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Abstract

Graph Neural Networks (GNNs) thrive on mes-
sage passing (MP) but are vulnerable when the
graph carries many heterophilic or misclassified
edges. Prior analyses suggest that signed prop-
agation can mitigate over-smoothing under low
edge–error rates, yet they implicitly assume per-
fect edge labels and the presence of self-loops.
We revisit this setting and show that, under high
edge uncertainty, propagating any information
may harm node separability even with signed
weights. Our key insight is to decide not to propa-
gate along uncertain edges adaptively. Concretely,
we intentionally omit self-loops to isolate pure
neighbor influence for a clearer theoretical anal-
ysis, adopt a row-stochastic (asymmetric) opera-
tor that matches the Markov–chain view of MP
and simplifies spectral-radius proofs. Then, we
dynamically estimate the local homophily bi and
edge-classification error et during training via
an EM procedure. We prove that our selective
blocking yields a sub-stochastic propagation ma-
trix whose joint spectral radius exceeds that of
signed GNNs under high et, guaranteeing reduced
over-smoothing, and we supply a lemma showing
that class-discriminative signals survive even when
the operator is rank-deficient. Extensive experi-
ments on six homophilic and heterophilic bench-
marks confirm that the proposed adaptive blocking
outperforms strong baselines.

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown remarkable
performance with the aid of a message-passing (MP), where
the representation of each node is recursively updated us-
ing its neighboring nodes based on structural properties

Defferrard et al. [2016], Kipf and Welling [2016], Velick-
ovic et al. [2017]. Early GNNs rely on network homophily,
assuming that connected nodes will likely share similar la-
bels. However, many real-world graphs have low homophily
(a.k.a. heterophilic) Zhu et al. [2020], Ma et al. [2021],
Luan et al. [2022], where spectral GNNs Wang and Zhang
[2022] achieve dismal performance under this condition
since Laplacian smoothing only receives low-frequency sig-
nals from neighboring nodes Ko et al. [2023a,b].

Recent algorithms employ high-pass filters by adjusting
edge weights during MP Velickovic et al. [2017], Brody
et al. [2021], Chen et al. [2023], Liao et al. [2024] to sep-
arate the embeddings of connected but dissimilar nodes.
Notably, flipping the sign of edges from positive to nega-
tive, known as signed propagation Chien et al. [2020], Bo
et al. [2021], or blocking MP by assigning zero weights to
heterophilic connections Luo et al. [2021], Hu et al. [2021],
Tian et al. [2022] has recently achieved remarkable perfor-
mance. These techniques represent significant advancements
in the field, offering new ways to enhance the performance
and applicability of GNNs in diverse graph structures.

Recently, efforts have been made to theoretically analyze
the effect of various propagation schemes in terms of un-
certainty Choi and Kim [2025a] and node separability Ma
et al. [2021], Yan et al. [2021], Aseem et al. [2023], build-
ing upon the insights of the Contextual Stochastic Block
Model (CSBM) Deshpande et al. [2018]. In detail, they
measure the distance of node feature expectations from a
decision boundary, demonstrating that signed propagation
outperforms vanilla message-passing algorithms in binary
classification tasks. More recently, Choi et al. [2023], Li
et al. [2024b] provided new insights by extending the analy-
sis to multiple classes and considering degree distributions.
However, few efforts have been made to determine whether
signed MP consistently improves separability compared to
not using propagation.

In this paper, we focus on the work of Luo et al. [2021],
which mitigates local smoothing by assigning zero weights



(blocking information) to heterophilic edges. Building on
prior theoretical analysis, we propose the estimation of two
latent parameters during training: homophily and edge clas-
sification error ratios. Based on this, we argue that MP
(even with signed propagation) may result in poor perfor-
mance compared to not propagating under specific condi-
tions. Therefore, we suggest adaptively blocking informa-
tion based on these values. Finally, since these values may
not be easily measurable during the training phase, we pro-
pose an estimation strategy using the validation score. In
summary, our contributions are as follows:

• Unlike previous methods that focused solely on signed
propagation to prevent over-smoothing, we demon-
strate that message passing may degrade the separabil-
ity of graph neural networks under certain conditions.

• To mitigate the smoothing effect, we propose an adap-
tive propagation approach based on the estimated pa-
rameters. We show that blocking information can be
more efficient depending on the homophily and edge
classification error ratios.

• Extensive experiments on real-world benchmark
datasets with state-of-the-art baselines show notable
performance improvements, validating the proposed
scheme and theoretical analysis.

2 RELATED WORK

Heterophilic GNNs. Starting from Laplacian decompo-
sition Defferrard et al. [2016], spectral GNNs Kipf and
Welling [2016], Wang and Zhang [2022], Du et al. [2022],
Bo et al. [2023], Lu et al. [2024], Choi and Kim [2025b]
have achieved remarkable performance on homophilic
graphs. However, as the homophily Platonov et al. [2024] of
the graph decreases, their performance sharply declines due
to local smoothing Pei et al. [2020]. To address this limita-
tion, spatial-based GNNs have emerged, developing many
powerful schemes that adjust edge weights for message-
passing Velickovic et al. [2017], Brody et al. [2021], Chen
et al. [2023], Liao et al. [2024]. Specifically, some studies
handle disassortative edges by capturing node differences
or incorporating similar remote nodes as neighbors Derr
et al. [2018], Huang et al. [2019], Zhu et al. [2020], Choi
et al. [2022], Lei et al. [2022], Wang et al. [2022], Zhao
et al. [2023], Zheng et al. [2023], Mao et al. [2024], Yan
et al. [2024], Li et al. [2024a], Qiu et al. [2024], Tang et al.
[2024]. Among these, methods that either change the sign
of the edge Chien et al. [2020], Bo et al. [2021], Fang et al.
[2022], Guo and Wei [2022] or opt not to transmit informa-
tion Luo et al. [2021], Hu et al. [2021], Tian et al. [2022]
have recently been proposed.

Over-smoothing in GNNs. In addition to the above meth-
ods, theoretical analyses have emerged explaining why each
message-passing technique works well from the perspective

of node separability (reduced smoothing effect). For exam-
ple, Yan et al. [2021], Baranwal et al. [2021] analyzed the
separability of the vanilla, signed, and blocked propagation
after message-passing under binary class graphs. Recently,
Choi et al. [2023] extended the theorems to multi-class sce-
narios, and Li et al. [2024b] suggested their degree-corrected
version. However, these methods assume a fixed edge classi-
fication error, which may fail to induce the smoothing effect
under precise condition.

