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ABSTRACT

Despite recent successes with neural models for sign language translation (SLT),
translation quality still lags behind spoken languages because of the data scarcity
and modality gap between sign video and text. To address both problems, we
investigate strategies for cross-modality representation sharing for SLT. We pro-
pose SLTUNET, a simple unified neural model designed to support multiple SLT-
related tasks jointly, such as sign-to-gloss, gloss-to-text and sign-to-text transla-
tion. Jointly modeling different tasks endows SLTUNET with the capability to
explore the cross-task relatedness that could help narrow the modality gap. In
addition, this allows us to leverage the knowledge from external resources, such
as abundant parallel data used for spoken-language machine translation (MT). We
show in experiments that SLTUNET achieves competitive and even state-of-the-
art performance on PHOENIX-2014T and CSL-Daily when augmented with MT
data and equipped with a set of optimization techniques. We further use the DGS
Corpus for end-to-end SLT for the first time. It covers broader domains with a
significantly larger vocabulary, which is more challenging and which we consider
to allow for a more realistic assessment of the current state of SLT than the for-
mer two. Still, SLTUNET obtains improved results on the DGS Corpus. Code is
available at https://github.com/bzhangGo/sltunet.

1 INTRODUCTION

The rapid development of neural networks opens the path towards the ambitious goal of universal
translation that allows converting information between any languages regardless of data modalities
(text, audio or video) (Zhang, 2022). While the translation for spoken languages (in text and speech)
has gained wide attention (Aharoni et al., 2019; Inaguma et al., 2019; Jia et al., 2019), the study of
sign language translation (SLT) — a task translating from sign language videos to spoken language
texts — still lags behind despite its significance in facilitating the communication between Deaf com-
munities and spoken language communities (Camgoz et al., 2018; Yin et al., 2021). SLT represents
unique challenges: it demands the capability of video understanding and sequence generation. Un-
like spoken language, sign language is expressed using hand gestures, body movements and facial
expressions, and the visual signal varies greatly across signers, creating a tough modality gap for its
translation into text. The lack of supervised training data further hinders us from developing neural
SLT models of high complexity due to the danger of model overfitting.

Addressing these challenges requires us to develop inductive biases (e.g., novel model architectures
and training objectives) to enable knowledge transfer and induce universal representations for SLT.
In the literature, a promising way is to design unified models that could support and be optimized via
multiple tasks with data from different modalities. Such modeling could offer implicit regularization
and facilitate the cross-task and cross-modality transfer learning that helps narrow the modality gap
and improve model’s generalization, such as unified vision-language modeling (Jaegle et al., 2022;
Bao et al., 2022; Kaiser et al., 2017), unified speech-text modeling (Zheng et al., 2021; Tang et al.,
2022; Bapna et al., 2022), multilingual modeling (Devlin et al., 2019; Zhang et al., 2020; Xue
et al., 2021), and general data modeling (Liang et al., 2022; Baevski et al., 2022). In SLT, different
annotations could be paired into different tasks, including the sign-to-gloss (Sign2Gloss), the sign-
to-text (Sign2Text), the gloss-to-text (Gloss2Text) and the text-to-gloss (Text2Gloss) task. These
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Figure 1: Overview of the proposed SLTUNET and the tasks we explored. SLTUNET adopts separate encoders
to capture modality-specific (visual and textual) characteristics followed by a shared encoder to induce univer-
sal features. It employs an autoregressive decoder shared across tasks for generation. SLTUNET optimizes the
whole model via the maximum likelihood estimation (MLE) objective and optionally the connectionist tem-
poral classification (CTC) objective and uses Transformer as its backbone. It supports multiple tasks, such as
the sign-to-gloss (Sign2Gloss), the sign-to-text (Sign2Text), the gloss-to-text (Gloss2Text), the text-to-gloss
(Text2Gloss) and the machine translation task. We regard the embedding of the corresponding task tag (/2gls]
or [2txt]) as the task information to guide the generation, and append it in front of the input feature sequence
inspired by multilingual NMT. « is a hyperparameter; blocks in colour (except gray) indicate trainable param-
eters; note Text2Gloss hurts SLT in our experiments and is not involved in the final joint objective.

tasks are often modelled separately. Whether unified modeling for them could benefit SLT and what
inductive biases are adequate for SLT are still open questions, which are the exact focus of this study.

