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ABSTRACT

Deep spiking neural networks (SNNs) have demonstrated success in many ma-
chine learning tasks. However, most previous studies focused on deterministic
spiking neurons, neglecting the inherent noisy features of neurons, which have
also been shown to improve generalization ability and robustness. In this work, we
propose a novel SNN framework called Noisy Spiking Neural Network (NSNN)
based on the Noisy LIF neuron. By modeling NSNN as a Bayesian Network, we
derive a three-factor learning rule called noise-driven learning (NDL) for NSNN
synaptic optimization. The post-synaptic factor in NDL is calculated using the
neuronal membrane noise statistics, providing an insightful interpretation for sur-
rogate gradients from the perspective of random noise. Evaluations on CIFAR-
10/100, DVS-CIFAR, and DVS-Gesture show that the NSNN framework leads to
competitive SNN models. Furthermore, NSNNs exhibit higher robustness against
challenging perturbations, including adversarial attacks1.

1 INTRODUCTION

Spiking Neural Networks (SNNs) (Maass, 1997) have received mounting interest for their high bio-
logical plausibility and low power consumption. Recent works introduce deep learning methods to
SNNs and use large-scale neural network architectures, which are proven to have superior represen-
tation abilities (Simonyan & Zisserman, 2014; Szegedy et al., 2015), and thus achieved success on
many tasks (Lee et al., 2016; Wu et al., 2018; Deng et al., 2021; Zhang et al., 2021). Nevertheless,
most existing studies consider deterministic SNNs (DSNNs), which ignore the inherent randomness
of spiking neurons. Using the neuron model with a noisy dynamic is an effective way to introduce
stochasticity into SNNs. This method has two advantages: First, it incurs a potential benefit in
generalization performance by encouraging the model to learn a representation space that is more
fault-tolerant (Liu et al., 2020b; Camuto et al., 2020; Lim et al., 2021) and preventing overfitting
(Bengio et al., 2013; Hinton et al., 2012). Second, spiking neurons with noise-perturbed dynamics
are more biologically realistic because ion channel fluctuations and synaptic transmission random-
ness give rise to noisy sub-threshold membrane voltages (Verveen & DeFelice, 1974; Kempter et al.,
1998; Stein et al., 2005; Faisal et al., 2008). Existing related research, however, was limited to small
scales (Plesser & Gerstner, 2000; Deneve, 2008; Pecevski et al., 2011); while instructive, they have
low scalability and are difficult to scale to larger architectures.

Contributions This work introduces Noisy Spiking Neural Network (NSNN), which enables
probabilistic inference on large SNNs and provides a general theoretical framework for investi-
gating spiking neural models from the perspective of random noise. To be specific, we (1) build
the NSNN upon the discrete Noisy LIF neuron to form a general framework for SNNs; (2) derive a
novel three-factor learning rule called noise-driven learning (NDL) for NSNN synaptic optimization
by interpreting NSNN as a Bayesian Network; (3) show a mathematical relationship between sur-
rogate gradient learning and NDL, providing an insightful interpretation for surrogate gradients; (4)
show that the NSNN framework leads to competitive SNN models, demonstrated by experiments
on CIFAR-10/100, DVS-CIFAR and DVS-Gesture datasets; (5) demonstrate that NSNN framework
leads to more robust SNN models when facing challenging perturbations (including adversarial at-
tacks). (6) By NSNN-based neural code analysis, we demonstrate the potential of NSNN as a neural
coding framework for computational neuroscience.

1Codes are available at https://cutt.ly/9CxT5jI
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Notations We adopt x, u, o to represent neuron input, membrane potential and neuron output,
respectively. Moreover, xt

l,m, ut
l,m, otl,m for variables of neuron m in layer l (whose dimension is

dim(l)) at time t, where m ∈ [1,dim(l)], l ∈ [1, L] and t ∈ [1, T ]. We also use boldface type x,u,o
to denote the sets of variables, e.g., variables of layer l at timestep t are marked as xt

l ,u
t
l ,o

t
l . E[·],

P[·], p(·) and F (·) are, respectively, expectation, probability, probability distribution and CDF.

2 RELATED WORKS

Surrogate Gradient Learning The main obstacle during the direct-training of prevailing deter-
ministic SNNs is the almost everywhere zero nature of the gradient of the Heaviside firing function.
As a remedy, surrogate gradient function (SG) (Neftci et al., 2019; Zenke & Vogels, 2021) are
adopted, i.e. use a smooth function to replace the derivative of the firing function in the backward
pass and still use the firing function in the forward passage. Surrogate gradient learning (SGL) refers
to synaptic optimization using surrogate gradients.

Noisy spiking neural models Gerstein & Mandelbrot proposed the earliest integrate-and-fire (IF)
neuron model with stochastic activity. Following developments (Stein, 1965; Tuckwell, 1989;
Plesser & Gerstner, 2000; Di Maio et al., 2004; Burkitt, 2006) have expanded on the diffusion
approach by employing stochastic differential equations. Rao demonstrated that recurrent networks
of noisy IF neurons could perform approximate Bayesian inference of dynamic graphical models.
Patel & Kosko introduced the conditions for the noise benefit (Wiesenfeld & Moss, 1995) of additive
white noises. Fiete & Seung proposed an estimator that correlates reinforcement reward signal and
synaptic perturbations by introducing white noises and adopting first-order Taylor expansions for
noisy neuron learning. In Bengio et al. (2013) a locally-computed gradient estimator for neurons
with stochastic decisions is introduced. Skatchkovsky et al. described a Generalized Linear Model
variant of the deterministic Spike Response Model.

LIF neuron model The widely-used LIF neuron model includes the following discrete-time dy-
namics

sub-threshold dynamic: ut = τut−1 + ϕθ(x
t),

threshold-based firing: ot = spike(ut, vth) ≜ Heaviside(ut − vth),

resetting: ut = ut · (1− ot) + ureset,

(1)

where xt is the input at time t, τ is the membrane time constant. ϕθ denotes a parameterized input
transform, and vth is the firing threshold. To introduce a simple model of neuronal spiking and
refractoriness, we assume vth = 1, τ = 0.5 and ureset = 0 throughout this research.

