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Abstract

Spatial transcriptomics (ST) technologies provide gene expression measurements
with spatial resolution, enabling the dissection of tissue structure and function.
A fundamental challenge in ST analysis is clustering spatial spots into coherent
functional regions. While existing models effectively integrate expression and
spatial signals, they largely overlook sequence-level biological priors encoded in
the DNA sequences of expressed genes. To bridge this gap, we propose SAINT
(Sequence-Aware Integration for Nucleotide-informed Transcriptomics), a unified
framework that augments spatial representation learning with nucleotide-derived
features. We construct sequence-augmented datasets across 14 tissue sections
from three widely used ST benchmarks (DLPFC, HBC, and MBA), retrieving
reference DNA sequences for each expressed gene and encoding them using a
pretrained Nucleotide Transformer. For each spot, gene-level embeddings are ag-
gregated via expression-weighted and attention-based pooling, then fused with
spatial-expression representations through a late fusion module. Extensive ex-
periments demonstrate that SAINT consistently improves clustering performance
across multiple datasets. Experiments validate the superiority, effectiveness, sensi-
tivity, and transferability of our framework, confirming the complementary value
of incorporating sequence-level priors into spatial transcriptomics clustering.

1 Introduction

Spatial transcriptomics (ST) technologies measure gene expression while preserving the spatial lay-
out of tissue sections, enabling the study of molecular organization in space [39, 46, 61, 54]. A key
analysis task is clustering spatial spots into biologically meaningful regions, which reveals tissue
structures and spatially patterned gene programs. This task can be naturally viewed as a multi-view
clustering problem, where each spot is associated with both a gene expression profile and spatial
coordinates [52, 48, 44, 11, 29]. Specifically, gene expression captures cell identity and state, while
spatial proximity informs local organization and neighborhood relationships. Effectively integrating
these heterogeneous views is key to producing biologically meaningful clusters.

Early attempts on spatial transcriptomics clustering primarily relied on unsupervised methods ap-
plied to gene expression profiles alone, ignoring the spatial structure inherent in the data [45, 43].
To incorporate spatial context, later approaches introduced regularization terms or handcrafted spa-
tial distances that penalize discontinuities across neighboring spots. While effective to some extent,
these methods often struggle to generalize to irregular tissue geometries or heterogeneous microen-
vironments. More recently, graph-based neural models have become the dominant paradigm due
to their flexibility in capturing complex spatial relationships[24, 25, 17, 53, 30, 58]. For example,
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Figure 1: Motivation of SAINT. Existing ST clustering models may miscluster spatial spots with
similar expression profiles but divergent gene functions. For example, Spot A and Spot B share
highly similar expression profiles, yet express functionally divergent genes such as MALAT1 and
MT-ND4 , respectively. This leads to incorrect clustering by expression-only models (left). By
incorporating gene sequence features via a pretrained nucleotide encoder and multi-modal fusion,
SAINT better distinguishes such cases and improves clustering accuracy (right).

SpaGCN [18] constructs a spatial graph based on physical coordinates and applies graph convolu-
tions to jointly encode spatial proximity and gene expression. Building on this, Spatial-MGCN [47]
aggregates multiple spatial graphs constructed from different biological priors (e.g., histological sim-
ilarity, spatial distance), enabling a richer representation of local neighborhoods. Further, MAFN
[62] proposes a late-fusion strategy that combines spatial, feature, and contrastive graphs through an
adaptive attention module, improving clustering robustness under noise and sparsity. These GNN-
based methods have consistently achieved state-of-the-art results across multiple ST benchmarks,
highlighting the effectiveness of learning spot embeddings over spatial graphs.

However, existing ST clustering methods rely solely on observed gene expression and spatial prox-
imity, while ignoring the rich biological information encoded in gene sequences. In practice, each
spatial spot expresses a set of genes, and each gene is uniquely associated with a DNA sequence
composed of nucleotides. These sequences often reflect regulatory elements or biochemical roles
that are not evident from expression levels alone. As illustrated in Figure 1, spots A and B exhibit
similar expression profiles. However, their dominant genes, MALAT1 (a non-coding RNA) and MT-
ND4 (a mitochondrial protein-coding gene), indicate distinct biological roles. This discrepancy can
lead clustering models to mistakenly group spatial spots into the same region simply because their
expression profiles look similar, even though the expressed genes may have fundamentally different
biological functions. Despite this, no prior work has systematically incorporated nucleotide-level
sequence information into ST clustering, largely due to the following two key challenges in incorpo-
rating gene sequence knowledge into spatial transcriptomics clustering.

(1) Lack of Sequence-Annotated Datasets. Existing ST datasets do not contain nucleotide-level
annotations, making it difficult to explore how gene sequences influence spatial gene expression
or regional identity.

(2) Cross-Modal Representation Integration. Even with sequence information available, it re-
mains unclear how to effectively encode gene sequences and integrate them with spatial and
expression features for clustering. Naïvely combining modalities may lead to noise or semantic
mismatch.

To fill this gap, we propose SAINT (Sequence-Aware Integration for Nucleotide-informed
Transcriptomics), a sequence-informed framework that augments spatial transcriptomics with gene-
level nucleotide embeddings. First, we construct sequence-augmented datasets across 14 tissue
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sections spanning three widely used benchmarks: DLPFC (12 slices), HBC, and MBA. For each
gene expressed within a spatial spot, we retrieve the corresponding reference DNA sequence from
NCBI and organize the data into spotgenesequence mappings, enabling the integration of nucleotide-
level information into the modeling pipeline. Second, we encode each DNA sequence using the
Nucleotide Transformer, a large-scale pretrained language model for genomics. This yields rich,
high-dimensional embeddings that capture regulatory signals and sequence-level semantics. These
embeddings are projected into a lower-dimensional space and aggregated at the spot level to form
sequence-derived spot representations. After that, we observe that each spot typically expresses
dozens of genes, but not all are equally informative. To mitigate the influence of noisy or redundant
sequences, we filter out low-variance genes and apply a lightweight attention mechanism to assign
adaptive weights to the remaining gene embeddings, producing compact and spot-specific represen-
tations. Finally, the learned sequence-aware embeddings are integrated with expression and spatial
features using a late fusion module. Experiments are conducted to evaluate the capacity of SAINT
from four aspects: superiority, effectiveness, sensitivity, and transferability. The main contributions
of our work are summarized as follows.

• Problem. Existing spatial transcriptomics (ST) clustering methods rely primarily on expres-
sion profiles and spatial coordinates, overlooking the biological priors encoded in gene se-
quences. This omission limits the semantic expressiveness of current representations and
may lead to functionally mismatched clusters.

• Dataset. To address this, we construct multiple sequence-augmented ST datasets spanning
14 tissue sections from three benchmarks (DLPFC, HBC, MBA). Each spatial spot is anno-
tated with the reference DNA sequences of its expressed genes, enabling the first systematic
exploration of nucleotide-level information in ST clustering.

• Method. We propose SAINT, a sequence-informed multi-modal learning framework. SAINT
encodes gene sequences using a pretrained genomic transformer model, filters uninformative
genes based on expression variability, and applies attention-based aggregation to derive com-
pact spot-level embeddings. These are then fused with expression and spatial representations
through a lightweight late-fusion architecture.

• Experiment. Extensive experiments demonstrate that SAINT consistently improves cluster-
ing performance across multiple datasets. We evaluate SAINT from four perspectives: supe-
riority, effectiveness, sensitivity, and transferability, confirming the complementary value of
integrating nucleotide-level features into ST representation learning.

