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Abstract

The growing use of generative models in daily life calls for efficient mechanisms
to control their generation, to e.g., produce safe content or provide users with tools
to explore style changes. Ideally, such mechanisms should require low volume of
unpaired data (i.e., without explicit preference), and should be cheap, both at train
and inference time, while preserving output quality. Recent research has shown that
such mechanisms can be obtained by intervening exclusively on model activations,
with the goal of correcting distributional differences between activations seen
when using prompts from a source vs. a target set (e.g., toxic and non-toxic
sentences). While cheap, these fast methods are inherently crude: their maps are
tuned locally, not accounting for their impact on downstream layers, resulting in
interventions that cause unintended shifts when used out-of-sample. We propose
in this work linear end-to-end activation steering (LinEAS), an approach trained
with a global loss that accounts simultaneously for all layer-wise distributional
shifts. In addition to being more robust, the loss used to train LinEAS can be
regularized with sparsifying norms, which can automatically carry out neuron
selection. LinEAS only requires a handful of unpaired samples to be effective,
and beats similar baselines on toxicity mitigation in language models, becoming
competitive with oracle-dependent methods that have access to strong supervision.
LinEAS is modality-agnostic and we empirically find that it outperforms existing
activation steering methods at mitigating and including new concepts at the output
of single-step text-to-image generation models.
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Prompt: A fox running along a riverbank.

Figure 1: LinEAS learns lightweight maps to steer pretrained model activations. With LinEAS, we
gain fine-grained control on text-to-image generation to induce precise styles (in the figure) or remove
objects (e.g., Section 4.4). The same procedure also allows controlling LLMs (e.g., Section 4.1).
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1 Introduction

Modern generative models are typically trained in two distinct phases. The first phase, known as
pre-training, involves learning from a large corpus of data using tasks like next-token prediction
or text-to-image generation. This is followed by an alignment phase designed to adjust the model
towards a more specific, desired behavior. This alignment can be achieved through instruction
fine-tuning [1], reinforcement learning from human feedback (RLHF) [2] for LLMs, or guidance [3]
and LoRA adapters [4] in text-to-image diffusion. Many of these approaches propose to modify
the model’s internal mechanisms, realigning its parameters by leveraging new data with, ideally, a
minimal impact on the utility of the model.

The rapid growth of model sizes, coupled with the potentially infinite combination of alignment
goals, calls for alignment mechanisms that readily adapt to new and evolving user needs. Ideally,
adaptable alignment methods should adhere to the following desiderata: low training cost (potentially
on device), memory-efficiency (small set of parameters), low inference time overhead, data-efficiency
(few annotated samples), and fine-grained control. Working in low-data regimes makes data collection
simple or even unmanned, and makes training potentially faster while fine-grained control makes
alignment methods more customizable [5]. Such advantages together enable an agile control of
generative models (see example in Figure 1), giving tools to users to customize their experience, and
to administrators to quickly intervene to prevent harmful model behaviors.

A body of work known as activation steering [6–11] has proven to be effective at conditioning models
while being memory and compute efficient, but still falls short in other desiderata. Some methods
require data points to be paired with their corresponding counterfactuals [12], while others require
a reward model (or a human) to indicate preference among generated outputs [2]. While this is a
form of strong supervision that provides a robust signal to alignment methods, it is costly or even
impossible to obtain in many scenarios. A weaker and more flexible form of supervision consists of
dealing with two sets of examples – one for the target and one for the source behavior (e.g., non-toxic
and toxic sentences). In this setting, sentence pairs are not required, and no additional supervision is
needed. Methods using this weaker signal typically analyze the distribution of activations from each
set, thus we refer to them as a distributional approaches.

In this work, we propose Linear End-to-end Activation Steering (LinEAS), a low-data and weakly-
supervised (unpaired data, no reward model) method that is trained with a global distributional
cost grounded in optimal transport theory as signal for steering. Our hypothesis, which we validate
empirically, is that our end-to-end learning accounts for the interactions between maps at different
layers, leading to improved results over other steering methods. An additional advantage of optimizing
a global cost is that it allows us to introduce additional objectives such as a regularization coefficient,
which results in more targeted interventions, preserving the utility of the model.

Our main contributions are:

• We propose LinEAS, a novel framework to steer activations based on affine optimal transport maps
between activations trained jointly across layers (e.g., T1, T2 in Figure 2) with a global loss that
enforces a global distributional alignment across all layers.1 Our method provides low-budget
conditioning, with a continuous and theory-grounded application strength ∈ [0, 1] (e.g., Figure 1).

• We show how LinEAS can be coupled with a sparse lasso regularizer [13] that can detect a small
subset of activations that matter for a steering goal, reducing the intervened support by 100×,
resulting in improved model utility.

• We show that LinEAS learns effective interventions with as few as 32 source and 32 target unpaired
data points, showing state-of-the-art toxicity mitigation among steering methods.

• We validate fine-grained control of text-to-image (T2I) models, showing superior coherence with
the prompt semantics while achieving the desired alignment goal.

2 Related Work

We classify steering methods based on whether they require strong (paired data or use of a human
supervision / oracle) or weak supervision (unpaired data and no further supervision).

1https://github.com/apple/ml-lineas.
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Figure 2: Given a frozen computational graph (blue) of L + 1 layers of interest, we interlace it
with L transport blocks (red). Each transport is defined as a collection of coordinate-wise affine
transformations, as displayed in the 3 and 2 boxes for maps T1 and T2 respectively. All transport maps
are jointly trained to minimize a sum of distributional losses ∆ between the neural activation distribu-
tions collected from samples x1, . . . ,xn ∼ p (one shade of grey per sample) and y1, . . . ,yn ∼ q
(resp. yellow). We learn the parameters of these maps jointly by minimizing the penalized sum of
∆ terms, where ∆ is a 1D Wasserstein distances evaluated on the dℓ activations of layer ℓ. Using a
global optimization, we can consider sparsifying regularizers (included inR), to, e.g., select a sparse
subset of activations that require interventions. For instance, when adding a regularizer that promotes
sparsity, both T1 and T2 do not intervene on one neuron, the first and the second, respectively.

Strong supervision. CAA [7] calculates the steering vector as the mean of differences between two
sets of paired prompts. ReFT [14] optimizes low-rank projections of representations. LoFiT [11]
learns a bias added to the representations of pre-selected attention heads. LoFiT training is similar to
ReFT (although simpler, since only biases are trained). BitFit [15] directly finetunes the bias terms of
pre-selected linear layers. Most of these methods can be viewed as a simplified version of LoRA [16].
Similarly to LoRA they also require either paired data or a human /oracle supervision during training.

Weak supervision. Some methods propose to add a vector to the activations. For example, ACTADD
[17] uses the difference between 2 prompts and Mean-AcT the difference in means [10]. ITI-C
[9] uses a steering vector orthogonal to the hyperplane learned by a binary linear classifier on the
activations from two sets of sentences. With a different approach, AURA by Suau et al. [18] dampens
activations proportionally to each neuron’s ability to classify toxic and non-toxic sentences, effectively
mitigating toxicity. REPE, by Zou et al. [8], does require paired data, however, we place this algorithm
in the weak supervision family since it computes steering vectors based on a single prompt pair.
Closest to our work, Lin-ACT [10] uses an affine map to steer activations. In Section 3.1 we discuss
in more detail the differences between our proposed LinEAS with Lin-ACT and other methods.

3 End-to-end Learning of Steering Maps

We propose LinEAS, a method to optimize activation-specific interventions in a joint manner. Our
hypothesis is that a global estimation that exploits causal interdependencies between activations
across layers is needed to maintain the model’s utility while achieving the steering goal.

3.1 Interventions Setup and Distributional Loss

We consider a generative model and target a set of L intermediate activation layers. We describe the
model as a composition of L+1 abstract pretrained functions, where the output, given an input prompt
x ∈ S , can be written as o = fL+1 ◦ fL ◦ · · · ◦ f1(x). For convenience, we denote dℓ the dimension
of the activations obtained at layer ℓ, i.e., the size of the activation vector fℓ ◦ · · ·◦f1(x). We interlace
this pretrained computational graph of L+ 1 intermediate frozen layers with L comparatively much
simpler vector-to-vector maps: o = fL+1 ◦TL ◦ fL ◦ · · · ◦T2 ◦ f2 ◦T1 ◦ f1(x), where for 1 ≤ ℓ ≤ L,
the map Tℓ : Rdℓ → Rdℓ acts on the intermediate activations observed after layer ℓ, by altering its
coordinates and outputting a vector of the same size.

Layerwise Distributional Losses. We consider two distinct probability distributions over prompts,
the source distribution p and the desired target distribution q. For example, p and q could be such that
a sample from the source distribution p corresponds to toxic sentence, while a sample from the target
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distribution q corresponds to a non-toxic sentence (see Section 4.1). We then view each sampled
prompt through the lens of their sequence of L activations. In practice, this means having access
to samples x1, . . . ,xn ∼ p and y1, . . . ,yn ∼ q, tracking their execution trace of their ℓ ≤ L + 1
activations, either modified through interleaved transports for samples from p:

ξiℓ := Tℓ ◦ fℓ ◦ Tℓ−1 ◦ · · · ◦ T1 ◦ f1(xi), ℓ ≤ L, (1)

or ran through the original network for samples of q:

ηj
ℓ := fℓ ◦ · · · ◦ f1(yj), ℓ ≤ L. (2)

Our goal is to learn jointly all L transport maps so that, for each ℓ ≤ L, the families of vectors (ξiℓ)i
and (ηj

ℓ )j are similar with respect to a distributional metric ∆ between probability measures, making
the cost below small:

C(T1, . . . , Tℓ; (x
i)i, (y

j)j) =
∑
ℓ≤L

∆((ξiℓ)i, (η
j
ℓ )j). (3)

Sliced Wasserstein Losses. To define ∆ at each layer, we adopt the approach of Rodriguez et al.
[10] and sum dℓ univariate Wasserstein distances between the dℓ marginal distributions at each layer
ℓ. This choice is motivated by the fact that in the typical setting targeted in this work, we must deal
with a high-dimensionality / low sample regime, dℓ ≫ N , that would hinder the use of more complex
multivariate distributional losses that account more closely for cross-variable effects. We observe that
adding univariate quantities yields a more robust loss estimation that translates to better downstream
tasks than considering, e.g., Sinkhorn divergences [19].

To define ∆ at each layer, we adopt the approach of Rodriguez et al. [10] and use d univariate
Wasserstein distances between the d marginal distributions. The activations can be arranged as
matrices U := [ξ1ℓ , . . . , ξ

n
ℓ ] and V = [η1

ℓ , . . . ,η
n
ℓ ], both in Rn×dl . To compute their 1D-Wasserstein

distance [20, Chap. 2], these activations must be first sorted in increasing order along the feature axis:

Ũ = sort(U, axis = −1), Ṽ = sort(V, axis = −1)
to define the sliced Wasserstein distance [21] computed only on the canonical directions, namely:

∆(U, V ) :=

d∑
j=1

W 2
2 (U·j , V·j) =

1

n

d∑
j=1

∥Ũ·j − Ṽ·j∥2. (4)

Differences with ITI-C, Lin-ACT and ReFT. Both ITI-C [9] and Lin-ACT [10] optimize each Tℓ
independently across layers, minimizing a single distributional difference in closed form (Lin-ACT)
or learning a linear classifier (ITI-C), and assuming all other layers are frozen. While arguably much
faster, this also generates causal inconsistencies, which can be partially resolved as in Lin-ACT
by using a sequential approach: when Tℓ−1 is trained, Tℓ−1 is reused to recompute all activation
distributions used for Tℓ. We claim that this suboptimality is to blame for poor generalization. This
independent approach also precludes trade-offs when choosing which activations to turn on/off across
layers, which we can easily be surfaced using sparsity regularizers. One fundamental difference
with ReFT [12] is that LinEAS does not need paired data, i.e., sample yi does not need to be
a counterfactual of xi, which is the case for ReFT. While counterfactual data is important for
applications like translation, there is a vast amount of applications (e.g., toxicity) where paired data is
not available.

