
Under review as a conference paper at ICLR 2023

ENABLING PROBABILISTIC INFERENCE ON LARGE-
SCALE SPIKING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep spiking neural networks (SNNs) have demonstrated success in many ma-
chine learning tasks. However, most previous studies focused on deterministic
spiking neurons, neglecting the inherent noisy features of neurons, which have
also been shown to improve generalization ability and robustness. In this work, we
propose a novel SNN framework called Noisy Spiking Neural Network (NSNN)
based on the Noisy LIF neuron. By modeling NSNN as a Bayesian Network, we
derive a three-factor learning rule called noise-driven learning (NDL) for NSNN
synaptic optimization. The post-synaptic factor in NDL is calculated using the
neuronal membrane noise statistics, providing an insightful interpretation for sur-
rogate gradients from the perspective of random noise. Evaluations on CIFAR-
10/100, DVS-CIFAR, and DVS-Gesture show that the NSNN framework leads to
competitive SNN models. Furthermore, NSNNs exhibit higher robustness against
challenging perturbations, including adversarial attacks1.

1 INTRODUCTION

Spiking Neural Networks (SNNs) (Maass, 1997) have received mounting interest for their high bio-
logical plausibility and low power consumption. Recent works introduce deep learning methods to
SNNs and use large-scale neural network architectures, which are proven to have superior represen-
tation abilities (Simonyan & Zisserman, 2014; Szegedy et al., 2015), and thus achieved success on
many tasks (Lee et al., 2016; Wu et al., 2018; Deng et al., 2021; Zhang et al., 2021). Nevertheless,
most existing studies consider deterministic SNNs (DSNNs), which ignore the inherent randomness
of spiking neurons. Using the neuron model with a noisy dynamic is an effective way to introduce
stochasticity into SNNs. This method has two advantages: First, it incurs a potential benefit in
generalization performance by encouraging the model to learn a representation space that is more
fault-tolerant (Liu et al., 2020b; Camuto et al., 2020; Lim et al., 2021) and preventing overfitting
(Bengio et al., 2013; Hinton et al., 2012). Second, spiking neurons with noise-perturbed dynamics
are more biologically realistic because ion channel fluctuations and synaptic transmission random-
ness give rise to noisy sub-threshold membrane voltages (Verveen & DeFelice, 1974; Kempter et al.,
1998; Stein et al., 2005; Faisal et al., 2008). Existing related research, however, was limited to small
scales (Plesser & Gerstner, 2000; Deneve, 2008; Pecevski et al., 2011); while instructive, they have
low scalability and are difficult to scale to larger architectures.

Contributions This work introduces Noisy Spiking Neural Network (NSNN), which enables
probabilistic inference on large SNNs and provides a general theoretical framework for investi-
gating spiking neural models from the perspective of random noise. To be specific, we (1) build
the NSNN upon the discrete Noisy LIF neuron to form a general framework for SNNs; (2) derive a
novel three-factor learning rule called noise-driven learning (NDL) for NSNN synaptic optimization
by interpreting NSNN as a Bayesian Network; (3) show a mathematical relationship between sur-
rogate gradient learning and NDL, providing an insightful interpretation for surrogate gradients; (4)
show that the NSNN framework leads to competitive SNN models, demonstrated by experiments
on CIFAR-10/100, DVS-CIFAR and DVS-Gesture datasets; (5) demonstrate that NSNN framework
leads to more robust SNN models when facing challenging perturbations (including adversarial at-
tacks). (6) By NSNN-based neural code analysis, we demonstrate the potential of NSNN as a neural
coding framework for computational neuroscience.

1Codes are available at https://cutt.ly/9CxT5jI

1

https://cutt.ly/9CxT5jI

Under review as a conference paper at ICLR 2023

Notations We adopt x, u, o to represent neuron input, membrane potential and neuron output,
respectively. Moreover, xt

l,m, ut
l,m, otl,m for variables of neuron m in layer l (whose dimension is

dim(l)) at time t, where m ∈ [1,dim(l)], l ∈ [1, L] and t ∈ [1, T]. We also use boldface type x,u,o
to denote the sets of variables, e.g., variables of layer l at timestep t are marked as xt

l ,u
t
l ,o

t
l . E[·],

P[·], p(·) and F (·) are, respectively, expectation, probability, probability distribution and CDF.

2 RELATED WORKS

Surrogate Gradient Learning The main obstacle during the direct-training of prevailing deter-
ministic SNNs is the almost everywhere zero nature of the gradient of the Heaviside firing function.
As a remedy, surrogate gradient function (SG) (Neftci et al., 2019; Zenke & Vogels, 2021) are
adopted, i.e. use a smooth function to replace the derivative of the firing function in the backward
pass and still use the firing function in the forward passage. Surrogate gradient learning (SGL) refers
to synaptic optimization using surrogate gradients.

Noisy spiking neural models Gerstein & Mandelbrot proposed the earliest integrate-and-fire (IF)
neuron model with stochastic activity. Following developments (Stein, 1965; Tuckwell, 1989;
Plesser & Gerstner, 2000; Di Maio et al., 2004; Burkitt, 2006) have expanded on the diffusion
approach by employing stochastic differential equations. Rao demonstrated that recurrent networks
of noisy IF neurons could perform approximate Bayesian inference of dynamic graphical models.
Patel & Kosko introduced the conditions for the noise benefit (Wiesenfeld & Moss, 1995) of additive
white noises. Fiete & Seung proposed an estimator that correlates reinforcement reward signal and
synaptic perturbations by introducing white noises and adopting first-order Taylor expansions for
noisy neuron learning. In Bengio et al. (2013) a locally-computed gradient estimator for neurons
with stochastic decisions is introduced. Skatchkovsky et al. described a Generalized Linear Model
variant of the deterministic Spike Response Model.

LIF neuron model The widely-used LIF neuron model includes the following discrete-time dy-
namics

sub-threshold dynamic: ut = τut−1 + ϕθ(x
t),

threshold-based firing: ot = spike(ut, vth) ≜ Heaviside(ut − vth),

resetting: ut = ut · (1− ot) + ureset,

(1)

where xt is the input at time t, τ is the membrane time constant. ϕθ denotes a parameterized input
transform, and vth is the firing threshold. To introduce a simple model of neuronal spiking and
refractoriness, we assume vth = 1, τ = 0.5 and ureset = 0 throughout this research.

3 NOISY SPIKING NEURAL NETWORKS

We begin by introducing the Noisy LIF model as a fundamental unit, which naturally connects spik-
ing networks to probabilistic graphical models and enables NSNN to function as a general theoretical
framework for LIF SNNs.

Noisy LIF model The Noisy LIF presented here is based on previous works that use diffusion
approximation (Plesser & Gerstner, 2000; Burkitt, 2006), in which the effective current input to the
neuron is described by a deterministic part and a random noise part. As a result, an additive noise
term is added to the discrete sub-threshold dynamic:

sub-threshold dynamic: ut = τut−1 + ϕθ(x
t) + ϵ, (2)

where ϵ are independently drawn from a known distribution and assumed to satisfy E[ϵ] = 0 and
ϵ = −ϵ. As an example, we use Gaussian ϵ ∼ N here. Expression (2) can also be obtained by
discretizing an Itô SDE variant of LIF’s ODE form (Patel & Kosko, 2005; 2008).

The membrane potentials and spike outputs become random variables as a result of the injection of
random noises. Using noise as a medium, we obtain the probability distribution of Noisy LIF firings

2

Under review as a conference paper at ICLR 2023

…

…

…

…

…

spatial

te
m
po
ra
l

B C

m l,m

layer

ne
ur
on

1 L L+1l

1

dim(1)

predictive head

pr
ed

ic
tiv

e
he

ad

A

codes

Figure 1: Graphical illustration of the NSNN model. A. The diagram of a Noisy LIF neuron.
B. The sketch of an NSNN example. The final neural codes ot

L are drawn from pθ(o
t
L|xt

1,o
t
1...L),

which is obtained through sampling-based probabilistic inference. The predictive head then decodes
the codes ot

L to produce predictions for specific tasks. C. NSNN as a Bayesian Network, which
is a representation of the joint probability distribution of a set of random variables with causal
relationships.

based on the threshold firing mechanism, as ϵ = −ϵ, we have

ot =


1,w.p. P[ot = 1] = P[ut + ϵ > vth︸ ︷︷ ︸

threshold-based firing

] = P[ϵ < ut − vth] = Fϵ(u
t − vth),

0,w.p. 1− P[ot = 1].

