearity on �Lt(0,�2). We plot the mean
�Lt(0,�2) across different points in the loss landscape in Fig. 3. Note that in order to use a sample
accurately reflecting the loss landscape that would be encountered during a learning trajectory, we
train a control network with the same architecture and non-linearity as the student network using the
true gradient and evaluate �Lt(0,�2) for each update step along the learning trajectory. In doing so,
we are able to observe the desired quantities across a wide range of gradient norm values.

Figure 3: Impact of variance is lower for wider, deeper, and ReLU networks. Solid lines indicate
linear networks, dashed lines indicate networks with ReLU non-linearity, and dotted line indicate
the teacher network architecture. (A) Varying hidden layer width in one hidden layer linear ANNs,
keeping input/output dimensions same. (B) Linear and ReLU networks with varying width and depth
plotted with number of parameters in x-axis. (C) Same as B but plotted with network width in x-axis.
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Furthermore, we validate Theorems 2.2 and 2.3 on VGG networks trained on the CIFAR-10 dataset.
Specifically, we maintain the student-teacher framework and fix the teacher network to be a VGG-19
network trained on CIFAR-10 to 92.6% test accuracy, and we use different networks from the VGG
family as student networks (with variance set to �2 = 20). For each network, we use both random
weight initialization and Imagenet-pretrained weights to determine whether initialization has an effect
on the impact of variance. Fig. 5 demonstrates that our results pertaining to depth and width hold for
deep convolutional neural networks (CNNs).

Similarly, we validate Theorem 2.4, first in shallow fully connected ANNs and subsequently in deep
CNNs trained on CIFAR-10. Specifically, we demonstrate in Fig. 4 that the impact of bias (with
b = 0.02) on performance of a linear shallow network grows with the norm of the gradient. Note
that the sign duality of �Lt(b, 0) in this figure follows from Theorem 2.4 where the quantities P
and Q depend on the direction of the bias vector with respect to the direction of gradient and the
eigenvectors of the loss Hessian (see proof in Appendix A for more details). Therefore, bias can
help or hinder learning depending on its direction. This behaviour is in contrast to variance, which
always hinders learning for a convex loss (Lemma 2.1). Nonetheless, it is worth noting that when the
gradient norm is small as bias increases it always hinders training (see Fig. 4B).

Figure 4: Impact of bias grows linearly with gradient norm and has a quadratic relationship with
the amount of bias when the gradient norm tends to 0, i.e., validating expression from Theorem 2.4:
�Lt(b, 0) =

1
2b

2
Q�t

2+bkrwL[w(t)]kP�t. (A) Impact of bias grows linearly with gradient norm,
with the slope being the amount of bias (see second term in equation). (B) Impact of bias grows
quadratically with amount of bias when gradient norm is small (see first term in equation).

Following this, we measure the absolute value of �Lt(b, 0) and plot its mean across multiple
update steps in VGG networks trained on CIFAR-10. In Fig. 6, we show that the relation stated
in Theorem 2.4 holds across different VGG architectures, irrespective of the weight initialization.
Furthermore, deeper VGG networks have a lower impact of bias owing to a lower gradient norm.

Figure 5: Impact of variance is lower for deeper and wider VGG networks when training on
CIFAR-10. (A) Deeper VGG configurations, both Imagenet-pretrained or untrained, exhibit lower
impact of variance. (B) Wider VGG-19 configuration networks exhibit lower impact of variance.
Factor of downsampling indicates the reduction in the number of filters in convolutional layers and
dimensionality of intermediate fully connected layers compared to the original VGG-19 configuration.
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Figure 6: Impact of bias is lower for (A) deeper VGG networks when training on CIFAR-10. (B)
Deeper VGG networks exhibit lower gradient norm, thereby mitigating the impact of bias in training.

3 ESTIMATING THE IMPACT OF VARIANCE AND BIAS ON GENERALIZATION

In the previous section, we studied how variance and bias in gradient estimates impacts training.
However, from a machine learning perspective, an important question is to understand the impact on
the system’s generalization. Specifically, we ask the question: under what conditions could variance
and bias in gradient estimates aid generalization performance? Interestingly, current deep learning
practices rely on not following the exact gradient of the loss function to train models, which have
been demonstrated to help generalization performance. Some common examples of such practices
include stochastic gradient descent (SGD) and dropout3.

In this section, we use our framework to understand how variance and bias in gradient estimates
could alter the learning trajectory, thereby impacting generalization. Specifically, we investigate the
conditions under which a parameter update would necessarily lead to descent on the loss landscape.
This matters for understanding generalization because the flatness of the loss landscape is a good
proxy for generalization (Baldassi et al., 2020; Jiang et al., 2019; Sankar et al., 2021; Tsuzuku et al.,
2020; Petzka et al., 2021): flatter minima tend to have better generalization performance than sharper
ones. We leverage this viewpoint to understand the impact of variance and bias on generalization.
Specifically, we investigate the conditions under which gradient approximations could help to avoid
sharp minima, thereby promoting convergence to wide flat minima.