3 NOISY SPIKING NEURAL NETWORKS

We begin by introducing the Noisy LIF model as a fundamental unit, which naturally connects spik-
ing networks to probabilistic graphical models and enables NSNN to function as a general theoretical
framework for LIF SNNs.

Noisy LIF model The Noisy LIF presented here is based on previous works that use diffusion
approximation (Plesser & Gerstner, 2000; Burkitt, 2006), in which the effective current input to the
neuron is described by a deterministic part and a random noise part. As a result, an additive noise
term is added to the discrete sub-threshold dynamic:

sub-threshold dynamic: ut = τut−1 + ϕθ(x
t) + ϵ, (2)

where ϵ are independently drawn from a known distribution and assumed to satisfy E[ϵ] = 0 and
ϵ = −ϵ. As an example, we use Gaussian ϵ ∼ N here. Expression (2) can also be obtained by
discretizing an Itô SDE variant of LIF’s ODE form (Patel & Kosko, 2005; 2008).

The membrane potentials and spike outputs become random variables as a result of the injection of
random noises. Using noise as a medium, we obtain the probability distribution of Noisy LIF firings
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Figure 1: Graphical illustration of the NSNN model. A. The diagram of a Noisy LIF neuron.
B. The sketch of an NSNN example. The final neural codes ot

L are drawn from pθ(o
t
L|xt

1,o
t
1...L),

which is obtained through sampling-based probabilistic inference. The predictive head then decodes
the codes ot

L to produce predictions for specific tasks. C. NSNN as a Bayesian Network, which
is a representation of the joint probability distribution of a set of random variables with causal
relationships.

based on the threshold firing mechanism, as ϵ = −ϵ, we have

ot =


1,w.p. P[ot = 1] = P[ ut + ϵ > vth︸ ︷︷ ︸

threshold-based firing

] = P[ϵ < ut − vth] = Fϵ(u
t − vth),

0,w.p. 1− P[ot = 1].

(3)

The expressions above show how a single neuron encodes for a spike state random variable (Maass,
2014), allowing us to formulate the probabilistic firing of Noisy LIF by

probabilistic firing: ot ∼ Ber(P[ot = 1]),where P[ot = 1] = Fϵ(u
t − vth). (4)

Specifically, it relates to previous literature in which the difference u−vth governs the neuron firing
probabilities (Maass, 1995; Plesser & Gerstner, 2000). In addition, Noisy LIF employs the same
resetting mechanism as the LIF model.

Noisy LIF is a general form of spiking neurons, making NSNN a theoretical framework for SNNs. If
Var[ϵ] → 0, Fϵ will approach the Heaviside step function; hence, the Noisy LIF model covers the
deterministic LIF case. Further, if we consider ϵ ∼ Logistic, the Noisy LIF describes a sigmoidal
neuron (Maass, 2014).

Noisy SNN Let xt
1 denote the input at t-th timestep, using the dynamics of Noisy LIF in (2,4), an

NSNN with L+ 1 layers is given by

layer 1: xt
1 = xt

1,u
t
1 = τut

1 + ϕθ1(x
t
1) + ϵ⃗, ot

1 =
{
ot1,m ∼ Ber(P[ot1,m = 1])

}dim(1)

m=1

layer 2 · · ·L: xt
l = ot

l−1,u
t
l = τut

l + ϕθl(x
t
l) + ϵ⃗, ot

l =
{
otl,m ∼ Ber(P[otl,m = 1])

}dim(l)

m=1
,

predictive head: L = fθL+1
(ot

L) = f(ϕθL+1
(ot

L)).
(5)

The spike output ot
l of layer l is a representation vector in Sdim(l), where we denote the spike

state space as S = {0, 1}. The noise vector ϵ⃗ consists of independent random noise with a known
distribution (Gaussian here).

The predictive head fθL+1
(ot

L) includes a mapping ϕθL+1
(ot

L) and a loss function f , denoting the
part that decodes predictions from the neural representation ot

L and compute the loss value. ϕθl
represents a map, such as fully-connected or convolution and is thus differentiable w.r.t. parameter
θl. Also, dividing the synaptic parameters by layers, as mentioned above, results in no loss of
generality as they can be defined as any differentiable mapping.

For example, to solve classification problems we shall consider the predictive probability model
pθL+1

(y|ot
L) = softmax(ϕθL+1

(ot
L)), where the map ϕθL+1

computes the predictive scores using
the neural representation ot

L. The function f can be the cross-entropy of the predictive distribution
pθL+1

(y|ot
L) and the target distribution ptar(y|xt

1). Note that fθL+1
(ot

L) here computes the instanta-
neous loss, different from the 1

T

∑
t f

t, which is computed over the entire time window and ignores
potential online learning (Xiao et al., 2022).
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Since each neuron codes for a random variable otl,m, we can describe the NSNN by the Bayesian
Network model and represent the joint distribution of all spike states given the input xt

1 as

pθ(o
t
1...L|xt

1,o
t−1
1...L) = pθ1(o

t
1|xt

1,o
t−1
1 )

∏L

l=2
pθl(o

t
l |ot

l−1,o
t−1
l ), (6)

where pθl(o
t
l |ot

l−1,o
t−1
l ) =

∏dim(l)
m=1 pθl(o

t
l,m|ot

l−1, o
t−1
l,m ).

3.1 A NOISE-DRIVEN LEARNING RULE INDUCED BY NOISE INJECTION

It is suggested that noise supports learning from supervise signals of networks of spiking neurons,
rather than being a nuisance (Maass, 2014), and previous ANN literature also suggest similar stances
(Liu et al., 2020b; Camuto et al., 2020; Lim et al., 2021). But how exactly is this achieved on spiking
neurons? Within the NSNN framework, we derive a novel noise-driven learning rule (Fig. 2.A)
induced by membrane noise injection for synaptic optimization.

To perform NSNN synaptic optimization, the central problem is to estimate the gradient of the
expected loss:

gl = ∇θl

∑
ot
1...L

pθ(o
t
1...L|xt

1,o
t−1
1...L)fθL+1

(ot
L). (7)

As (7) is intractable to compute, we expect an estimation so that the parameters can be tuned using
gradient-based routines.