(3)

The expressions above show how a single neuron encodes for a spike state random variable (Maass,
2014), allowing us to formulate the probabilistic firing of Noisy LIF by

probabilistic firing: ot ∼ Ber(P[ot = 1]),where P[ot = 1] = Fϵ(u
t − vth). (4)

Specifically, it relates to previous literature in which the difference u−vth governs the neuron firing
probabilities (Maass, 1995; Plesser & Gerstner, 2000). In addition, Noisy LIF employs the same
resetting mechanism as the LIF model.

Noisy LIF is a general form of spiking neurons, making NSNN a theoretical framework for SNNs. If
Var[ϵ] → 0, Fϵ will approach the Heaviside step function; hence, the Noisy LIF model covers the
deterministic LIF case. Further, if we consider ϵ ∼ Logistic, the Noisy LIF describes a sigmoidal
neuron (Maass, 2014).

Noisy SNN Let xt
1 denote the input at t-th timestep, using the dynamics of Noisy LIF in (2,4), an

NSNN with L+ 1 layers is given by

layer 1: xt
1 = xt

1,u
t
1 = τut

1 + ϕθ1(x
t
1) + ϵ⃗, ot

1 =
{
ot1,m ∼ Ber(P[ot1,m = 1])

}dim(1)

m=1

layer 2 · · ·L: xt
l = ot

l−1,u
t
l = τut

l + ϕθl(x
t
l) + ϵ⃗, ot

l =
{
otl,m ∼ Ber(P[otl,m = 1])

}dim(l)

m=1
,

predictive head: L = fθL+1
(ot

L) = f(ϕθL+1
(ot

L)).
(5)

The spike output ot
l of layer l is a representation vector in Sdim(l), where we denote the spike

state space as S = {0, 1}. The noise vector ϵ⃗ consists of independent random noise with a known
distribution (Gaussian here).

The predictive head fθL+1
(ot

L) includes a mapping ϕθL+1
(ot

L) and a loss function f , denoting the
part that decodes predictions from the neural representation ot

L and compute the loss value. ϕθl
represents a map, such as fully-connected or convolution and is thus differentiable w.r.t. parameter
θl. Also, dividing the synaptic parameters by layers, as mentioned above, results in no loss of
generality as they can be defined as any differentiable mapping.

For example, to solve classification problems we shall consider the predictive probability model
pθL+1

(y|ot
L) = softmax(ϕθL+1

(ot
L)), where the map ϕθL+1

computes the predictive scores using
the neural representation ot

L. The function f can be the cross-entropy of the predictive distribution
pθL+1

(y|ot
L) and the target distribution ptar(y|xt

1). Note that fθL+1
(ot

L) here computes the instanta-
neous loss, different from the 1

T

∑
t f

t, which is computed over the entire time window and ignores
potential online learning (Xiao et al., 2022).

3

Under review as a conference paper at ICLR 2023

Since each neuron codes for a random variable otl,m, we can describe the NSNN by the Bayesian
Network model and represent the joint distribution of all spike states given the input xt

1 as

pθ(o
t
1...L|xt

1,o
t−1
1...L) = pθ1(o

t
1|xt

1,o
t−1
1)

∏L

l=2
pθl(o

t
l |ot

l−1,o
t−1
l), (6)

where pθl(o
t
l |ot

l−1,o
t−1
l) =

∏dim(l)
m=1 pθl(o

t
l,m|ot

l−1, o
t−1
l,m).

3.1 A NOISE-DRIVEN LEARNING RULE INDUCED BY NOISE INJECTION

It is suggested that noise supports learning from supervise signals of networks of spiking neurons,
rather than being a nuisance (Maass, 2014), and previous ANN literature also suggest similar stances
(Liu et al., 2020b; Camuto et al., 2020; Lim et al., 2021). But how exactly is this achieved on spiking
neurons? Within the NSNN framework, we derive a novel noise-driven learning rule (Fig. 2.A)
induced by membrane noise injection for synaptic optimization.

To perform NSNN synaptic optimization, the central problem is to estimate the gradient of the
expected loss:

gl = ∇θl

∑
ot
1...L

pθ(o
t
1...L|xt

1,o
t−1
1...L)fθL+1

(ot
L). (7)

As (7) is intractable to compute, we expect an estimation so that the parameters can be tuned using
gradient-based routines.

The dimensionality of the spike state space is rather limited (either spike or silence). Based
on this property, we can derive an estimator by conditioning (local marginalization), which
performs exact summation over single random variable to reduce variance (Burt Jr & Gar-
man, 1971; Titsias et al., 2015). We first factorize the joint distribution pθ(o

t
1···L|xt

1,o
t−1
1···L) as(∏

i ̸=l pθi(o
t
i|ot

i−1,o
t−1
i)

∏
k ̸=m pθl(o

t
l,k|ot

l−1, o
t−1
l,k)

)
pθl(o

t
l,m|ot

l−1, o
t−1
l,m). Hence, (7) becomes

gl =
∑
ot
1...L

∑
m

(∏
i ̸=l

pθi(o
t
i|ot

i−1,o
t−1
i)

∏
k ̸=m

pθl(o
t
l,k|ot

l−1, o
t−1
l,k)

)
∇θlpθl(o

t
l,m|ot

l−1, o
t−1
l,m)fθL+1

(ot
L).

(8)
Since P[otl,m = 0] = 1− P[otl,m = 1], we have∑
otl,m

∇θlpθl(o
t
l,m|ot

l−1, o
t−1
l,m)fθL+1

(ot
L) = ∇θlpθl(o

t
l,m|ot

l−1, o
t−1
l,m)

(
fθL+1

(ot
L)− fθL+1

(ot
¯l,m)

)
,

(9)
where we use ot

¯l,m
to denote the new state ot

L if ol,m alters. Together with
∑

otl,m
pθl(o

t
l,m) = 1 and

(8, 9), we have

gl =
∑

ot
1...L

(∏L

i=1
pθi(o

t
i|ot

i−1,o
t−1
i)

)
ĝl = Eot

1...L
[ĝl] ,where

ĝl =
∑

m
∇θlpθl(o

t
l,m|ot

l−1, o
t−1
l,m)

(
fθL+1

(ot
L)− fθL+1

(ot
¯l,m)

)
. (10)

To get an estimate of gl, we can simply sample from pθ(o
t) and calculate using (10). However, it

is unwise to compute fθL+1
(ot

L)− fθL+1
(ot

¯l,m
), as it requires a lot of additional computations, and

thus cannot scale to large models. Inspired by Fiete & Seung (2006), we may attribute the change of
the loss to the state flip of variable otl,m. By doing this, we can approximate the change of the loss
when the state of otl,m alters using a first-order approximation:

fθL+1
(ot

L)− fθL+1
(ot

¯l,m) ≈
(
otl,m − (1− otl,m)

)∂fθL+1

∂otl,m
= (2otl,m − 1)

∂fθL+1

∂otl,m
. (11)

Note that, this approximation introduce bias to the gradient estimator, except when the map f is
multilinear (Tokui & Sato, 2017). Substituting (11) into (10), we obtain

ĝl =
∑

m
∇θlpθl(o

t
l,m|ot

l−1, o
t−1
l,m)(2otl,m − 1)

∂fθL+1

∂otl,m
. (12)

Proposition 1. For a Noisy LIF neuron (l,m) in an NSNN, where l ∈ [1, L],m ∈ [1,dim(l)], we
have ∇θlpθl(o

t
l,m|ot

l−1, o
t−1
l,m) = (2otl,m − 1)F ′

ϵ(u
t
l,m − vth)∇θlu

t
l,m.

4

Under review as a conference paper at ICLR 2023

Surrogate Gradient Learning (Eqn.11)

statistics:

spike output

layer 1 layer L

synapses

soma

l,m Noise-driven Learning (Eqn.10)

pr
ed

ic
tiv

e
he

ad

Lo
ss

 v
al

ue

Pre-synaptic factor Post-synaptic factor Global signal

synaptic
weights

neuron (l, m)

computed via

approximate by

surrogate gradients:

increase

A

B
SG type

ERF SG

Sigmoidal SG

Triangular SG

Rectangular SG

Normal distribution

Logistic distribution

Triangular distribution

Uniform distribution

Noise from

A B

1

2

3

0

0.2

0.4

0.6

0.8

1.0

A B

1

2

3

0

0.2

0.4

0.6

0.8

1.0

too noisy

not informative

high

low# Iterations

P
er

fo
rm

an
ce

Learning Curve
SG scale tunning as variance selection
decrease

Figure 2: A: Illustration of surrogate gradient and noise-driven learning rules. B: Right: Relationship
between SGL and NDL, where we regard the scale in SGL as the variance of noise in NDL. Left:
Learning efficiencies under different Var[ϵ] values, results are obtained by training a 64-hidden-unit
MLP NSNN on MNIST.