3 PRELIMINARIES

Notations. Let G = (V, E , X) be a graph with |V| = n
nodes and |E| = m edges. The node attribute matrix is
X ∈ Rn×F , where F is the dimension of an input vector.
Given X , the hidden representation of node features H(l)

at the l-th layer is derived through message-passing. Here,
node i′s feature is defined as hl

i. The structural property of
G is represented by its adjacency matrix A ∈ {0, 1}n×n. A
diagonal matrix with node degrees D is derived from A as
dii =

∑n
j=1 Aij . Each node has its label Y ∈ Rn×C (C

represents the number of classes).

Message-Passing (MP). Generally, GNNs employ alternate
steps of propagation and aggregation recursively, during
which the node features are updated iteratively. The widely
known MP algorithm is GCN Kipf and Welling [2016],
which can be represented as:

H(l+1) = σ(ÃlH(l)W (l)) (1)

Here, H0 = X is the initial vector and H l is nodes’ hidden
representations at the l-th layer. H l+1 is retrieved through
message-passing (Ã = D−1A) with an activation function
σ. W l is trainable weight matrices. The final prediction is
produced by applying cross-entropy Φ(·) (e.g., log-softmax)
to H(l) and the loss function is defined as below:

LGNN = Lnll(Y, Ŷ ). (2)

The loss is computed through a negative log-likelihood Lnll

between true labels (Y ) and predictions, Ŷ = Φ(H(L)).

Homophily. Hg stands for the global edge homophily ratio,
which is defined as:

Hg ≡
∑

(i,j)∈E 1(Yi = Yj)

|E|
(3)

Likewise, the local homophily ratio, bi, of node i is given
as:

bi ≡
∑n

j=1 Aij · 1(Yi = Yj)

dii
(4)

Given a partially labeled training set VL, the goal of semi-
supervised node classification is to correctly predict the
classes of unlabeled nodes VU = {V − VL} ⊂ V .



Over-smoothing. As introduced in Oono and Suzuki [2019],
Cai and Wang [2020], over-smoothing measures the distin-
guishability of node features as follows:

µ(H(l)) := ||H(l) − 1
1TH(l)

N
||F (5)

The over-smoothing happens if lim
l→∞

µ(H(l)) = 0, where

the node representation converges to zero after infinite prop-
agation. Recently, Mao et al. [2024] proved that even the
attention-based GNN Velickovic et al. [2017] loses the sep-
arability exponentially as l increases.

4 MOTIVATION

We first define various MP schemes, including vanilla,
signed, and blocking (pruning) types. Then, we introduce
the prior theorems on local smoothing using the Contextual
Stochastic Block Models (CSBMs). Finally, we highlight
their drawbacks and present our new insights based on the
estimated parameters.

4.1 LOCAL SMOOTHING ON MESSAGE-PASSING
SCHEMES

We first define the concept of three MP schemes Baranwal
et al. [2021], Yan et al. [2021], Choi et al. [2023] below.

Definition 1 (Message-Passing Schemes). Building upon
the Laplacian-based degree normalization Kipf and Welling
[2016], a.k.a. GCN, each propagation scheme modifies the
adjacency matrix Ã = D−1A (Eq. 1) as follows:

• Vanilla MP inherits the original matrix, which only
consists of positive edges.

∀(i, j) ∈ E , Ã = D−1A ≥ 0 (6)

• Signed MP assigns negative values to the heterophilic
edges, where yi ̸= yj .

∀(i, j) ∈ E , Ã ∈

{
D−1A, yi = yj

−D−1A, yi ̸= yj
(7)

• Blocked MP blocks the information propagation for
heterophilic edges by assigning zero.

∀(i, j) ∈ E , Ã ∈

{
D−1A, yi = yj

0, yi ̸= yj
(8)

To analyze the smoothing effect of each MP scheme, we
inherit several useful notations defined in Yan et al. [2021]
as follows: (1) For all nodes i = {1, ..., n}, their degrees
{di} and latent features {hi} are i.i.d. random variables.
(2) Each class has the same population. (3) The scale of

each class distribution after initial embedding is identical,
||E(h(0)

i |yi)|| = µ. Then, the feature distribution after a
single hop propagation E(h(1)|yi) can be defined through a
Contextual Stochastic Block Model (CSBM) as follows.

Definition 2 (CSBM under binary class scenario). Assume a
binary classE(h(0)

i |yi) ∼ (µ, θ = {0, π}) and node feature
is sampled from Gaussian distribution (N ) Deshpande et al.
[2018]. If yi = 0, the updated distribution E(h(1)|yi) is
given by:

E(h(1)|yi) ∼ N(µ,
1√

deg(i)
) (9)

Choi et al. [2023] extended binary CSBM (Eq. 9) to multiple
(ternary) classes using additional angle ϕ as below:

E(h
(0)
i |yi) = (µ, ϕ, θ), (10)

where ϕ = π/2 and 0 ≤ θ ≤ 2π. The above equation satis-
fies the binary case’s origin symmetry as (µ, π/2, 0) =
−(µ, π/2, π). Now, we define the impact of three MP
schemes using a multi-class CSBM below.

Lemma 3 (Multi-class CSBM, Vanilla MP). Given yi = 0,
let us assume ego k ∼ (µ, π/2, 0) and aggregated neighbors
k′ ∼ (µ, π/2, θ′). By replacing the Ep(h

(1)
i |yi, di) as Ep(·),

the expectation after vanilla MP is as follows:

Ep(·) =
{kbi + k′(1− bi)}d′i + k

di + 1
(11)

The k′ always satisfies ||k′|| ≤ ||µ|| regardless of the nor-
malized degree and homophily ratio since 1− bi ≤ 1.

Lemma 4 (Multi-class CSBM, Signed MP). Similar to
above, the expectation Es(·) after signed MP is given by:

Es(·) =
(1− 2e){bik + (bi − 1)k′}d′i + k

di + 1
(12)

Remark. The notation e stands for the error ratio of incor-
rectly changing the sign of edges, which will be addressed
throughout this paper. As introduced in Choi et al. [2023],
the sign inconsistency caused by multi-hop propagation can
be solved through jumping knowledge Xu et al. [2018].

Lemma 5 (Multi-class CSBM, Blocked MP). Lastly, the
expectation Eb(·) driven by blocked MP can be defined as:

Eb(·) =
{(1− e)bik + e(1− bi)k

′}d′i + k

di + 1
(13)

Proof of Lemma 3 - 5 is in Appendix A.