The dimensionality of the spike state space is rather limited (either spike or silence). Based
on this property, we can derive an estimator by conditioning (local marginalization), which
performs exact summation over single random variable to reduce variance (Burt Jr & Gar-
man, 1971; Titsias et al., 2015). We first factorize the joint distribution pθ(o

t
1···L|xt

1,o
t−1
1···L) as(∏

i ̸=l pθi(o
t
i|ot

i−1,o
t−1
i )

∏
k ̸=m pθl(o

t
l,k|ot

l−1, o
t−1
l,k )

)
pθl(o

t
l,m|ot

l−1, o
t−1
l,m ). Hence, (7) becomes

gl =
∑
ot
1...L

∑
m

(∏
i ̸=l

pθi(o
t
i|ot

i−1,o
t−1
i )

∏
k ̸=m

pθl(o
t
l,k|ot

l−1, o
t−1
l,k )

)
∇θlpθl(o

t
l,m|ot

l−1, o
t−1
l,m )fθL+1

(ot
L).

(8)
Since P[otl,m = 0] = 1− P[otl,m = 1], we have∑
otl,m

∇θlpθl(o
t
l,m|ot

l−1, o
t−1
l,m )fθL+1

(ot
L) = ∇θlpθl(o

t
l,m|ot

l−1, o
t−1
l,m )

(
fθL+1

(ot
L)− fθL+1

(ot
¯l,m)

)
,

(9)
where we use ot

¯l,m
to denote the new state ot

L if ol,m alters. Together with
∑

otl,m
pθl(o

t
l,m) = 1 and

(8, 9), we have

gl =
∑

ot
1...L

(∏L

i=1
pθi(o

t
i|ot

i−1,o
t−1
i )

)
ĝl = Eot

1...L
[ĝl] ,where

ĝl =
∑

m
∇θlpθl(o

t
l,m|ot

l−1, o
t−1
l,m )

(
fθL+1

(ot
L)− fθL+1

(ot
¯l,m)

)
. (10)

To get an estimate of gl, we can simply sample from pθ(o
t) and calculate using (10). However, it

is unwise to compute fθL+1
(ot

L)− fθL+1
(ot

¯l,m
), as it requires a lot of additional computations, and

thus cannot scale to large models. Inspired by Fiete & Seung (2006), we may attribute the change of
the loss to the state flip of variable otl,m. By doing this, we can approximate the change of the loss
when the state of otl,m alters using a first-order approximation:

fθL+1
(ot

L)− fθL+1
(ot

¯l,m) ≈
(
otl,m − (1− otl,m)

)∂fθL+1

∂otl,m
= (2otl,m − 1)

∂fθL+1

∂otl,m
. (11)

Note that, this approximation introduce bias to the gradient estimator, except when the map f is
multilinear (Tokui & Sato, 2017). Substituting (11) into (10), we obtain

ĝl =
∑

m
∇θlpθl(o

t
l,m|ot

l−1, o
t−1
l,m )(2otl,m − 1)

∂fθL+1

∂otl,m
. (12)

Proposition 1. For a Noisy LIF neuron (l,m) in an NSNN, where l ∈ [1, L],m ∈ [1,dim(l)], we
have ∇θlpθl(o

t
l,m|ot

l−1, o
t−1
l,m ) = (2otl,m − 1)F ′

ϵ(u
t
l,m − vth)∇θlu

t
l,m.
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Figure 2: A: Illustration of surrogate gradient and noise-driven learning rules. B: Right: Relationship
between SGL and NDL, where we regard the scale in SGL as the variance of noise in NDL. Left:
Learning efficiencies under different Var[ϵ] values, results are obtained by training a 64-hidden-unit
MLP NSNN on MNIST.

Proof. Proved using (3).

Combining Proposition 1 and (12), we formulate the noise-driven learning rule (Fig. 2.A) as

ĝNDL
l =

∑
m
∇θlu

t
l,mF ′(ut

l,m − vth)∇otl,m
fθL+1

. (13)

When using (13), there is not need to calculate an additional gradient generator in the forward pass,
and ĝl can be computed layer by layer in a single backward passage. As a result, NDL is easy to
implement and can mesh well with modern frameworks of automatic differentiation. For neuron
(l,m), the gradient estimation is performed by a backward pass, in which the post-synaptic factor is
acquired from the PDF F ′

ϵ . Plesser & Gerstner (2000); Shrestha & Orchard (2018) also constructed
surrogate gradient function by empirically adding infinitesimal gaussian perturbations to a spiking
neuron. However, these works analyze an isolated neuron, whereas results of this work are derived
from the network level. Since the estimator in (13) is backpropagation-compatible, we can easily
optimize NSNNs of any architecture with the BPTT algorithm (Robinson & Fallside, 1987).

Relationship to the Surrogate Gradient Learning. In the Surrogate Gradient Learning (SGL),
the derivative of neuron firing function ∂o/∂u is replaced by a smooth function SG to mesh with
the backpropagation scheme. SGL calculates the gradient gl by

SGL:
∑

m

∂ut
l,m

∂θl
SG(ut

l,m − vth)︸ ︷︷ ︸
approximate ∂o/∂u

∂fθL+1

∂otl,m
. (14)

Eqn. (14) and (13) show a close mathematical relationship between NDL and SGL. The derivative
of firing function, provided by surrogate gradient functions in SGL, corresponds to the membrane
potential noise’s PDF F ′

ϵ = pϵ of the post-synaptic neuron. Indeed, when we extend the Gaussian
noise in to general stochastic processes with static increments, commonly-used symmetric (subject
to the assumptions we used in the derivation) surrogate gradients can be explained by corresponding
PDFs of membrane potential noises (e.g., rectangular SG v.s. uniform noise, sigmoidal SG v.s.
logistic noise).