Proof. Proved using (3).

Combining Proposition 1 and (12), we formulate the noise-driven learning rule (Fig. 2.A) as

ĝNDL
l =

∑
m
∇θlu

t
l,mF ′(ut

l,m − vth)∇otl,m
fθL+1

. (13)

When using (13), there is not need to calculate an additional gradient generator in the forward pass,
and ĝl can be computed layer by layer in a single backward passage. As a result, NDL is easy to
implement and can mesh well with modern frameworks of automatic differentiation. For neuron
(l,m), the gradient estimation is performed by a backward pass, in which the post-synaptic factor is
acquired from the PDF F ′

ϵ . Plesser & Gerstner (2000); Shrestha & Orchard (2018) also constructed
surrogate gradient function by empirically adding infinitesimal gaussian perturbations to a spiking
neuron. However, these works analyze an isolated neuron, whereas results of this work are derived
from the network level. Since the estimator in (13) is backpropagation-compatible, we can easily
optimize NSNNs of any architecture with the BPTT algorithm (Robinson & Fallside, 1987).

Relationship to the Surrogate Gradient Learning. In the Surrogate Gradient Learning (SGL),
the derivative of neuron firing function ∂o/∂u is replaced by a smooth function SG to mesh with
the backpropagation scheme. SGL calculates the gradient gl by

SGL:
∑

m

∂ut
l,m

∂θl
SG(ut

l,m − vth)︸ ︷︷ ︸
approximate ∂o/∂u

∂fθL+1

∂otl,m
. (14)

Eqn. (14) and (13) show a close mathematical relationship between NDL and SGL. The derivative
of firing function, provided by surrogate gradient functions in SGL, corresponds to the membrane
potential noise’s PDF F ′

ϵ = pϵ of the post-synaptic neuron. Indeed, when we extend the Gaussian
noise in to general stochastic processes with static increments, commonly-used symmetric (subject
to the assumptions we used in the derivation) surrogate gradients can be explained by corresponding
PDFs of membrane potential noises (e.g., rectangular SG v.s. uniform noise, sigmoidal SG v.s.
logistic noise).

Biological interpretation: noise as a resource for learning. We re-write the NGL estimator in
(13) to frame it as a three-factor learning rule (Frémaux & Gerstner, 2016; Gerstner et al., 2018):

ĝNDL
l =

∑
m

∂ut
l,m/∂θl︸ ︷︷ ︸

Pre-synaptic factor

F ′
ϵ(u

t
l,m − vth)︸ ︷︷ ︸

Post-synaptic factor

∂fθL+1
/∂otl,m︸ ︷︷ ︸

Global learning signal

. (15)

The post-synaptic factor in NDL is calculated by the probability density function of the post synaptic
neuron’s membrane potential noise, which computationally validates the idea of “noise as a resource

5

Under review as a conference paper at ICLR 2023

Table 1: Undisturbed classification task performances in accuracy (%), T for simulation timesteps.
NSNN Algorithm Architecture Accuracy(T = 2) Accuracy(T = 4)

C
IF

A
R

-1
0

◦ STCA (Gu et al.) CIFARNet 91.23(T = 12)
◦ STBP-tdBN (Zheng et al.) ResNet-19 92.34 92.92
◦ STBP (Wu et al.) ResNet-18∗ 93.18±0.07 93.93±0.11
• STBP ResNet-18∗ 92.87±0.04 93.77±0.12
◦ STBP CIFARNet 91.88±0.09 92.79±0.14
• STBP CIFARNet 93.90±0.12 94.30±0.08
◦ TET ResNet-18∗ 93.62±0.02 94.09±0.20
• TET ResNet-18∗ 93.12±0.07 94.14±0.05

C
IF

A
R

-1
00

◦ TET (Deng et al.) ResNet-19 72.87±0.10 74.47±0.15
◦ STBP-tdBN (Zheng et al.) ResNet-19 69.41±0.08 70.86±0.22
◦ STBP ResNet-18∗ 70.15±0.14 70.88±0.19
• STBP ResNet-18∗ 69.57±0.09 71.16±0.40
◦ STBP CIFARNet 72.25±0.08 72.94±0.21
• STBP CIFARNet 73.36±0.14 74.17±0.28
◦ TET ResNet-18∗ 71.72±0.13 74.01±0.43
• TET ResNet-18∗ 71.34±0.09 73.33±0.03

D
V

S-
C

IF
A

R

Accuracy(T = 10)
◦ Fang et al. Wide-7B-Net 74.4(T = 16)
◦ Wu et al. LIAFNet 71.70
◦ STBP ResNet-19 71.74±0.92
• STBP ResNet-19 74.30±0.61
◦ STBP-tdBN VGGSNN 75.51±0.49
• STBP-tdBN VGGSNN 76.97±0.10
◦ TET VGGSNN 78.26±0.17
• TET VGGSNN 79.52±0.38

D
V

S-
G

E
ST

U
R

E Accuracy(T = 16)
◦ Fang et al. 7B-Net 97.92
◦ STBP-tdBN(Zheng et al.) ResNet-17 96.87(T = 40)
◦ STBP 7B-Net 95.84±0.27
• STBP 7B-Net 96.88±0.28

*: modified from the original architecture (He et al., 2016), refer to Tab. 5.

for learning” (Maass, 2014). Also, in NDL, adjusting the noise variance causes a change in the shape
of its PDF, which corresponds to tuning the scale parameter for the surrogate gradient function in
SGL (Fig. 2.B). Thus, the post-synaptic factor of NDL explains the scale tunning (Zenke & Vogels,
2021) in SGL. The scale tunning of SGs can be viewed as variance selection of membrane noise
ϵ: a mild noise plays an essential role in learning (Maass, 2014). Proper variance is essential to
achieve high performance: small variance noise (low entropy) is not informative enough to learn
well, while high variance noise is also harmful (Fig. 2.B) (Yarom & Hounsgaard, 2011). In Sec.
4.3, we investigate the effect of noise level on performance in further detail.

4 EXPERIMENTS

In this section, we demonstrate that the NSNN framework leads to competitive and more robust SNN
models. We focus on the internal randomness in NSNNs and study the effects of membrane noise
level on performance. In addition, we offer novel insights on the role of task type in neural coding
through NSNN-based neural code analyses, demonstrating how NSNNs can be used as a promising
tool for computational neuroscience.

We adopt various network architectures including residual nets and VGG nets. For DSNNs, we use
the ERF surrogate gradient SGERF(x) = 1√

π
exp(−x2) for SGL. All networks were trained using

Adam solvers with the cosine annealing learning rate scheduler.

4.1 COMPARISON OF RECOGNITION TASK PERFORMANCE

In this section, we compare the capabilities of NSNNs and DSNNs on static image benchmarks
CIFAR-10/100 (Krizhevsky et al., 2009), dynamic datasets DVS-CIFAR (Li et al., 2017), and DVS-
Gesture (Amir et al., 2017). The results are reported as mean±std across three independent runs.
More experimental details are provided in Sec. A.2 and more results are presented in Tab. 8. We set

6

Under review as a conference paper at ICLR 2023

0.05 0.15 0.25 0.35 0.45
1

4

7

0.05 0.55 1.05 1.55 2.05

40

60

80

0.05 0.55 1.05 1.55 2.05
0

5

10
Lo

ss

Ac
c

0.05 0.15 0.25 0.35 0.45
30

40

50

60

70

0.05 0.25 0.45 0.65
0

5

10

0.05 0.25 0.45 0.65

20

40

60

80

0.002 0.010 0.018

2

4

6

0.002 0.010 0.018
30

40

50

60

70
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Adversarial-DO method

*: Perturbation increases with the γ valueDSNN (STBP, ResNet-18)
NSNN (STBP, ResNet-18)

DSNN (TET, ResNet-18)
NSNN (TET, ResNet-18)

DSNN (STBP, CIFARNet)
NSNN (STBP, CIFARNet)

CIFAR-100 CIFAR-10 CIFAR-100CIFAR-10

Lo
ss

Ac
c

Adversarial-FGSM

Figure 3: Evaluation results under adversarial attacks on CIFAR datasets. NSNNs exhibit stronger
resilience under adversarial attacks.