4.2 MEANING OF BLOCKED MP

Based on the analyses above, we derive new insights into
the smoothing effect of each propagation scheme. Follow-
ing Yan et al. [2021], we assume that node separability



(discriminative power) is proportional to the coefficient of
Ep(·),Es(·),Eb(·) as in the above lemma. Through this
assumption, we first show that vanilla MP has lower separa-
bility than signed and blocked MPs.

Corollary 6 (Vanilla vs Other MPs). Since d′i/(di + 1)
is shared for all MPs (Eq. 11 - 13), we can compare the
separability by omitting them as follows:

• (Vanilla vs Signed MP) By comparing Eq. 11 and 12:

Z1 = Ep(·)− Es(·) = (2e− 1){bik + (bi − 1)k′}
(14)

• (Vanilla vs Blocked MP) By comparing Eq. 11 and 13:

Z2 = Ep(·)− Eb(·) = ebik + (1− e)(1− bi)k
′

(15)

As shown in the above equations, the
∫∫

e,bi
Z1 and

∫∫
e,bi

Z2

are always negative, regardless of the variables bi and e.
This indicates that vanilla MP has the lowest discrimination
power among the three MPs. Therefore, we can focus on
the separability of the signed and blocked MPs to determine
the optimal propagation scheme.

Corollary 7 (Signed vs Blocked MP). The difference be-
tween signed and blocked MP is given by:

Z3 = Es(·)− Eb(·) = (1− 2e)k + (bi − e)k′ (16)

Previous studies assume a perfect edge classification sce-
nario (e = 0), leading to the conclusion that Z3 = 1− bi ≥
0, where signed MP outperforms blocked MP. However,
achieving this optimal condition is challenging in a semi-
supervised setting with few training nodes. Therefore, we
propose estimating two parameters, e and bi, to select the
most precise MP schemes. To facilitate understanding, we
provide an example by varying e below.

Corollary 8 (Numerical example on edge error ratio). We
assume three different edge error ratios, e = {1, 0.5, 0}, to
compare the signed and blocked MPs. Assuming that the
neighbors are i.i.d. (k′ = −k), Eq. 16 simplifies to:

Z3 = (1− e− bi)k =


−bik, e = 1

(−bi + 0.5)k, e = 0.5

(1− bi)k, e = 0

(17)

We can infer some useful insights from the above Corollary:
(1) Under a high error ratio (e = 1, initial stage of train-
ing), it might be better to not propagate rather than using
signed edges since −bik ≤ 0 (Z3 ≤ 0). In addition, an
error in signed propagation increases the uncertainty more
than blocked GNNs, as shown in Lemma 9. (2) If the er-
ror is mediocre (e = 0.5), the sign of Z3 is dependent on

the homophily ratio bi. In this condition, signed MP may
perform well (Z3 ≥ 0) under heterophily (b < 0.5), but it
is still advantageous not to propagate messages under ho-
mophily. (3) However, if the edges are perfectly classified
(e = 0), signed MP might be the best option (1− bi ≥ 0),
as demonstrated in prior work Choi et al. [2023]. Therefore,
we suggest the estimation of these two parameters, bi and
e, for precise training. In addition, the following theorem
reveals the necessity of blocked MP under high e in terms
of uncertainty.

Theorem 9 (Uncertainty). Under large values of e, signed
MP exhibits higher entropy than the blocked ones.

Proof. Let us assume an ego i with label k, and its neighbor
node j is connected to i with a signed edge. Firstly, the true
label probability (k) of node b ŷb,k increases, while other
probabilities ŷb,o (o ̸= k) decrease as follows:

ŷ(t+1)
p ∈

{
ŷtb,k − η∇bLnll(Yi, Ŷi)k > ŷtb,k
ŷtb,o − η∇bLnll(Yi, Ŷi)o < ŷtb,o ∀ o ̸= k.

(18)
Now, we analyze the partial derivative ∇bLnll(Yi, Ŷi)o for
∀ o ̸= k,

∇bLnll(Yi, Ŷi)o =
∂Lnll(Yi, Ŷi)o

∂ŷi,o
· ∂ŷi,o

∂h
(L)
b,o

(19)

=
1

ŷi,o
· (ŷi,o(1− ŷi,o)) = 1− ŷi,o > 0

On the contrary, the gradient of node s has a different sign
from node p, where we can infer that:

ŷ(t+1)
s ∈

{
ŷts,k − η∇sLnll(Yi, Ŷi)k < ŷts,k,

ŷts,o − η∇sLnll(Yi, Ŷi)o > ŷts,o, ∀ o ̸= k

(20)
Based on the above analysis, as the training epoch t pro-
ceeds, the expectation of signed MP prediction (ŷs) exhibits
higher entropy H(E[ŷs]) compared to that (ŷb) of blocked
MP H(E[ŷb]) as below:

H(E[ŷ(t+1)
s ])−H(E[ŷ(t+1)

b ]) > H(E[ŷts])−H(E[ŷtb]).
(21)

5 METHODOLOGY

Selecting an appropriate MP scheme is crucial for reduc-
ing smoothing and uncertainty. However, this may not be
tractable in a semi-supervised learning context. Thus, we
employ an EM algorithm, where the E-step is used for pa-
rameter estimation, and the M-step is used for optimization.

5.1 (E-STEP) PARAMETER ESTIMATION

We start with the strategy of homophily (bi) and edge error
(et) estimation in Theorem 10 and 11, respectively.



Theorem 10 (Homophily estimation). The homophily ratio
bi can be inferred using the mechanism of MLP Wang et al.
[2022] and EvenNet Lei et al. [2022] as follows:

bi = BiB
T
i , B := σ

 L∑
l=0

XW l +

⌊L/2⌋∑
l=0

Ã2lXW l


(22)

which can take advantage of both the heterophily robustness
of MLP and the low variance of EvenNet.

Proof. The left term
∑L

l=0 XW l employs blocked MP
(MLP), while the right term only receives messages from
even-hop neighbors (EvenNet). This approach reduces the
prediction variance caused by homophily changes while
maintaining average performance. To begin, let us define
the k-step homophily ratio Hk, following Lei et al. [2022],
under i.i.d. graphs as follows:

Hk =
1

N

K−1∑
l=0

Πk
ll −

∑
m ̸=l

Πk
lm

 , (23)

where Πk = Y T ÃkY . Since all k-step propagations share
the first term, the above equation can be rewritten as:

Hk ≈
k∑

i=0

θiHi(Π) = θ0 + θ1(I − L̃) + · · ·+ θk(I − L̃)k

(24)
Combining the notions of MLP and EvenNet, the equation
becomes:

H0+H2k ≈ θ0+
(
θ0 + θ2(I − L̃)2 + · · ·+ θ2k(I − L̃)2k

)
(25)

By dividing the above equation by 2, we can infer that
E[H0 +H2k] = E[H2k], but V ar[H0 +H2k] < V ar[H2k].
This can enhance heterophily robustness (reduced variance)
while maintaining overall performance (expectation).