In this paper, we propose a simple unified model for SLT, namely SLTUNET, to answer the above
questions. As in Figure 1, SLTUNET follows the encoder-decoder paradigm (Bahdanau et al., 2015)
with Transformer (Vaswani et al., 2017) as its backbone and supports multiple vision/language-to-
language generation tasks. It uses shared modules to encourage knowledge transfer and adopts
separate visual/textual modules to avoid task or modality interference (Liang et al., 2022). Thanks
to its unified schema, SLTUNET allows us to leverage external data resources from other related
tasks, such as machine translation. This partially alleviates the data scarcity issue and opens up the
possibility of exploring relatively larger models for SLT. We further examine and develop a set of
optimization techniques to ensure the trainability of SLTUNET.

We conducted extensive experiments on two popular benchmarks, PHOENIX-2014T (Camgoz et al.,
2018) and CSL-Daily (Zhou et al., 2021) for German and Chinese Sign Language, respectively.
Following previous evaluation protocols (Camgoz et al., 2018), we test SLTUNET on several SLT-
related tasks but with a single trained model. Results show that SLTUNET achieves competitive and
even state-of-the-art performance, surpassing strong baselines adopting pretrained language models.

We note that PHOENIX-2014T and CSL-Daily, while offering a valuable testbed for SLT, are lim-
ited in various aspects. They feature a small number of signers, and are limited in linguistic variety
with a small vocabulary. As a more challenging, larger-scale SLT dataset, we propose to use the
Public DGS Corpus (Hanke et al., 2020a) that covers broader domains and more open vocabularies,
and gives a more realistic view of the current capability of SLT. We also take care in following best
practices regarding preprocessing and evaluation (Miiller et al., 2022). We find that the challeng-
ing nature of the DGS Corpus results in generally low SLT performance, but we still observe some
quality gains with SLTUNET. Our contributions are summarized below:
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* We propose a simple unified model, SLTUNET, for SLT, and show that jointly modeling
multiple SLT-related tasks benefits the translation.

* We propose a set of optimization techniques for SLTUNET aiming at an improved trade-off
between model capacity and regularization, which also helps SLT models for single tasks.

* We use the DGS Corpus and propose a translation protocol for end-to-end SLT, with larger
scale, richer topics and more significant challenges than existing datasets.

e SLTUNET performs competitively to previous methods and yields the new state-of-the-art
performance on CSL-Daily.

2 RELATED WORK

Our study on SLT focuses on transforming a sign language video to a spoken language text. Previous
methods can be roughly classified into two categories: cascading and end-to-end.

The cascading method relies on an intermediate output such as sign glosses (Camgoz et al., 2018)
where each gloss is a manual transcription for a sign to reflect its meaning. Cascading systems break
SLT down into two separate tasks: sign language recognition that transcribes a continuous sign video
to a gloss sequence (Sign2Gloss) and gloss-to-text translation that transforms the glosses to a spo-
ken language text (Gloss2Text). Sign2Gloss requires the modeling of spatial-temporal relations of a
sign video to achieve video understanding, which often demands advanced optimizations and archi-
tectures, such as 2D/3D-convolutional or recurrent encoders (Cui et al., 2017; Koller et al., 2020),
spatial-temporal multi-cue network (Zhou et al., 2022), self-mutual distillation learning (Hao et al.,
2021), and cross-modality augmentation (Pu et al., 2020), etc. By contrast, Gloss2Text resembles
machine translation (MT) but suffers greatly from data scarcity (Yin & Read, 2020). Recent studies
often explore techniques from MT to alleviate this problem, such as data augmentation (Moryossef
et al., 2021; Angelova et al., 2022) and using pretrained language models (De Coster et al., 2021;
Cao et al., 2022). Unfortunately, sign glosses are not equivalent to their corresponding sign video
and often drop information. This imposes a hard performance cap on cascading SLT.

We thus focus on the end-to-end method instead, which converts sign videos directly to natural texts
(Sign2Text). Camgoz et al. (2018) pioneered this direction by framing the task as a neural MT
problem and showed the feasibility of the encoder-decoder paradigm (Bahdanau et al., 2015). Later
studies followed this paradigm and put efforts into improving the sample efficiency and reducing
the vision-language modality gap. Camgoz et al. (2020a) and Zhou et al. (2022) developed multi-
channel neural models to leverage information from different visual cues (such as hand shapes and
facial expressions) to enhance sign language understanding. Li et al. (2020) and Kan et al. (2022)
proposed hierarchical neural models to capture spatio-temporal features at multiple levels of granu-
larity in sign videos. Zhou et al. (2021) explored sign back-translation to construct pseudo-parallel
training data for SLT based on monolingual texts. Jin et al. (2022) investigated the use of external
prior knowledge. Different from the above studies, we focus on unified modeling for SLT with the
goal of transferring knowledge across different tasks and particularly improving Sign2Text.