Table 2: Evaluation results under EventDrop perturbations on the DVS-CIFAR. Parameter ρ controls
the strength of perturbations (larger for stronger perturbation).

Loss Accuracy

Algo. &
Arch. Type

ρ 0.05 0.25 0.45 0.65 0.05 0.25 0.45 0.65

STBP & DSNN 2.27±0.166.89±2.058.60±1.559.06±1.08 60.09±2.4617.68±5.7213.21±1.3112.42±0.29

ResNet-19 NSNN 1.80±0.095.84±0.767.65±1.218.55±1.40 65.66±1.8025.31±5.7216.36±3.2313.32±0.61

tdBN & DSNN 2.24±0.146.31±0.748.25±1.499.49±1.61 64.98±1.6326.64±3.3218.41±2.4313.74±1.00

VGGSNN NSNN 1.90±0.066.91±0.168.19±0.828.66±1.35 70.28±1.3630.14±0.9922.55±2.0718.78±1.97

TET & DSNN 1.21±0.012.88±0.313.44±0.314.13±0.57 67.86±0.4329.26±4.3420.76±2.4515.70±2.80

VGGSNN NSNN 1.03±0.052.55±0.254.02±0.294.15±0.18 71.67±1.2029.14±1.1621.34±0.7314.73±0.29

the standard deviation of membrane noise to 0.3 for CIFAR-10/100, DVS-Gesture experiments and
0.2 for DVS-CIFAR. These configurations offer a fair balance between performance and resilience
(refer to Fig. 2 and Sec. 4.3).

According to results presented in Table 1. When compared to their deterministic counterparts, it can
be seen that NSNNs with different combinations of training algorithms and network architectures
achieve competitive performances. Specifically, our NSNNs show consistent merits for the event-
stream classification task on the DVS-CIFAR dataset. We suggest that the intrinsic randomness of
the Noisy LIF neurons plays the role of a regularizer (Camuto et al., 2020; Lim et al., 2021), thus
alleviating the overfitting to some extent. Evaluations in this part demonstrate the benefit of NSNNs:
NSNNs can perform stochastic inference on large-scale architectures while achieving comparable
or better performance than those deterministic inference ones.

4.2 ROBUSTNESS EVALUATION

We further evaluate the robustness of DSNNs and NSNNs on CIFAR-10/100 and DVS-CIFAR
datasets. The default simulation timestep for static image datasets is T = 2. The models we used
for evaluation in this section are trained as described in Section 4.1. We consider different perturba-
tions for static, dynamic inputs, respectively. For CIFAR10/100, we consider untargeted adversarial
attack to evaluate the model robustness under the “worst case” (Szegedy et al., 2013; Guo et al.,
2022). We construct adversarial examples by two methods (details in A.2.1): (1) Direct Optimiza-
tion (DO) method and (2) Fast Gradient Sign method (FGSM, Goodfellow et al.). For DVS-CIFAR,
we consider the EventDrop perturbation (Gu et al., 2021), whose basic idea is to randomly drop
a proportion of events, with a probability of ρ ∈ [0, 1]. In addition, the evaluation under hidden
state-level (neuronal spike-level) perturbations are presented in Section A.2.2.

Figure 3 shows the performance dynamics on CIFAR-10/100 datasets against DO/FGSM adversar-
ial attacks. Our results indicate that NSNNs are highly resilient to these challenging adversarial
perturbations, whereas DSNNs’ reliability degrades radically. Table 2 summarizes the losses and
accuracies of three groups of models concerning input-level EventDrop perturbations on the DVS-
CIFAR dataset. In most cases, the proposed NSNNs appear to be less sensitive to perturbations than
competitors, demonstrating relatively high robustness to various perturbations and adaptability to
multiple training algorithms and network architectures.

7

Under review as a conference paper at ICLR 2023

0.5

1.5

2.5

A B

1

2

3

0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10
10

30

50

70

90

A
cc

 (%
)

7

37

67

97

DVS-Gesture

0.2

1.0

1.8

2.6

A
cc

 (%
)

1e2

1e-4

of Iterations

Lo
ss

15

55

95

A
cc

 (%
)

Lo
ss

CIFAR-10

0.01 0.1 1 10
10

30

50

70

90

A B preferred value range

Figure 4: Effect of internal noise level on performance. A. Learning curves of NSNNs under differ-
ent noise levels, we use color to distinguish different noise levels. B. The relationship between final
test accuracy and the standard deviation of membrane potential noise ϵ. The preferred value range
is [0.2, 0.5].

4.3 EFFECT OF INTERNAL NOISE LEVEL ON PERFORMANCE

We further explore the effect of the membrane potential noise level in NSNN on the performance
as an extension to the related content in Figure 2.B. We run experiments using the CIFAR-10 and
DVS-Gesture datasets and train identical networks with different standard deviation settings for 60
epochs. Results are presented by learning curves and the accuracy-standard deviation curves in
Fig. 4. As the variance of membrane potential noise ϵ increases, the model performance exhibits a
dynamic process of increasing and then declining. In particular, NSNNs achieve high performance
near a moderate value (Fig. 4.B), confirming our intuition that moderate noise is essential for high
performance. As shown in Fig. 4.B, changes in std[ϵ] within a “moderate noise” range (from 0.2 to
0.5) have no significant effect on final performance. This gives us a range of internal noise levels to
choose from when using NSNNs in practice.

Biological interpretation of the effect of noise level. As a critical component in NDL, the post-
synaptic factor F ′

ϵ(u − vth) is calculated by the PDF of membrane noise ϵ during the backward
pass. When the noise variance is very small, the noise distribution converges to a Dirac distribution
with minimal information (as measured by entropy), and the post-synaptic factor cannot obtain
enough information for synaptic optimization. In the case of inference, the noise level directly
affects the randomness of the neuron firing distribution. A high variance noise would disrupt the
flow of valuable information from the observation in the network, causing NSNN’s performance to
deteriorate greatly.

4.4 NSNN NEURAL CODE ANALYSIS

The intrinsic randomness of NSNNs results in trial-by-trial variability (Stein et al., 2005), allowing
for exploration of neural representations in spiking networks. In this section, we analyze the neural
code embedded in the spike trains in NSNNs. Also, we consider an additional sinusoidal series
forecasting (SSF) task to investigate possible coding strategies of NSNNs when performing different
types of tasks (refer to A.2.3 for details). We estimate the possibility of rate code by measuring
the correlation between the neural code (outputs of the penultimate layer) variation and prediction
stability. We use the Fano factor (FF) to numerically measure the neural code variation and cosine
similarity to assess prediction stability. In addition to the firing rate, it has been suggested that
correlations between neurons provide an additional channel of information (Alonso et al., 1996;
Hung et al., 2005). In this section, we use simplified network architectures with 16 neurons in the
last (L-th) spiking layer for the DVS-Gesture and the SSF experiments to enable pairwise firing
correlation analyses. The settings for CIFAR-10/100 and DVS-CIFAR experiments are the same as
those in Section 4.1. The simulation timesteps of CIFAR-10/100, DVS-CIFAR, DVS-Gesture, and
SSF experiments are 2, 10, 16, and 48, respectively.