Theorem 11 (Edge error estimation). Given the node classi-
fication accuracy of validation sets (αt−1) at iteration t− 1
and the number of classes (c), et can be inferred as below:

et = 1− {a2t−1 +
(1− at−1)

2

c− 1
} (26)

Approximation error. Given the experimental settings in
Kipf and Welling [2016], the number of validation sets sat-
isfies nval = 1, 080 > 30 for Cora as in Table 1. Thus, it
can be easily inferred that the feature distribution of ran-
domly sampled validation sets (E[hval]) follows the total
distribution (E[h]) as below.

Z =
E[hval]− E[h]

var(hval)/
√
nval

∼ N(0, 1) (27)

Now, we demonstrate that the validation samples are less
likely to be biased using the concentration theorem. Given

Figure 1: Empirical analysis on (a) homophily and (b) edge
error estimation. More details can be found in Appendix B

that the output of the GNN (hi) follows a Dirichlet distri-
bution, Dir(h; c) = 1

B(c1,...,cK)

∏K
k=1 h

ck−1
i , and assuming

the classes are i.i.d., we can derive the following inequality:

P(||hval − E[hval]||2 ≥ ε) ≤ 2 · exp(−2ε2nval) (28)

which means that the validation nodes are equally dis-
tributed around its center E[hval].

Proof. We stated that the edge error ratio et can be inferred
using the node classification accuracy of validation sets
(αt−1) at iteration t− 1 and the number of classes (c). Thus,

et = 1− p (correct edge classification) (29)

= 1− {
(at−1

c

)2
∗ c2

yi=yj

+

(
1− at−1

c− 1

)2

∗ (c− 1)

yi ̸=yj

}

(30)

= 1− {a2t−1 +
(1− at−1)

2

c− 1
} (31)

If two nodes share the same label (yi = yj), the edge classi-
fication accuracy should be proportional to the product of
their validation scores. Conversely, if they have different
labels, the edge is correctly classified only if both nodes are
incorrectly predicted to have the same label.

Empirical analysis. In Figure 1, we conduct empirical anal-
yses to verify Theorem 10 (left) and 11 (right). In the figure
(a), we illustrate the estimated and true homophily ratios
under semi-supervised settings Kipf and Welling [2016]. In
the figure (b), we compare the true and estimated edge errors
(Eq. 26) for two graphs, Cora (homophilic) and Chameleon
(heterophilic), during the training epochs (x-axis). Both fig-
ures show that the predicted values closely match the actual
values. The minor differences likely arise because the node
distribution in the benchmark graphs does not satisfy the
i.i.d. assumption, which supports our theoretical analysis.



Algorithm 1 Pseudo-code of our method

Require: Adjacency matrix (Ã), node features (X), initial-
ized parameters (θ), initialized validation (α0 = 0) and
best validation score (α∗ = 0)

Ensure: Parameters with the best validation score (θ∗)
1: Homophily estimation bi (Eq. 22)
2: for training epochs t ≥ 1 do
3: (E-Step)
4: Get validation score at−1

5: Edge error estimation et (Eq. 26)
6: (M-Step)
7: For all edges in Ã
8: if Ãij < 0 ∧ Zt = 1− bi − et < 0 then
9: Âij = 0

10: else
11: Âij = Ãij

12: Message-passing, H(l+1) = σ(ÂH(l)W (l))
13: Node classification, LGNN = Lnll(Y, σ(H

(L)))
14: Parameter update, θ(t+1) = θt − η∂LGNN/∂θt

15: Get validation score αt

16: if αt > α∗ then
17: Save current parameters as best, θ∗ = θt

18: Update best validation score, α∗ = αt

5.2 (M-STEP) OPTIMIZATION WITH
CALIBRATION

Referring to the separability of signed and blocked MP in
Eq. 17, we can determine the propagation type based on
the estimated values of bi (Eq. 22) and e (Eq. 26). For each
training step t, the discrimination gap between signed and
blocked MP can be defined below:

Zt = (1− bi − et)k (32)

If Zt < 0, we block signed messages to reduce the smooth-
ing effect (Corollary 7) and uncertainty (Lemma 9). For a
numerical definition, let us assume the adjacency matrix
derived from the downstream task as Ã as defined from Eq.
6 to 8. Then, we calibrate the edges based on the following
conditions:

Âij =

{
0, Ãij < 0 ∧ Zt < 0

Ãij , otherwise
(33)

We replace the normalized adjacency matrix (Ã) in Eq. 1
with Â as follows:

H(l+1) = σ(ÂH(l)W (l)) (34)

Then, we employ Eq. 2 (LGNN ) for optimization, where
the above strategy can be applied to general signed MPs.

5.3 THEORETICAL JUSTIFICATION

We aim to show that the proposed method can relieve the
smoothing effect of signed MP using the notion of spectral
radius (Def. 12 to Thm. 16) and separability (Thm. 17).

Definition 12 (Spectral Radius). Let λ1, ..., λn be the eigen-
values of an adjacency matrix A ∈ Rn×n. Then, the spec-
tral radius of A is given by:

ρ(A) = max{|λ1|, ..., |λn|} (35)

A∞ is well known to converge if ρ(A) < 1 or ρ(A) = 1,
where λ1 = 1 is the only eigenvalue on the unit circle.

Definition 13 (Joint Spectral Radius). The generalization
of a spectral radius from a single matrix to a finite set of
matrices M = {A1, ..., An}:

Jρ(A) = lim
k→∞

max{||A1 · · ·Ak||1/k : A ∈ M} (36)

where the over-smoothing occurs at an exponential rate if
and only if Jρ(A) < 1. In the following lemma, we first
demonstrate that even attention-based MP cannot resolve
the over-smoothing issue.

Lemma 14 (Attention is susceptible to over-smoothing).
For all layers l, the attention matrix Al cannot change the
connectivity of the original graph Brody et al. [2021] as
follows:

0 < Al
ij ≤ 1, ∀(i, j) ∈ E (37)

It is well known that the infinite products of non-
homogeneous row-stochastic matrices Π∞

l=1A
l converge to

the same vector Cowles and Carlin [1996], Seneta [2006],
where we can easily infer that stacking the infinite softmax-
based attention matrix also converges (irreducible). Recent
work Wu et al. [2024] provided a tighter bound that GAT
satisfies Jρ(A) < 1 (Eq. 36), which means that lim

l→∞
Al

converges to a rank-one matrix, causing over-smoothing.