2 Related Work

This section summarizes recent related works from three aspects: (1) multiview clustering methods
in spatial transcriptomics data, (2) genomic language modeling for sequence representation, and
(3) sequenceaugmented spatial transcriptomics clustering. Due to space limitations, please refer to
Appendix A.2 for a more detailed discussion.

3 Method

In this section, we present SAINT, a multi-modal learning framework for spatial transcriptomics
clustering that integrates spatial coordinates, gene expression, and sequence-derived biological pri-
ors into unified spot-level embeddings. Unlike prior methods that rely solely on spatial and ex-
pression features, SAINT incorporates nucleotide-level representations to enhance spatial domain
discovery. The framework of SAINT is shown in Fig.2.

The pipeline begins with data preprocessing, where each spatial spot is associated with its expres-
sion vector and the DNA sequences of its expressed genes. After normalization and selection of
highly variable genes (HVGs), SAINT extracts complementary representations through two parallel
modules. The structure-aware graph embedding module constructs spatial, feature, and combined
graphs from HVGs, and encodes them using graph convolutional networks (GCNs). These multi-
view embeddings are then aggregated via attention to form a graph-derived representation Zgraph.
In parallel, the sequence-aware encoder tokenizes DNA sequences and feeds them into a pretrained
Nucleotide Transformer to produce gene-level embeddings, which are aggregated and projected into
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Figure 2: An overview of the SAINT framework. The pipeline starts with preprocessing, where
each spatial spot is linked to its gene expression vector and DNA sequences. After normalization
and HVG selection, two parallel modules extract structural and sequence-level features. (a) A graph
embedding module encodes spatial, feature, and combined graphs via GCNs and fuses them through
attention to obtain Zgraph. (b) A transformer-based encoder maps tokenized gene sequences to con-
textual embeddings, which are aggregated to form Zseq. (c) The two representations are fused and
passed to a ZINB decoder for expression reconstruction, and the resulting embeddings are used for
clustering.

spot-level features Zseq. The two representations are integrated via a late fusion module to obtain
unified embeddings, which are then passed to a ZINB decoder for reconstructing gene expression.
Clustering is performed in this fused latent space, capturing both structural topology and sequence
semantics.

3.1 Problem Formulation

ST datasets consist of N spatial spots, each profiled with transcriptome-wide gene expression and
associated spatial coordinates. Formally, each spot i ∈ 1, . . . , N is described by three components:
(1) a gene expression vector xi ∈ RG over G genes, (2) a 2D spatial location si ∈ R2, and (3)
a set of expressed genes Gi = gi1, gi2, . . . , giMi

, where each gene gij is associated with a DNA
sequence dij of variable length. These sequences are encoded into fixed-length embeddings us-
ing a pretrained genomic language model. The objective of spatial transcriptomics clustering is
to partition the N spots into K spatial domains C = C1, C2, . . . , CK , such that spots within the
same cluster share similar expression programs, spatial context, and sequence-informed regulatory
features. Unlike traditional transcriptomics clustering, this task involves integrating heterogeneous
modalities, including gene expression, physical location, and sequence-derived embeddings, each
with potentially different dimensionality, semantic structure, and noise characteristics.

Formally, our aim is to learn a unified embedding function f : (xi, si, dij) 7→ zi ∈ Rd for each spot
i, such that the resulting embeddings z1, . . . , zN can be effectively clustered into biologically mean-
ingful domains. This requires (1) extracting semantically rich features from raw DNA sequences,
(2) adapting to the varying number of genes per spot, and (3) designing a robust fusion strategy that
preserves complementary signals while mitigating cross-modal redundancy.

3.2 Structure-Aware Graph Embedding Module

In parallel, SAINT models the spatial and expression views using graph-based encoders. We con-
struct a spatial neighbor graph Gs = (V, Es) where nodes correspond to spatial spots and edges
connect neighboring spots based on 2D distance thresholding. We also build a feature graph Gf

based on k-nearest neighbors in the gene expression space. Both graphs are encoded via GCNs.

To capture spatial proximity, expression similarity, and their interaction, we construct three graphs:
the spatial graph Gs, the feature graph Gf , and the combined graph Gc. All graphs share the same
node set (spots), but differ in adjacency structure.
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Each graph is encoded separately using a Graph Convolutional Network (GCN). Given a graph Gv

with adjacency matrix Av and node features X, the GCN propagates features via as follows.

Hv = σ
(
D̃−1/2

v ÃvD̃
−1/2
v XWv

)
, (1)

where Ãv = Av + I adds self-loops, D̃v is the degree matrix, Wv is a trainable weight matrix, and
σ(·) is a ReLU activation.

To model complementary topology between views, we define the combined graph Gc by aggregating
the adjacency matrices of the spatial and feature graphs.

Ac = As +Af , (2)

This combined structure captures both spatial continuity and expression similarity in a unified topol-
ogy. The corresponding node embeddings Hs, Hf , and Hc are then fed into an attention-based
fusion module.

Hg = Fattn([Hs ‖Hf ‖Hc]), (3)

where [·, |, ·] denotes feature-wise concatenation, and Fattn(·) is an attention-based MLP that com-
putes normalized weights across views to adaptively control the fusion process.

3.3 Transformer-Based Sequence-Aware Encoder

To capture biological priors at the sequence level, we employ a pretrained genomic language model,
Nucleotide Transformer [10], to encode raw DNA sequences into dense vector embeddings. For
each expressed gene gij in spot i, we retrieve its reference DNA sequence dij from curated databases
(e.g., NCBI), and encode it into a dense vector.

zij = NT-Encoder(dij) ∈ RD, (4)

where NT-Encoder(·) denotes the pretrained transformer model, and D is the output dimension.

Since each spot may express a variable number of genes, we aggregate these gene-level embeddings
into a fixed-dimensional representation using a lightweight attention pooling module. Specifically,
for spot i, let Zi = [zi1, . . . , ziMi

] ∈ RD×Mi denote the matrix of gene embeddings. We compute
attention weights αij over genes based on a softmax-normalized scoring function.

αij =
exp(w⊤ tanh(Wzij))∑Mi

j′=1 exp(w
⊤ tanh(Wzij′))

, (5)

where W ∈ Rda×D and w ∈ Rda are learnable parameters.

The sequence-derived embedding for spot i is as follows.

zseq
i =

Mi∑
j=1

αij · zij , (6)

To ensure compatibility with downstream fusion and to reduce computational overhead, we project
the sequence embedding into a lower-dimensional space via a two-layer multilayer perceptron
(MLP) with ReLU activation[16].

hseq
i = MLPseq(z

seq
i ) ∈ Rds , (7)

where ds is a hyper-parameter denoting the projected dimension.

3.4 Multi-Modal Late Fusion Module

To obtain a comprehensive spot-level representation, we integrate information from both spatial
graphs and gene sequences. Specifically, for each spot i, we concatenate the structural embedding
hgcn
i with the sequence-derived embedding hseq

i , capturing complementary features from spatial ex-
pression patterns and nucleotide-level signals. The concatenated vector is then projected into a
shared latent space using a lightweight multilayer perceptron.
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hi = Ffuse([h
gcn
i , |,hseq

i ]), (8)

where [·, |, ·] denotes concatenation, and Ffuse(·) is a two-layer MLP with ReLU activation. This
fusion module aligns the structural and sequence information into a unified representation, enabling
the model to make better use of both expression and sequence-derived features during clustering.

3.5 Training Objective and Loss Functions

To jointly promote expression reconstruction, structural consistency, and cross-modal complemen-
tarity, we incorporate three loss components into the final training objective.