Our study is closely related to multi-modality transfer learning (Chen et al., 2022), with signifi-
cant differences. Chen et al. (2022) employ Sign2Gloss and Gloss2Text tasks to perform in-domain
pretraining for public large-scale pretrained visual and language models, respectively, followed by
a specific finetuning on Sign2Text. Their method follows the pretraining-finetuning paradigm and
focuses on adapting pretrained models to SLT instead of joint unified modeling and multitask learn-
ing. Note, we train SLTUNET on multiple tasks without relying on pretrained language models and
SLTUNET achieves state-of-the-art results on CSL-Daily. Although using sign glosses to regularize
the neural encoder is popular in Sign2Text (Camgoz et al., 2020b; Zhou et al., 2021; Chen et al.,
2022), the study of jointly modeling multiple SLT-related tasks (>2 tasks) via a single network and
the exploration of MT data to improve Sign2Text have never been investigated before.

3 SLTUNET MODEL

We aim to design a unified model for SLT to improve the translation by utilizing diverse SLT-related
tasks. To this end, we propose SLTUNET which supports general vision/language-to-language gen-
eration tasks. Figure 1a illustrates the overall architecture and Figure 1b summarizes the tasks we
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explored. Note the design of SLTUNET considers the capacity trade-off practice (Zhang et al., 2021;
Liang et al., 2022) with the majority of parameters shared for knowledge transfer while the rest kept
separate to capture modality-specific features.

SLTUNET follows the encoder-decoder framework and models the conditional generation probabil-
ity. In general, it takes as input a task tag tag informing the model which task it’s handling and a
feature sequence X € RIX1*? and then builds a neural network to predict the ground-truth reference
sequence Y = {y1,¥y2," ", Yy}

X9 = Encoder® o Encoder” (X, tag), Y = Decoder (Y',X), (1)

where | - | and d denote the sequence length and model dimension respectively, and Y € RIY1x4 s
the right-shifted input feature sequence used for autoregressive decoding. o represents the chaining
of two modules. X© € RIX1X4and YO € RIYI*? are the encoder and decoder outputs, respectively.

We adopt Transformer (Vaswani et al., 2017) as the backbone for SLTUNET. Decoder(-) indicates

the autoregressive Transformer decoder with Ny, layers; Encoders(~) and Encoder” (+) stand for
shared and modality-specific Transformer encoders with N5, . and NP  layers, respectively. In-

spired by multilingual neural MT (Johnson et al., 2017), we append the embedding of tag in front
of X along the time axis and feed the concatenated sequence to the encoder.

Different tasks have different training objectives and different ways to construct X. Depending on
the input modality to the encoder, SLTUNET have the following two working modes:

1) When the task has no sign video inputs, Encoder” (-) denotes the textual encoder in Figure 1a
and the input feature X is obtained via a word embedding layer. We train SLTUNET via the
following objective:

L(Y|X tag) = LM (Y[Y?), 2)
where X denotes the input of X, LM'E(.) is the maximum likelihood estimation (MLE) objective.

2) Otherwise, Encoder” (+) denotes the visual encoder in Figure 1a and we prepare sign embed-
dings X based on some pretrained visual models. In particular, we adopt the SMKD model (Hao
et al., 2021) and extract its visual features, i.e. the output of 1D temporal convolution, as the sign
features. We further project these features to the model dimension via a linear layer to form X.
Note the parameters of SMKD are frozen when training SLTUNET. The training objective is:

L(Y, Z|X, tag) = LM (VY ?) + aLT(Z]XO), 3)
where £C7¢(-) is the connectionist temporal classification (CTC) objective (Graves et al., 2006)
and Z denotes the gold label sequence for CTC, which is often the gloss sequence in SLT. Differ-
ent from MLE, CTC models the probability distribution by marginalizing over all valid mappings
between its input (X ) and output (Z) sequence. CTC has been widely used in SLT to regularize
the sign encoder (Camgoz et al., 2018; Chen et al., 2022), and we follow this practice and use a
hyperparameter « to balance its effect. Note the CTC part will be dropped after training.

As shown in Figure 1b, SLTUNET offers high flexibility to accommodate different SLT-related tasks.
Also, it allows us to explore knowledge from other tasks by leveraging their abundant training data,
such as machine translation. Formally, given a SLT training sample (sign video, gloss sequence, text
translation) denoted by (V, G, T) and a MT sample (source text, target text) denoted by (S, T"), the
final SLTUNET training objective is formulated below:

LSTONT = £(G, G|V, [2gls]) + L(T, G|V, [2xt]) + L(T|G, [20xt]) + L(T|S, [2ext]),  (4)
Sign2Gloss Sign2Text Gloss2Text Machine Translation

where we adopt a multi-task learning schema and treat different tasks equally for training. Note, we

exclude Text2Gloss in the final objective and only retain the CTC objective for Sign2Text based on

our preliminary experiments, and we mix SLT and MT samples during training based on a prede-

fined ratio. At testing, we examine SLTUNET under two modes — the end-to-end (Sign2Text) and
cascading (Sign2Gloss + Gloss2Text) mode — using a single trained model.