Unlike an attention-based matrix, where the total sum of the
edge weights connected to a neighbor node is 1, a signed
adjacency matrix (Eq. 7) is sub-stochastic since the sum
of rows is less than 1. Therefore, the spectral radius of the
sub-stochastic matrix satisfies the following conditions.

Corollary 15 (Convergence of signed MP). Let Ã be the ir-
reducible sub-stochastic matrix obtained by applying signed
message passing to the original adjacency matrix A (Eq. 7).
Let π be the corresponding (right) Perron eigenvector of Ã,
normalised such that ∥π∥1 = 1. Define the row deficiency
ϵi := 1−

∑N
j=1 Ãij (> 0). Then, from Eq. 35,

ρ(Ã) =

N∑
i=1

N∑
j=1

πiÃij (38)

≤
N∑
i=1

πi

( N∑
j=1

Ãij

)
= 1−

N∑
i=1

πiϵi < 1, (39)



so Ã is strictly convergent. In contrast, our edge-calibrated
operator reduces ρ(·), alleviating over-smoothing.

Theorem 16 (Edge calibration reduces local smoothing).
Based on Corollary 15, we can infer that a matrix with k-
disconnected sub-stochastic components satisfies |λ1| =
|λ2| = · · · = |λk| = 1. According to Definition 12,
Jρ(Ã) = 1 with multiple λ’s on the unit circle does not
meet the convergence property compared to the graph atten-
tion as in Lemma 14, relieving the smoothing effect in Eq. 5.

Lastly, we show that edge calibration enhances the separa-
bility of signed and blocked MP as follows.

Theorem 17 (Separability). Message-passing with edge
calibration outperforms the original MPs as below:

• (0.5 ≤ et ≤ 1) Blocked MP (w/ calib) vs Signed MP

Z4 = Eb(·)− Es(·) =
∫ 1

0

∫ 1

0.5

(1− bi − et + 2etbi)

(40)

• (0 ≤ et < 0.5) Signed MP (w/ calib) vs Blocked MP

Z5 = Es(·)− Eb(·) =
∫ 1

0

∫ 0.5

0

(1− et − bi) (41)

The equations satisfy Z4 > 0 and Z5 > 0, indicating that
edge calibration improves MPs for both conditions.

5.4 TIME COMPLEXITY

To begin with, note that the edge calibration component
of our model is proportional to baseline algorithms such
as GPRGNN, FAGCN, or GGCN. Therefore, we focus on
the complexity of the parameter estimation network, which
consists of plain MLP and even-hop propagation networks.
Firstly, it is well known that the cost of the MLP follows
O(nz(X)F ′ + F ′C), where nz(·) represents the non-zero
elements of the inputs, F ′ denotes the hidden dimension,
and C is the number of classes. The second part involves
even-hop message passing (MP), which can be defined as
O(L|E|θGCN/2). In summary, the overall cost should be
O(nz(X)F ′ + F ′C + L|E|θGCN/2), which may require
double the computational cost compared to the baselines.

6 EXPERIMENTS

We conduct extensive experiments to answer the following
research questions:

• Q1: Does the proposed method improve the node clas-
sification accuracy of signed GNNs?

• Q2: Does edge calibration enhance the inter-class sep-
arability of signed propagation?

Table 1: Details of the six benchmark graphs. We follow the
experimental settings of GCN Kipf and Welling [2016]

Datasets Cora Citeseer Pubmed Actor Cham. Squirrel
# Nodes 2,708 3,327 19,717 7,600 2,277 5,201
# Edges 10,558 9,104 88,648 25,944 33,824 211,872
# Features 1,433 3,703 500 931 2,325 2,089
# Labels 7 6 3 5 5 5
# Training 140 120 60 100 100 100
# Validation 1,083 1,330 7,886 3,040 910 2,080

• Q3: How does performance change given the values
Zt in Eq. 32?

• Q4: How much does the method improve the quality
of GNNs on large benchmark graphs?

Datasets. The statistical details of the datasets are in Table
1. (1) Cora, Citeseer, Pubmed Kipf and Welling [2016] are
citation graphs where a node corresponds to a paper, and
edges are citations between them. The labels represent the
research topics of the papers. (2) Actor Tang et al. [2009] is a
co-occurrence graph of actors appearing in the same movie.
The labels represent five types of actors. (3) Chameleon,
Squirrel Rozemberczki et al. [2019] are Wikipedia hyper-
link networks. Each node is a webpage, and the edges are
hyperlinks. Nodes are categorized into five classes based on
monthly traffic.

Implementation Details. All methods, including baselines
and ours, are implemented using PyTorch Geometric1. For a
fair comparison, we set the hidden dimension for all method-
ologies to 64. ReLU with dropout is used for non-linearity
and to prevent overfitting. We use log-Softmax as the cross-
entropy function. The learning rate is set to 1e−3, and the
Adam optimizer is used with a weight decay of 5e−4. For
training, 20 nodes per class are randomly chosen, and the
remaining nodes are divided into two parts for validation
and testing following Kipf and Welling [2016].

Baselines. For the experiment, we classified the baselines
into two main categories: signed GNNs and others. As
shown in Table 2, we applied our method to the follow-
ing three signed propagation techniques for evaluation:
GPRGNN Chien et al. [2020], FAGCN Bo et al. [2021],
and GGCN Yan et al. [2021].

6.1 PERFORMANCE ANALYSIS (Q1)

Table 2 shows the node classification accuracy (%) of several
state-of-the-art methods. We analyze the results from the
two perspectives below.