ZINB Reconstruction Loss. To model over-dispersion and dropout noise in ST data, we adopt a
Zero-Inflated Negative Binomial (ZINB) decoder. The probability of observing count xig for spot i
and gene g is given as follows.

ZINB(xig | µig, θig, πig) =

πig + (1− πig)
(

θig
θig+µig

)θig
, if xig = 0

(1− πig) ·NB(xig | µig, θig), if xig > 0
(9)

Here, µig is the predicted mean expression, θig is the dispersion parameter, and πig models the
dropout probability. NB(·) denotes the negative binomial distribution.

The total reconstruction loss over all N spots and G genes is computed as follows.

LZINB =

N∑
i=1

G∑
g=1

− logZINB(xig | µig, θig, πig), (10)

where xig denotes the observed count for gene g in spot i.

Graph Contrastive Regularization. To preserve local structural smoothness in the learned
embeddings, we encourage proximity between neighboring nodes and separation between non-
neighbors via a contrastive loss.

LReg = E(i,j)∈N [− log σ(cos(hi,hj))] + E(i,j)/∈N [− log(1− σ(cos(hi,hj)))] . (11)

Here, N denotes neighbor pairs in the spatial or feature graph, cos(·, ·) denotes cosine similarity,
and σ(·) is the sigmoid function. hi is the final embedding of spot i after fusion.

Cross-Modal Redundancy Reduction (DICR). To encourage complementary information be-
tween the structural and sequence branches, we minimize feature redundancy using a decorrelation
loss inspired by [33]. Let C be the cross-correlation matrix computed between ℓ2-normalized em-
beddings from the two modalities. The loss is defined as follows.

LDICR =
∑
i ̸=j

C2
ij +

∑
i

(Cii − 1)2, (12)

where the first term penalizes off-diagonal correlations and the second term enforces identity align-
ment on the diagonal.

Final Objective. We jointly optimize the model by minimizing the following weighted sum of
losses.

L = LZINB + α · LReg + γ · LDICR, (13)

where α and γ are hyper-parameters balancing the topology regularization and cross-modal decorre-
lation objectives. For consistency and fair comparison, we adopt the same hyperparameter configu-
ration as MAFN [62], using its default values across all experiments without further tuning.
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4 Experiment

We conduct comprehensive experiments to evaluate the performance and robustness of our SAINT
across multiple dimensions, i.e., superiority, effectiveness, transferability, sensitivity and case Study.
Specifically, we aim to answer the following five questions.

• Q1: Superiority. Does SAINT outperform existing state-of-the-art models on spatial tran-
scriptomics clustering benchmarks?

• Q2: Effectiveness. How effective are the introduced sequence-aware augmentation strate-
gies in enhancing clustering quality?

• Q3: Transferability. Can SAINT be flexibly integrated into different clustering back-
bones?

• Q4: Sensitivity. How sensitive is SAINT to variations in hyper-parameters?
• Q5: Case Study. Does SAINT produce biologically meaningful clustering results in real-

world spatial transcriptomics datasets?

4.1 Experiment Setting

This section introduces the details of the experiment setting from four aspects, i.e., datasets, imple-
mentation details, compared baselines and evaluation metrics. Due to space limitations, details are
provided in Appendix A.3.

Table 1: Clustering performance of competing spatial transcriptomics models. Bold entries indicate
the best results, and underlined values denote the second-best.

Adjusted Rand Index (ARI)Method 151507 151508 151509 151510 151669 151670 151671 151672 HBC MBA
SCANPY[49] 0.20 0.15 0.19 0.14 0.10 0.09 0.12 0.12 0.49 0.23
SpaGCN[18] 0.43 0.33 0.41 0.37 0.23 0.35 0.51 0.53 0.56 0.34
DeepST[51] 0.55 0.42 0.43 0.50 0.44 0.33 0.52 0.48 0.53 0.25
SCGDL[31] 0.49 0.34 0.32 0.31 0.24 0.26 0.31 0.34 0.35 0.26
stLearn[36] 0.49 0.31 0.45 0.44 0.32 0.23 0.39 0.34 0.55 0.38

Spatial-MGCN[47] 0.63 0.46 0.54 0.51 0.39 0.35 0.60 0.77 0.64 0.42
GraphST[34] 0.48 0.49 0.52 0.50 0.48 0.46 0.61 0.63 0.54 0.41
stMMR[56] 0.59 0.51 0.58 0.69 0.49 0.48 0.68 0.63 0.62 0.44
MAFN[62] 0.68 0.51 0.71 0.61 0.56 0.48 0.82 0.76 0.60 0.43
SAINT-G 0.74 0.64 0.73 0.71 0.56 0.56 0.83 0.80 0.64 0.45

SAINT-SA 0.75 0.68 0.74 0.76 0.58 0.57 0.90 0.85 0.66 0.46
Normalized Mutual Information (NMI)Method 151507 151508 151509 151510 151669 151670 151671 151672 HBC MBA

SCANPY[49] 0.21 0.21 0.27 0.22 0.16 0.16 0.24 0.23 0.52 0.45
SpaGCN[18] 0.54 0.42 0.55 0.50 0.42 0.45 0.60 0.61 0.56 0.62
DeepST[51] 0.62 0.57 0.62 0.62 0.57 0.51 0.59 0.60 0.68 0.57
SCGDL[31] 0.55 0.44 0.48 0.45 0.38 0.36 0.41 0.46 0.43 0.64
stLearn[36] 0.64 0.53 0.62 0.59 0.49 0.41 0.54 0.47 0.63 0.66

Spatial-MGCN[47] 0.74 0.60 0.68 0.67 0.58 0.56 0.72 0.75 0.69 0.71
GraphST[34] 0.64 0.54 0.64 0.64 0.59 0.68 0.70 0.61 0.67 0.71
stMMR[56] 0.72 0.65 0.71 0.71 0.56 0.56 0.72 0.72 0.65 0.68
MAFN[62] 0.74 0.51 0.72 0.68 0.63 0.60 0.78 0.75 0.67 0.73
SAINT-G 0.77 0.69 0.73 0.72 0.62 0.63 0.78 0.79 0.69 0.72

SAINT-SA 0.78 0.71 0.74 0.73 0.64 0.64 0.84 0.80 0.70 0.74

4.2 Main Performance(RQ1)

To assess the effectiveness of SAINT, we compare it against nine state-of-the-art STC(Spatial Tran-
scriptomics Clustering) methods on three benchmark datasets: DLPFC, HBC, and MBA. Table 1
reports ARI and NMI scores; full slice results are provided in Appendix A.4. SAINT includes two
variants: SAINT-G, which averages gene-level nucleotide embeddings, and SAINT-SA, which in-
corporates sequence-aware attention for dynamic aggregation. As shown in Table 1, SAINT-SA
consistently achieves the best or second-best results across nearly all slices, improving ARI from
0.64 to 0.68 and NMI from 0.69 to 0.71 on average. On slice 151507, SAINT-SA achieves an ARI
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Figure 3: Ablation study of different components in SAINT.

Table 2: Clustering performance of competing spatial transcriptomics models. Bold entries indicate
the best results, and underlined values denote the second-best.