Biological interpretation: noise as a resource for learning. We re-write the NGL estimator in
(13) to frame it as a three-factor learning rule (Frémaux & Gerstner, 2016; Gerstner et al., 2018):

ĝNDL
l =

∑
m

∂ut
l,m/∂θl︸ ︷︷ ︸

Pre-synaptic factor

F ′
ϵ(u

t
l,m − vth)︸ ︷︷ ︸

Post-synaptic factor

∂fθL+1
/∂otl,m︸ ︷︷ ︸

Global learning signal

. (15)

The post-synaptic factor in NDL is calculated by the probability density function of the post synaptic
neuron’s membrane potential noise, which computationally validates the idea of “noise as a resource

5



Under review as a conference paper at ICLR 2023

Table 1: Undisturbed classification task performances in accuracy (%), T for simulation timesteps.
NSNN Algorithm Architecture Accuracy(T = 2) Accuracy(T = 4)

C
IF

A
R

-1
0

◦ STCA (Gu et al.) CIFARNet 91.23(T = 12)
◦ STBP-tdBN (Zheng et al.) ResNet-19 92.34 92.92
◦ STBP (Wu et al.) ResNet-18∗ 93.18±0.07 93.93±0.11
• STBP ResNet-18∗ 92.87±0.04 93.77±0.12
◦ STBP CIFARNet 91.88±0.09 92.79±0.14
• STBP CIFARNet 93.90±0.12 94.30±0.08
◦ TET ResNet-18∗ 93.62±0.02 94.09±0.20
• TET ResNet-18∗ 93.12±0.07 94.14±0.05

C
IF

A
R

-1
00

◦ TET (Deng et al.) ResNet-19 72.87±0.10 74.47±0.15
◦ STBP-tdBN (Zheng et al.) ResNet-19 69.41±0.08 70.86±0.22
◦ STBP ResNet-18∗ 70.15±0.14 70.88±0.19
• STBP ResNet-18∗ 69.57±0.09 71.16±0.40
◦ STBP CIFARNet 72.25±0.08 72.94±0.21
• STBP CIFARNet 73.36±0.14 74.17±0.28
◦ TET ResNet-18∗ 71.72±0.13 74.01±0.43
• TET ResNet-18∗ 71.34±0.09 73.33±0.03

D
V

S-
C

IF
A

R

Accuracy(T = 10)
◦ Fang et al. Wide-7B-Net 74.4(T = 16)
◦ Wu et al. LIAFNet 71.70
◦ STBP ResNet-19 71.74±0.92
• STBP ResNet-19 74.30±0.61
◦ STBP-tdBN VGGSNN 75.51±0.49
• STBP-tdBN VGGSNN 76.97±0.10
◦ TET VGGSNN 78.26±0.17
• TET VGGSNN 79.52±0.38

D
V

S-
G

E
ST

U
R

E Accuracy(T = 16)
◦ Fang et al. 7B-Net 97.92
◦ STBP-tdBN( Zheng et al.) ResNet-17 96.87(T = 40)
◦ STBP 7B-Net 95.84±0.27
• STBP 7B-Net 96.88±0.28

*: modified from the original architecture (He et al., 2016), refer to Tab. 5.

for learning” (Maass, 2014). Also, in NDL, adjusting the noise variance causes a change in the shape
of its PDF, which corresponds to tuning the scale parameter for the surrogate gradient function in
SGL (Fig. 2.B). Thus, the post-synaptic factor of NDL explains the scale tunning (Zenke & Vogels,
2021) in SGL. The scale tunning of SGs can be viewed as variance selection of membrane noise
ϵ: a mild noise plays an essential role in learning (Maass, 2014). Proper variance is essential to
achieve high performance: small variance noise (low entropy) is not informative enough to learn
well, while high variance noise is also harmful (Fig. 2.B) (Yarom & Hounsgaard, 2011). In Sec.
4.3, we investigate the effect of noise level on performance in further detail.

4 EXPERIMENTS

In this section, we demonstrate that the NSNN framework leads to competitive and more robust SNN
models. We focus on the internal randomness in NSNNs and study the effects of membrane noise
level on performance. In addition, we offer novel insights on the role of task type in neural coding
through NSNN-based neural code analyses, demonstrating how NSNNs can be used as a promising
tool for computational neuroscience.

We adopt various network architectures including residual nets and VGG nets. For DSNNs, we use
the ERF surrogate gradient SGERF(x) = 1√

π
exp(−x2) for SGL. All networks were trained using

Adam solvers with the cosine annealing learning rate scheduler.

4.1 COMPARISON OF RECOGNITION TASK PERFORMANCE

In this section, we compare the capabilities of NSNNs and DSNNs on static image benchmarks
CIFAR-10/100 (Krizhevsky et al., 2009), dynamic datasets DVS-CIFAR (Li et al., 2017), and DVS-
Gesture (Amir et al., 2017). The results are reported as mean±std across three independent runs.
More experimental details are provided in Sec. A.2 and more results are presented in Tab. 8. We set
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Figure 3: Evaluation results under adversarial attacks on CIFAR datasets. NSNNs exhibit stronger
resilience under adversarial attacks.

Table 2: Evaluation results under EventDrop perturbations on the DVS-CIFAR. Parameter ρ controls
the strength of perturbations (larger for stronger perturbation).

Loss Accuracy

Algo. &
Arch. Type

ρ 0.05 0.25 0.45 0.65 0.05 0.25 0.45 0.65

STBP & DSNN 2.27±0.166.89±2.058.60±1.559.06±1.08 60.09±2.4617.68±5.7213.21±1.3112.42±0.29

ResNet-19 NSNN 1.80±0.095.84±0.767.65±1.218.55±1.40 65.66±1.8025.31±5.7216.36±3.2313.32±0.61

tdBN & DSNN 2.24±0.146.31±0.748.25±1.499.49±1.61 64.98±1.6326.64±3.3218.41±2.4313.74±1.00

VGGSNN NSNN 1.90±0.066.91±0.168.19±0.828.66±1.35 70.28±1.3630.14±0.9922.55±2.0718.78±1.97

TET & DSNN 1.21±0.012.88±0.313.44±0.314.13±0.57 67.86±0.4329.26±4.3420.76±2.4515.70±2.80

VGGSNN NSNN 1.03±0.052.55±0.254.02±0.294.15±0.18 71.67±1.2029.14±1.1621.34±0.7314.73±0.29

the standard deviation of membrane noise to 0.3 for CIFAR-10/100, DVS-Gesture experiments and
0.2 for DVS-CIFAR. These configurations offer a fair balance between performance and resilience
(refer to Fig. 2 and Sec. 4.3).