Signed and blocked MPs Outperform Vanilla MP

The experimental results demonstrate that GNNs with
signed or blocked MP outperform traditional methods under

1https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html



Table 2: (Q1) Node classification performance (%) with standard deviation (±) on the six benchmark graphs. The gray-
colored cells indicate top-3 performance. A symbol ∗ means that edge calibration (Eq. 33) is applied on a base method

Datasets Cora Citeseer Pubmed Actor Chameleon Squirrel
Hg (Eq. 3) 0.81 0.74 0.8 0.22 0.23 0.22
GCN Kipf and Welling [2016] 80.5 ± 0.73 70.4 ± 0.62 78.6 ± 0.44 20.2 ± 0.40 49.3 ± 0.58 30.7 ± 0.70
GAT Velickovic et al. [2017] 81.2 ± 0.51 71.3 ± 0.75 79.0 ± 0.45 22.5 ± 0.36 48.8 ± 0.83 30.8 ± 0.94
APPNP Gasteiger et al. [2018] 81.8 ± 0.51 71.9 ± 0.38 79.0 ± 0.30 23.8 ± 0.32 48.0 ± 0.77 30.4 ± 0.61
GCNII Chen et al. [2020] 81.3 ± 0.69 70.7 ± 1.28 78.5 ± 0.50 25.9 ± 1.21 48.6 ± 0.76 30.4 ± 0.90
H2GCN Zhu et al. [2020] 79.4 ± 0.45 71.2 ± 0.79 78.1 ± 0.31 25.6 ± 1.15 47.5 ± 0.82 31.0 ± 0.74
PTDNet Luo et al. [2021] 81.1 ± 0.79 71.4 ± 1.12 78.8 ± 0.67 21.5 ± 0.75 50.4 ± 1.06 32.2 ± 0.75
P-reg Yang et al. [2021] 81.0 ± 0.88 71.9 ± 0.81 78.5 ± 0.42 21.2 ± 0.52 50.6 ± 0.37 33.1 ± 0.40
ACM-GCN Luan et al. [2022] 81.6 ± 0.85 71.3 ± 1.01 78.4 ± 0.53 24.9 ± 2.17 49.6 ± 0.59 31.2 ± 0.44
HOG-GCN Wang et al. [2022] 81.7 ± 0.41 72.2 ± 0.67 79.0 ± 0.24 21.3 ± 0.56 47.9 ± 0.45 30.2 ± 0.50
JacobiConv Wang and Zhang [2022] 81.9 ± 0.69 72.0 ± 0.75 78.7 ± 0.42 26.0 ± 1.04 51.6 ± 1.10 32.1 ± 0.73
GloGNN Li et al. [2022] 82.0 ± 0.40 71.8 ± 0.52 79.4 ± 0.28 26.6 ± 0.71 48.3 ± 0.39 30.8 ± 0.80
AERO-GNN Lee et al. [2023] 81.6 ± 0.54 71.1 ± 0.62 79.1 ± 0.47 25.5 ± 1.08 49.8 ± 2.33 29.9 ± 1.96
Auto-HeG Zheng et al. [2023] 81.5 ± 1.06 70.9 ± 1.41 79.2 ± 0.24 26.1 ± 0.98 48.7 ± 1.37 31.5 ± 1.11
TED-GCN Yan et al. [2024] 81.8 ± 0.88 71.4 ± 0.56 78.6 ± 0.30 26.0 ± 0.95 50.4 ± 1.21 33.0 ± 0.98
PCNet Li et al. [2024a] 81.5 ± 0.76 71.2 ± 1.20 78.8 ± 0.26 26.4 ± 0.85 48.1 ± 1.69 31.4 ± 0.56

GPRGNN Chien et al. [2020] 81.1 ± 0.56 71.0 ± 0.83 78.7 ± 0.55 24.8 ± 0.87 50.2 ± 0.79 30.2 ± 0.62
GPRGNN∗ 82.5 ± 0.37 72.4 ± 0.66 79.3 ± 0.35 26.9 ± 0.74 52.5 ± 0.54 32.2 ± 0.49
Relative improv. (+ %) + 1.73 % + 1.97 % + 0.76 % + 8.47 % + 4.58 % + 6.62 %
FAGCN Bo et al. [2021] 81.4 ± 0.51 72.2 ± 0.69 78.9 ± 0.62 25.3 ± 0.77 49.1 ± 1.20 30.3 ± 0.96
FAGCN∗ 82.8 ± 0.45 73.4 ± 0.50 79.6 ± 0.33 27.8 ± 0.58 51.8 ± 0.91 32.5 ± 0.77
Relative improv. (+ %) + 1.72 % + 1.66 % + 0.89 % + 9.88 % + 5.50 % + 7.26 %
GGCN Yan et al. [2021] 81.2 ± 1.06 71.5 ± 1.44 78.3 ± 0.35 23.7 ± 0.75 50.0 ± 0.98 30.4 ± 0.72
GGCN∗ 82.4 ± 0.87 73.0 ± 0.72 79.0 ± 0.34 25.6 ± 0.61 52.0 ± 0.72 32.7 ± 0.69
Relative improv. (+ %) + 1.48 % + 2.10 % + 0.89 % + 8.02 % + 4.00 % + 7.57 %

benchmark graphs. For both homophilic and heterophilic
datasets, we can see that vanilla MP-based algorithms like
GCN, GAT, and APPNP show inferior accuracy than others.
Especially, the performance gap increases as the homophily
decreases. Specifically, on the Actor dataset, GloGNN rel-
atively outperforms GCN by over 30%. In addition, under
Chameleon and Squirrel with many cyclic edges, Auto-HeG,
signed (GPRGNN, FAGCN, and GGCN) or blocked (PTD-
Net) MPs achieve state-of-the-art performance. This high-
lights the efficacy of signed and blocked GNNs in capturing
the complex relationships present in general graphs, thereby
leading to superior improvement.

Edge Weight Calibration Enhances the Performance of
Signed GNNs

The results underscore the critical importance of edge
weight calibration in enhancing the performance of signed
GNNs. Models that incorporate edge weight adjustments,
such as GPRGNN∗ and FAGCN∗, consistently outperform
their counterparts across a wide range of datasets, high-
lighting the robustness and generalizability of this approach.
For instance, GPRGNN∗ demonstrates remarkable perfor-
mance improvements on both the Cora and Pubmed datasets
compared to the baseline GPRGNN, underscoring its adapt-
ability and effectiveness in diverse graph settings. Similarly,
FAGCN∗, which integrates edge weight calibration, con-

sistently outperforms the original FAGCN model on both
homophilic and heterophilic graphs, showcasing its versa-
tility across different connectivity patterns. Furthermore,
our method leverages blocked MP by effectively removing
cyclic edges in challenging datasets such as Chameleon
and Squirrel, further contributing to enhanced model per-
formance. These advancements highlight the significance
of incorporating edge weight calibration in mitigating the
smoothing effect under edge uncertainty and achieving
higher classification accuracy across diverse scenarios, ulti-
mately unlocking the full potential of signed GNNs.