151507 151508 151509 151510Method ARI NMI ARI NMI ARI NMI ARI NMI
Spatial-MGCN 0.6305 0.7443 0.4622 0.6023 0.5441 0.6812 0.5158 0.6668

Spatial-MGCN+SAINT-G 0.7125 0.7594 0.5888 0.6692 0.6766 0.6840 0.6189 0.6758
Spatial-MGCN+SAINT-SA 0.7357 0.7690 0.6476 0.6840 0.6986 0.7065 0.7060 0.7042

MAFN 0.6812 0.7402 0.5134 0.5183 0.7128 0.7213 0.6121 0.6822
MAFN+SAINT-G 0.7441 0.7723 0.6414 0.6933 0.7320 0.7279 0.7150 0.7165

MAFN+SAINT-SA 0.7471 0.7790 0.6843 0.7146 0.7426 0.7380 0.7649 0.7318

of 0.75 (+10.3% vs. MAFN), and an NMI of 0.84 on 151671 (+16.2% vs. GraphST). Notably,
SAINT-G also surpasses most baselines. For example, it improves ARI by 8.8% over MAFN and by
10.3% on slice 151671. These results highlight the value of integrating nucleotide-level priors, even
with simple aggregation. Additionally, SAINT maintains robust performance across both homoge-
neous (MBA) and heterogeneous (HBC) tissue contexts.

4.3 Ablation Study (RQ2)

To evaluate the contribution of different components in our framework, we conduct an ablation
study comparing three model variants: (1) w.o. Fusion, a baseline without sequence integration;
(2) w. SA, a variant that uses average-pooled gene sequence embeddings; and (3) SAINT, our com-
plete model that incorporates sequence-aware attention and late-stage fusion. As shown in Figure 3,
SAINT consistently outperforms the reduced variants across all benchmarks. For example, in terms
of ARI, it yields relative improvements of +12.1% on slice 151672, +10.4% on HBC, and +8.1% on
MBA. Even the average-pooling variant (w. G) surpasses the no-fusion baseline in most cases, in-
dicating that sequence representations carry biologically meaningful information that complements
expression-based features. Additional NMI results are reported in Appendix A.5.

4.4 Sensitivity Analysis (RQ3)

To evaluate the robustness of SAINT under different sequence embedding dimensions, we conduct a
sensitivity analysis by varying d1 and d2, which represent the embedding dimensions used in SAINT-
G and SAINT-SA, respectively. Each is selected from [16, 32, 64, 128, 256], and experiments are
performed on three representative datasets, i.e., DLPFC (151507 as an example), HBC, and MBA.
The ARI results are shown in Figure 4. Specifically, on the 151507 data slice, ARI fluctuates between
0.7351 and 0.7471, with a relative deviation of only 1.63%. For HBC, ARI varies from 0.6289 to
0.6433, corresponding to a 2.30% range. On the more challenging MBA dataset, the ARI spans
0.4269 to 0.4623, yielding a slightly wider but still manageable fluctuation of 3.30%. These small
variations confirm that SAINT delivers stable clustering performance without requiring extensive
hyperparameter tuning. Due to space constraints, the corresponding sensitivity results for NMI are
reported in Appendix A.6, which exhibit similar trends.
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Figure 4: Parameter sensitivity analysis of the proposed SAINT on DLPFC, HBC and MBA datasets.

Figure 5: Case study visualizations on DLPFC slice 151507. (A) Manual tissue annotation over-
laid on histological image. (B) Comparison of spatial domain identification results produced by
competing methods. (C) UMAP projection of learned embeddings. (D) Spatial expression patterns
of representative marker genes before and after SAINT enhancement. (E) Violin plots illustrating
gene-level expression differences across identified domains.

4.5 Transferability Analysis (RQ4)

We evaluate the transferability of SAINT by integrating it into two representative backbonesSpatial-
MGCN and MAFN. As shown in Table 2, both SAINT variants consistently improve clustering per-
formance. For example, Spatial-MGCN+SAINT-G achieves an average ARI gain of +6.2%, while
SAINT-SA further boosts it to +8.3%. On slice 151508, SAINT-SA raises the ARI to 0.6476, a
relative improvement of +40.2% over the baseline (0.4622). Similar gains are observed with MAFN.
On slice 151509, MAFN+SAINT-SA achieves an NMI of 0.7380, outperforming MAFN+SAINT-G
by 1.67% and the vanilla MAFN by 2.93%. These results demonstrate that SAINT functions as a
transferable and effective plug-in module. Meanwhile, this generality arises from the models modu-
lar design, where the sequence-aware encoder and cross-modal fusion can be seamlessly attached to
existing spatial frameworks without retraining from scratch. Such adaptability highlights SAINTs
potential as a unifying layer for future multi-modal spatial transcriptomics methods. Additional
analysis is provided in Appendix A.7.

4.6 Case Study (RQ5)

We conduct a case study on the DLPFC 151507 slice to assess the interpretability and biological
relevance of SAINT. As shown in Fig. 5(C), SAINT more accurately recovers cortical layer bound-
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aries compared to competing methods. For instance, it captures the transition between Layer 5 and
Layer 6 in the lower-right region that is oversmoothed by DeepST and fragmented in SCANPY. To
further validate biological plausibility, Fig. 5(D) shows spatial expression maps of representative
marker genes (NEFH, FKBP1A, ATP2B4). SAINT enhances spatial coherence and alignment with
anatomical structures. Violin plots in Fig. 5(E) also demonstrate sharper inter-layer specificity and
lower intra-layer variance. Notably, ATP2B4 and CRYM show clearer separation across domains,
while B3GALT2 displays improved compactness within WM. These results highlight SAINTs abil-
ity to generate biologically meaningful and anatomically consistent representations. Additionally,
this improvement mainly stems from the incorporation of nucleotide-informed embeddings, which
enable SAINT to better distinguish functionally divergent genes with similar expression levels and
thus refine boundary delineation. Such sequence-aware representations provide a mechanistic link
between gene regulation patterns and observed spatial organization, further supporting the biological
interpretability of the model. Additional case studies are provided in Appendix A.8.

5 Conclusion

In this work, we present SAINT, a sequence-aware multi-modal framework for spatial transcrip-
tomics clustering. Unlike previous methods that utilize only gene expression and spatial proximity,
SAINT introduces gene-level nucleotide embeddings to capture additional biological priors. To en-
able this integration, we construct spotgenesequence mappings across three benchmark datasets and
encode sequences using a pretrained genomic language model. We design an attention-based aggre-
gation module to summarize sequence features at the spot level, and employ a late fusion strategy to
combine them with spatial-expression embeddings. Extensive experiments across multiple datasets
demonstrate that SAINT consistently improves clustering accuracy.
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A Appendix

A.1 Limitations

While SAINT demonstrates strong performance and broad applicability, several limitations remain.
First, the reliance on pretrained genomic models, such as the Nucleotide Transformer, may introduce
biases from the training corpus, which predominantly includes well-annotated genes and reference
sequences. This could limit generalizability to under-characterized genes or non-model organisms.
Second, our current framework treats all expressed genes equally during sequence aggregation after
HVG filtering. Although attention mechanisms mitigate some noise, rare but biologically significant
genes may still be down-weighted or omitted. Future work may explore more context-aware gene
selection strategies.

A.2 Related Work

In this section, we summarize related work along three aspects. First, we review spatial transcrip-
tomics clustering methods through the lens of multi-view learning, highlighting how expression and
spatial features have been combined. Second, we introduce genomic language models that extract
meaningful representations from DNA sequences. Finally, we discuss recent efforts toward inte-
grating sequence information into spatial clustering, which remains an underexplored yet promising
direction.