3.2 Parameterization and Regularization

Building on the approach outlined by Rodriguez et al. [10], we propose to parameterize each map Tℓ

as an affine map for each activation ℓ ≤ L, namely for z ∈ Rdℓ , one has

Tℓ(z) := ωℓ ⊙ z + bℓ, ωℓ, bℓ ∈ Rdℓ , (5)

where ⊙ is the element-wise product. We write w := (ω1, . . . , ωL) and b := (b1, . . . , bL) for the
collections of all scale and intercept parameters. In what follows since each map Tℓ is entirely
parameterized through its scale/intercept parameters w,b, we overload notations to define

C(w,b; (xi)i, (y
j)j) := C(T1, . . . , Tℓ−1; (x

i)i, (y
j)j).
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Sparse Regularization. We propose to use a sparsity regularizer that will carry out both layer and
within-layer selection of activations. This can be achieved by using structured regularization, using
either 1-norms or 2-norms:

R1(w,b) :=
∑
ℓ

∥ωℓ − 1∥1 + ∥bℓ∥1 and RG(w,b) :=
∑
ℓ

√
dℓ (∥ωℓ − 1∥2 + ∥bℓ∥2) .

resulting in a sparse group lasso regularizer [13, 22],R := λ1R1 + λGRG, which can be added to
the cost to result in:

L(w,b) := E
(xi)i∼p,

(yj)j∼q

[
C(w,b; (xi)i, (y

j)j)
]
+ γR(w,b), (6)

where γ controls the amount of sparsity, i.e., larger γ will result in fewer activations and/or layers
being intervened on, with solution such that ω ≈ 1 and b ≈ 0.

On the choice of sparsity hyperparameters We only consider two hyperparameters at the moment,
λ1 and λG, which is relatively small since LinEAS intervention models have none. Empirically,
we found that tuning γ ∈ [0, 1] with λ1 = λG = 1 already provides interesting trade-offs between
conditioning and utility as reported in Figures 4 and 8. This also reduces the number of additional
hyper-parameters to tune to just one (γ) and enables automatic layer selection (Figure 10).

3.3 Optimization

Proximal SGD. We optimize L in (6) with proximal stochastic gradient descent (PSGD) with a
learning rate of 0.1 and cosine decay. We assume access to 2 sets of unpaired N prompts (xi)Ni=1 and
(yi)Ni=1 and run PSGD on minibatches of activations (ξiℓ)i and (ηi

ℓ)i of size n. Note that activations
originating from yi use the untouched network, and can be pre-computed beforehand. In Appendix D
we provide details on the algorithm and proximal operators.

4 Experimental Results

4.1 Toxicity Mitigation in LLMs

We analyze the effectiveness of LinEAS at the important task of toxicity mitigation. To that end, we
compare with prompting, CAA [7], ReFT [12], ITI-C [9] and Lin-ACT [10] on three LLMs ranging
from 1.5B to 7B parameters, by aligning the activations of N = 32 toxic to 32 non-toxic sentences
sampled from the Jigsaw dataset [23].

Toxicity Metrics. We evaluate toxicity mitigation on the RealToxicityPrompts (RTP) dataset [24] and
the Thoroughly Engineered Toxicity (TET) dataset [25]. For RTP, we follow Rodriguez et al. [10]
by sampling 1000 prompts from the dataset and let the model (intervened or not) complete them.
For TET, we use the 2546 prompts provided. Then, we score the generations using the open-source
Roberta toxicity classifier (RTC) [26]. We report ToxRTP

RTC and ToxTET
RTC, the respective percentage of

generations flagged as toxic on RTP and TET.

Utility Metrics. To measure whether the utility of the model is affected by these interventions, we
report PPLWIK, the perplexity obtained on a fixed set of 20k Wikipedia sentences [27], as well as the
overall 5-shot accuracy on the MMLU compendium [28].

Oracle Baselines. In addition, we introduce two baselines that require a strong supervision signal
directly from the RTC oracle, i.e., the classifier used to compute test-time metrics, giving them a
significant advantage. More precisely, we train a LoRA adapter and LoFIT [11] using the RTC
labels, yielding the oracle methods LRTC-RL and LoFIT-RL. We report in Table 1 only the results of
LoFIT-RL as it performed better than LRTC-RL (available in Table 7). See Appendix I for details on
the oracle training protocol.

Setup. All methods have access to only 32 toxic and 32 non-toxic sentences (unpaired). We optimize
LinEAS for 1K steps using SGD and a learning rate of 0.1. As we focus on the benefit of using
an end-to-end loss, we use γ = 0 for LinEAS (see Section 4.3 for γ’s impact). For Lin-ACT and
CAA, we use their default settings, and set intervention strength to λ = 1. For ReFT, we train for
10 epochs (selected with an epoch sweep). For ITI-C we use λ = 0.5, obtained through grid search.
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We evaluate toxicity mitigation by intervening upon different layers, and report the best overall layer
type per method, namely .*post.*layernorm for LinEAS and .*o_proj for ITI-C and Lin-ACT,
according to the Huggingface implementation of the models. Both CAA and ReFT intervene upon
the residuals of the Transformer blocks, as suggested in their original works. For CAA we run two
baselines, intervening on all layers (reported in Table 1), and intervening on the middle layer of each
model (as in the original paper, reported in Table 7 given its worse performance). Additionally, we
include prompting as a conditioning strategy, where the model is preprompted with “Continue the
text in a non-toxic way:”.

Model Method #Params ToxRTP
RTC (↓) ToxTET

RTC (↓) PPLWIK (↓) MMLU (↑)

Qwen2.5-1.5B

None - 3.00 0.54 23.09 0.67 13.67 0.00 60.95 0.00

LoFIT-RL 0.86M 0.37 0.06 4.36 0.00 14.12 0.07 59.74 0.14

Prompt - 4.07 0.38 21.02 1.44 13.65 0.00 60.96 0.00

CAA⋆ 0.043M 1.15 0.37 5.77 2.14 19.30 2.76 37.67 6.95

ReFT⋆ 0.39M 2.57 0.60 18.17 3.04 15.58 0.52 58.84 0.23

ITI-C 0.043M 1.87 0.21 18.16 0.62 12.39 0.09 60.88 0.08

Lin-ACT 0.086M 1.50 0.35 13.88 1.72 13.88 0.16 60.09 0.25

LinEAS 0.086M 1.07 0.46 12.70 0.74 14.10 0.07 59.97 0.16

Gemma2-2B

None - 4.00 0.45 13.39 1.42 14.79 0.00 53.03 0.00

LoFIT-RL 0.11M 0.40 0.20 1.76 0.00 15.43 0.08 52.17 0.17

Prompt - 4.60 0.36 12.32 0.67 14.81 0.00 53.18 0.00

CAA⋆ 0.06M 0.80 0.00 2.44 1.99 23.52 2.67 26.86 0.08

ReFT⋆ 0.54M 2.85 0.49 11.15 1.91 19.93 0.30 48.99 1.34

ITI-C 0.06M 1.17 0.60 7.15 0.92 14.00 0.11 52.78 0.23

Lin-ACT 0.12M 1.60 0.32 7.76 0.39 14.78 0.12 52.43 0.57

LinEAS 0.24M 0.73 0.10 4.02 0.68 15.46 0.21 52.22 0.40

Qwen2.5-7B

None - 3.92 0.59 25.16 0.92 10.67 0.00 74.26 0.00

LoFIT-RL 0.10M 1.10 0.38 7.11 0.30 10.91 0.16 73.87 0.17

Prompt - 6.80 0.00 21.22 0.21 10.65 0.00 74.23 0.00

CAA⋆ 0.10M 1.20 0.00 9.25 3.07 12.83 0.00 48.58 0.00

ReFT⋆ 0.90M 3.33 0.96 20.38 2.37 13.80 1.20 70.43 0.60

ITI-C 0.10M 2.63 0.44 19.98 1.24 9.63 0.03 74.08 0.05

Lin-ACT 0.20M 2.72 0.46 21.64 2.00 11.42 0.34 72.18 0.16

LinEAS 0.20M 1.95 0.48 14.95 0.92 10.91 0.35 73.67 0.05

Table 1: Toxicity mitigation on the RTP and TET datasets using three different models, Qwen2.5-
1.5B, Gemma2-2B, and Qwen2.5-7B. Strongly degraded utility is marked in red. We report results
at low data regime (N = 32 sentences to estimate the interventions). See Appendix E for more
models, baselines and an ablation with larger training size and different intervention layers. Results
for LinEAS improve significantly on ITI-C and Lin-ACT with similar impact on utility metrics. The
quality of these interventions is often on par with the oracle baseline LoFIT-RL in terms of utility,
although the strong oracle supervision yields better mitigation. ⋆CAA and ReFT are designed to use
paired data, which is not available in the toxicity setting.

Results. Table 1 summarizes the toxicity mitigation experiments averaged over 4 generation seeds
(and RTP samplings). CAA and ReFT induce a stronger degradation of utility, invalidating their
toxicity mitigation results. Note that both methods are designed for paired data, which does not
exist in the toxicity setup, so we are not using them in their nominal setting, which affects their
performance. Prompting is not effective for the models tested, and even increases ToxRTP

RTC. LinEAS
achieves a consistent toxicity mitigation, outperforming all steering methods at this low data regime.
For example, LinEAS reduces Gemma2-2B toxicity by 5.5×, getting closer to the mitigation obtained
with the oracle LoFIT-RL. In terms of utility, LinEAS shows a minimal degradation, with values very
similar to the utility incurred by the oracle LoFIT-RL. In absolute terms, LinEAS reduces MMLU
by less than 1 point and increases PPLWIK by less than 0.6. In Table 9 (Appendix E) we show that
LinEAS is much more robust to the choice of layer than ITI-C and Lin-ACT. Additionally, we also
provide in Figure 3 (and Table 8) an analysis on a higher data regimes, up to N = 1024 sentences,
showing that LinEAS is also reliable in such scenario. Beyond the differences in parameter sizes
between ITI-C, Lin-ACT and LinEAS on the one hand, and the LRTC-RL approach on the other,
we also note that the compute needed to train these methods is significantly different: in the low
data regime N = 32, estimating each method on a Nvidia A100-80Gb GPU and Qwen2.5-7B takes
37s (ITI-C), 30s (Lin-ACT) leveraging closed forms, 500s (LinEAS for 1K steps) and 27300s for
LoFIT-RL, see Appendix B for a deeper analysis.
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Figure 3: LinEAS is effective at low data regime. We study toxicity mitigation (two left-most plots)
and utility (two right-most plots) as a function of the amount of data available to learn interventions.
LinEAS shows better performance (low toxicity and utility close to original dashed lines) for low
data, and stable performance for N ≥ 32.
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Figure 4: Sparsity improves utility while mitigating toxicity. Toxicity results on Qwen2.5-7B
using only 32 sentences, at different levels of sparsity γ that result in different support sizes (x axis).
At 1K optimization steps, with a support of about 1% we maintain similar toxicity (left, center-left)
while PPLWIK decreases (center-right) and MMLU increases (right). Note that too long optimizations
(10k steps) might harm utility, due to overfitting. Similarly, short optimizations (e.g., 100 steps) and
strong sparsity leads to low conditioning (mild toxicity mitigation).