According to results presented in Table 1. When compared to their deterministic counterparts, it can
be seen that NSNNs with different combinations of training algorithms and network architectures
achieve competitive performances. Specifically, our NSNNs show consistent merits for the event-
stream classification task on the DVS-CIFAR dataset. We suggest that the intrinsic randomness of
the Noisy LIF neurons plays the role of a regularizer (Camuto et al., 2020; Lim et al., 2021), thus
alleviating the overfitting to some extent. Evaluations in this part demonstrate the benefit of NSNNs:
NSNNs can perform stochastic inference on large-scale architectures while achieving comparable
or better performance than those deterministic inference ones.

4.2 ROBUSTNESS EVALUATION

We further evaluate the robustness of DSNNs and NSNNs on CIFAR-10/100 and DVS-CIFAR
datasets. The default simulation timestep for static image datasets is T = 2. The models we used
for evaluation in this section are trained as described in Section 4.1. We consider different perturba-
tions for static, dynamic inputs, respectively. For CIFAR10/100, we consider untargeted adversarial
attack to evaluate the model robustness under the “worst case” (Szegedy et al., 2013; Guo et al.,
2022). We construct adversarial examples by two methods (details in A.2.1): (1) Direct Optimiza-
tion (DO) method and (2) Fast Gradient Sign method (FGSM, Goodfellow et al.). For DVS-CIFAR,
we consider the EventDrop perturbation (Gu et al., 2021), whose basic idea is to randomly drop
a proportion of events, with a probability of ρ ∈ [0, 1]. In addition, the evaluation under hidden
state-level (neuronal spike-level) perturbations are presented in Section A.2.2.

Figure 3 shows the performance dynamics on CIFAR-10/100 datasets against DO/FGSM adversar-
ial attacks. Our results indicate that NSNNs are highly resilient to these challenging adversarial
perturbations, whereas DSNNs’ reliability degrades radically. Table 2 summarizes the losses and
accuracies of three groups of models concerning input-level EventDrop perturbations on the DVS-
CIFAR dataset. In most cases, the proposed NSNNs appear to be less sensitive to perturbations than
competitors, demonstrating relatively high robustness to various perturbations and adaptability to
multiple training algorithms and network architectures.
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Figure 4: Effect of internal noise level on performance. A. Learning curves of NSNNs under differ-
ent noise levels, we use color to distinguish different noise levels. B. The relationship between final
test accuracy and the standard deviation of membrane potential noise ϵ. The preferred value range
is [0.2, 0.5].

4.3 EFFECT OF INTERNAL NOISE LEVEL ON PERFORMANCE

We further explore the effect of the membrane potential noise level in NSNN on the performance
as an extension to the related content in Figure 2.B. We run experiments using the CIFAR-10 and
DVS-Gesture datasets and train identical networks with different standard deviation settings for 60
epochs. Results are presented by learning curves and the accuracy-standard deviation curves in
Fig. 4. As the variance of membrane potential noise ϵ increases, the model performance exhibits a
dynamic process of increasing and then declining. In particular, NSNNs achieve high performance
near a moderate value (Fig. 4.B), confirming our intuition that moderate noise is essential for high
performance. As shown in Fig. 4.B, changes in std[ϵ] within a “moderate noise” range (from 0.2 to
0.5) have no significant effect on final performance. This gives us a range of internal noise levels to
choose from when using NSNNs in practice.

Biological interpretation of the effect of noise level. As a critical component in NDL, the post-
synaptic factor F ′

ϵ(u − vth) is calculated by the PDF of membrane noise ϵ during the backward
pass. When the noise variance is very small, the noise distribution converges to a Dirac distribution
with minimal information (as measured by entropy), and the post-synaptic factor cannot obtain
enough information for synaptic optimization. In the case of inference, the noise level directly
affects the randomness of the neuron firing distribution. A high variance noise would disrupt the
flow of valuable information from the observation in the network, causing NSNN’s performance to
deteriorate greatly.

4.4 NSNN NEURAL CODE ANALYSIS

The intrinsic randomness of NSNNs results in trial-by-trial variability (Stein et al., 2005), allowing
for exploration of neural representations in spiking networks. In this section, we analyze the neural
code embedded in the spike trains in NSNNs. Also, we consider an additional sinusoidal series
forecasting (SSF) task to investigate possible coding strategies of NSNNs when performing different
types of tasks (refer to A.2.3 for details). We estimate the possibility of rate code by measuring
the correlation between the neural code (outputs of the penultimate layer) variation and prediction
stability. We use the Fano factor (FF) to numerically measure the neural code variation and cosine
similarity to assess prediction stability. In addition to the firing rate, it has been suggested that
correlations between neurons provide an additional channel of information (Alonso et al., 1996;
Hung et al., 2005). In this section, we use simplified network architectures with 16 neurons in the
last (L-th) spiking layer for the DVS-Gesture and the SSF experiments to enable pairwise firing
correlation analyses. The settings for CIFAR-10/100 and DVS-CIFAR experiments are the same as
those in Section 4.1. The simulation timesteps of CIFAR-10/100, DVS-CIFAR, DVS-Gesture, and
SSF experiments are 2, 10, 16, and 48, respectively.

The results in Figure 5.B show a decreasing monotonic trend between the prediction similarity and
the neural code variation (measured by avg. FF). The average FF and prediction similarity, in par-
ticular, on some experiments (e.g., TET+ResNet18), show a strong negative correlation, indicating
that these NSNNs are likely to primarily adopt rate code. It makes sense as the membrane noise
injection introduces uncertainty into the firing process, lowering the reliability of the precise spiking
time-based coding. As the same firing rate (represented as firing count in simulation steps here)
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Figure 5: A: NSNNs exhibit neural code variability and prediction stability. We display prediction
distributions, firing rate and raster plots of the final spiking layer outputs of two repeated trials ob-
tained using an NSNN trained on DVS-CIFAR. B,C: The average FF and prediction cosine similarity
exhibit a decreasing monotonic trend. The dots represent 500 test samples (200 for DVS-Gesture),
the dotted straight line is obtained via linear approximation. The negative correlation coefficient
r indicates that one variable tends to decrease when the other one increases. The P value < 0.05
indicates that the result is unlikely to be the outcome of chance. D: Part of normalized JPSTH plots
generated in the DVS-Gesture recognition and sinusoidal sequence forecasting tasks. The main di-
agonal of the normalized JPSTH displays for each timestep the Pearson correlation of the two neuron
firing simultaneously.

can correspond to different spike trains, the rate-based coding can improve the model’s robustness
by constructing a representation space with better fault tolerance. Figure 5.C shows that when per-
forming forecasting tasks, NSNN appears to be less dependent on the rate code. By measuring the
pairwise firing correlation (Fig. 5.D, full version in Fig. 7,8), we also discover that a neuron pop-
ulation exhibits significant co-activation, which was not observed in the DVS-Gesture experiment.
Therefore, NSNN may also utilize the firing correlations to carry important information when per-
forming forecasting tasks, implying that the optimal neural code (neural representation) might be
task-dependent (Bredenberg et al., 2020; Xie et al., 2022).