3.1 ANALYSIS OF THE IMPACT OF VARIANCE AND BIAS DESCENT OF NARROW MINIMA

To quantify the flatness of loss landscape, we use eigenvalues of the loss Hessian. Without loss of
generality, we assume that the loss Hessian is a normal square matrix, i.e., its eigenvectors form an
orthogonal basis of the N-dimensional parameter space. In order to understand the properties of loss
minima that the network could potentially converge to, we derive the sufficiency conditions under
which a parameter update ascends (or descends) the loss landscape. This strategy indicates that noise
in gradient estimates would lead to the system not descending the loss landscape when the minima is
too sharp, which can aid generalization.
Theorem 3.1. Noise helps avoid sharp minima The sufficient condition under which noise prevents
the system from descending the loss landscape, i.e., L[w(t+�t)] � L[w(t)], is

�1 � �N �
2

�t

1

1 +
Ä

�
krwLk

ä2 (7)

where �1 � �2... � �N denote the eigenvalues of r2
wL around the minima.

Interestingly, the condition presented in Theorem 3.1 presents a lower bound for the smallest
eigenvalue, i.e., the eigenvalue associated with the direction of least curvature, and connects it to the
variance to gradient norm ratio. This ratio can be thought of as the inverse noise ratio when there is

3Discussion on the relationship between our analysis and SGD and dropout in the Appendix C.2
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no bias in the approximation. Furthermore, we also show in Appendix A that the sufficient condition
for descending the loss landscape is similar to the one presented in Theorem 3.1, but provides an
upper bound for the largest eigenvalue, i.e., �1 

2
�t

1

1+( �
krwLk )

2 . Note that as we get closer to

the minimum, the gradient norm would decrease (property of smooth L), and therefore, the inverse
noise ratio would increase. Thus, the upper bound on curvature of loss minima that the system can
potentially converge to decreases. Taken together, this shows that variance helps the system avoid
converging to sharp minima and instead promotes converging to wide flat minima.

Bias, on the other hand, has a more nuanced effect on the learning trajectory. This complexity is
unsurprising given the dependence of the impact of bias on direction of the bias vector, the direction
of the gradient, and the eigenvectors of the loss Hessian. Once again, we derive the sufficiency
condition for when a parameter update step would produce a decrease in the loss function. It turns
out this condition depends on both minima flatness and amount of bias relative to the gradient norm.
Theorem 3.2. Bias prevents descent into local minima dependent on Hessian spectrum. Bias in
gradient estimates could prevent converging to a minima. Specifically, the sufficient condition for the
weight updates to produce a decrease in L when using a biased estimate of the gradient is:

b

krwLk


1
p
N

2

1 +  �t+
p
1 + 4 �t+  2�t2

⇡
1

p
N

1

(1 + 3
2 �t)

(8)

where  2 =
P

i �
2
i , i.e., the Frobenius norm of the loss Hessian, and �1 � �2... � �N denote the

eigenvalues of r2
wL around the minima and r

2
wL is a normal matrix.

The condition in Theorem 3.2 indicates that a system that follows a biased gradient approximation
will descend the loss landscape until some neighbourhood around a minimum (characterized by the
minima flatness and relative bias). Inside this neighbourhood, the system may not descend the loss
landscape and therefore not converge to the minimum. The condition depends on minima flatness
due to the  term (Eq. (8)): sharper (higher curvature) minima should have higher  , which makes
it less likely to satisfy the condition. The condition also depends on the amount of bias relative
to gradient norm, i.e.,, higher relative bias makes it less likely to satisfy the condition for descent,
which we also support through simulation (see Fig. 7C). Taken together, variance and bias in gradient
estimates promote gradient descent dynamics that converge to wide flat minima, which can aid
generalization. This effect is empirically demonstrated by our first example of VGG-16 networks
trained on CIFAR-10 (Fig. 9).

3.2 EMPIRICAL VERIFICATION OF THE IMPACT OF VARIANCE AND BIAS ON GENERALIZATION

Figure 7: Empirical verification of Theorems 3.1 and 3.2 in linear ANNs. Dashed lines indicate the
theoretical limit and colours indicate the empirical probability of descent. (A) True gradient descent.
(B) Noise in gradient estimates, � = krwLk. (C) Bias in gradient estimates, ratio b

krwLk is varied.