User Study. We complement the quantitative results with a user preference study to evaluate the
perceived quality of continuations generated by different intervention methods. Our findings indicate
a strong preference for LinEAS over three other alternatives: Lin-ACT, ITI-C, and no intervention
(identity). Specifically, users preferred LinEAS in 57.70% of cases compared to 18.43% for Lin-ACT
and 11.67% for ITI-C. We provide more details in Appendix C.

4.2 Effect of Data on Toxicity Mitigation

With the same toxicity setting as in Section 4.1, we ablate the amount of data used to estimate
interventions using Qwen2.5-7B (best model studied in terms of MMLU). We sweep N from 1 to
1024, meaning we have access to N toxic and N non-toxic sentences. Note that the results in Table 1
correspond to N = 32. In Figure 3 we plot the evolution of toxicity (ToxRTP

RTC and ToxTET
RTC) and utility

(PPLWIK and MMLU) as a function of N , averaged over 4 random sweeps (standard deviation as
shaded areas). LinEAS achieves superior toxicity mitigation even at very low data regimes, while
maintaining utility close to the original model (horizontal dashed lines) and the LoFIT-RL oracle.
Moreover, LinEAS’s performance is more stable for a large range of N (32 to 1024), even more
stable than the oracle which diverges for N > 128. Note that we fix the hyper-parameters for all the
methods, including the oracle, which shows to be more sensitive to the training setting.

4.3 Effect of Sparsity on Toxicity Mitigation

Intuitively one should only steer the smallest set of activations needed to achieve a desired goal in
order to preserve utility and keep most of the model’s inference graph untouched. In this section,
we explore how sparsity affects toxicity mitigation in the setup of Section 4.1 as we increase γ
from 0 to 0.1. Increasing γ results in less activations being transported, which we measure as
support = ∥(w ̸= 1) + (b ̸= 0)∥0, i.e., all activations transported either by rescaling or shifts.

In Figure 4 we show how ToxRTP
RTC and ToxTET

RTC, as well as the utility PPLWIK and MMLU, evolve
as the sparse support decreases (x axis), for Qwen2.5-7B in the low (N = 32) data regime. We
show the results of 3 sweeps of γ with different random seeds (markers), and plot the average at
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each γ level (line). Note that at γ = 0 the support is approximately 100%. In the case of 1K steps
(reported in Table 1), one can afford reducing the support to about 1% and still maintain the toxicity
mitigation values at 100% support. Interestingly, at these support values, the PPLWIK and MMLU
improve, validating our hypothesis that smaller supports help preserve the utility. We also observe that
short optimizations (e.g., 100 steps) lead to mild conditioning (poor toxicity mitigation) while long
optimizations (e.g., 10k steps) lead to a gradual degradation in utility. In Figure 8 (Appendix G) we
show the same plot for the high data regime, with similar conclusions. Additionally, in Appendix L
we study how the similarity of LinEAS interventions is correlated with human judgment, on pairs of
concepts from the MEN dataset [29], showing strong correlation when using sparsity. We provide a
similar analysis for T2I generation in Appendix H.
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Figure 5: Generations using DMD2 [30]. (Left) Concept deletion using ITI-C, Lin-ACT and LinEAS
for two different concepts, starting from prompts that contain the concept. LinEAS shows a more
gradual deletion (λ = 0.4, 0.7, 1), and better preservation of the original image (λ = 0). (Right)
Qualitative examples of LinEAS on 6 more concepts. We also show that inverting the steering maps
surprisingly results in concept induction, probably due to strong structure in activation space. LinEAS
also outperforms the other methods under this setting.

4.4 Steering Text-to-Image Generation Models

In this section, we explore how LinEAS can be used to remove the presence of concepts in text-
to-image (T2I) generation: a task that plays a key role in generation alignment, similar to toxicity
mitigation in LLMs. We preserve the focus on low data and compute budget, so we apply LinEAS
to DMD2 [30], a recent single-step text-to-image generation model distilled from SDXL [31] with
a GAN [32] loss. We note that there are diffusion guidance methods available to condition these
models; however, they typically require multiple denoising steps (even up to 200) [33, 34] and, at
times, trajectory resampling and evaluation strategies [35]. These additional overheads make them
suitable for settings with higher compute budget, which differs from the low-compute setting we are
interested in.

Setup. As in [10], we modulate the strength of LinEAS applied to all layernorm layers by intro-
ducing a scale 0 ≤ λ ≤ 1 when applying interventions. Intuitively λ = 0 results in no intervention,
while λ = 1 carries out a full LinEAS transport, any value in between reflecting a gradual change.
Following Section 4.1, we focus on concept mitigation/removal and we use 32 samples for each
the source and the target distribution. We train LinEAS for 1000 steps with batch size 4, AdamW,
learning rate of 1e−4 and γ = 0. Find additional implementation details in Appendix N. We compare
LinEAS with ITI-C and Lin-ACT, also weakly supervised methods that work with unpaired data.

Data. We query an open-source LLM for a diverse set of prompts covering 3 different con-
ditioning categories and 5 different concepts per category with 32 prompts per concept, to-
talling 480 prompts. Styles: vaporwave, lush, low-poly, ukiyo-e, fantasy; objects:
robots, axolotl, book, car, hourglass; and perspective: macro, fisheye, bokeh,
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Method ↑ User Pref. ↑ IMGSc. ↓ CLIPSc.

ITI-C 12.4 5.5% 0.24 0.19 0.19 0.02

Lin-ACT 24.4 7.0% 0.45 0.21 0.18 0.03

LinEAS 63.3 6.6% 0.66 0.19 0.18 0.03

Table 2: LinEAS mitigates concepts on
DMD2 [30] while staying perceptually similar to
the original image. Users prefer LinEAS 63.3%
of the time (left) since it maintains a higher fi-
delity to the non-intervened original model when
using the same prompt (center), and matches other
methods at concept removal (right). Results were
obtained with λ = 1 and they are aggregated
across all concepts.
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Figure 6: IMGScore and CLIPScore at multiple
conditioning strengths (λ). (top) LinEAS is more
faithful to DMD2 with λ = 0. (bottom) LinEAS
is more consistent and predictable at mitigation.

underwater, and tilt-shift. We query the same model to obtain 32 neutral prompts used
for evaluation. We provide a complete description and the prompts themselves in Appendix O.

Metrics. We measure (1) CLIPScore [36], the cosine similarity between CLIP embeddings of
the generated images and the concept description. (2) IMGScore, the cosine similarity between
DINOv2-small [37] image embeddings generated with λ > 0 and images generated with λ = 0 using
the same prompts. CLIPScore assesses whether the generations are truthful to the desired style, and
IMGScore whether they are perceptually similar to those generated without intervention.

User study. Aiming at complementing the quantitative analysis, we also run a user study. We
consider 20 prompts × 5 conditioning concepts, yielding a total of 100 pairs. We generate an original
image and steer it using ITI-C, Lin-ACT, or LinEAS on 5 concepts. We ask a pool of 10 participants
to select their preferred output (a total of 1000 evaluations), showing a strong preference for LinEAS,
as reported in Table 2 (left). The actual question asked to the participants is "Which image blends
best prompt and style, while remaining faithful to the untouched output?".

Results. Table 2 summarizes the results for the text to image evaluation. We found that 63% of the
users prefer LinEAS (24.4% for Lin-ACT, and 12.4% for ITI-C). These results are in agreement with
the automated metrics: LinEAS is significantly more faithful to the images produced by DMD2 with
λ = 0 for the same prompts, with an IMGScore of 0.66 compared to 0.45 for Lin-ACT and 0.24 for
ITI-C while all methods achieve a similar CLIPScore. We report more granular per-concept scores
in Appendix N.2. Figure 6 explores how IMGScore and CLIPScore change with λ. We find that
LinEAS is consistently more faithful to DMD2 with λ = 0 in terms of IMGScore (top) while showing
a strong linear correlation with CLIPScore, making LinEAS more consistent and predictable.
LinEAS

. Surprisingly, inverting the affine maps in LinEAS: Tℓ
−1(z) := (z − bℓ) ⊙ 1

ωℓ
tends to

negate the conditioning thus switching from mitigation to induction and vice-versa (see “concept
induction” in Figure 5). We speculate that this behavior is due to a strong structure in the activation
space. Quantitative results using the inverse maps can be found in Appendix N.2.

4.5 Layer Selection Analysis

To evaluate the robustness of LinEAS with respect to the choice of intervened layers, we conducted a
sweep over different layer types within the DMD2 UNet. The results, averaged over 15 concepts, are
presented in Table 3. We measure image consistency using IMGScore (where higher is better) and
concept removal using CLIPScore (where lower is better).

Our findings indicate that while intervening on all layer normalization modules — the setting used in
our main experiments — provides the best trade-off between the two metrics, LinEAS demonstrates
robust performance across all tested layer configurations. This suggests that activation steering is not
overly sensitive to the specific layer choice in UNets.
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Intervened Layers # Modules IMGScore ↑ CLIPScore ↓
All Normalizations 256 0.714± 0.054 0.131± 0.033
Transformer MLPs 70 0.780± 0.053 0.137± 0.031
All attention K and Q projections 280 0.935± 0.016 0.157± 0.028
All attention V projections 140 0.818± 0.051 0.140± 0.031
All attention input projections 11 0.923± 0.017 0.155± 0.028
Resnet Normalizations 34 0.896± 0.023 0.156± 0.027

Table 3: Study on the choice of intervened layers for LinEAS in the DMD2 UNet. We report image
consistency (IMGScore ↑) and concept removal (CLIPScore ↓), averaged over 15 concepts. The
method shows robustness, with the default setting (all layer norms) offering the best trade-off.

5 Limitations and Open Problems

While the field of activation steering has gained considerable momentum there are some limitations
that affect practically every method, including ours.

Compositionality. One such limitation is the ability to compose multiple interventions (learnt
separately) so that multiple steering objectives are satisfied at the same time. We refer to this ability
as compositionality, and we argue its difficulty lies in the fact that multiple interventions can interfere
with one another and produce unexpected results. Our initial hypothesis was that sparsity could help
mitigate such unwanted interference, since interventions for different concepts would act on (almost)
disjoint sets of neurons. In Appendix J we present an analysis where we intervene for two concepts
simultaneously, with different sparsity γs. We find that LinEAS outperforms even prompting, which
reinforces the value of steering for compositionality. However, the absolute values remain low: only
19% of the times both concepts are present simultaneously, while prompting only achieves 17%. We
observe that most of the gain comes from the end-to-end optimization, which reaches 16% probability
without sparsity, which is a 15× improvement over Lin-ACT (no end-to-end optimization). Adding
group lasso regularization improves results of LinEAS by an additional 3%. These results show, on
the one hand that compositionality is still a challenging task, and on the other hand that there is room
to investigate more suitable sparse regularizers in order to overcome the current limitations.