5 CONCLUSION

We introduce NSNN in this work. Based on its Bayesian Network form, we propose a novel three-
factor learning rule called noise-driven learning (NDL), which offers an insightful probabilistic
interpretation of the surrogate gradient learning. We demonstrate NSNN’s capability through ex-
periments on various recognition tasks. Moreover, we conduct experiments with challenging per-
turbations (such as adversarial attacks) and demonstrate that NSNNs are more robust than their
deterministic counterparts. We investigate the effect of NSNN internal noise level on performance
and give a recommended range of standard deviation values (only consider Gaussian noise here). In
addition, we demonstrate the potential of NSNN as a neural coding scheme through NSNN-based
neural code analysis.
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A APPENDIX

Roadmap For additional experimental details and results, refer to A.2.

Notations We adopt lower case letters x, u, o to represent neuron input, membrane potential and
neuron output respectively. Moreover, xt

l,m, ut
l,m, otl,m for variables of neuron m in layer l (whose

dimension is dim(l)) at time t, where m ∈ [1,dim(l)], l ∈ [1, L] and t ∈ [1, T ]. Similarly, variables
of layer l at timestep t are marked as xt

l , u
t
l , o

t
l . We also use boldface type x,u,o to denote the sets

of all variables of the network. E[·] stands for expectation, Var[·] for variance, P[·] for probability,
p(·) for probability distribution and F (·) for CDF. Notation R denotes real number space R ≜
(−∞,+∞) and S stands for the spike state space S ≜ {0, 1}.

Fano Factor Fano factor (Fano, 1947) is a measurement of the spike count variability. Let us de-
note the spike count of neuron (L,m) as ntrial ID

L,m , the average value as avg(nL,m) = 1
# trials

∑
k n

k
L,m.

The deviations from the mean is computed as ∆ntrial ID
L,m = ntrial ID

L,m − nL,m, and the Fano factor is

FFL,m =
Var[nL,m]

nL,m

A.1 RELATING DSNN SGL TO NSNN NDL

Surrogate gradient learning is widely-adopted as an empirically solution to overcome the almost-
everywhere-zero problem when computing gradients through step spiking functions. In this work,
we propose to view surrogate gradient learning as a special form of noise-driven learning, and we re-
veal the close relationship between surrogate gradient function and voltage-level noise distributions
in Table 3.

Table 3: Difference and correlation of inference and learning between DSNNs and NSNNs. The
table lists some typical surrogate gradient functions and their corresponding noise distribution pϵ.
Discarding the biological fact that the ions are subject to Brownian movement that corresponds to
the Gaussian case we derived in the main body, we can extend the results in the table to noise to
other continuous random distributions with zero-mean and symmetry PDF.

ERF N (0, σ2)

Sigmoid Logistic(0, s)

Rectangular U(−a, a)

Triangular Triangular(−a, 0, a)

Arctangent Atan(0, ϕ)

DSNN
Surrogate Gradient Learning

NSNN
Noise-driven Learning

Inference
Spiking procedure

deterministic (approximate
the stochastic inference)
otl,m = 1ut

l,m>vth

stochastic
otl,m ∼ Ber

(
P[otl,m = 1]

)

Learning
Post-synaptic factor ∂o

∂u

Approximate by SGs Acquire from noise statistics F ′
ϵ = pϵ

Phase

Model

A.2 EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

A.2.1 EXPERIMENTAL DETAILS

We conducted most experiments on a workstation with an Intel i5-10400 core, 64 GB memory, and
an NVIDIA RTX 3090 card. Experimental results presented in the form of mean±std are acquired
across three independent trials. We list experimental details in points as follows.
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Training Details We optimize all networks with Adam solvers (Kingma & Ba, 2014) and adopt
cosine annealing (decay to zero) learning decay policy (Loshchilov & Hutter, 2016). We list hyper-
parameters for our experiments as follows in Table 4, algorithms and network architectures men-
tioned in Table 5.

Table 4: List of training hyper-parameters of experiments in this work.

Dataset Algo. Arch. T Initial LR mini-batch size SG Noise

D
SN

N

CIFAR-10
STBP ResNet-18 2/4 0.01 256/256 ERF SG /
TET, λ = 0.05 2/4 0.01 256/256 ERF SG /
STBP CIFARNet 2/4 0.004 256/256 ERF SG /

CIFAR-100
STBP ResNet-18 2/4 0.005 256/256 ERF SG /
TET, λ = 0.05 2/4 0.005 256/256 ERF SG /
STBP CIFARNet 2/4 0.001 256/256 ERF SG /

DVS-CIFAR
STBP ResNet-19 10 0.0005 32 ERF SG /
TET, λ = 0.001 VGGSNN 10 0.0002 64 ERF SG /
tdBN 10 0.0002 64 ERF SG /

N
SN

N

CIFAR-10
STBP ResNet-18 2/4 0.002 256/256 / N
TET, λ = 0.05 2/4 0.002 256/256 / N
STBP CIFARNet 2/4 0.003 256/128 / N

CIFAR-100
STBP ResNet-18 2/4 0.001 256/256 / N
TET, λ = 0.05 2/4 0.001 256/256 / N
STBP CIFARNet 2/4 0.002 256/256 / N

DVS-CIFAR
STBP ResNet-19 10 0.0005 20 / N
TET, λ = 0.001 VGGSNN 10 0.0003 32 / N
tdBN 10 0.0003 32 / N

Table 5: List of SNN algorithms and network architectures (functional models) in our experiments.