MVC in Spatial Transcriptomics Data. Clustering is a central task in spatial transcriptomics (ST),
aiming to delineate spatially coherent tissue domains that reflect underlying biological structure and
organization. Existing methods for ST clustering can be broadly grouped into three paradigms. (1)
Expression-based approaches [5, 14] perform unsupervised clustering purely based on transcrip-
tional profiles, typically using K-means or community detection on PCA-reduced features. (2) Spa-
tially regularized models [57, 1] augment these strategies with spatial smoothing, either through
distance-based penalties or spatial Laplacians to encourage neighboring spots to share cluster as-
signments. (3) In contrast, graph neural network (GNN)-based methods [13, 18, 55, 62] explicitly
model spatial structure via graphs and propagate information using neural message passing. Among
these, GNNs have emerged as particularly effective due to their flexibility in modeling complex
tissue architectures and incorporating multimodal inputs. STAGATE [13] introduces a graph atten-
tion autoencoder that jointly learns from spatial adjacency and gene expression similarity, achieving
state-of-the-art clustering performance across multiple platforms. SpaGCN [18], in a similar spirit,
integrates histological information into the spatial graph, enabling more anatomically consistent clus-
tering via graph convolutions. Meanwhile, SOTIP [55] formulates a spatial multi-task framework
that captures micro-environmental structure and intercellular context through local neighborhood
graphs. Moreover, MAFN [62] leverages a multi-view fusion strategy, adaptively combining rep-
resentations from both spatial graphs and gene-gene similarity graphs to enhance robustness and
tissue-domain separation. While these methods have shown strong empirical performance, they are
all fundamentally built upon expression-derived features and spatial graphs. They often overlook
additional layers of biological prior knowledge, i.e., such as the regulatory or structural informa-
tion embedded in gene sequences, which may influence spatial gene expression patterns but remain
underexplored in current models.

Genomic Language Modeling for Sequence Representations. While spatial transcriptomics clus-
tering has traditionally focused on expression-level and spatial features, another promising source
of biological prior lies in the gene sequences themselves. DNA sequences encode regulatory, struc-
tural, and evolutionary signals that can influence gene activity and co-expression. Recent years have
seen a surge in the development of genomic language models (GLMs), inspired by advances in self-
supervised learning from natural language processing. These models treat nucleotide sequences as
a form of structured text and learn contextualized embeddings using masked language modeling or
next-token prediction objectives. For example, DNABERT [19] adapts the BERT architecture [12]
to k-mer tokenized DNA sequences, showing strong performance on transcription factor binding pre-
diction and enhancer classification. Building on this foundation, Nucleotide Transformer [10] scales
the model size and diversity of training data to cover multiple species and larger sequence contexts,
achieving robust generalization across downstream genomics tasks. Unlike traditional handcrafted
motif features or one-hot encodings, GLMs capture long-range dependencies, compositional signals,
and shared patterns across different genomic loci. These properties make them attractive for repre-
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sentation learning in biological applications, especially when labeled data are limited. Moreover,
the pretrained embeddings can be transferred and fine-tuned to serve various predictive tasks, such
as variant effect prediction [4, 60, 38, 21], epigenomic state modeling [41, 59, 20, 42], and multi-
omics integration [15, 27, 7, 6]. Despite these advances, the use of sequence-based embeddings in
spatial transcriptomics remains largely unexplored. Existing ST models rarely utilize the nucleotide
sequences of expressed genes, thereby missing the opportunity to incorporate regulatory priors that
may underlie the observed expression patterns. A few recent efforts have begun exploring protein-
level embeddings for single-cell data [32], but nucleotide-level integration in spatial contexts has not
been systematically studied.

Sequence-Augmented Spatial Transcriptomics Clustering. Recent advances in genomic lan-
guage modeling have enabled the extraction of rich sequence-level representations from raw DNA.
While these sequence-level embeddings have shown utility in a range of genomics tasks, their incor-
poration into ST clustering remains largely unexplored. This subsection reviews recent advances in
augmenting ST models with sequence-derived features. A straightforward approach is late fusion,
where sequence features are concatenated with spatial representations prior to downstream predic-
tion. This method is modular and simple to implement, and has been widely applied in multi-modal
omics integration [3, 28]. However, naive concatenation may fail to capture interactions between
modalities and cannot dynamically adjust to varying gene importance across spatial contexts. To
mitigate this, attention-based mechanisms have been introduced to assign adaptive weights to gene
embeddings based on their contextual relevance. In spatial omics, attention modules have been used
to integrate expression profiles with histological context or neighborhood structure [18, 8]. Soft at-
tention mechanisms have also been employed to aggregate gene-level embeddings within each spot,
yielding compact and informative representations that emphasize contextually relevant sequences.
Transformer-based architectures offer a more flexible alternative by modeling interactions across
gene sequences through self-attention. Though effective in natural language and genomics [9, 19],
such models demand substantial training resources and are not yet widely used in spatial transcrip-
tomics. Lightweight alternatives include expression-weighted averaging, which gives more influ-
ence to highly expressed genes in embedding aggregation [40]. Filtering by HVGs provides another
practical benefit, reducing redundancy and focusing on the most informative sequence signals [2].
Despite these developments, existing ST clustering methods rarely incorporate sequence-level pri-
ors, leaving untapped the potential of regulatory DNA features in spatial organization. To bridge this
gap, we introduce a novel framework that integrates gene sequence embeddings into ST clustering.

A.3 Experiment Setting

Experiment settings are introduced from four aspects, i.e., datasets, implementation details, com-
pared baselines and evaluation metrics.

Datasets. We conduct experiments on three benchmark datasets commonly used in spatial transcrip-
tomics clustering:

We evaluate our method on three publicly available and widely used spatial transcriptomics datasets,
spanning both human and mouse tissues. These datasets provide diverse anatomical and pathological
contexts for robust model evaluation.

LIBD Human Dorsolateral Prefrontal Cortex (DLPFC) Dataset. The DLPFC dataset, curated
by the LIBD research group [35], provides high-resolution spatial transcriptomic profiles from post-
mortem human brain tissue, generated using the 10x Genomics Visium platform. It comprises 12
sagittal tissue sections, each covering approximately 3,6004,000 barcoded spots with over 33,000
protein-coding genes profiled per section. These slices encompass the full laminar structure of the
neocortex (L1L6) as well as the white matter beneath. The dataset includes expert-annotated spatial
domains based on histological examination, facilitating benchmarking of computational clustering
models.

10x Visium Human Breast Cancer (HBC) Dataset. The HBC dataset [50] contains spatially re-
solved gene expression measurements from human breast tumor sections. Each spot captures the
expression of approximately 36,000 genes across diverse histological structures. The dataset is an-
notated with 20 spatial domains, encompassing pre-invasive ductal carcinoma in situ (DCIS), lobular
carcinoma in situ (LCIS), invasive ductal carcinoma (IDC), tumor stroma, immune infiltration zones,
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Table 3: Statistics of the constructed sequence-augmented datasets. Each dataset corresponds to a
tissue section or benchmark. "#B. class" denotes the number of unique barcodes (spots), "#G. class"
indicates the number of distinct genes with available nucleotide sequences, and "Num" refers to the
total number of (barcode, gene, sequence) triplets after filtering.

Dataset #B. class #G. class Num Dataset #B. class #G. class Num
151507 721 237 24,968 151672 578 319 15,551
151508 849 190 11,940 151673 465 423 16,855
151509 697 249 12,489 151674 373 561 20,542
151510 737 233 12,092 151675 572 386 14,486
151669 563 341 16,034 151676 517 382 14,606
151670 596 316 15,089 HBC 182 250 32,734
151671 531 330 15,999 MBA 182 300 40,729

and adjacent normal tissue. This rich spatial annotation supports fine-grained exploration of tumor
heterogeneity and microenvironmental interactions.

Mouse Brain Anterior Tissue (MBA) Dataset. The MBA dataset [26] includes gene expression
profiles from a sagittal-anterior section of the adult mouse brain, obtained using the Illumina No-
vaSeq 6000 platform. It contains 2,695 spatial spots and over 32,000 genes, capturing molecular pat-
terns across anatomical regions such as the cortex, hippocampus, and basal forebrain. This dataset
enables detailed investigation of spatial gene regulation and inter-regional signaling in a mammalian
neural context. It is publicly available through the 10x Genomics data repository.