Intervention selectivity. Another common limitation of steering mechanisms that also affects
LinEAS the intervention is applied to all tokens, usually with the goal of keeping inference cost in a
budget. Finding a way to selectively apply the intervention while avoiding adding inference cost (e.g.,
avoid using a classifier to decide on which tokens to intervene or not) remains an open problem.

6 Conclusion

We propose LinEAS, a novel framework to learn lightweight interventions on activations to steer
model generation towards a desired property. LinEAS achieves state-of-the-art performance among
steering methods on safety applications, such as avoiding toxic outputs, or style changes, both for
LLMs (Gemma2-2B, Qwen2.5-1.5B and Qwen2.5-7B) and text-to-image generation (DMD2). Our
approach learns a set of univariate maps that reshape a source to a target activation distribution,
with an improved loss that yields improved controllability and robustness. Unlike previous methods,
such as [10, 9], which require local adjustments and manual layer selection, our method optimizes
the transformation globally in an end-to-end fashion. We find that this global optimization makes
LinEAS more precise than layer-wise training, where errors accumulate layer after layer. This makes
LinEAS more effective with very low data (32 exemplar sentences from both source and target
sets) while its distributional nature provides an intervention strength parameter that is continuous
and bounded, making it more intuitive to apply. This approach also allows for the incorporation
of flexible regularizers, such as group-sparse and sparse, allowing for automatic selection of layers
and/or neurons, leading to improved utility.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We show with empirical evaluations that our method is able to condition the
behavior of LLMs as well as diffusion models with only 32 samples per set. We present
results with comparison to baselines in Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations and open problems in Section 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: While the algorithm is based on optimal transport theory and optimization
there are no theoretical results that need a theoretical proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the needed information to reproduce our results between
Section 4 and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The data we use is all publicly available and we intend to release the code as
well. Unfortunately the code release will happen sometimes after the submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details needed to train our method are reported in Section 4 and in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We compute multiple runs and report error bars. See for example Table 1 (as
well as all other tables) or Figure 3 etc...

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: One of the main objectives of our method was to enable steering with low
compute resources. As a consequence we have not measured training or inference time as
they would be a tiny fraction of the time needed to train any model. We do provide the
number of additional parameters for each method tested which can give a rough idea of the
additional inference cost. We do provide hardware information in Appendix B

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have added a broader impact statement in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are not releasing code or new models.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have thoroughly reviewed all dataset and models licenses and are acknowl-
edging their use with proper citation.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are introduced at this time (code will be released when ready).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [Yes]
Justification: We provide the exact question asked to the user in Section 4.4. There was no
extra compensation provided.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We only used a small internal user study to assess the preference of humans
with respect to images. This does not require IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our method involves conditioning the behavior of LLMs via activation steering.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Broader Impact

This paper presents an algorithm that aims to advance the field of Machine Learning without a specific
application in mind.

Our objective has been to use our algorithm to condition models towards desired behaviors (e.g.,
being less toxic), however, a malicious user with access to the model’s activations could condition
the model to behave in a negative way, e.g., forcing the model to be more toxic.

We believe however that such malicious user can achieve the same objective by simple prompt-
engineering. On the other hand, our work could be used to put in place useful safeguards before
deploying a model.

B Hardware and Compute Requirements

The experiments in this work were computed on a single NVIDIA A100 GPU with 80GB RAM and
they could also fit in an NVIDIA A100 with 40GB RAM.

Memory Consumption During training, LinEAS leverages backpropagation to compute gradients
for its diagonal affine interventions. This design ensures that only activations relevant to the intervened
layers require storage during the forward pass, leading to a substantially reduced memory footprint
compared to full parameter tuning.

Compute Compared to local methods, the computational cost of LinEAS is primarily determined
by the number of optimization steps required for intervention training. While this can result in
slower estimation times than some local approaches, LinEAS is notably an order of magnitude faster
than the RL baseline. Furthermore, we demonstrate that LinEAS can achieve competitive results
with significantly reduced computational resources, specifically using 10x fewer optimization steps
(e.g., 100 steps, approximately 50s for estimation) than the full configuration presented in the paper
(Figure 4). This contrasts favorably with Lin-AcT’s ~30s and dramatically outperforms LoFIT-RL’s
27300s (Table 4). Overall, LinEAS offers a positive trade-off between computational expenditure
and conditioning performance.

Timing The table below summarizes the estimation time for each method and the number of steps
used in our submission.

Table 4: Estimation times for various methods and models.
Method # Steps Gemma2 (s) Qwen1.5B (s) Qwen7B (s)
LoFIT-RL 100 7600 25900 27300
ReFT 10 92 80 100
ITI 1 29 30 37
Lin-AcT 1 17 14 22
LinEAS 1000 430 340 500

We have also timed DMD2 for T2I generation. The table below contains the total training time of ITI,
Lin-AcT, and LinEAS on all normalization layers of DMD2’s UNet. It is interesting to see that when
conditioning many layers, the difference in training time between LinEAS and other methods shrinks.
This is because LinEAS leverages PyTorch’s backpropagation, which is optimized compared to ITI
and Lin-Act’s layer-wise estimation methods.

Table 5: Total training time for methods on DMD2’s UNet.
Method # steps DMD2
ITI 1 26m 44s
LinAcT 1 25m 53s
LinEAS 1000 29m 27s

21



B.1 Detailed Complexity Analysis

Variables:

• B: batch size

• B logB: sorting cost for optimal transport

• F : cost of forward (backward) pass

• N : Number of SGD steps

• T : Number of logistic regression L-BFGS steps

• I: Number of intervened layers

Computational Costs:

• The computational cost of LinEAS is dominated by O(N · (2F + I ·B logB))

• The computational cost of ITI is O(F + I · T ) where T is the number of logistic regression
steps

• The computational cost of Lin-AcT is O(2F + I ·B logB)

Memory required during training:

• M : Memory required by the model activations during the forward pass

• L: Memory required to compute the forward pass on one layer

• D: Affine parameter weight matrix size

Memory Requirements per Method:

• LinEAS: M + ID

• LinAcT: L+D

• ITI: L+D

C User Study on LMs

We conducted a user preference study to evaluate the perceived quality of continuations generated by
different intervention methods. The study involved a pool of 20 volunteers. Prior to participation, all
individuals were explicitly informed about the nature of the task, including potential exposure to toxic
and offensive content, and provided their informed consent. Each volunteer was then presented with
20 prompts sourced from the RTP dataset. For each prompt, users were shown four continuations,
randomly ordered, generated by Qwen2.5-7B using the following methods: no intervention (identity),
ITI-C, Lin-ACT, and LinEAS. The annotators’ task was to select the continuation that was both the
least toxic and most coherent overall.

The aggregated results of the preference study are summarized in the table below, showing the
percentage of times each method was preferred, along with its standard deviation. Our findings
indicate a strong preference for LinEAS over three other alternatives: Linear-ACT, ITI-C, and no
intervention (identity). Specifically, users preferred LinEAS in 57.70% of cases.

Table 6: Human Preference Study Results
Method Identity (%) ITI (%) Lin-AcT (%) LinEAS (%)

Preference 12.19± 5.5 11.67± 8.7 18.43± 11.49 57.70± 14.64
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D Optimization details for LinEAS

See Algo. 1 for the description of a single LinEAS optimization step. Recall that for a vector z ∈ Rd,
the proximal operators of the 1-norm (a.k.a. soft-thresholding) and 2-norm are given by:

STτ (z) := sign(z)⊙max(|z| − τ,0) and Proxτ∥·∥2
(z) :=

(
1− τ

∥z∥2

)
+

z . (7)

Algorithm 1 Proximal E2E Training Step.

1: Require: prompts (xi)i ∼ p, (yj)j ∼ q, LR ρ.
2: (pre-) compute activations ηi

ℓ, i ≤ n, ℓ ≤ L ▷ Eq.(2)
3: compute activations lists ξiℓ, i ≤ n, ℓ ≤ L. ▷ Eq.(1)
4: set loss to C = 0
5: for ℓ ≤ L do ▷ Forward
6: Z := [ξ1ℓ , . . . , ξ

n
ℓ ] ∈ Rn×dℓ ▷ Eq. (1)

7: V := [η1
ℓ , . . . ,η

n
ℓ ] ∈ Rn×dℓ ▷ Eq. (2)

8: C ← C +∆(Z, V ) ▷ ℓ-layer loss, Eq. (4)
9: end for

10: for ℓ ≤ L do
11: gω, gb ← ∇ωℓ,bℓ

C ▷ Backpropagation
12: ωℓ, bℓ ← ωℓ − ρ gω, bℓ − ρ gb ▷ Updates
13: ωℓ ← ProxγλG∥·∥2

◦STγλ1
(ωℓ − 1) +1 ▷ Eq. (7)

14: bℓ ← ProxγλG∥·∥2
◦ STγλ1

(bℓ) ▷ Eq. (7)
15: end for

E Toxicity Mitigation (extended results)

Table 7 is an extension of Table 1 in which we include one more model, DeepSeek-7B, and more
baselines. Specifically we include here another oracle baseline, a LoRA adapter, that we named
LRTC-RL, and that is trained similarly to LoFIT-RL as explained in the main paper. More details on
the training of these strongly supervised baselines can be found in Appendix I.

Additionally we include here CAA as proposed in the original work (i.e., intervening only on the
middle layer rather than on all layers as shown in the main paper).

In Table 8 we show results analogous to those in Table 7 but in a higher data regime, i.e., using 1024
sentences per set.