Type Name Description
SNN Algorithm STBP-tdBN Zheng et al. (2021)

STBP Wu et al. (2018)
TET Deng et al. (2021)

Network Architecture ResNet-19 (Zheng et al.) 128c3-(128c3-128c3)×2-(256c3-256c3)×3-
(512c3-512c3)×2-ap-256fc-fc

ResNet-181 64c3-(64c3-64c3)×2-(128c3-128c3)×2-
(256c3-256c3)×2-(512c3-512c3)×2-ap-fc

VGGSNN (Deng et al.) 64c3-128c3-ap2-256c3-256c3-ap2-512c3-
512c3-ap2-512c3-512c3-ap2-fc

CIFARNet (Wu et al.) 128c3-256c3-ap2-512c3-ap2-1024c3-512c3-
1024fc-512fc-fc

7B-Net (Fang et al.) Fang et al. (2021a)

1. constructed by modifying the first conv layer and removing one maxpool layer in the original work (He
et al., 2016).

Baselines We summarize the baseline methods (algorithms) mentioned in our comparison experi-
ments below.

• Hybrid conversion and spike timing dependent backpropagation (Rathi et al., 2019).
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• Conversion-based spiking residual networks (Hu et al., 2018).

• Backpropagation-based temporal spike sequence learning (TSSL) (Zhang & Li, 2020).

• Spatiotemporal backpropagation (STBP) (Wu et al., 2019).

• DIET-SNN (Rathi & Roy, 2020).

• Spatiotemporal backpropagation with temporal dimension batch norm (STBP-tdBN) (Zheng et al.,
2021).

• Histograms of averaged time surfaces (HATS descriptor) (Sironi et al., 2018).

• Distribution-aware retinal transform (DART descriptor) (Ramesh et al., 2019).

• ANN rollout and conversion (Kugele et al., 2020).

• AER object recognition by segmented probability maximisation (SPA) algorithm (Liu et al.,
2020a).

• Leaky-integrate and analog fire network (LIAF-Net) (Wu et al., 2021).

• Spike-element-wise (SEW) residual networks (Fang et al., 2021b).

• Temporal efficient training (TET) objective function (Deng et al., 2021).

Datasets and Pre-processings We adopt static datasets including static datasets CIFAR-10&100
(Krizhevsky et al., 2009), dynamic dataset DVS-CIFAR (Li et al., 2017).

• CIFAR dataset includes 50k 32×32 images for training and 10k for evaluation. We adopt random
crop, random horizontal flip and AutoAugment (Cubuk et al., 2018) for the training samples.
For both training and evaluation phases, the preprocessed samples are normalized using z-score
scaling.

• DVS-CIFAR dataset is a challenging neuromorphic benchmark recorded via a DVS camera using
CIFAR-10 images. We adopt pre-processing pipeline in Samadzadeh et al. (2020), i.e., divide the
original set into a 9k-sample training set and 1k-sample evaluation set and all event stream files
are spatially downsampled to 48 × 48. We augment the training samples following Deng et al.
(2021).

• DVS-Gesture dataset (Amir et al., 2017). This datasets is recorded using DVS128, it contains 11
hand gestures from 29 subjects under 3 illumination conditions.

Perturbation Details We list the details about the perturbations in our experiments as following:

• In the Direct Optimization (DO) method, we construct the adversarial samples by directly solving
the constrained optimization problem argmax||∆x||2=γ ℓ(f(x+∆x), y), where ∆x for the adver-
sarial perturbation and x + ∆x is the adversarial example. It is implemented using PyTorch and
GeoTorch (Lezcano-Casado, 2019) toolkits. The L-2 norm bounded additive disturbance tensor
are first zero-initialized and then optimized by an Adam solver with learning rate 0.002 for 30
iterations. After that, the additive perturbations are used to produce adversarial samples and then
fed into the testees to evaluate (attack) the target models (either DSNNs or NSNNs in this work).

• The implementation of FGSM method follows Goodfellow et al. (2015), the adversarial example
is constructed as x̃adv = x+ γFGSM × sign[∇xℓ (NN(x), y))].

• The input-level EventDrop perturbation for dynamic inputs are constructed by randomly dropping
spikes in the raw input spike trains. The dropping probability is set by a parameter ρ, the strategy
of dropping we consider is Random Drop (Gu et al., 2021), which combines spatial and temporal-
wise event dropping strategies. During the evaluation, we first individually perform EventDrop
over every samples from the test set, and then fed our testees with the disturbed inputs.

• The hidden state-level noise includes two types of disturbances, the emission state from 1 to 0
(spike to silence) and emission state from 0 to 1 (silence to spike). To simplify the settings, we
use one parameter β to control the probability of both kinds of changes. Let variable o denotes a
spike state, if o = 1, we have P[onew = 0] = β, else, if o = 0, P[onew = 1] = β.

17



Under review as a conference paper at ICLR 2023

Table 6: List of notations of noise or perturbation parameters, grouped as perturbation-related ones
and noises in Noisy LIF neurons by a thick horizontal line.

Parameter Description
α Membrane noise parameter: standard deviation of the normal distribution N∆u

β Hidden state (spike train) noise parameter: adding or dropping probability for a spike.
γDO Static input adversarial perturbation-DO method parameter: L-2 norm constraint of

the vector ∆x.
γFGSM Static input adversarial perturbation-FGSM parameter: ∆x updating step size.

ρ Dynamic input EventDrop perturbation parameter: event dropping probability for
events (spikes).

σ Used in gaussian noise ϵ ∼ N (0, σ2).
s Used in logistic noise ϵ ∼ Logistic(0, s).
a Used in rectangular ϵ ∼ U(−a, a) or triangular ϵ ∼ Triang(−a, 0, a) noises.
ϕ Used in arctangent noise ϵ ∼ Atan(0, ϕ).

Table 7: Evaluation results under hidden-state (spike) perturbation on the DVS-CIFAR, NSNNs
achieve lower loss and higher accuracy under almost all conditions. Parameter β controls the
strength of perturbations (larger for stronger perturbation).