The results in Figure 5.B show a decreasing monotonic trend between the prediction similarity and
the neural code variation (measured by avg. FF). The average FF and prediction similarity, in par-
ticular, on some experiments (e.g., TET+ResNet18), show a strong negative correlation, indicating
that these NSNNs are likely to primarily adopt rate code. It makes sense as the membrane noise
injection introduces uncertainty into the firing process, lowering the reliability of the precise spiking
time-based coding. As the same firing rate (represented as firing count in simulation steps here)

8

Under review as a conference paper at ICLR 2023

0.1 0.2 0.3 0.4
0.8

0.9

1.0

0.20 0.25 0.30 0.35 0.40
0.96

0.98

1.00

0.00 0.02 0.04 0.06

0.8

0.9

1.0

0.00 0.05 0.10
0.80

0.85

0.90

0.95

1.00

0.06 0.11
0.92

0.96

1.00

0.000 0.005 0.010 0.015
0.84

0.92

1.00

0.00 0.05 0.10
0.97

1.00

0.20 0.25 0.30 0.35
0.99

1.00

0.20 0.25 0.30 0.35
0.96

0.98

1.00

C
IF

A
R

-1
0

C
IF

A
R

-1
00

D
VS

-C
IF

A
R

STBP+CIFARNet STBP+ResNet-18 TET+ResNet-18

avg Fano Factor

P
re

di
ct

io
n

C
os

in
e

S
im

ila
rit

y

STBP+CIFARNet STBP+ResNet-18 TET+ResNet-18

TET+VGGSNNSTBP-tdBN+VGGSNNSTBP+ResNet-19

P
re

di
ct

io
n

C
os

in
e

S
im

ila
rit

y
P

re
di

ct
io

n
C

os
in

e
S

im
ila

rit
y

r value: -0.04598
P-value: 0.3044

r value: -0.2625
P-value: <0.0001

r value: -0.7629
P-value: <0.0001

r value: -0.4623
P-value: <0.0001

r value: -0.4492
P-value: <0.0001

r value: -0.8056
P-value: <0.0001

r value: -0.8634
P-value: <0.0001

r value: -0.4327
P-value: <0.0001

r value: -0.7019
P-value: <0.0001

avg Fano Factor avg Fano Factor

identical stimulus

ne
ur

on

trial 1 trial 2

time time

trial 1 trial 2

predictions

prediction vector cosine
similarity：99.17%

prediction 1 prediction 2 Firing Rate F. R.

A B

predictive
head

neural
codes

C D

Figure 5: A: NSNNs exhibit neural code variability and prediction stability. We display prediction
distributions, firing rate and raster plots of the final spiking layer outputs of two repeated trials ob-
tained using an NSNN trained on DVS-CIFAR. B,C: The average FF and prediction cosine similarity
exhibit a decreasing monotonic trend. The dots represent 500 test samples (200 for DVS-Gesture),
the dotted straight line is obtained via linear approximation. The negative correlation coefficient
r indicates that one variable tends to decrease when the other one increases. The P value < 0.05
indicates that the result is unlikely to be the outcome of chance. D: Part of normalized JPSTH plots
generated in the DVS-Gesture recognition and sinusoidal sequence forecasting tasks. The main di-
agonal of the normalized JPSTH displays for each timestep the Pearson correlation of the two neuron
firing simultaneously.

can correspond to different spike trains, the rate-based coding can improve the model’s robustness
by constructing a representation space with better fault tolerance. Figure 5.C shows that when per-
forming forecasting tasks, NSNN appears to be less dependent on the rate code. By measuring the
pairwise firing correlation (Fig. 5.D, full version in Fig. 7,8), we also discover that a neuron pop-
ulation exhibits significant co-activation, which was not observed in the DVS-Gesture experiment.
Therefore, NSNN may also utilize the firing correlations to carry important information when per-
forming forecasting tasks, implying that the optimal neural code (neural representation) might be
task-dependent (Bredenberg et al., 2020; Xie et al., 2022).

5 CONCLUSION

We introduce NSNN in this work. Based on its Bayesian Network form, we propose a novel three-
factor learning rule called noise-driven learning (NDL), which offers an insightful probabilistic
interpretation of the surrogate gradient learning. We demonstrate NSNN’s capability through ex-
periments on various recognition tasks. Moreover, we conduct experiments with challenging per-
turbations (such as adversarial attacks) and demonstrate that NSNNs are more robust than their
deterministic counterparts. We investigate the effect of NSNN internal noise level on performance
and give a recommended range of standard deviation values (only consider Gaussian noise here). In
addition, we demonstrate the potential of NSNN as a neural coding scheme through NSNN-based
neural code analysis.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Jose-Manuel Alonso, W Martin Usrey, and R Clay Reid. Precisely correlated firing in cells of the
lateral geniculate nucleus. Nature, 383(6603):815–819, 1996.

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo,
Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low
power, fully event-based gesture recognition system. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7243–7252, 2017.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv, 2013.

Colin Bredenberg, Eero Simoncelli, and Cristina Savin. Learning efficient task-dependent rep-
resentations with synaptic plasticity. In Advances in Neural Information Processing Systems,
volume 33, pp. 15714–15724, 2020.

Anthony N Burkitt. A review of the integrate-and-fire neuron model: I. homogeneous synaptic input.
Biological Cybernetics, 95(1):1–19, 2006.

John M Burt Jr and Mark B Garman. Conditional monte carlo: A simulation technique for stochastic
network analysis. Management Science, 18(3):207–217, 1971.

Alexander Camuto, Matthew Willetts, Umut Simsekli, Stephen J Roberts, and Chris C Holmes.
Explicit regularisation in gaussian noise injections. In Advances in Neural Information Processing
Systems, 2020.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018.

Sophie Deneve. Bayesian spiking neurons i: inference. Neural Computation, 20(1):91–117, 2008.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. In International Conference on Learning Representa-
tions, 2021.

V Di Maio, P Lansky, and R Rodriguez. Different types of noise in leaky integrate-and-fire model of
neuronal dynamics with discrete periodical input. General Physiology and Biophysics, 23:21–38,
2004.

A Aldo Faisal, Luc PJ Selen, and Daniel M Wolpert. Noise in the nervous system. Nature Reviews
Neuroscience, 9(4):292–303, 2008.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
Residual Learning in Spiking Neural Networks. In Advances in Neural Information Processing
Systems, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. In Advances in Neural Information Processing
Systems, 2021b.

Ugo Fano. Ionization yield of radiations. ii. the fluctuations of the number of ions. Physical Review,
72(1):26, 1947.

Ila R Fiete and H Sebastian Seung. Gradient learning in spiking neural networks by dynamic per-
turbation of conductances. Physical Review Letters, 97(4):048104, 2006.

Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity, and
theory of three-factor learning rules. Frontiers in Neural Circuits, 9:85, 2016.

George L Gerstein and Benoit Mandelbrot. Random walk models for the spike activity of a single
neuron. Biophysical Journal, 4(1):41–68, 1964.

10

Under review as a conference paper at ICLR 2023

Wulfram Gerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and Johanni Brea. Eligibility
traces and plasticity on behavioral time scales: experimental support of neohebbian three-factor
learning rules. Frontiers in Neural Circuits, 12:53, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

Fuqiang Gu, Weicong Sng, Xuke Hu, and Fangwen Yu. Eventdrop: Data augmentation for event-
based learning. arXiv, 2021.

Pengjie Gu, Rong Xiao, Gang Pan, and Huajin Tang. Stca: Spatio-temporal credit assignment with
delayed feedback in deep spiking neural networks. In International Joint Conference on Artificial
Intelligence (IJCAI), 2019.

Chong Guo, Michael J Lee, Guillaume Leclerc, Joel Dapello, Yug Rao, Aleksander Madry, and
James J DiCarlo. Adversarially trained neural representations may already be as robust as corre-
sponding biological neural representations. arXiv, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778,
2016.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv, 2012.

Yangfan Hu, Huajin Tang, and Gang Pan. Spiking deep residual networks. IEEE Transactions on
Neural Networks and Learning Systems, 2018.

Chou P Hung, Gabriel Kreiman, Tomaso Poggio, and James J DiCarlo. Fast readout of object
identity from macaque inferior temporal cortex. Science, 310(5749):863–866, 2005.

Nikola Kasabov. To spike or not to spike: A probabilistic spiking neuron model. Neural Networks,
23(1):16–19, 2010.

Richard Kempter, Wulfram Gerstner, J Leo Van Hemmen, and Hermann Wagner. Extracting oscil-
lations: Neuronal coincidence detection with noisy periodic spike input. Neural computation, 10
(8):1987–2017, 1998.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alexander Kugele, Thomas Pfeil, Michael Pfeiffer, and Elisabetta Chicca. Efficient processing of
spatio-temporal data streams with spiking neural networks. Frontiers in Neuroscience, 14:439,
2020.

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using
backpropagation. Frontiers in Neuroscience, 10, 2016.

Mario Lezcano-Casado. Trivializations for gradient-based optimization on manifolds. In Advances
in Neural Information Processing Systems, pp. 9154–9164, 2019.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

Soon Hoe Lim, N Benjamin Erichson, Liam Hodgkinson, and Michael W Mahoney. Noisy recurrent
neural networks. In Advances in Neural Information Processing Systems, 2021.