Additionally, in Table 9, we show how the different activation steering methods perform in the
setting of Section 4.1, when intervening different layer types (namely .*post_.*_layernorm and
.*o_proj of the models’ Huggingface implementation). We report results for the low data regime,
showing that LinEAS is much more robust to the layer choice. Indeed, for .*post_.*_layernorm
and models DeepSeek-7B and Qwen2.5-1.5B, ITI-C and Lin-ACT induce a toxicity slightly higher
than the original one (marked in red).
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Model Method #Params ToxRTP
RTC (↓) ToxTET

RTC (↓) PPLWIK (↓) MMLU (↑)

Q1.5B

None - 3.00 0.54 23.09 0.67 13.67 0.00 60.95 0.00

LRTC-RL 0.54M 1.07 0.40 7.94 0.01 13.70 0.10 60.78 0.17

LoFIT-RL 0.8596M 0.37 0.06 4.36 0.00 14.12 0.07 59.74 0.14

Prompt - 4.07 0.38 21.02 1.44 13.65 0.00 60.96 0.00

CAA (mid) 0.0015M 2.86 0.53 23.33 1.25 13.69 0.02 60.47 0.18

CAA 0.043M 1.15 0.37 5.77 2.14 19.30 2.76 37.67 6.95

ReFT 0.39M 2.57 0.60 18.17 3.04 15.58 0.52 58.84 0.23

ITI-C 0.043M 1.87 0.21 18.16 0.62 12.39 0.09 60.88 0.08

Lin-ACT 0.086M 1.50 0.35 13.88 1.72 13.88 0.16 60.09 0.25

LinEAS 0.086M 1.07 0.46 12.70 0.74 14.10 0.07 59.97 0.16

G2-2B

None - 4.00 0.45 13.39 1.42 14.79 0.00 53.03 0.00

LRTC-RL 0.8M 0.83 0.25 3.47 0.01 15.38 0.17 52.56 0.11

LoFIT-RL 0.1065M 0.40 0.20 1.76 0.00 15.43 0.08 52.17 0.17

Prompt - 4.60 0.36 12.32 0.67 14.81 0.00 53.18 0.00

CAA (mid) 0.0023M 4.93 0.42 14.04 0.52 14.88 0.02 51.49 0.51

CAA 0.06M 0.80 0.00 2.44 1.99 23.52 2.67 26.86 0.08

ReFT 0.54M 2.85 0.49 11.15 1.91 19.93 0.30 48.99 1.34

ITI-C 0.06M 1.17 0.60 7.15 0.92 14.00 0.11 52.78 0.23

Lin-ACT 0.12M 1.60 0.32 7.76 0.39 14.78 0.12 52.43 0.57

LinEAS 0.24M 0.73 0.10 4.02 0.68 15.46 0.21 52.22 0.40

D7B

None - 4.30 0.70 18.62 0.51 8.49 0.00 48.31 0.00

LRTC-RL 1.97M 1.97 0.38 5.07 0.00 8.67 0.05 47.76 0.34

LoFIT-RL 0.2458 0.53 0.15 1.63 0.00 9.31 0.05 46.78 0.14

Prompt - 4.20 0.70 15.69 0.82 8.51 0.00 48.23 0.00

CAA (mid) 0.0043M 4.72 0.54 19.07 0.98 8.73 0.17 44.76 1.98

CAA 0.13M 0.07 0.15 0.33 0.65 > 1000 23.14 0.34

ReFT 1.11M 2.25 1.04 10.39 6.01 51.58 40.2 35.56 11.1

ITI-C 0.13M 2.83 0.40 15.18 2.00 7.71 0.07 48.47 0.25

Lin-ACT 0.25M 2.23 0.69 11.08 0.76 8.67 0.03 47.71 0.27

LinEAS 0.25M 2.30 0.14 12.09 0.83 8.38 0.05 48.13 0.07

Q7B

None - 3.92 0.59 25.16 0.92 10.67 0.00 74.26 0.00

LRTC-RL 1.26M 1.30 0.44 6.59 0.01 10.68 0.06 74.08 0.15

LoFIT-RL 0.10M 1.10 0.38 7.11 0.30 10.91 0.16 73.87 0.17

Prompt - 6.80 0.00 21.22 0.21 10.65 0.00 74.23 0.00

CAA (mid) 0.0036M 4.00 0.45 22.32 1.13 10.66 0.03 73.45 0.14

CAA 0.10M 1.20 0.00 9.25 3.07 12.83 0.00 48.58 0.00

ReFT 0.90M 3.33 0.96 20.38 2.37 13.80 1.20 70.43 0.60

ITI-C 0.10M 2.63 0.44 19.98 1.24 9.63 0.03 74.08 0.05

Lin-ACT 0.20M 2.72 0.46 21.64 2.00 11.42 0.34 72.18 0.16

LinEAS 0.20M 1.95 0.48 14.95 0.92 10.91 0.35 73.67 0.05

Table 7: Toxicity mitigation on the RTP and TET datasets using four different models, Q1.5B:
Qwen2.5-1.5B, G2-2B: Gemma2-2B, D7B: DeepSeek-7B and Q7B: Qwen2.5-7B. Strongly degraded
utility is marked in red. We report results at low (N = 32 sentences to estimate the interventions)
data regime. For each method, we use the best intervention layers according to an ablation study.
See Table 8 in Appendix for an ablation with larger training size. Results for LinEAS improve
significantly on ITI-C and Lin-ACT with similar impact on quality metrics. The quality of these
interventions is often on par with the strong baselines LRTC-RL and LoFIT-RL, despite this approach
being far more involved (both in terms of parameter size, access to ground truth labeling oracle RTC,
and compute).
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Model method # par (M) ToxRTP
RTC (↓) ToxTET

RTC (↓) PPLWIK (↓) MMLU (↑)

Gemma2-2B

None - 4.00 0.45 13.39 1.42 14.79 0.00 53.03 0.00

LRTC-RL 0.8M 0.50 0.44 1.68 0.01 15.78 0.19 52.45 0.54

Prompt - 4.60 0.36 12.32 0.67 14.81 0.00 53.18 0.00

CAA (mid) 0.0023M 4.23 0.72 12.41 0.68 14.83 0.00 52.32 0.08

CAA 0.06M 0.70 0.14 3.17 0.74 16.38 0.01 46.44 0.02

ReFT 0.54M 3.73 0.95 14.04 1.61 15.40 0.18 51.32 0.25

ITI-C 0.06 0.30 0.26 2.68 0.43 14.65 0.06 52.04 0.17

Lin-ACT 0.12 1.07 0.52 6.08 0.67 14.85 0.04 52.36 0.11

LinEAS 0.24 0.95 0.26 3.46 0.44 15.82 0.02 51.28 0.08

DeepSeek-7B

None - 4.30 0.70 18.62 0.51 8.49 0.00 48.31 0.00

LRTC-RL 1.97M 0.90 0.30 1.95 0.00 8.80 0.03 47.28 0.58

Prompt - 4.20 0.57 15.88 0.90 8.51 0.00 48.23 0.00

CAA (mid) 0.0043M 4.63 0.25 21.38 1.29 8.72 0.15 46.33 0.48

CAA 0.13M 0.10 0.14 0.08 0.16 > 1000 23.69 0.81

ReFT 1.11M 4.83 0.78 17.76 0.90 12.34 0.65 33.22 4.55

ITI-C 0.13 1.77 0.40 10.70 1.14 7.79 0.02 48.20 0.15

Lin-ACT 0.25 1.42 0.43 9.39 0.34 8.77 0.01 47.74 0.17

LinEAS 0.25 1.70 0.14 9.49 0.52 8.53 0.04 48.01 0.04

Qwen2.5-1.5B

None - 3.00 0.54 23.09 0.67 13.67 0.00 60.95 0.00

LRTC-RL 0.54M 0.67 0.40 3.93 0.01 13.91 0.09 60.70 0.19

Prompt - 4.07 0.38 21.02 1.44 13.65 0.00 60.96 0.00

CAA (mid) 0.0015M 2.87 0.72 23.68 1.04 13.67 0.02 60.70 0.10

CAA 0.043M 0.90 0.24 6.69 2.07 15.18 1.02 53.35 3.94

ReFT 0.39M 2.75 0.29 14.33 3.39 35.48 20.8 52.63 3.75

ITI-C 0.043 1.60 0.10 15.50 0.81 12.53 0.04 60.73 0.21

Lin-ACT 0.086 0.95 0.38 11.61 1.43 14.06 0.03 59.82 0.22

LinEAS 0.086 0.90 0.26 12.56 0.70 14.20 0.04 59.21 0.16

Qwen2.5-7B

None - 3.92 0.59 25.16 0.92 10.67 0.00 74.26 0.00

LRTC-RL 1.26M 1.50 0.36 5.28 0.00 11.03 0.05 73.91 0.10

Prompt - 6.40 0.40 21.22 0.21 10.65 0.00 74.23 0.00

CAA (mid) 0.0036M 3.88 0.21 22.87 0.54 10.64 0.00 73.86 0.04

CAA 0.10M 2.00 0.00 11.24 0.88 11.18 0.00 68.59 0.00

ReFT 0.90M 3.65 1.32 22.70 3.39 17.42 3.21 60.35 11.8

ITI-C 0.10 2.33 0.76 18.18 2.00 9.66 0.04 74.19 0.10

Lin-ACT 0.20 1.65 0.26 13.60 0.99 10.80 0.02 73.60 0.07

LinEAS 0.20 1.52 0.33 13.92 0.54 10.89 0.14 73.37 0.07

Table 8: Toxicity mitigation on the RTP and TET datasets. We report results at high (N = 1024
sentences to estimate the interventions) data regime. We used 10k optimization steps, with mini-
batches of size n = 32. In the high-data regime, Lin-ACT achieves an outstanding 0.68 ToxRTP

RTC for
Gemma2-2B. However, this method struggles at reducing toxicity for the other models. Conversely,
LinEAS achieves similar (Gemma2-2B) or better (other models) RTP toxicity mitigation than in the
low data setup, and with better MMLU than Lin-ACT for all models. Similary, LinEAS outperforms
all other methods on TET toxicity mitigation by a large margin.
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Model Method Layer Data λ ToxRTP
RTC (↓) ToxTET

RTC (↓) PPLWIK (↓) MMLU (↑)