Loss Accuracy

Type
β 0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04

STBP & DSNN 1.43±0.041.72±0.062.44±0.033.43±0.25 69.73±0.8863.91±1.3753.60±1.3940.32±1.91

ResNet-19 NSNN 1.23±0.041.30±0.031.41±0.131.74±0.32 72.88±0.6970.44±0.4267.27±2.6658.99±6.80

tdBN & DSNN 1.29±0.051.30±0.081.49±0.181.88±0.29 74.09±0.6670.61±1.3763.19±2.8950.74±3.32

VGGSNN NSNN 1.25±0.011.19±0.021.22±0.061.50±0.13 76.16±0.1373.38±0.5568.77±0.7855.64±1.87

TET & DSNN 0.82±0.030.91±0.061.08±0.081.37±0.06 76.41±0.9272.60±1.1166.46±1.9356.06±1.05

VGGSNN NSNN 0.75±0.010.80±0.010.94±0.061.25±0.14 78.28±0.2776.32±1.0171.54±1.0762.48±0.52

A.2.2 EVALUATION RESULTS UNDER HIDDEN STATE-LEVEL PERTURBATION

We further consider hidden state-level perturbations to directly mimic the spike train variability
(Tuckwell et al., 2009; Yarom & Hounsgaard, 2011) aside the spike variance caused by membrane
voltage fluctuations. The hidden state-level perturbation is directly put on the emitted spikes of all
spiking neurons (Kasabov, 2010; Zhang et al., 2017), implemented by randomly flipping the state
otl,m of all hidden neurons, the probability of flipping is controlled by a parameter β as P[1 to 0] =
P[0 to 1] = β. Results are presented in Tab. 7 and Fig. 6.
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Figure 6: Evaluation results under hidden state perturbation on CIFAR datasets. NSNNs exhibit
stronger resilience under perturbations, report lower loss and higher accuracy in most cases com-
pared to the deterministic counterparts.
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Figure 7: Normalized JPSTH plots of all neuron pairs of one observation in the DVS-Gesture event
sequence classification task. The main diagonal of the JPSTH displays for each timestep the Pearson
correlation of the two neuron firing simultaneously.

A.2.3 NEURAL CODE ANALYSIS DETAILS

Experimental Details The sine series forecasting (SSF) uses a NSNN MLP with 32fc-16fc hid-
den units, simulation timestep is set to 48. The sinusoidal series is generated using sin(x), where
the step of x is 0.1. The training loss function is MSE loss. For the DVS-Gesture experiment in
Section 4.4, we use a 7B-Net (in Tab. 5) and reduce the last layer’s dimension to 16.

The PSTH, normalized JPSTH plots are presented in Fig. 7,8. The normalized JPSTH is a two-dim
gram whose value at position u, v represents the Pearson correlation of one neuron firing at time u
and the other one firing at time v.

A.2.4 ALL COMPARISON RESULTS ON RECOGNITION BENCHMARKS.

We list the results of the full comparison experiment in Tab. 8 due to space constraints.
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Figure 8: Normalized JPSTH plots of all neuron pairs in forecasting one sinusoidal sequence.
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Table 8: Undisturbed evaluation results in accuracy (%), T for simulation timesteps.
NSNN Algorithm Architecture Accuracy avg± sd(T )

C
IF

A
R

-1
0

◦ STCA (Gu et al., 2019) CIFARNet 91.23(12)

◦ Rathi et al. VGG-16 92.02(200)

◦ Hu et al. ResNet-44 92.37(350)

◦ Zhang & Li CIFARNet 91.41(5)

◦ Wu et al. CIFARNet 90.53(12)

◦ STBP-tdBN (Zheng et al.) ResNet-19 92.34(2) 92.92(4) 93.16(6)

◦ STBP† (Wu et al.) ResNet-18∗ 93.18±0.07(2) 93.93±0.11(4)

• STBP† ResNet-18∗ 92.87±0.04(2) 93.77±0.12(4)

◦ STBP† CIFARNet 91.88±0.09(2) 92.79±0.14(4)

• STBP CIFARNet 93.90±0.12(2) 94.30±0.08(4)

◦ TET (Deng et al.) ResNet-19 94.16±0.03(2) 94.44±0.08(4) 94.50±0.07(6)

◦ TET† (Deng et al.) ResNet-18∗ 93.62±0.02(2) 94.09±0.20(4)

• TET ResNet-18∗ 93.12±0.07(2) 94.14±0.05(4)

C
IF

A
R

-1
00

◦ Rathi & Roy ResNet-20 64.07(5)

◦ STBP-tdBN ResNet-19 69.41±0.08(2) 70.86±0.22(4) 71.12±0.57(6)

◦ STBP† ResNet-18∗ 70.15±0.14(2) 70.88±0.19(4)

◦ STBP-tdBN (Zheng et al.) ResNet-19 72.22±0.03(2) 73.41(4)

• STBP ResNet-18∗ 69.57±0.09(2) 71.16±0.40(4)

◦ STBP† CIFARNet 72.25±0.08(2) 72.94±0.21(4)

• STBP CIFARNet 73.36±0.14(2) 74.17±0.28(4)

◦ TET ResNet-19 72.87±0.10(2) 74.47±0.15(4) 74.72±0.28(6)

◦ TET† ResNet-18∗ 71.72±0.13(2) 74.01±0.43(4)

• TET ResNet-18∗ 71.34±0.09(2) 73.33±0.03(4)

D
V

S-
C

IF
A

R

◦ Sironi et al. N/A 52.40

◦ Ramesh et al. N/A 65.78

◦ Kugele et al. 3B-DenseNet 66.75

◦ Liu et al. 1-layer SNN 32.20

◦ Wu et al. LIAFNet 71.70

◦ Wu et al. 6-layer SNN 60.50

◦ Fang et al. Wide-7B-Net 74.4(16)

◦ STBP† ResNet-19 71.74±0.92(10)

• STBP ResNet-19 74.30±0.61(10)

◦ STBP-tdBN† VGGSNN 75.51±0.49(10)

• STBP-tdBN VGGSNN 76.97±0.10(10)

◦ TET† VGGSNN 78.26±0.17(10)

• TET VGGSNN 79.52±0.38(10)

D
V

S-
G

E
ST

U
R

E Accuracy(T = 16)
◦ Fang et al. 7B-Net(Fang et al.) 97.92

◦ Zheng et al. ResNet-17 96.87(T = 40)
◦ STBP 7B-Net 95.84±0.27

• STBP 7B-Net 96.88±0.28

*: modified from the original implementation (He et al., 2016), refer to Tab. 5.
†: Re-produced results.
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