Sequence-Augmented Triplet Construction.

To integrate nucleotide-level information into spatial transcriptomics clustering, we construct a struc-
tured sequence-augmented dataset for each benchmark. For every expressed gene within a spatial
spot (barcode), we retrieve its corresponding reference DNA sequence from the NCBI nucleotide
database using standardized gene identifiers. Each data entry is formatted as a (barcode, gene,
sequence) triplet. To ensure biological relevance and avoid noisy or sparse entries, we remove
barcodes expressing fewer than 10 genes with valid sequences. This filtering step ensures that each
spatial spot contributes sufficient nucleotide-level context for representation learning. Table 3 sum-
marizes the resulting datasets. For each tissue slice or benchmark, we report the number of unique
barcodes (#B. class), the number of distinct genes with matched sequences (#G. class), and the total
number of triplets (Num). These triplets serve as the input for sequence encoder modules and enable
the downstream modeling of spatial domains with nucleotide-informed priors.

Implementation Settings. All models are implemented in PyTorch 2.0.1 and trained using the
Adam optimizer [22] on a workstation with an Intel Core i9-9900K CPU, 64GB RAM, and an
NVIDIA RTX 3090 Ti GPU. Following MAFN [62], we adopt consistent training settings and learn-
ing rate schedules. For sequence embedding, we evaluate two aggregation variants:

• SAINT-G: gene sequence embeddings are averaged without expression weighting.
• SAINT-SA: expression-aware attention pooling is applied to gene embeddings per spot.

The projection dimensions d1 (for SAINT-G) and d2 (for SAINT-SA) are selected from
{16, 32, 64, 128, 256}.

Compared Baselines. To comprehensively evaluate the effectiveness of SAINT, we compare it
against a wide range of state-of-the-art spatial transcriptomics clustering methods, including both
traditional approaches and recent GNN-based frameworks.

• SCANPY [49] is a widely used single-cell analysis toolkit that performs PCA-based di-
mensionality reduction and graphbased clustering on highly variable genes without incor-
porating spatial context.

• SpaGCN [18] constructs a spatial graph from tissue coordinates and employs graph convo-
lution to jointly model gene expression and spatial dependencies for anatomically coherent
clustering.
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Figure 6: Transfer study of SAINT variants on the DLPFC 151507 slice under the Spatial-MGCN
backbone.

• DeepST [51] learns spatially informed spot embeddings by jointly modeling transcriptional
profiles and physical locations, enabling accurate tissue domain segmentation.

• SCGDL [31] utilizes a residual gated graph neural network augmented with a deep graph
information maximization module to capture hierarchical and long-range dependencies in
spatial transcriptomic graphs.

• stLearn [36] integrates histological morphology with gene expression and spatial coordi-
nates through a self-supervised learning pipeline that regularizes clustering via spatially
constrained random fields.

• stMMR [56] applies Markov random field regularization to smooth clustering labels and
enforce spatial coherence in noisy or irregular tissue regions.

• GraphST [34] proposes a spatially guided contrastive learning framework that enhances
intra-domain cohesion and inter-domain separation across spot embeddings.

• Spatial-MGCN [47] fuses multiple spatial and expression graphs using multi-view graph
convolutions and an attention mechanism to capture heterogeneous tissue patterns.

• MAFN [62] employs a multi-branch graph convolutional architecture with adaptive late-
fusion, allowing flexible integration of spatial and gene-gene similarity representations for
robust clustering.

Evaluation Metrics. We adopt two widely used metrics for evaluating clustering performance:

Adjusted Rand Index (ARI) [37]: Measures similarity between predicted and ground-truth cluster
assignments, adjusted for chance. Given a contingency table between true labels and predicted
clusters, ARI is computed as:

ARI =
RIobs −RIrand

max(RI)−RIrand
(14)

where RIobs is the observed Rand index measuring the similarity between predicted and ground-
truth clusterings, RIrand denotes the expected index under random labeling, and max(RI) is the
maximum attainable value.

Normalized Mutual Information (NMI) [23]: Quantifies mutual dependence between true and
predicted clusters. Defined as follows.

NMI =
2 · I(Y ; Ŷ )

H(Y ) +H(Ŷ )
, (15)

where I(Y ; Ŷ ) is the mutual information between true labels Y and predicted labels Ŷ , and H(·)
denotes entropy. Higher ARI and NMI values indicate better clustering alignment with biological
ground truth.

A.4 Extended Analysis for Main Performance (RQ1)

To supplement the main performance discussion in Section 4.2, we provide a detailed analysis of
SAINT across all individual slices from the DLPFC, HBC, and MBA datasets, as reported in Table 4.
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Figure 7: Ablation study of different components in SAINT.

Table 4: Full clustering performance of competing spatial transcriptomics models. Bold entries
indicate the best results, and underlined values denote the second-best.

Adjusted Rand Index (ARI)Method 151507 151508 151509 151510 151669 151670 151671 151672 151673 151674 151675 151676 HBC MBA
SCANPY 0.20 0.15 0.19 0.14 0.10 0.09 0.12 0.12 0.20 0.22 0.23 0.22 0.49 0.23
SpaGCN 0.43 0.33 0.41 0.37 0.23 0.35 0.51 0.53 0.40 0.31 0.33 0.28 0.56 0.34
DeepST 0.55 0.42 0.43 0.50 0.44 0.33 0.52 0.48 0.54 0.55 0.53 0.56 0.53 0.25
SCGDL 0.49 0.34 0.32 0.31 0.24 0.26 0.31 0.34 0.33 0.27 0.30 0.29 0.35 0.26
stLearn 0.49 0.31 0.45 0.44 0.32 0.23 0.39 0.34 0.30 0.38 0.38 0.40 0.55 0.38

Spatial-MGCN 0.63 0.46 0.54 0.51 0.39 0.35 0.60 0.77 0.61 0.60 0.54 0.57 0.64 0.42
GraphST 0.48 0.49 0.52 0.50 0.48 0.46 0.61 0.63 0.63 0.43 0.55 0.55 0.54 0.41
stMMR 0.59 0.51 0.58 0.69 0.49 0.48 0.68 0.63 0.60 0.51 0.57 0.55 0.62 0.44
MAFN 0.68 0.51 0.71 0.61 0.56 0.48 0.82 0.76 0.57 0.50 0.46 0.53 0.60 0.43

SAINT-G 0.74 0.64 0.73 0.71 0.56 0.56 0.83 0.80 0.61 0.56 0.57 0.58 0.64 0.45
SAINT-SA 0.75 0.68 0.74 0.76 0.58 0.57 0.90 0.85 0.62 0.57 0.58 0.60 0.66 0.46

Normalized Mutual Information (NMI)Method 151507 151508 151509 151510 151669 151670 151671 151672 151673 151674 151675 151676 HBC MBA
SCANPY 0.21 0.21 0.27 0.22 0.16 0.16 0.24 0.23 0.29 0.31 0.32 0.31 0.52 0.45
SpaGCN 0.54 0.42 0.55 0.50 0.42 0.45 0.60 0.61 0.55 0.46 0.46 0.46 0.56 0.62
DeepST 0.62 0.57 0.62 0.62 0.57 0.51 0.59 0.60 0.69 0.69 0.66 0.68 0.68 0.57
SCGDL 0.55 0.44 0.48 0.45 0.38 0.36 0.41 0.46 0.42 0.38 0.41 0.42 0.43 0.64
stLearn 0.64 0.53 0.62 0.59 0.49 0.41 0.54 0.47 0.49 0.54 0.56 0.56 0.63 0.66