Qianhui Liu, Haibo Ruan, Dong Xing, Huajin Tang, and Gang Pan. Effective aer object classifi-
cation using segmented probability-maximization learning in spiking neural networks. In AAAI
Conference on Artificial Intelligence, 2020a.

11

Under review as a conference paper at ICLR 2023

Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. How does noise
help robustness? explanation and exploration under the neural sde framework. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 282–290, 2020b.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv,
2016.

Wolfgang Maass. On the computational power of noisy spiking neurons. In Advances in Neural
Information Processing Systems, 1995.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997.

Wolfgang Maass. Noise as a resource for computation and learning in networks of spiking neurons.
Proceedings of the IEEE, 102(5):860–880, 2014.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Ashok Patel and Bart Kosko. Stochastic resonance in noisy spiking retinal and sensory neuron
models. Neural Networks, 18(5-6):467–478, 2005.

Ashok Patel and Bart Kosko. Stochastic resonance in continuous and spiking neuron models with
levy noise. IEEE Transactions on Neural Networks, 19(12):1993–2008, 2008.

Dejan Pecevski, Lars Buesing, and Wolfgang Maass. Probabilistic inference in general graphical
models through sampling in stochastic networks of spiking neurons. PLoS Computational Biol-
ogy, 7(12):e1002294, 2011.

Hans E Plesser and Wulfram Gerstner. Noise in integrate-and-fire neurons: from stochastic input to
escape rates. Neural Computation, 12(2):367–384, 2000.

Bharath Ramesh, Hong Yang, Garrick Orchard, Ngoc Anh Le Thi, Shihao Zhang, and Cheng Xiang.
Dart: distribution aware retinal transform for event-based cameras. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42(11):2767–2780, 2019.

Rajesh P Rao. Hierarchical bayesian inference in networks of spiking neurons. In Advances in
Neural Information Processing Systems, volume 17, 2004.

Nitin Rathi and Kaushik Roy. Diet-snn: Direct input encoding with leakage and threshold optimiza-
tion in deep spiking neural networks. arXiv, 2020.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In
International Conference on Learning Representations, 2019.

AJ Robinson and Frank Fallside. The utility driven dynamic error propagation network. University
of Cambridge Department of Engineering Cambridge, 1987.

Ali Samadzadeh, Fatemeh Sadat Tabatabaei Far, Ali Javadi, Ahmad Nickabadi, and Morteza Haghir
Chehreghani. Convolutional spiking neural networks for spatio-temporal feature extraction.
arXiv, 2020.

Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. In Advances
in Neural Information Processing Systems, volume 31, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, and Ryad Benosman. Hats:
Histograms of averaged time surfaces for robust event-based object classification. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1731–1740, 2018.

12

Under review as a conference paper at ICLR 2023

Nicolas Skatchkovsky, Hyeryung Jang, and Osvaldo Simeone. Spiking neural networks—part ii:
Detecting spatio-temporal patterns. IEEE Communications Letters, 25(6):1741–1745, 2021.

Richard B Stein. A theoretical analysis of neuronal variability. Biophysical Journal, 5(2):173–194,
1965.

Richard B Stein, E Roderich Gossen, and Kelvin E Jones. Neuronal variability: noise or part of the
signal? Nature Reviews Neuroscience, 6(5):389–397, 2005.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv, 2013.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1–9, 2015.

Michalis K. Titsias, Miguel Lázaro-Gredilla, et al. Local expectation gradients for black box varia-
tional inference. In Advances in Neural Information Processing Systems, 2015.

Seiya Tokui and Issei Sato. Evaluating the variance of likelihood-ratio gradient estimators. In
International Conference on Machine Learning, pp. 3414–3423. PMLR, 2017.

Henry C Tuckwell. Stochastic Processes in the Neurosciences. SIAM, 1989.

Henry C Tuckwell, Jürgen Jost, and Boris S Gutkin. Inhibition and modulation of rhythmic neuronal
spiking by noise. Physical Review E, 80(3):031907, 2009.

AA Verveen and LJ DeFelice. Membrane noise. Progress in Biophysics and Molecular Biology, 28:
189–265, 1974.

Kurt Wiesenfeld and Frank Moss. Stochastic resonance and the benefits of noise: from ice ages to
crayfish and squids. Nature, 373(6509):33–36, 1995.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12:1–12, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking
neural networks: Faster, larger, better. In AAAI Conference on Artificial Intelligence, 2019.

Zhenzhi Wu, Hehui Zhang, Yihan Lin, Guoqi Li, Meng Wang, and Ye Tang. Liaf-net: Leaky inte-
grate and analog fire network for lightweight and efficient spatiotemporal information processing.
IEEE Transactions on Neural Networks and Learning Systems, 2021.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training
through time for spiking neural networks. In Advances in Neural Information Processing Systems,
2022.

Marjorie Xie, Samuel Muscinelli, Kameron Decker Harris, and Ashok Litwin-Kumar. Task-
dependent optimal representations for cerebellar learning. bioRxiv, 2022.

Yosef Yarom and Jorn Hounsgaard. Voltage fluctuations in neurons: signal or noise? Physiological
Reviews, 91(3):917–929, 2011.

Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning
for instilling complex function in spiking neural networks. Neural Computation, 33(4):899–925,
2021.

Malu Zhang, Hong Qu, Xiurui Xie, and Jürgen Kurths. Supervised learning in spiking neural net-
works with noise-threshold. Neurocomputing, 219:333–349, 2017.

Shao-Qun Zhang, Zhao-Yu Zhang, and Zhi-Hua Zhou. Bifurcation spiking neural network. Journal
of Maching Learning Research, 22:253–1, 2021.

Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking
neural networks. In Advances in Neural Information Processing Systems, 2020.

13

Under review as a conference paper at ICLR 2023

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In AAAI Conference on Artificial Intelligence, volume 35, pp.
11062–11070, 2021.

14

Under review as a conference paper at ICLR 2023

A APPENDIX

Roadmap For additional experimental details and results, refer to A.2.

Notations We adopt lower case letters x, u, o to represent neuron input, membrane potential and
neuron output respectively. Moreover, xt

l,m, ut
l,m, otl,m for variables of neuron m in layer l (whose

dimension is dim(l)) at time t, where m ∈ [1,dim(l)], l ∈ [1, L] and t ∈ [1, T]. Similarly, variables
of layer l at timestep t are marked as xt

l , u
t
l , o

t
l . We also use boldface type x,u,o to denote the sets

of all variables of the network. E[·] stands for expectation, Var[·] for variance, P[·] for probability,
p(·) for probability distribution and F (·) for CDF. Notation R denotes real number space R ≜
(−∞,+∞) and S stands for the spike state space S ≜ {0, 1}.

Fano Factor Fano factor (Fano, 1947) is a measurement of the spike count variability. Let us de-
note the spike count of neuron (L,m) as ntrial ID

L,m , the average value as avg(nL,m) = 1
trials

∑
k n

k
L,m.

The deviations from the mean is computed as ∆ntrial ID
L,m = ntrial ID

L,m − nL,m, and the Fano factor is

FFL,m =
Var[nL,m]

nL,m

A.1 RELATING DSNN SGL TO NSNN NDL

Surrogate gradient learning is widely-adopted as an empirically solution to overcome the almost-
everywhere-zero problem when computing gradients through step spiking functions. In this work,
we propose to view surrogate gradient learning as a special form of noise-driven learning, and we re-
veal the close relationship between surrogate gradient function and voltage-level noise distributions
in Table 3.

Table 3: Difference and correlation of inference and learning between DSNNs and NSNNs. The
table lists some typical surrogate gradient functions and their corresponding noise distribution pϵ.
Discarding the biological fact that the ions are subject to Brownian movement that corresponds to
the Gaussian case we derived in the main body, we can extend the results in the table to noise to
other continuous random distributions with zero-mean and symmetry PDF.

ERF N (0, σ2)

Sigmoid Logistic(0, s)

Rectangular U(−a, a)

Triangular Triangular(−a, 0, a)

Arctangent Atan(0, ϕ)

DSNN
Surrogate Gradient Learning

NSNN
Noise-driven Learning

Inference
Spiking procedure

deterministic (approximate
the stochastic inference)
otl,m = 1ut

l,m>vth

stochastic
otl,m ∼ Ber

(
P[otl,m = 1]

)

Learning
Post-synaptic factor ∂o

∂u

Approximate by SGs Acquire from noise statistics F ′
ϵ = pϵ

Phase

Model

A.2 EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

A.2.1 EXPERIMENTAL DETAILS

We conducted most experiments on a workstation with an Intel i5-10400 core, 64 GB memory, and
an NVIDIA RTX 3090 card. Experimental results presented in the form of mean±std are acquired
across three independent trials. We list experimental details in points as follows.