Gemma2-2B

None .*post_.*_layernorm - - 4.00 0.45 13.39 1.42 14.79 0.00 53.03 0.00

ITI-C .*post_.*_layernorm 32 1.0 2.38 0.91 10.00 0.57 13.89 0.13 52.92 0.14

Lin-ACT .*post_.*_layernorm 32 1.0 1.35 0.17 7.32 1.16 15.08 0.13 51.52 0.32

LinEAS .*post_.*_layernorm 32 1.0 0.73 0.10 4.02 0.68 15.46 0.21 52.22 0.40

DeepSeek-7B

None .*post_.*_layernorm - - 4.30 0.70 18.62 0.51 8.49 0.00 48.31 0.00

ITI-C .*post_.*_layernorm 32 1.0 7.23 0.76 28.13 2.45 8.85 0.40 45.82 1.15

Lin-ACT .*post_.*_layernorm 32 1.0 5.62 0.25 24.29 1.46 9.37 0.20 45.95 0.04

LinEAS .*post_.*_layernorm 32 1.0 2.30 0.14 12.09 0.83 8.38 0.05 48.13 0.07

Qwen2.5-1.5B

None .*post_.*_layernorm - - 3.00 0.54 23.09 0.67 13.67 0.00 60.95 0.00

ITI-C .*post_.*_layernorm 32 1.0 2.62 0.30 19.35 1.52 13.23 0.17 60.37 0.24

Lin-ACT .*post_.*_layernorm 32 1.0 2.75 0.68 25.51 1.79 16.33 0.85 57.66 0.56

LinEAS .*post_.*_layernorm 32 1.0 1.07 0.46 12.70 0.74 14.10 0.07 59.97 0.16

Qwen2.5-7B

None .*post_.*_layernorm - - 3.92 0.59 25.16 0.92 10.67 0.00 74.26 0.00

ITI-C .*post_.*_layernorm 32 1.0 2.88 0.60 19.41 1.11 9.69 0.07 74.13 0.05

Lin-ACT .*post_.*_layernorm 32 1.0 2.77 0.39 20.57 1.36 11.64 0.24 72.21 0.08

LinEAS .*post_.*_layernorm 32 1.0 1.88 0.19 15.39 0.60 10.83 0.25 73.56 0.07

Gemma2-2B

None .*o_proj - - 4.00 0.45 13.39 1.42 14.79 0.00 53.03 0.00

ITI-C .*o_proj 32 0.5 1.17 0.60 7.15 0.92 14.00 0.11 52.78 0.23

Lin-ACT .*o_proj 32 1.0 1.60 0.32 7.76 0.39 14.78 0.12 52.43 0.57

LinEAS .*o_proj 32 1.0 2.10 0.34 8.78 0.56 14.72 0.16 53.27 0.41

DeepSeek-7B

None .*o_proj - - 4.30 0.70 18.62 0.51 8.49 0.00 48.31 0.00

ITI-C .*o_proj 32 0.5 2.83 0.40 15.18 2.00 7.71 0.07 48.47 0.25

Lin-ACT .*o_proj 32 1.0 2.23 0.69 11.08 0.76 8.67 0.03 47.71 0.27

LinEAS .*o_proj 32 1.0 2.30 0.48 8.46 0.54 8.61 0.06 46.35 0.37

Qwen2.5-1.5B

None .*o_proj - - 3.00 0.54 23.09 0.67 13.67 0.00 60.95 0.00

ITI-C .*o_proj 32 0.5 1.87 0.21 18.16 0.62 12.39 0.09 60.88 0.08

Lin-ACT .*o_proj 32 1.0 1.50 0.35 13.88 1.72 13.88 0.16 60.09 0.25

LinEAS .*o_proj 32 1.0 1.50 0.29 12.03 0.71 14.04 0.10 59.53 0.17

Qwen2.5-7B

None .*o_proj - - 3.92 0.59 25.16 0.92 10.67 0.00 74.26 0.00

ITI-C .*o_proj 32 0.5 2.97 0.21 20.68 2.21 9.56 0.02 74.20 0.07

Lin-ACT .*o_proj 32 1.0 2.25 0.13 16.04 0.95 10.77 0.09 73.56 0.08

LinEAS .*o_proj 32 1.0 2.00 0.18 13.58 0.76 12.52 0.07 71.34 0.10

Table 9: LinEAS is more robust to the layer choice. Toxicity mitigation on the RTP and TET
datasets, intervening on .*post_.*_layernorm and .*o_proj layers. We report results at low
(32 sentences) regime, showing in bold the best toxicity result per model. When intervening
on .*post_.*_layernorm, both ITI-C and Lin-ACT show poorer performance, specially for
DeepSeek-7B and Qwen2.5-1.5B, where the toxicity goes even above the original one (in red). For
.*o_proj, ITI-C and Lin-ACT perform better. Overall, LinEAS shows strong robustness to the
layer choice.
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F Order of Magnitude of Interventions Parameters

To inform the scale of regularization terms, we plot descriptive statistics of the values of w and b,
layer by layer.
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Figure 7: Distribution, layer by layer, of recentered scale parameters w and b biases, for a converged
run of LinEAS, intervening on the 28 intervened layers of Gemma2-2B.

Sparsity and Refitting. When γ ≫ 0, several coordinates of ωℓ and bℓ (parameters of Tℓ) will
collapse to 1 or 0, respectively. While this is desired, non-zero parameters typically suffer from
shrinking, where the regularization terms R1,RG dampen the effect of C. A typical solution to
this phenomenon is to perform mpost training steps updating only those non-collapsed parameters,
a practice known as re-fitting in regression [38, 39]. We have not observed improvements when
refitting parameters, and therefore do not use it. We observe that the entries of ωℓ − 1 and bℓ have
similar scales (see Figure 7) and choose to use the same regularization strength.

G Effect of Sparsity on Toxicity Mitigation (extended results)

We complement the results shown in Figure 4, this time measuring the effect of sparsity on toxicity
mitigation when the transport maps are optimized with 1024 (source and target) sentences. The
results and trends discussed in Figure 4 also hold in this setup with more data.
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Figure 8: Sparsity improves utility while mitigating toxicity, also in high data regime. Toxicity
results on Qwen2.5-7B using 1024 sentences, at different levels of sparsity γ that result in different
support sizes (x axis). With a support of 1%-5% we maintain similar toxicity (left, center-left) while
PPLWIK decreases (center-right) and MMLU increases (right). Note that too long optimizations (30k
steps) might harm utility, due to overfitting. Similarly, short optimizations (e.g., 300 steps) and strong
sparsity leads to low conditioning (mild toxicity mitigation).
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H Effect of Sparsity on T2I Generation

We ran a sweep over sparsity coefficients on DMD2 [30] and report it on Table 10. We find that
T2I models are more sensitive than LMs to the sparsity penalty, almost saturating to either full
support or no support outside the range [0.4, 0.8]. We hypothesize the UNet is more sensitive than
the transformer because its activation maps are less redundant due to the changes in dimensionality
as described by Veit et al. [40] and Jastrzebski et al. [41].

Table 10: Effect of the sparsity coefficient on DMD2. Performance metrics (support, IMGScore, and
CLIPScore) at varying levels of sparsity. IMGScore generally increases with higher sparsity, while
CLIPScore shows a slight increase.

sparsity support(%) IMGScore(%)↑ CLIPScore(%)↓
0.0 100±0.0 71.4±5.5 13.1±3.2
0.4 92.7±5.0 84.7±6.0 14.5±2.9
0.5 76.7±14.0 89.5±6.3 15.0±2.9
0.6 51.6±22.1 94.8±3.6 15.5±2.8
0.7 13.8±11.4 98.9±1.1 16.0±2.8
0.8 3.3±3.2 99.6±0.4 16.1±2.8
1.0 0.0±0.0 100±0.0 16.1±2.9

I RLHF Implementation Details

We perform parameter-efficient adaptation of our baseline models with Huggingface’s implementation
of LoRA in their PEFT library and Huggingface’s implementation of the PPO reinforcement learning
algorithm in their TRL library. For each sample size in Table 1, we performed an hyperparameter
search and chose the hyperparameters that yielded best validation toxicity scores at a perplexity close
to LinEAS. Following Ouyang et al. [2], we fine-tune the models using proximal policy optimization
(PPO) [42] on the same N = 32 data and use RTC (Roberta toxicity classifier) as our reward model.
We instantiate the reward model with the Roberta toxicity classifier from Logacheva et al. [26] used
for evaluation (RTC in Table 1); we use the base model without LoRA weights as the reference
model and the LoRA model as the policy; we add an off-the-shelf value head from TRL to the policy
to estimate the value function. We follow the original LoRA implementation and only fine-tune
{k,q,v,o}_proj layers while keeping the MLPs frozen. The summary of hyperparameters can be
found in Table 11.

Hyperparameter Values Best 32 Samples Best 1024 Samples

global_epochs {10, 15, 20} 10 15
ppo_epochs {1, 10, 20, 50} 20 20
learning_rate {10−4, 5 ∗ 10−5, 10−5} 10−5 10−5

batch_size {32, 64, 128} 32 128
mini_batch_size {16, 32, 64} 32 64
lora_rank {2, 4, 8} 2 2

Table 11: List of hyper-parameters used to train PPO for 32 and 1024 samples. Unless otherwise
specified, we use TRL’s defaults. We could not use a mini-batch size greater than 64 due to
memory constraints. We did not use gradient accumulation. We found the learning_rate and
global_epochs to be the most important hyper-parameters. Low learning rate for few epochs leads
to underfitting while high learning rate for many epochs tends to overfit.

J Composition of Interventions

We evaluate in this section the ability to compose two LinEAS maps pre-trained independently on
two concepts. Our goal is to assess whether they can be composed, at the level of each activation,
to induce both concepts. Achieving concept composition in activation steering is an open goal,and
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Figure 9: LinEAS obtains composable maps. We benchmark Lin-ACT and LinEAS for various
regularization strengths γ on a compositional task. We train each method to model distribution shifts
towards a certain concept c taking in a list of 5 concepts. (Top-left) We measure, using LLM as
a judge, whether sentences formulated using that trained shift do contain that concept. We obtain
for each concept a probability, that we then aggregate using violin plots. (Top-middle) We pick
two concepts c1 and c2 randomly, train separately their maps, and compose them. We then measure
the probability of finding c1, and then c2, in the generated content, using the composition of both
maps (in both orders). (Top-right) We now measure the probability of finding simultaneously both
concepts in the generations. As can be seen, the composition of LinEAS maps (learnt separately for 2
concepts) yields an average 15× (right) higher probability of including both 2 concepts in the same
generation, with respect to Lin-ACT, and a 3.1× increase in generating at least one of the concepts
(center). Interestingly, Lin-ACT obtains slightly better probability when using only single-concept
maps (left), but these fail at composition. Additionally, note that sparsity in LinEAS is beneficial for
compositionality, increasing the joint concept presence from 0.16 to 0.19 when using group lasso.

our hypothesis is that sparse and end-to-end LinEAS maps affect minimally the model, facilitating
composisition.

Setup. For each of the concepts day, night, elephant, football and fishing, we generate N = 50
diverse sentences using Gemma2-27B that contain that concept, to form five target (qi). Additionally,
we ask Gemma2-27B to generate 50 diverse sentences about generic situations, forming a single
source distribution p. We then learn five steering maps, from p to each of the qi distributions, using
both Lin-ACT and LinEAS. For LinEAS we test all combinations of λ1 = 0, 1e−4 and λG = 0, 1e−4,
to assess the impact of sparsity. Equipped with these five concept maps, we compose them for
each pair of concepts c1, c2 as follows: Tℓ

c1◦c2(z) := Tℓ
c2
(
Tℓ

c1(z)
)
. Note that Tℓ

c1◦c2 ̸= Tℓ
c2◦c1 .

Following Rodriguez et al. [10], we intervene on Gemma2-2B by generating 200 sentences that
follow the prompt Once upon a time and we measure the presence of the concepts in the generations
in a LLM-as-a-judge manner, querying Qwen2.5-7B-Instruct. More precisely, we query about: the
presence of a concept c in each generated sentence, when using the map trained with concept c; the
presence of a concept c, when using the map trained with that concept and any other; the presence of
both two concepts c1, c2 in the same sentence, yielding p(c1, c2), using either Tℓ

c1◦c2 or Tℓ
c2◦c1 .

Results, comparing interventions. Figure 9.(top) plots the three probabilities described above. In
particular, the right plot shows p(c1, c2 | T c1◦c2), i.e., the probability of observing both concepts
in the same generated sentence, using the composed map. Lin-ACT is able to generate concepts
using single-concept maps (left plot) with average probability of 0.82 vs. 0.73 using LinEAS without
sparsity. We also observe that increasing the sparsity (larger λs) slightly diminishes the presence of
concepts when using single-concept maps. However, we observe a drastically different picture when
using combined maps: (middle) that probability goes from a Lin-ACT average of 0.17 to around 0.52
with LinEAS (3.1× increase). Most importantly, the joint presence of concepts probability (right)
goes from 0.013 for Lin-ACT to 0.19 (15× increase) for LinEAS with group lasso regularization
(both λ1, λG used). See Appendix J for generation examples. These results show that LinEAS learns
maps that are easier to compose than those from Lin-ACT. Indeed, composition of Lin-ACT maps is
very brittle. While LinEAS achieves much stronger compositionality, our results show that there is
still room for improvement on this important problem. We provide qualitative examples in Figure 1 .

Results, prompting as baseline. We prompt the LLM to complete a generation with two concepts
using "Continue the following text, make sure concepts [c1] and [c2] appear in the continuation:
Once upon a time". We observe that the mean probability of:

• generating either of the concepts (middle plot) is 39% with prompting / 52% for LinEAS.
• generating both concepts (right plot) is 17% for prompting / 19% for LinEAS.
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In light of these results, we conclude that prompting is a strong baseline, since it has direct access
to the concepts in textual form at generation time. However, LinEAS achieves better compositions
without such direct access.