Spatial-MGCN 0.74 0.60 0.68 0.67 0.58 0.56 0.72 0.75 0.68 0.69 0.67 0.67 0.69 0.71
GraphST 0.64 0.54 0.64 0.64 0.59 0.68 0.70 0.61 0.74 0.61 0.62 0.66 0.67 0.71
stMMR 0.72 0.65 0.71 0.71 0.56 0.56 0.72 0.72 0.68 0.62 0.66 0.66 0.65 0.68
MAFN 0.74 0.51 0.72 0.68 0.63 0.60 0.78 0.75 0.67 0.62 0.60 0.67 0.67 0.73

SAINT-G 0.77 0.69 0.73 0.72 0.62 0.63 0.78 0.79 0.68 0.65 0.66 0.68 0.69 0.72
SAINT-SA 0.78 0.71 0.74 0.73 0.64 0.64 0.84 0.80 0.69 0.66 0.67 0.69 0.70 0.74

Overall Trends. SAINT-SA consistently achieves either the best or second-best performance
across the vast majority of the 12 DLPFC slices. On average, it improves ARI from 0.64 (Spatial-
MGCN) to 0.68 and NMI from 0.69 to 0.71. Notably, SAINT-Gdespite its simpler averaging-based
sequence integrationalready outperforms all baselines in several slices, demonstrating the standalone
benefits of incorporating gene-level nucleotide priors.

DLPFC Dataset. On DLPFC slices such as 151507, 151508, and 151509, SAINT-SA achieves
ARI scores of 0.75, 0.68, and 0.74 respectivelyeach being the highest among all compared methods.
Particularly, SAINT-G and SAINT-SA both outperform MAFN and GraphST by large margins. For
instance, on slice 151671, SAINT-SA yields an NMI of 0.84, a +16.2% improvement over GraphST
(0.72) and even surpasses MAFN by +7.7%. We also observe stable improvements on more chal-
lenging slices such as 151669 and 151670, where most baselines underperform (e.g., SCANPY <
0.1 ARI). SAINT-SA boosts ARI to 0.58 and 0.57, respectively, offering clear gains in low-signal
scenarios.

HBC Dataset. The Human Breast Cancer (HBC) dataset features heterogeneous tumor microen-
vironments. Here, SAINT-G and SAINT-SA again dominate, reaching ARI scores of 0.64 and 0.66,
and NMI scores of 0.70 and 0.70. These surpass MAFN by +3.1% ARI and +3.7% NMI. Com-
pared to SpaGCN and DeepST, SAINT provides more spatially coherent and functionally aligned
clustering, as further confirmed in qualitative case studies (see Appendix A.8).

MBA Dataset. On the more homogeneous mouse brain anterior (MBA) tissue, SAINT maintains
strong performance, with ARI and NMI reaching 0.46 and 0.74. These results demonstrate the
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Figure 8: (A) Spatial expression of six marker genes before (Raw) and after SAINT enhancement.
(B) Violin plots comparing layer-specific expression distributions of these genes in Raw and SAINT
outputs.

Figure 9: Case study of the proposed SAINT on DLPFC(151507) dataset.

generalizability of SAINT across diverse spatial contexts. The minimal drop in performance from
HBC to MBA suggests that the framework is robust to differences in tissue type, gene expression
scale, and biological variability.

Overall, these improvements reflect the effectiveness of nucleotide-informed representations in en-
hancing spatial transcriptomics clustering.
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Figure 10: Sensitivity analysis of SAINT on NMI metrics.

A.5 Detailed Ablation Study on NMI

To complement the ARI-based evaluation in the main text, we further analyze the NMI performance
of different SAINT variants across three representative datasets: DLPFC 151672, HBC, and MBA.
Figure 7 presents the corresponding NMI results.

Across all datasets, the full SAINT model achieves the highest NMI, validating the effectiveness
of incorporating nucleotide-level priors through an attention-based fusion mechanism. On DLPFC
slice 151672, SAINT improves over the baseline by +6.7% in NMI. Similarly, on HBC and MBA,
relative gains of +3.9% and +3.3% are observed. Notably, even the average-pooling variant (denoted
as w. SA) provides substantial improvements over the no-fusion baseline. For instance, on slice
151672, w. SA achieves a NMI of 0.79, compared to 0.75 for the baseline. These findings suggest
that gene sequence embeddings capture biological context that complements spatial transcriptomic
signals, even in the absence of attention. The consistent improvements across both tumor (HBC)
and healthy (MBA, DLPFC) tissues further demonstrate that sequence priors enhance clustering
generalizability in both homogeneous and heterogeneous spatial domains.

A.6 Extended Sensitivity Analysis (NMI)

To complement the ARI-based sensitivity results, we further report the corresponding Normalized
Mutual Information (NMI) scores under varying sequence embedding dimensions. As shown in
Figure 10, we evaluate performance across a grid of values for d1 and d2the embedding dimensions
used in the SAINT-G and SAINT-SA modules, respectivelychosen from {16, 32, 64, 128, 256}.

Across all three datasets (151507, HBC, and MBA), we observe that SAINT consistently maintains
stable NMI scores under different dimension combinations. On slice 151507, NMI ranges from
0.7224 to 0.7386, with a relative variation of only 2.25%. For the HBC dataset, NMI varies from
0.6276 to 0.6550, corresponding to a 4.37% fluctuation. On the more structurally complex MBA
dataset, scores range between 0.6212 and 0.6677, reflecting a 6.99% difference. These trends align
with the ARI results and confirm that SAINT exhibits low sensitivity to the choice of sequence
embedding dimensions. The model is capable of achieving strong performance across a broad range
of d1 and d2 values without requiring delicate tuning.

A.7 Impact of Sequence Embedding Dimension

To further investigate the effect of sequence embedding dimensionality on model performance, we
conduct an ablation study by varying the dimensionality d of nucleotide sequence embeddings across
five values: {16, 32, 64, 128, 256}. The results, presented in Figure 6, report ARI and NMI scores on
the DLPFC 151507 slice for three models: the original Spatial-MGCN, Spatial-MGCN+SAINT-G,
and Spatial-MGCN+SAINT-SA.

We observe that both SAINT variants consistently outperform the base Spatial-MGCN across all
dimensions. Notably, SAINT-SA achieves the best performance at d = 32 and d = 64, reaching an
ARI of 73.57% and 72.38%, respectively. This corresponds to a relative ARI gain of +10.5% and
+9.3% compared to SAINT-G at the same dimensions, and +16.7% and +15.0% over the baseline
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Figure 11: Case study of the proposed SAINT on HBC dataset.

Spatial-MGCN. Similarly, for NMI, SAINT-SA peaks at d = 64 with a score of 76.90%, surpassing
SAINT-G and Spatial-MGCN by +0.96% and +2.47%, respectively. SAINT-G also consistently im-
proves upon the base model, particularly at lower embedding sizes. At d = 32, SAINT-G achieves
71.25% ARI and 75.00% NMIgains of +8.2% (ARI) and +0.57% (NMI) over the base model. How-
ever, its performance tends to plateau or slightly decline at higher dimensions (d = 128 or 256),
suggesting potential overfitting or redundancy without the attention-guided fusion mechanism.