6.2 DISCRIMINATION POWER (Q2)

In Figure 2, we present the inter-class distances for three
GNNs with signed MP (GPRGNN, FAGCN, and GGCN)
across four benchmark graphs (Cora, Citeseer, Actor, and
Squirrel) to investigate a neural collapse perspective Kotha-
palli et al. [2024]. The y-axis measures the average L2
distance between classes after the first layer projection. To
ensure fairness, we removed parameter randomness from
all baselines. The ensemble methods (indicated with an as-
terisk) consistently show an increase in inter-class distance
compared to their standard counterparts across all datasets.
For instance, on the Cora dataset, GPRGNN* and FAGCN*



Figure 2: (Q2) We take three signed GNNs (GPRGNN,
FAGCN, and GGCN) and measure the inter-class distances
to show that our method improves the discrimination power

show increases to 1.06 and 1.43, respectively, compared
to 0.84 and 1.12 for the standard models. The increase is
even more substantial in heterophilic datasets like Actor
and Squirrel, where the methods with edge calibration sig-
nificantly improve separability compared to the standard
versions, highlighting the effectiveness of blocked MP un-
der certain conditions.

Figure 3: (Q3) Performance gain concerning signed/blocked
propagation using FAGCN∗ model

6.3 IMPORTANCE OF MP SCHEMES (Q3)

We aim to show that selecting a proper propagation scheme
between signed or blocked MPs is crucial for GNNs. As
described in Figure 3, the x-axis stands for the Zt in Eq. 32,
and the y-axis represents node classification accuracy. For
a fair comparison, we remove the randomness for all meth-
ods (e.g., parameter initialization) by fixing the seed. The
left figure is (a) Cora, and the right one is (b) Chameleon.
We have proved that blocked MP outperforms signed MP
in the case of Zt < 0, and vice versa. To verify this, we
assume two types of MPs: signed (S) and blocked (B) under
two different conditions: Zt < 0 and Zt ≥ 0. For exam-
ple, S-S means that signed MPs are used independent of
Zt, while B-S utilizes blocked MP if Zt < 0 and signed
MP for Zt ≥ 0. As illustrated, selecting the proper prop-
agation scheme (B-S) achieves the best quality, where the
performance gap becomes greater in the heterophilic graph

Table 3: (Q4) Node classification accuracy (%) on large
heterophilic graphs. Penn94 has a binary class, while the
arXiv-year and snap-patents have five classes

Datasets Penn94 arXiv-year snap-patents
Hg (Eq. 3) 0.046 0.272 0.1
GCN Kipf and Welling [2016] 81.3 ± 0.3 44.5 ± 0.3 43.9 ± 0.2
GAT Velickovic et al. [2017] 80.6 ± 0.6 45.0 ± 0.5 45.2 ± 0.6
GCNII Chen et al. [2020] 81.8 ± 0.7 46.1 ± 0.3 47.5 ± 0.7
H2GCN Zhu et al. [2020] 80.4 ± 0.6 47.6 ± 0.2 OOM
GPRGNN Chien et al. [2020] 80.9 ± 0.3 43.6 ± 0.4 41.4 ± 0.1
GPRGNN∗ 83.1 ± 0.4 44.9 ± 0.3 43.6 ± 0.3
Relative improv. (+ %) 2.72% 2.98% 5.3%

(Chameleon). Conversely, improper MPs (S-B or S-S) when
Zt < 0 show low accuracy, showing that blocked MP can
improve the prediction accuracy under this condition.

6.4 ANALYSIS ON LARGE GRAPHS (Q4)

We conduct experiments on large benchmarks Lim et al.
[2021] and describe the results in Table 3. Due to the
OOM issue, we apply our method to one of the memory-
efficient signed GNNs, GPRGNN Chien et al. [2020]. As
shown in the table, our method GPRGNN∗ demonstrates
notable improvements in node classification accuracy across
large graphs. Specifically, on the three datasets, GPRGNN∗

achieves an accuracy improvement of 2.72%, 2.98%, and
5.3% over the baseline GPRGNN, respectively. Although
H2GCN Zhu et al. [2020] and GCNII Chen et al. [2020]
show the best performance on arXiv and snap, this is be-
cause the accuracy of the original GPRGNN is quite lower
compared to the other methods. To summarize, these results
highlight the effectiveness of our approach in enhancing the
performance of GNNs on large-scale benchmarks.

7 CONCLUSION

This paper presents a comprehensive study on the impact
of edge uncertainty and over-smoothing in signed Graph
Neural Networks (GNNs). First, we scrutinize the smooth-
ing effect under different values of Zt (Eq. 32), offering a
novel perspective that propagation schemes should account
for varying homophily and edge classification error ratios.
Second, we introduce an innovative training mechanism
that dynamically selects between blocked and signed prop-
agation based on these parameters, effectively mitigating
over-smoothing and enhancing performance. Our theoretical
analysis, supported by extensive experiments, demonstrates
that blocking message propagation can be more effective
than traditional message-passing schemes under certain con-
ditions. This insight is crucial for improving node classifica-
tion accuracy in both homophilic and heterophilic graphs.
We hope that future work will explore further refinements
of these techniques for more complex graph structures.
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TECHNICAL APPENDIX

A PROOF OF LEMMA 3 - 5

In this section, we derive the expected distribution after three types of message-passing (MP) using a multi-class contextual
stochastic block model (CSBM), respectively.

• Vanilla MP inherits the original matrix, which only consists of positive edges.

∀(i, j) ∈ E , Ã = D−1A ≥ 0 (42)

• Signed MP assigns negative values to the heterophilic edges, where yi ̸= yj .

∀(i, j) ∈ E , Ã ∈

{
D−1A, yi = yj

−D−1A, yi ̸= yj
(43)

• Blocked MP blocks the information propagation for heterophilic edges by assigning zero.