15

Under review as a conference paper at ICLR 2023

Training Details We optimize all networks with Adam solvers (Kingma & Ba, 2014) and adopt
cosine annealing (decay to zero) learning decay policy (Loshchilov & Hutter, 2016). We list hyper-
parameters for our experiments as follows in Table 4, algorithms and network architectures men-
tioned in Table 5.

Table 4: List of training hyper-parameters of experiments in this work.

Dataset Algo. Arch. T Initial LR mini-batch size SG Noise

D
SN

N

CIFAR-10
STBP ResNet-18 2/4 0.01 256/256 ERF SG /
TET, λ = 0.05 2/4 0.01 256/256 ERF SG /
STBP CIFARNet 2/4 0.004 256/256 ERF SG /

CIFAR-100
STBP ResNet-18 2/4 0.005 256/256 ERF SG /
TET, λ = 0.05 2/4 0.005 256/256 ERF SG /
STBP CIFARNet 2/4 0.001 256/256 ERF SG /

DVS-CIFAR
STBP ResNet-19 10 0.0005 32 ERF SG /
TET, λ = 0.001 VGGSNN 10 0.0002 64 ERF SG /
tdBN 10 0.0002 64 ERF SG /

N
SN

N

CIFAR-10
STBP ResNet-18 2/4 0.002 256/256 / N
TET, λ = 0.05 2/4 0.002 256/256 / N
STBP CIFARNet 2/4 0.003 256/128 / N

CIFAR-100
STBP ResNet-18 2/4 0.001 256/256 / N
TET, λ = 0.05 2/4 0.001 256/256 / N
STBP CIFARNet 2/4 0.002 256/256 / N

DVS-CIFAR
STBP ResNet-19 10 0.0005 20 / N
TET, λ = 0.001 VGGSNN 10 0.0003 32 / N
tdBN 10 0.0003 32 / N

Table 5: List of SNN algorithms and network architectures (functional models) in our experiments.

Type Name Description
SNN Algorithm STBP-tdBN Zheng et al. (2021)

STBP Wu et al. (2018)
TET Deng et al. (2021)

Network Architecture ResNet-19 (Zheng et al.) 128c3-(128c3-128c3)×2-(256c3-256c3)×3-
(512c3-512c3)×2-ap-256fc-fc

ResNet-181 64c3-(64c3-64c3)×2-(128c3-128c3)×2-
(256c3-256c3)×2-(512c3-512c3)×2-ap-fc

VGGSNN (Deng et al.) 64c3-128c3-ap2-256c3-256c3-ap2-512c3-
512c3-ap2-512c3-512c3-ap2-fc

CIFARNet (Wu et al.) 128c3-256c3-ap2-512c3-ap2-1024c3-512c3-
1024fc-512fc-fc

7B-Net (Fang et al.) Fang et al. (2021a)

1. constructed by modifying the first conv layer and removing one maxpool layer in the original work (He
et al., 2016).

Baselines We summarize the baseline methods (algorithms) mentioned in our comparison experi-
ments below.

• Hybrid conversion and spike timing dependent backpropagation (Rathi et al., 2019).

16

Under review as a conference paper at ICLR 2023

• Conversion-based spiking residual networks (Hu et al., 2018).

• Backpropagation-based temporal spike sequence learning (TSSL) (Zhang & Li, 2020).

• Spatiotemporal backpropagation (STBP) (Wu et al., 2019).

• DIET-SNN (Rathi & Roy, 2020).

• Spatiotemporal backpropagation with temporal dimension batch norm (STBP-tdBN) (Zheng et al.,
2021).

• Histograms of averaged time surfaces (HATS descriptor) (Sironi et al., 2018).

• Distribution-aware retinal transform (DART descriptor) (Ramesh et al., 2019).

• ANN rollout and conversion (Kugele et al., 2020).

• AER object recognition by segmented probability maximisation (SPA) algorithm (Liu et al.,
2020a).

• Leaky-integrate and analog fire network (LIAF-Net) (Wu et al., 2021).

• Spike-element-wise (SEW) residual networks (Fang et al., 2021b).

• Temporal efficient training (TET) objective function (Deng et al., 2021).

Datasets and Pre-processings We adopt static datasets including static datasets CIFAR-10&100
(Krizhevsky et al., 2009), dynamic dataset DVS-CIFAR (Li et al., 2017).

• CIFAR dataset includes 50k 32×32 images for training and 10k for evaluation. We adopt random
crop, random horizontal flip and AutoAugment (Cubuk et al., 2018) for the training samples.
For both training and evaluation phases, the preprocessed samples are normalized using z-score
scaling.

• DVS-CIFAR dataset is a challenging neuromorphic benchmark recorded via a DVS camera using
CIFAR-10 images. We adopt pre-processing pipeline in Samadzadeh et al. (2020), i.e., divide the
original set into a 9k-sample training set and 1k-sample evaluation set and all event stream files
are spatially downsampled to 48 × 48. We augment the training samples following Deng et al.
(2021).

• DVS-Gesture dataset (Amir et al., 2017). This datasets is recorded using DVS128, it contains 11
hand gestures from 29 subjects under 3 illumination conditions.

Perturbation Details We list the details about the perturbations in our experiments as following:

• In the Direct Optimization (DO) method, we construct the adversarial samples by directly solving
the constrained optimization problem argmax||∆x||2=γ ℓ(f(x+∆x), y), where ∆x for the adver-
sarial perturbation and x + ∆x is the adversarial example. It is implemented using PyTorch and
GeoTorch (Lezcano-Casado, 2019) toolkits. The L-2 norm bounded additive disturbance tensor
are first zero-initialized and then optimized by an Adam solver with learning rate 0.002 for 30
iterations. After that, the additive perturbations are used to produce adversarial samples and then
fed into the testees to evaluate (attack) the target models (either DSNNs or NSNNs in this work).

• The implementation of FGSM method follows Goodfellow et al. (2015), the adversarial example
is constructed as x̃adv = x+ γFGSM × sign[∇xℓ (NN(x), y))].

• The input-level EventDrop perturbation for dynamic inputs are constructed by randomly dropping
spikes in the raw input spike trains. The dropping probability is set by a parameter ρ, the strategy
of dropping we consider is Random Drop (Gu et al., 2021), which combines spatial and temporal-
wise event dropping strategies. During the evaluation, we first individually perform EventDrop
over every samples from the test set, and then fed our testees with the disturbed inputs.

• The hidden state-level noise includes two types of disturbances, the emission state from 1 to 0
(spike to silence) and emission state from 0 to 1 (silence to spike). To simplify the settings, we
use one parameter β to control the probability of both kinds of changes. Let variable o denotes a
spike state, if o = 1, we have P[onew = 0] = β, else, if o = 0, P[onew = 1] = β.

17

Under review as a conference paper at ICLR 2023

Table 6: List of notations of noise or perturbation parameters, grouped as perturbation-related ones
and noises in Noisy LIF neurons by a thick horizontal line.

Parameter Description
α Membrane noise parameter: standard deviation of the normal distribution N∆u

β Hidden state (spike train) noise parameter: adding or dropping probability for a spike.
γDO Static input adversarial perturbation-DO method parameter: L-2 norm constraint of

the vector ∆x.
γFGSM Static input adversarial perturbation-FGSM parameter: ∆x updating step size.

ρ Dynamic input EventDrop perturbation parameter: event dropping probability for
events (spikes).

σ Used in gaussian noise ϵ ∼ N (0, σ2).
s Used in logistic noise ϵ ∼ Logistic(0, s).
a Used in rectangular ϵ ∼ U(−a, a) or triangular ϵ ∼ Triang(−a, 0, a) noises.
ϕ Used in arctangent noise ϵ ∼ Atan(0, ϕ).

Table 7: Evaluation results under hidden-state (spike) perturbation on the DVS-CIFAR, NSNNs
achieve lower loss and higher accuracy under almost all conditions. Parameter β controls the
strength of perturbations (larger for stronger perturbation).