These findings indicate that the sequence-aware attention module in SAINT-SA enables more effec-
tive utilization of high-dimensional embeddings, maintaining robust and discriminative representa-
tions even as dimensionality increases. In contrast, the simple averaging strategy used in SAINT-G
is more sensitive to dimensionality, showing diminishing returns beyond d = 64. Overall, the di-
mensional analysis validates the robustness and scalability of SAINT, especially in its full attention-
based variant. It further confirms that integrating gene sequence representations can enhance spatial
clustering performance in a dimension-aware manner.

A.8 Case Study Analysis

To further investigate the biological interpretability of SAINT, we perform case studies on three
representative spatial transcriptomics datasets (DLPFC, HBC, and MBA) to visually examine the
clustering quality, gene expression continuity, and alignment with anatomical ground truth.

DLPFC: Layer-specific Marker Recovery and Cortical Architecture. Figure 8A shows the spa-
tial expression patterns of six canonical marker genesATP2B4, B3GALT2, CRYM, FKBP1A, NEFH,
and RXFP1on slice 151507 before (Raw) and after (SAINT) model reconstruction. The raw data
presents noisy, fragmented spatial signals. In contrast, SAINT smooths out spurious variations and
reveals clear laminar boundaries that correspond well to cortical layers. In Figure 8B, violin plots
further demonstrate improved expression stratification across layers. Genes like ATP2B4 and CRYM
exhibit sharper peaks in layer-specific distributions, indicating enhanced intra-cluster consistency.
This suggests that SAINT captures biologically meaningful spatial organization that is obscured in
raw measurements.

To further validate the spatial fidelity of SAINT, Figure 9 compares the clustering outputs of SAINT
and six baseline methods on slice 151507 of the DLPFC dataset. Panel A displays the manually anno-
tated ground truth and histological image for reference, while Panel B shows clustering results from
competing models. As observed, classical methods such as SCANPY fail to capture spatial struc-
ture, resulting in noisy and biologically implausible regions. More advanced models like GraphST
and DeepST partially recover cortical lamination but exhibit irregular boundaries or fragmented do-
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Figure 12: Case study of the proposed SAINT on MBA dataset.

mains. In contrast, SAINT produces well-aligned spatial clusters that closely match the manually
defined cortical layers. Each layer is sharply delineated with minimal mixing, particularly in deeper
layers such as Layer 5 and WM (white matter), where most other models show noticeable confusion.
This suggests that the incorporation of nucleotide-level priors improves spatial coherence and bio-
logical interpretability. Panel C presents the 2D UMAP projections of spot embeddings. Compared
to scattered or overlapping clusters generated by prior methods, SAINT yields more compact and
clearly separable groups, further confirming its ability to preserve anatomical structure in the latent
space.

HBC: Tumor-edge Delineation and Microenvironment Disentanglement.

As illustrated in Figure 11, SAINT shows improved resolution of complex tumor microenvironments
in the HBC dataset. Compared to other methods that often over-fragment or blur tumor boundaries,
SAINT delineates ductal carcinoma in situ (DCIS), invasive ductal carcinoma (IDC), and tumor-
edge zones with higher coherence and spatial continuity. UMAP embeddings (Figure 11C) con-
firm this observation. Clusters identified by SAINT are compact, well-separated, and show clearer
boundaries between IDC subtypes (e.g., IDC1 to IDC8). Notably, transitional tumor-edge areas
are correctly positioned at cluster boundaries, reflecting subtle expression gradients across tissue
regions. These results demonstrate SAINTs ability to model fine-grained spatial heterogeneity in
complex pathological samples.

MBA: Resolving Anatomical Hierarchies in the Mouse Brain. In the MBA dataset (Figure 12),
SAINT excels in reconstructing intricate anatomical subregions such as olfactory cortex (MOB),
thalamus (TH), and hypothalamus (HY). While prior methods (e.g., SCANPY, SCGDL) tend to
over-fragment or mix transitional areas, SAINT preserves spatial coherence and respects anatomical
continuity. For instance, in regions like FRP::L2/3 and TH::RT, SAINT accurately recovers localized
clusters that align with the brains hierarchical organization. The corresponding UMAP projection
reveals compact and non-overlapping clusters, indicating that the learned embedding reflects both
macro-structure and local transcriptional variation.

A.9 Theoretical Complexity Analysis

The computational complexity of SAINT is mainly determined by the multi-view GCN layers, where
each branch processes a feature matrix X ∈ RN×F with adjacency A ∈ RN×N , resulting in
O(3|E|F ), where N is the number of spots, F the feature dimension, and |E| the number of edges.
The sequence embedding branch only adds a lightweight projection from precomputed embeddings
of dimension ds to dp with complexity O(Ndsdp), and the ZINB decoder adds a negligible O(Ndp)
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term. Thus, the total complexity remains O(|E|F ), comparable to GCN-based methods like MAFN,
with only a small linear overhead from the sequence branch.

A.10 Comparison with Spatial-MGCN and MAFN

This study follows the experimental setup, datasets, and benchmarking protocols used in MAFN[62]
to ensure fair comparison. The DLPFC, HBC, and MBA datasets, together with the same evaluation
metrics, are adopted for consistency. Nevertheless, the proposed SAINT framework introduces
several essential innovations beyond Spatial-MGCN[47] and MAFN[62] .

First, previous methods mainly integrate spatial and gene expression information through graph con-
volutional networks and adaptive fusion strategies, without considering the biological knowledge
contained in gene nucleotide sequences. SAINT explicitly incorporates nucleotide-level representa-
tions into the clustering process, allowing biologically distinct genes with similar expression profiles
to be differentiated.

Second, SAINT employs a sequence-aware encoder based on the pretrained Nucleotide Transformer,
which converts gene sequences into high-dimensional embeddings that capture functional and regu-
latory genomic information not accessible from expression data alone.

Third, while Spatial-MGCN and MAFN both use expression and spatial graphs, SAINT integrates
sequence-derived representations through a cross-modal decorrelation loss (DICR). This loss pro-
motes complementary information across modalities rather than simple consistency.

Fourth, SAINT further contributes by constructing sequence-augmented datasets for widely used
benchmarks, enabling reproducible evaluation of sequence-informed spatial models.

While the overall architectural design inherits certain effective components from previous frame-
work, such as the graph embedding backbone and the zero-inflated negative binomial (ZINB) re-
construction loss, these elements serve as well-established foundations in spatial transcriptomics
modeling. The ZINB loss is particularly suited to the sparse and overdispersed characteristics of
gene expression data, offering better statistical fidelity than alternatives such as mean squared er-
ror (MSE). On top of this foundation, SAINT introduces biologically motivated enhancements, in-
cluding attention-based aggregation that dynamically weights nucleotide features according to their
relevance, thereby emphasizing informative signals and suppressing noise.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (12 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly summarize the main contributions, in-
cluding the integration of gene sequence embeddings and the proposed fusion strategy.
These claims are consistent with the methods and results presented.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: The limitations of the proposed method, including its reliance on pretrained
sequence embeddings and sensitivity to gene selection, are discussed in Appendix A.1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: The experimental settings, datasets, and implementation details are clearly
described in the main text and appendix. The authors also state that the source code and
pretrained models will be released upon publication, ensuring reproducibility of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The authors mention that the source code will be released after the double-
blind review.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details of experimental settings are carefully described in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Five aspects of experiments are conducted to evaluate the proposed model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details of experimental settings are carefully described in the Appendix.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors preserve anonymity and obey the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This work focuses on methodological advancements for spatial transcrip-
tomics data clustering, which is a foundational task in computational biology. While the
approach may indirectly support biomedical discoveries or disease understanding, it is not
tied to direct applications or deployments that raise immediate societal concerns. As such,
broader societal impacts were not discussed in the main text.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All of the backbone models and datasets are cited with their references.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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