We follow the same experimental setting as described in Section 2.2 for verifying Theorems 3.1
and 3.2. Owing to computational bottlenecks in loss Hessian estimation for high-dimensional
nonlinear settings, we restrict our empirical validation to training linear networks for optimizing
MSE loss. In doing so, we gain full control over the loss Hessian via the input covariance statistics4—
Fig. 7A & B demonstrate that our inferences from Theorem 3.1 hold empirically. When the leading

4for MSE loss at minima, the Hessian is equal to the input covariance matrix barring a constant factor
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eigenvalue is less than the theoretical limit, a weight update step always leads to a decrease in L;
when the trailing eigenvalue is greater than the theoretical limit, a weight update step always leads to
an increase in L. Furthermore, the theoretical limit is higher for the case when there is no variance
than with variance. These observations demonstrate that following a noisy version of the gradient
helps the network avoid sharp local minima. Similarly, Fig. 7C demonstrates that our inferences
from Theorem 3.2 hold empirically. Specifically, when the ratio of bias to gradient norm is below the
theoretical threshold, a weight update step always leads to a decrease in L.

4 DISCUSSION

In both computational neuroscience and neuromorphic computing, gradient estimators are known
to have variance and bias due to both algorithmic and hardware constraints (Laborieux et al., 2021;
M. Payvand et al., 2020a; Lillicrap et al., 2020; Pozzi et al., 2018; Sacramento et al., 2018; Rubin
et al., 2021; Roelfsema & Holtmaat, 2018; Bellec et al., 2020; Neftci et al., 2019; Huh & Sejnowski,
2018; Zenke & Neftci, 2021). Using mathematical analysis and empirical verification, we found that
the impact of variance and bias on learning is determined by the network size, activation function,
gradient norm, and loss Hessian, such that the amount of variance and bias that are permissible
or even desirable depends on these properties. Though our empirical verification was done using
feedforward ANNs, our mathematical analysis was formulated to be as general as possible, and
we believe that our assumptions are reasonable for most cases that computational neuroscientists
and neuromorphic chip engineers face. Furthermore, we add a corollary to Lemma 2.1 and discuss
extensions of our analysis to multi-step optimization settings in Appendix A (see Corollary A.2).
Thus, our work can inform research in these areas by providing a guide for how much variance and
bias relative to the gradient norm is reasonable for a given network.

4.1 RELATED WORK

Our analysis was inspired in part by recent work by Raman et al. (2019) characterizing bounds on
learning performance in neural circuits. They demonstrated that in the absence of noise in the gradient
estimator, larger networks are always better at training, but with noise added, there is a size limit
beyond which training is impaired. Our work was also informed by research into generalization in
deep ANNs, which provided the rationale for our analyses examining the potential for a learning
algorithm to descend into sharp minima or not (Foret et al., 2020; Chaudhari et al., 2019; Yao et al.,
2018; Ghorbani et al., 2019; Smith et al., 2021). As well, our work has some clear relationship to
other work examining the variance of gradient estimators (e.g. Werfel et al. (2003)), but here, we are
asking a novel question, namely, how does a given amount of variance and bias impact performance
for different network parameters?

More broadly, our work relates to the deep learning literature because modern ANNs rarely use the
true loss gradient over the entire dataset to make weight updates. Instead, it is common practice to
add noise in different forms, e.g. SGD (Bottou, 2012), dropout (Srivastava et al., 2014), dropconnect
(Wan et al., 2013) and label noise (Blanc et al., 2020; HaoChen et al., 2021; Damian et al., 2021).
But, the noise structure in these scenarios may differ from assumptions in our work. For example,
SGD does not exhibit white noise structure (Xie et al., 2021; Zhu et al., 2019). 5 Likewise, dropout
can be thought of as adding noise, but for a truly unbiased estimate of the gradient, one would have
to consider all possible configurations of dropped neurons, something quite uncommon in practice.

4.2 LIMITATIONS AND FUTURE WORK

This work focused on characterizing the impact of variance and bias in gradient estimates, but it lacks
any in-depth analysis of specific bio-plausible or neuromorphic learning algorithms. Similarly, our
work only characterizes learning performance, but does not provide a concrete proposal to mitigate
excessive noise or bias in gradient approximations. As such, our analyses can be used by other
researchers to assess their learning algorithms but they do not directly speak to any specific learning
algorithm nor provide mechanisms for improving existing algorithms. Nonetheless, we believe that
our work provides a framework to help develop such strategies, and we leave it to future work.

5Though several analytical studies have used white noise to model SGD dynamics, and concluded that the
SGD noise acts as a regularizer against converging to sharp minima (Li et al., 2021), similar to our analyses.
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REPRODUCIBILITY STATEMENT

We strongly believe that reproducibility is critical for research progress in both machine learning
and computational neuroscience. To this end, we have provided thorough experimental details in the
appendix, and in the supplementary materials, we have included the code to run all of the experiments
and generate the figures. Our code can also be accessed from the project’s github repo. We believe
that this information will allow the community to validate/replicate our results and further build on
our work.
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