Loss Accuracy

Type
β 0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04

STBP & DSNN 1.43±0.041.72±0.062.44±0.033.43±0.25 69.73±0.8863.91±1.3753.60±1.3940.32±1.91

ResNet-19 NSNN 1.23±0.041.30±0.031.41±0.131.74±0.32 72.88±0.6970.44±0.4267.27±2.6658.99±6.80

tdBN & DSNN 1.29±0.051.30±0.081.49±0.181.88±0.29 74.09±0.6670.61±1.3763.19±2.8950.74±3.32

VGGSNN NSNN 1.25±0.011.19±0.021.22±0.061.50±0.13 76.16±0.1373.38±0.5568.77±0.7855.64±1.87

TET & DSNN 0.82±0.030.91±0.061.08±0.081.37±0.06 76.41±0.9272.60±1.1166.46±1.9356.06±1.05

VGGSNN NSNN 0.75±0.010.80±0.010.94±0.061.25±0.14 78.28±0.2776.32±1.0171.54±1.0762.48±0.52

A.2.2 EVALUATION RESULTS UNDER HIDDEN STATE-LEVEL PERTURBATION

We further consider hidden state-level perturbations to directly mimic the spike train variability
(Tuckwell et al., 2009; Yarom & Hounsgaard, 2011) aside the spike variance caused by membrane
voltage fluctuations. The hidden state-level perturbation is directly put on the emitted spikes of all
spiking neurons (Kasabov, 2010; Zhang et al., 2017), implemented by randomly flipping the state
otl,m of all hidden neurons, the probability of flipping is controlled by a parameter β as P[1 to 0] =
P[0 to 1] = β. Results are presented in Tab. 7 and Fig. 6.

0.02 0.03 0.04 0.05 0.06
0

2

4

0.02 0.03 0.04 0.05 0.06
15

35

55

75

95

0.01 0.02 0.03 0.04 0.05
1

3

5

0.01 0.02 0.03 0.04 0.05

30

50

70

Lo
ss

Ac
c

CIFAR-10 CIFAR-100

Perturbation strength (the strengths increase with the β values)

DSNN (STBP, ResNet-18)

NSNN (STBP, ResNet-18)

DSNN (TET, ResNet-18)

NSNN (TET, ResNet-18)

DSNN (STBP, CIFARNet)

NSNN (STBP, CIFARNet)

CIFAR-10 CIFAR-100

Figure 6: Evaluation results under hidden state perturbation on CIFAR datasets. NSNNs exhibit
stronger resilience under perturbations, report lower loss and higher accuracy in most cases com-
pared to the deterministic counterparts.

18

Under review as a conference paper at ICLR 2023

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

tim
es

te
p

timestep

JPSTH Figure Legend

P
S

TH

N
or

m
al

iz
ed

 J
P

S
TH

ne
ur

on
 n

 to

ne
ur

on
 n

ne
ur

on
 n

 to

ne
ur

on
 m

empty if not
valid.

Input (Stimuli): Event stream

Figure 7: Normalized JPSTH plots of all neuron pairs of one observation in the DVS-Gesture event
sequence classification task. The main diagonal of the JPSTH displays for each timestep the Pearson
correlation of the two neuron firing simultaneously.

A.2.3 NEURAL CODE ANALYSIS DETAILS

Experimental Details The sine series forecasting (SSF) uses a NSNN MLP with 32fc-16fc hid-
den units, simulation timestep is set to 48. The sinusoidal series is generated using sin(x), where
the step of x is 0.1. The training loss function is MSE loss. For the DVS-Gesture experiment in
Section 4.4, we use a 7B-Net (in Tab. 5) and reduce the last layer’s dimension to 16.

The PSTH, normalized JPSTH plots are presented in Fig. 7,8. The normalized JPSTH is a two-dim
gram whose value at position u, v represents the Pearson correlation of one neuron firing at time u
and the other one firing at time v.

A.2.4 ALL COMPARISON RESULTS ON RECOGNITION BENCHMARKS.

We list the results of the full comparison experiment in Tab. 8 due to space constraints.

19

Under review as a conference paper at ICLR 2023

P
S

TH

N
or

m
al

iz
ed

 J
P

S
TH

ne
ur

on
 n

 to

ne
ur

on
 n

ne
ur

on
 n

 to

ne
ur

on
 m

Input: sinusoidal sequence

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

tim
es

te
p

timestep

JPSTH Figure Legend

empty if not
valid.

Figure 8: Normalized JPSTH plots of all neuron pairs in forecasting one sinusoidal sequence.

20

Under review as a conference paper at ICLR 2023

Table 8: Undisturbed evaluation results in accuracy (%), T for simulation timesteps.
NSNN Algorithm Architecture Accuracy avg± sd(T)

C
IF

A
R

-1
0

◦ STCA (Gu et al., 2019) CIFARNet 91.23(12)

◦ Rathi et al. VGG-16 92.02(200)

◦ Hu et al. ResNet-44 92.37(350)

◦ Zhang & Li CIFARNet 91.41(5)

◦ Wu et al. CIFARNet 90.53(12)

◦ STBP-tdBN (Zheng et al.) ResNet-19 92.34(2) 92.92(4) 93.16(6)

◦ STBP† (Wu et al.) ResNet-18∗ 93.18±0.07(2) 93.93±0.11(4)

• STBP† ResNet-18∗ 92.87±0.04(2) 93.77±0.12(4)

◦ STBP† CIFARNet 91.88±0.09(2) 92.79±0.14(4)

• STBP CIFARNet 93.90±0.12(2) 94.30±0.08(4)

◦ TET (Deng et al.) ResNet-19 94.16±0.03(2) 94.44±0.08(4) 94.50±0.07(6)

◦ TET† (Deng et al.) ResNet-18∗ 93.62±0.02(2) 94.09±0.20(4)

• TET ResNet-18∗ 93.12±0.07(2) 94.14±0.05(4)

C
IF

A
R

-1
00

◦ Rathi & Roy ResNet-20 64.07(5)

◦ STBP-tdBN ResNet-19 69.41±0.08(2) 70.86±0.22(4) 71.12±0.57(6)

◦ STBP† ResNet-18∗ 70.15±0.14(2) 70.88±0.19(4)

◦ STBP-tdBN (Zheng et al.) ResNet-19 72.22±0.03(2) 73.41(4)

• STBP ResNet-18∗ 69.57±0.09(2) 71.16±0.40(4)

◦ STBP† CIFARNet 72.25±0.08(2) 72.94±0.21(4)

• STBP CIFARNet 73.36±0.14(2) 74.17±0.28(4)

◦ TET ResNet-19 72.87±0.10(2) 74.47±0.15(4) 74.72±0.28(6)

◦ TET† ResNet-18∗ 71.72±0.13(2) 74.01±0.43(4)

• TET ResNet-18∗ 71.34±0.09(2) 73.33±0.03(4)

D
V

S-
C

IF
A

R

◦ Sironi et al. N/A 52.40

◦ Ramesh et al. N/A 65.78

◦ Kugele et al. 3B-DenseNet 66.75

◦ Liu et al. 1-layer SNN 32.20

◦ Wu et al. LIAFNet 71.70

◦ Wu et al. 6-layer SNN 60.50

◦ Fang et al. Wide-7B-Net 74.4(16)

◦ STBP† ResNet-19 71.74±0.92(10)

• STBP ResNet-19 74.30±0.61(10)

◦ STBP-tdBN† VGGSNN 75.51±0.49(10)

• STBP-tdBN VGGSNN 76.97±0.10(10)

◦ TET† VGGSNN 78.26±0.17(10)

• TET VGGSNN 79.52±0.38(10)

D
V

S-
G

E
ST

U
R

E Accuracy(T = 16)
◦ Fang et al. 7B-Net(Fang et al.) 97.92

◦ Zheng et al. ResNet-17 96.87(T = 40)
◦ STBP 7B-Net 95.84±0.27

• STBP 7B-Net 96.88±0.28

*: modified from the original implementation (He et al., 2016), refer to Tab. 5.
†: Re-produced results.

21

	Introduction
	Related works
	Noisy Spiking Neural Networks
	A Noise-driven Learning Rule Induced by Noise Injection

	Experiments
	Comparison of Recognition Task Performance
	Robustness Evaluation
	Effect of Internal Noise Level on Performance
	NSNN Neural Code Analysis

	Conclusion
	Appendix
	Relating DSNN SGL to NSNN NDL
	Experimental Details and Additional Results
	Experimental Details
	Evaluation results under hidden state-level perturbation
	Neural Code Analysis Details
	All comparison results on recognition benchmarks.