J.1 Composition of Interventions: Qualitative Results

We show qualitative results using composed maps as detailed in Appendix J. In Table 12 and
Table 13 we include generations that were marked as containing both concepts using LLM-as-a-judge
(Qwen2.5-7B-Instruct). We compare Lin-ACT and LinEAS (with γ = 1e−4).

Table 12: Generations inducing both concepts Fishing, Elephant. Only the provided 2 generations for
Lin-ACT were marked as containing both concepts using LLM-as-a-judge, out of 200. Conversely, 25
sentences generated by LinEAS contain both concepts. Note the stark difference in quality, LinEAS
achieves high quality generations with composition.

Composition Method Generation

Fishing ◦ Elephant Lin-ACT Once upon a time, the <strong><em>Tuffa as the bull elephant’s foot as she
made a small <strong>putty as the water as she nosed the bank of the river as
the water, as the sun as the <strong>swaying on the water as she stood in the
shallows, the <strong>as the water [...]

Fishing ◦ Elephant Lin-ACT Once upon a time, a large, gray, as it was the bull as it snorted in the water as it
struggled to break the line of the bank as it thrashed in the water, a small stream
of water, as it made a final sprint, as the water, as it snorted noisily, the water as
the river [...]

Fishing ◦ Elephant LinEAS Once upon a time, a man was fishing in the river when he saw a beautiful, pink
baby elephant walking towards him. The elephant was thirsty and the man offered
him a drink of water. The elephant was grateful and splashed some water on the
man’s face.

Fishing ◦ Elephant LinEAS Once upon a time, a huge elephant’s tusk broke the water, his trunk splashing in
the shallow river. "Hup!" he called, his tail swished against the muddy bank. I
watched from the shore, my fishing rod dangling in the water.

Fishing ◦ Elephant LinEAS Once upon a time, the elephant’s trunk broke the water, his massive body rising
and disappearing. The jungle rumbled in the distance, their long tusks scraping
against the mud. It was a young calf, its small, wet back. The fisherman sat on
the bank, his net swinging lazily in the shallow water. A small fish
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Table 13: Generations inducing both concepts Night, Football.

Composition Method Generation

Night ◦ Football Lin-ACT Once upon a time, a little girl’s dream came true. It was the first night of the
2013-14 season and the young forward had just scored her first goal for the first
team. The ball had nestled in the net in the 15th minute of the game, and the
16-year-old couldn’t believe her luck.

Night ◦ Football Lin-ACT Once upon a time, there was a man who was so determined to win the game, he
went out to play in the rain. It was a cold, wet night, and the rain was pouring
down, but the man didn’t let it dampen his spirits. He was out to win the game,
and he knew that he had to make a late, late goal to seal the victory.

Night ◦ Football Lin-ACT Once upon a time, I was a happy camper. I was in the middle of a long drive
through the woods, the sound of the wind whistling through the trees. The air
was cool and the sun was setting, casting a warm glow over the forest. As I drove,
I couldn’t help but feel a sense of excitement. I had just won the race to the finish
line, the ball bouncing off the net, and the ball was heading for the goal.

Night ◦ Football LinEAS Once upon a time, in the night, the lights of the field illuminated the players. The
crowd roared in excitement, their voices echoing off the stands. It was the final
whistle, and the opposing team celebrated, their coach shouting with joy.

Night ◦ Football LinEAS Once upon a time, the “Let’s go Rangers!” could be heard through the dark, cold
night. The home crowd cheered and the ball flew past the goal, sending a shower
of confetti into the air.

Night ◦ Football LinEAS Once upon a time, the sun set on the field of grass. The opposing teams were
locked in a fierce battle, the crowd roaring with excitement. It was the opening
goal, and the referee blew his whistle, signaling the end of the game.

K Group Sparsity Trade-offs

We consider the interventions learned with Gemma2-2B for the concepts day, night, elephant, football,
and fishing, but set both λ1 > 0 and λG > 0, enforcing a sparse group regularizer. Figure 10 shows
how the proportion of intervened units, out of their entire support, is distributed across layers. Since
we are plotting proportions of the support, differences between models in terms of the absolute
number of impacted neurons are not reflected. Rather, the plot allows to grasp how regularization,
and notably group regularization, impacts layer selection. An important finding of this experiment is
that we do observe, for high group regularization regimes, that very specific layers are consistently
selected to induce diverse concepts. Additionally, we posit that this grouping of neurons at certain
layers impacts positively efficient transfer of concepts, notably when investigating compositionality.
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(a) LinEAS Distribution of support across layers (biases). Post Feed-Forward Layer Norms.
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(c) LinEAS Distribution of support across layers (weights). Post Feed-Forward Layer Norms.
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(d) LinEAS Distribution of support across layers (weights). Post Attention Layer Norms.

Figure 10: LinEAS Distribution of support across layers. Each subfigure shows the percentage of
intervened units (out of the total support) across layers for different regularization strengths, averaged
over 5 concepts (with 50% quantile range).

L Similarity of LinEAS Interventions with Human Judgment

We draw a set of 50 concepts, from the MEN dataset [29], a resource of 3,000 word pairs annotated
with human similarity judgments (see also Fedzechkina et al. [43] for a study on LLM interpretability
building on the same resource). With these 50 concepts, we can recover 20 word pairs annotated for
their similarity in the MEN dataset. We train LinEAS interventions for each concept on Gemma2-2B.
We then ask: do we recover similar interventions for similar concepts, and does sparsity help? We can
answer positively to both: highly similar concepts have highly similar interventions; and enforcing
sparsity through our scheme improves that correlation.

To measure this, we compute the average sparse support of interventions (shown as y-axis in Figure
11). We compute the similarity between the intervention vectors for each word pair, focusing on
biases first: sbint = {sim(bc1, bc2)}∀c1 ̸=c2 (on the left in Figure 11). Finally, we consider the human
similarity judgments shum reported in the MEN dataset for each word pair, and compute their
correlation with the intervention similarity, corr(sbint, shum). We do the same for the weights, in
this case through swint (on the right in Figure 11 and ). The numbers in the scatterplots in Figure 11
correspond to the LinEAS regularization parameters λ1, λG.
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Note that sparsity helps improve correlation beyond the non-sparse version of LinEAS (noted as
0;0, with a support of 100% in Figure 11). Overall, LinEAS shows a strong correlation with human
judgment.

Figure 11: Scatter plots showing the correlation of interventions with human similarity judgment. We
show the correlation with bias similarity in the left plot and with weight similarity on the right plot.

In Figure 12 we show the same results in form of matrix, showing that sparsity is indeed helpful to
improve correlation with human alignment.

Figure 12: Heatmaps aggregating scatterplot results above but with a different view. We observe that
highest correlations are obtained with a suitable regularization strength, for biases λ1 = 10−3, λG =
10−4, for weights λ1 = 10−4, λG = 0.

M Additional Experiment: Inducing Truthfulness in LLMs

In this section, we complement and corroborate our insights from the experiments on toxicity
mitigation in Section 4.1 with additional experiments on inducing truthfulness in LLMs, using the
TruthfulQA benchmark [44]. In particular, we investigate how well LinEAS achieves to induce
truthfulness on this benchmark in comparison to Lin-ACT, its strongest activation steering competitor
from Section 4.1.

For LinEAS, we apply the intervention again to the post layernorm layers, while for Lin-ACT, we
apply them to all layernorm layers as this was reported as optimal for Lin-ACT for TruthfulQA
experiments in Rodriguez et al. [10]. We use 2-fold cross-validation on the 817 questions of the
multiple choice part of the benchmark and learn the intervention on the concatenation of training
fold questions concatenated with either incorrect (source) or correct (target) multiple-choice answer
options. We report both MC1 and MC2 of TruthfulQA, and monitor overfitting on the TruthfulQA
task by also evaluating MMLU 5-shot accuracy [28].

The results can be found in Table 14. We see that both methods can successfully induce truthfulness
when presented with enough samples to learn the interventions, increasing the accuracy by up to
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almost 5% (7%) on MC1 (MC2) in the high sample regime when 1024 samples are available. Overall
the highest increases can be achieved with Lin-ACT, but only for the high sample regime. In the
low sample regime, where only 32 samples are available, Lin-ACT tends to fail catastrophically:
either it gets lower accuracies on MC1 and MC2 than even the unintervened model (Qwen2.5-7B,
Qwen2.5-1.5B), or it fails completely on MMLU (Gemma2-2B). LinEAS on the other hand does well
also in this low sample regime, and achieves second best overall performance on the Qwen models
with only 32 samples available to learn interventions.

Model Samples Method MC1 Acc. (%) (↑) MC2 Acc. (%)(↑) MMLU (↑)

Qwen2.5-7B

- None 37.82 0.00 52.14 0.00 74.26 0.00

32 Lin-ACT 32.17 0.66 47.69 0.87 59.22 1.74

LinEAS 40.10 0.37 55.74 0.31 73.88 0.07

1024 Lin-ACT 42.59 0.50 58.92 0.82 73.79 0.14

LinEAS 39.56 0.13 55.20 0.15 73.88 0.02

Qwen2.5-1.5B

- None 30.23 0.00 43.70 0.00 60.95 0.00

32 Lin-ACT 27.22 1.38 42.64 3.17 32.10 1.95

LinEAS 32.26 0.65 46.07 0.63 60.34 0.12

1024 Lin-ACT 32.90 0.36 47.17 0.61 60.17 0.18

LinEAS 31.77 0.11 45.31 0.20 60.41 0.01

Gemma2-2B

- None 21.18 0.00 33.05 0.00 53.03 0.00

32 Lin-ACT 24.94 1.15 40.95 1.29 27.59 1.09

LinEAS 24.21 0.85 38.09 1.14 52.08 0.16

1024 Lin-ACT 25.65 0.53 39.73 0.49 51.40 0.17

LinEAS 23.82 0.19 37.80 0.53 52.37 0.05

Table 14: Results on TruthfulQA. We report results at low data (32 samples to estimate the interven-
tions) and high (1024 samples) regimes. Results are averaged over five random seeds.
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N Additional details and results on text to image generation

N.1 Additional qualitative results with LLM-generated prompts

We extend here the qualitative results mitigating and inducing styles on the 15 concepts described
in Appendix O. Figures 13 to 15 compare Lin-ACT, and LinEAS. Both the diversity and (human)
perceptual quality of the generations is higher with LinEAS. We observe stark differences between
both methods’ generations. Figures 16 to 18 show additional generations with LinEAS with more
granular strengths.

Note that all the generations start from the same prompt, with the concept of interest appended in the
form of textual tags. It is interesting to see that LinEAS recovers an image conforms with the prompt
without the concept at λ = 1. Also, observe how LinEAS’s generations are much more gradual than
Lin-ACT.

We also comment on the surprising results obtained when inverting the LinEAS linear maps. We
observe how the concept increases, and LinEAS shows much higher quality and coherence under this
regime. This points to the fact that LinEAS is better exploiting the underlying structure in activation
space.
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Figure 13: Images generated with Lin-ACT (left panel) and LinEAS (right panel) with the prompt
A grand castle sits atop a hill overlooking a valley. [concept tag] Each row contains a different
conditioning concept to be mitigated by the steering method and each column a different intervention
strength (λ). Each column contains a generation for λ = 1.0, 0.8, 0.6, 0, 0.6, 0.8, 1.0 respectively
and the columns to the left of “original” contain generations using Tℓ

−1(z).