∀(i, j) ∈ E , Ã ∈

{
D−1A, yi = yj

0, yi ̸= yj
(44)

A.1. Proof of Lemma 3 (Vanilla MP)

Let’s assume that yi = 0, ego k ∼ (µ, π/2, 0), and aggregated neighbors k′ ∼ (µ, π/2, θ′). Though each neighbor has
multiple distributions proportional to the number of classes, their aggregation always satisfies |k′| ≤ µ since the summation
of coefficients (1− bi) is lower than 1. Thus, we indicate k′aggr as k′ here for brevity. Given this, the expectation after vanilla

MP Ep(h
(1)
i |yi, di) can be retrieved as below:

Ep(h
(1)
i |yi, di) =

k

di + 1
+
∑
j∈Ni

(
k(1− e) + ke√
(di + 1)(dj + 1)

bi +
k′(1− e) + k′e√
(di + 1)(dj + 1)

(1− bi)

)
(45)

=
k

di + 1
+
∑
j∈Ni

(
kbi + k′(1− bi)√
(di + 1)(dj + 1)

)
(46)

=
k

di + 1
+

{kbi + k′(1− bi)}d′i
di + 1

(47)

=
{kbi + k′(1− bi)}d′i + k

di + 1
(48)

(49)

A.2. Proof of Lemma 4 (Signed MP) Similar to the above analysis, we can retrieve the expectation Es(h
(1)
i |yi, di) after

signed MP. For this, we employ the edge classification error rate e, which determines the error ratio of finding heterophilic
edges as follows:

Es(h
(1)
i |yi, di) =

k

di + 1
+
∑
j∈Ni

(
k(1− e)− ke√
(di + 1)(dj + 1)

bi +
−k′(1− e) + k′e√
(di + 1)(dj + 1)

(1− bi)

)
(50)

=
k

di + 1
+
∑
j∈Ni

(
k(1− 2e)bi − k′(1− 2e)(1− bi)√

(di + 1)(dj + 1)

)
(51)

=
k

di + 1
+
∑
j∈Ni

(
(1− 2e){kbi + k′(bi − 1)}√

(di + 1)(dj + 1)

)
(52)

=
k

di + 1
+

(1− 2e){kbi + k′(bi − 1)}d′i
di + 1

(53)

=
(1− 2e){bik + (bi − 1)k′}d′i + k

di + 1
. (54)



A.3. Proof of Lemma 5 (Blocked MP) Lastly, the expectation Eb(h
(1)
i |yi, di) of assigning zero weights for heterophilic

edges is given by:

Eb(h
(1)
i |yi, di) =

k

di + 1
+
∑
j∈Ni

(
k(1− e)√

(di + 1)(dj + 1)
bi +

k′e√
(di + 1)(dj + 1)

(1− bi)

)
(55)

=
k

di + 1
+
∑
j∈Ni

(
k(1− e)bi + k′e(1− bi)√

(di + 1)(dj + 1)

)
(56)

=
k

di + 1
+

{(1− e)bik + e(1− bi)k
′}d′i

di + 1
(57)

=
{(1− e)bik + e(1− bi)k

′}d′i + k

di + 1
. (58)

B DETAILS OF EMPIRICAL ANALYSIS

Figure 1 presents empirical analyses to verify Theorems 10 (left) and 11 (right). For homophily estimation, we use early
stopping, saving the predictions with the best validation score if there is no improvement for more than 100 epochs. The
edge error estimation follows a slightly different approach, where the (true) values are based on the maximum predicted
node class as shown below:

∀(i, j) ∈ E , Ẽt
ij ∈

{
1, Ŷ t

i = Ŷ t
j

0, Ŷ t
i ̸= Ŷ t

j

(59)

where Ŷ t stands for the predicted class at step t. The score s can be derived as follows:

s = 1
1T
∑N

i=1

∑N
j=1 Ẽt

ij

|E|
(60)

C BASELINES

• GCN Kipf and Welling [2016] is a first-order approximation of Chebyshev polynomials Defferrard et al. [2016]. For
all datasets, we simply take 2 layers of GCN.

• APPNP Gasteiger et al. [2018] combines personalized PageRank on GCN. We stack 10 layers and set the teleport
probability (α) as {0.1, 0.1, 0.1, 0.5, 0.2, 0.3} for Cora, Citeseer, Pubmed, Actor, Chameleon, and Squirrel.

• GAT Velickovic et al. [2017] calculates feature-based attention for edge coefficients. We construct 2 layers of GAT, the
pair of (hidden dimension, head) is set as (8, 8) for the first layer, while the second layer is (1, # classes).

• GCNII Chen et al. [2020] integrates an identity mapping function on APPNP. We set α = 0.5 and employ nine hidden
layers. We increase the weight of identity mapping (β) that is inversely proportional to the heterophily of the dataset.

• H2GCN Zhu et al. [2020] suggests the separation of ego and neighbors during aggregation. We refer to the publicly
available source code2 for implementation.

• PTDNet Luo et al. [2021] removes disassortative edges before a message-passing. We also utilize the open source
code3 and apply confidence calibration.

• P-reg Yang et al. [2021] ensembles a regularization term to provide additional information that training nodes might
not capture.(source code4)

• HOG-GCN Wang et al. [2022] adaptively controls the propagation mechanism by measuring the homophily degrees
between two nodes. (source code5)

• JacobiConv Wang and Zhang [2022] studies the expressive power of spectral GNN and establishes a connection with
the graph isomorphism testing. (source code6)

2https://github.com/GemsLab/H2GCN
3https://github.com/flyingdoog/PTDNet
4https://github.com/yang-han/P-reg
5https://github.com/hedongxiao-tju/HOG-GCN
6https://github.com/GraphPKU/JacobiConv



• GloGNN Li et al. [2022] receives information from global nodes, which can accelerate neighborhood aggregation.
(source code7)

• ACM-GCN Luan et al. [2022] suggests a local diversification operation through the adaptive channel mixing algorithm.
(source code8)

• AERO-GCN Lee et al. [2023] improves the deep graph attention to reduce the smoothing effect and improve the
performance at deep layers (source code9).

• Auto-HeG Zheng et al. [2023] automatically build heterophilic GNN models with search space design, supernet
training, and architecture selection (source code)10.

• TED-GCN Yan et al. [2024] redefines GCN’s depth L as a trainable parameter, which can control its signal processing
capability to model both homophily/heterophily graphs.

• PCNet Li et al. [2024a] proposes a two-fold filtering mechanism to extract homophily in heterophilic graphs (source
code)11.

• GPRGNN Chien et al. [2020] generalized the personalized PageRank to deal with heterophily and over-smoothing.
Referring to the open source code12, we tune the hyper-parameters based on the best validation score for each dataset.

• FAGCN Bo et al. [2021] determines the sign of edges using the node features. We implement the algorithm based on
the sources13 and tune the hyper-parameters concerning their accuracy.

• GGCN Yan et al. [2021] proposes the scaling of degrees and the separation of positive/negative adjacency matrices.
We simply take the publicly available code14 for evaluation.

7https://github.com/RecklessRonan/GloGNN
8https://github.com/SitaoLuan/ACM-GNN
9https://github.com/syleeheal/AERO-GNN

10https://github.com/Amanda-Zheng/Auto-HeG
11https://github.com/uestclbh/PC-Conv
12https://github.com/jianhao2016/GPRGNN
13https://github.com/bdy9527/FAGCN
14https://github.com/Yujun-Yan/Heterophily_and_oversmoothing
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