36



Figure 14: Images generated with Lin-ACT (left panel) and LinEAS (right panel) with the prompt A
bustling city street at twilight, lights blurring. [concept tag] Each row contains a different conditioning
concept to be mitigated by the steering method and each column a different intervention strength (λ).
Each column contains a generation for λ = [1.0, ..., 0, ..., 1.0] respectively and the columns to the
left of “original” contain generations using Tℓ

−1(z).
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Figure 15: Images generated with Lin-ACT (left panel) and LinEAS (right panel) with the prompt
A snow-covered forest with sunlight filtering through the trees. [concept tag] Each row contains a
different conditioning concept to be mitigated by the steering method and each column a different
intervention strength (λ). Each column contains a generation for λ = [1.0, ..., 0, ..., 1.0] respectively
and the columns to the left of “original” contain generations using Tℓ

−1(z).
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Figure 16: Images generated with LinEAS with the prompt A starry night sky over a calm lake.
[concept tag] Each column contains images generated with a different steering strength for mitigating
the concept corresponding to the row: λ = [1.0, ..., 0, ..., 1.0]. Images to the left of “original” were
produced using the inverse steering map Tℓ

−1(z).
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Figure 17: Images generated with LinEAS with the prompt A fruiting apple tree on top of a hill.
[concept tag] Each column contains images generated with a different steering strength for mitigating
the concept corresponding to the row: λ = [1.0, ..., 0, ..., 1.0]. Images to the left of “original” were
produced using the inverse steering map Tℓ

−1(z).
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Figure 18: Images generated with LinEAS with the prompt A majestic lion rests on a rocky outcrop.
[concept tag] Each column contains images generated with a different steering strength for mitigating
the concept corresponding to the row: λ = [1.0, ..., 0, ..., 1.0]. Images to the left of “original” were
produced using the inverse steering map Tℓ

−1(z).
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N.2 Detailed Quantitative Results

Here we report detailed per-concept ImgScores and ClipScores for ITI-C, Lin-ACT, and LinEAS both
for the forward ((Tℓ(z)) and inverse ((Tℓ

−1(z)) application of the steering (Table 15). Remarkably,
we find that inverting the steering operation tends to induce the concepts that these methods mitigate
when they are not inverted.

Tℓ(z) Tℓ
−1(z)

Task Intervention ↑ImgScore ↑ClipScore ↑ImgScore ↓ClipScore.

Axolotl
ITI-C 0.13 0.11 0.17 0.02 0.26 0.17 0.27 0.02

Lin-ACT 0.35 0.19 0.15 0.02 0.28 0.18 0.29 0.03

LinEAS 0.56 0.23 0.16 0.04 0.60 0.19 0.23 0.05

Bokeh
ITI-C 0.38 0.19 0.18 0.02 0.33 0.18 0.24 0.02

Lin-ACT 0.55 0.18 0.18 0.02 0.31 0.19 0.24 0.02

LinEAS 0.75 0.14 0.18 0.02 0.62 0.22 0.24 0.02

Book
ITI-C 0.37 0.20 0.19 0.01 0.45 0.19 0.21 0.02

Lin-ACT 0.62 0.16 0.18 0.01 0.49 0.19 0.22 0.01

LinEAS 0.80 0.10 0.17 0.01 0.78 0.14 0.19 0.02

Car
ITI-C 0.18 0.17 0.19 0.02 0.43 0.23 0.24 0.02

Lin-ACT 0.37 0.21 0.18 0.02 0.42 0.23 0.23 0.02

LinEAS 0.78 0.13 0.18 0.03 0.81 0.12 0.19 0.03

Fantasy
ITI-C 0.12 0.14 0.20 0.01 0.35 0.19 0.21 0.02

Lin-ACT 0.49 0.19 0.20 0.02 0.52 0.17 0.23 0.01

LinEAS 0.72 0.16 0.18 0.02 0.73 0.15 0.21 0.02

Fisheye
ITI-C 0.40 0.16 0.20 0.02 0.21 0.13 0.25 0.01

Lin-ACT 0.49 0.18 0.20 0.02 0.26 0.15 0.25 0.02

LinEAS 0.68 0.14 0.20 0.02 0.51 0.16 0.24 0.02

Hourglass
ITI-C 0.16 0.18 0.20 0.02 0.57 0.26 0.30 0.01

Lin-ACT 0.29 0.23 0.17 0.02 0.60 0.27 0.29 0.01

LinEAS 0.54 0.23 0.20 0.04 0.74 0.19 0.27 0.03

Low-poly
ITI-C 0.12 0.12 0.19 0.02 0.50 0.17 0.23 0.02

Lin-ACT 0.39 0.16 0.19 0.02 0.57 0.14 0.24 0.02

LinEAS 0.57 0.19 0.18 0.01 0.67 0.14 0.25 0.02

Lush
ITI-C 0.29 0.21 0.20 0.02 0.44 0.17 0.26 0.01

Lin-ACT 0.50 0.20 0.21 0.02 0.47 0.17 0.25 0.01

LinEAS 0.71 0.15 0.18 0.02 0.75 0.12 0.23 0.02

Macro
ITI-C 0.31 0.16 0.20 0.01 0.18 0.15 0.22 0.02

Lin-ACT 0.52 0.18 0.18 0.02 0.16 0.13 0.22 0.02

LinEAS 0.68 0.17 0.18 0.02 0.54 0.21 0.23 0.02

Robot
ITI-C 0.36 0.20 0.20 0.02 0.32 0.17 0.23 0.02

Lin-ACT 0.56 0.17 0.18 0.02 0.36 0.19 0.25 0.02

LinEAS 0.74 0.15 0.18 0.02 0.71 0.15 0.21 0.02

Tilt-shift
ITI-C 0.11 0.11 0.19 0.02 0.44 0.20 0.29 0.01

Lin-ACT 0.46 0.20 0.21 0.02 0.48 0.21 0.29 0.01

LinEAS 0.65 0.16 0.23 0.03 0.65 0.15 0.28 0.02

Ukiyo-e
ITI-C 0.20 0.12 0.21 0.02 0.47 0.16 0.28 0.02

Lin-ACT 0.29 0.17 0.20 0.02 0.64 0.15 0.29 0.01

LinEAS 0.48 0.18 0.18 0.03 0.73 0.12 0.28 0.01

Underwater
ITI-C 0.33 0.19 0.21 0.02 0.43 0.19 0.26 0.01

Lin-ACT 0.52 0.21 0.18 0.02 0.41 0.21 0.26 0.02

LinEAS 0.59 0.21 0.17 0.02 0.56 0.20 0.26 0.01

Vaporwave
ITI-C 0.12 0.17 0.18 0.01 0.35 0.17 0.26 0.01

Lin-ACT 0.33 0.18 0.15 0.02 0.56 0.14 0.27 0.01

LinEAS 0.65 0.17 0.16 0.02 0.66 0.16 0.26 0.02

Table 15: ImgScore and ClipScore on mitigation for all concepts. Columns 3 and 4 contain results
with the original steering direction (Tℓ(z)), i.e., removing or mitigating the concepts. Columns 5 and
6 contain results applying the inverse steering operation (Tℓ

−1(z)), which effectively induces the
concepts. LinEAS consistently achieves a higher ImgScore for similar ClipScore values.
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O Image Prompts Dataset

In Section 4.4, we evaluate multiple activation steering methods on DMD2 [30]. To probe different
aspects of T2I generation, we query an open-source LLM to generate a new dataset of prompts
covering 3 different conditioning categories and 5 concepts per category. We also include a neutral
category, which is used as the source in concept addition and target for removal. In Table 16, we
show a sample of the dataset, and we include the full dataset in the supplementary material.

Supercategory Concept Example Prompts

Neutral

A beaver in its natural habitat.
A playful dolphin jumping out of water.
A train passing through mountains.
A sturdy table with drawers.

Style

Vaporwave Vaporwave neon cityscape at dusk
Retro-futuristic arcade machine in a vaporwave setting

Lush In a lush, overgrown jungle, two young men sitting on a bench and a lady standing next to them.
Seagulls in flight with a person feeding one, a lighthouse in the distance, surrounded by a lush,
overgrown jungle.

Low-poly A mountain range at sunrise rendered in low poly style with crisp, angular facets.
A futuristic cityscape with neon accents and low poly geometry that creates a digital vibe.

Ukiyo-e A majestic view of Mount Fuji, cherry blossoms in full bloom, woodblock print style, Ukiyo-e, Edo
period aesthetics
A stormy sea with giant waves crashing, a lone boat struggling against the current, traditional Japanese
woodblock print, Ukiyo-e

Fantasy A majestic dragon flying over a glowing crystal mountain range, under a purple sky, fantasy art
A knight in shining armor standing before a towering, ancient forest, mist swirling around, high
fantasy

Objects

Robot A sleek silver robot waves hello in a futuristic city.
A tiny robot with glowing eyes explores a dark cave.

Axolotl A pale pink leucistic axolotl with feathery external gills, smiling serenely in a clear aquarium.
A wild-type axolotl, dark and speckled, camouflaged amongst aquatic plants in its natural habitat.

Book A leather-bound antique book, its gold-leaf title faded, resting on a dusty mahogany desk.
A stack of colorful children’s picture books, vibrant illustrations peeking from the edges.

Car A gleaming cherry-red classic 1950s convertible, chrome shining, cruising down a sun-drenched
coastal highway, ocean on one side.
A rugged, mud-splattered off-road 4x4 vehicle navigating a steep, rocky mountain trail, dust kicking
up from its tires.

Hourglass An antique brass hourglass, its fine golden sand steadily flowing from the top bulb to the bottom,
against a dark, moody background.
A minimalist, modern glass hourglass with vibrant blue sand, casting a sharp shadow on a white
surface.

Perspectives

Macro Macro shot of a ladybug on a vibrant green leaf, its tiny black spots in sharp focus, dewdrop clinging
nearby.
Extreme macro shot of a honeybee’s multifaceted eye, revealing intricate hexagonal patterns.

Fisheye Fisheye lens perspective of a bustling street market, vibrant stalls and crowds curving dramatically
around a central point.
Extreme fisheye shot from the center of a packed concert crowd, hands raised, stage lights creating
circular flares.

Bokeh Portrait of a smiling woman, her face in sharp focus, against a background of beautifully blurred city
lights creating circular bokeh.
A single red rose in perfect focus, its delicate petals detailed, with a creamy green bokeh background
of garden foliage.

Underwater Underwater perspective of a vibrant coral reef teeming with colorful tropical fish, sunlight filtering
through clear turquoise water.
Sunken pirate shipwreck resting on the sandy ocean floor, schools of fish swimming through its
decaying hull, underwater view.

Tilt-shift Tilt-shift perspective of a bustling city intersection, cars and pedestrians appearing like tiny toys,
vibrant colors.
A miniature-effect tilt-shift shot of a freight train winding through a verdant, rolling landscape.

Table 16: Sample of the dataset used for conditioning T2I models. The dataset is divided in 4 different
categories: (1) neutral prompts used as source for concept addition and target for removal, (2) style
prompts, (3) objects, and (4) perspectives.
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