Optimization for SLTUNET Covering multiple tasks entails more training data and reduced risk
of model overfitting. This gives us the opportunity to increase the modeling capacity for SLTUNET
by adjusting the model depth and width. Meanwhile, we still need to control the degree of model
regularization via e.g., dropout rates to achieve the full potential of SLTUNET. All these make the
optimization of SLTUNET challenging and we will examine different methods in the experiments.
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Attribute Statistics
Dataset Lang
Resolution Doc. #Signers Vocab #OOV #Train #Dev #Test
PHOENIX-2014T DGS 210 x 260 X 9 1,085/2,887 30/113 7,096 519 642
CSL-Daily CSL 1920 x 1080 X 10 2,000/2,277 0/37 18,401 1,077 1,176
DGS3-T DGS 640 x 360 Vv 330 8,580/23,363 105/647 60,306 967 1,575

Table 1: Summary of different SLT datasets. Lang: language; DGS: German Sign Language; CSL: Chinese
Sign Language; Doc.: whether samples are organized in the form of document; #Signers: number of individuals
in the entire dataset; Vocab: number of glosses/spoken words in the training set (note we count characters
for Chinese); #0OOV: out-of-vocabulary glosses/words that occur in dev and test sets but not in the train set;
#Train/#Dev/#Test: number of samples in the train/dev/test set, respectively.

4 EVALUATING END-TO-END SYSTEMS ON LARGER-SCALE DATA

Although popular benchmarks PHOENIX-2014T (Camgoz et al., 2018) and CSL-Daily (Zhou et al.,
2021) offer a valuable testbed for SLT, we note that they suffer from limitations such as training data
size, the size of their gloss and spoken language vocabulary, the number of signers, and domains and
topics covered as shown in Table 1. For example, both benchmarks feature a vocabulary of <3000
spoken language words, representing just a fraction of the vocabulary typical in spoken language
MT systems. Thus, existing results may give too rosy an impression of the current capability of SLT
models.

We therefore use the Public DGS Corpus (Hanke et al., 2020b), as a broader-domain and more
realistic testbed. The DGS Corpus is a dataset featuring German Sign Language (DGS), German
and English. It includes data collected from 330 signers from 12 different locations in Germany. The
signers were balanced for gender, age, and region, and the data covers various linguistic domains
(such as story telling and conversations). Whereas previous work has focused on Gloss2Text (Miiller
et al., 2022; Angelova et al., 2022), our focus lies in evaluating and improving the Sign2Text task.

We create a document-level dataset split, which offers room to study contextual modeling in the
future. The split contains 60,306, 967, and 1,575 samples in the train, dev, and test set, respectively
(see Table 1 and Appendix A.2 for details). We will refer to this dataset as DGS3-T for short,
referring to the fact that we use release 3 of the Public DGS Corpus and that we use it for translation
tasks (“T”) rather than vision tasks such as sign language production (Saunders et al., 2022). Similar
to previous SLT datasets, each sample in DGS3-T is a triplet consisting of a sign video, sentence-
level gloss annotation and the German translation (besides other annotations). DGS3-T has a large
vocabulary with 8,580 glosses and 23,363 spoken language words, posing considerable practical
challenges.

5 EXPERIMENTS

5.1 SETUP

Datasets We work on three SLT datasets: PHOENIX-2014T, CSL-Daily, and DGS3-T. PHOENIX-
2014T and DGS3-T focus on German Sign Language, CSL-Daily on Chinese Sign Language. All
three datasets provide triplet samples, each consisting of a sign language video, a sentence-level
gloss annotation and their corresponding text translation. Detailed statistics are listed in Table 1.
We employ MuST-C English-German (En-De, 229K samples) and English-Chinese (En-Zh, 185K
samples) (Di Gangi et al., 2019) as the augmented MT data for PHOENIX-2014T/DGS3-T and
CSL-Daily, respectively. We learn a joint vocabulary for glosses and texts via byte pair encoding
(BPE) (Sennrich et al., 2016). We employ 1K BPE operations when MT data is not used, and
increase it to 8K/8K/10K for PHOENIX-2014T/DGS3-T/CSL-Daily otherwise.

Model Settings We experiment with Transformer (Vaswani et al., 2017) and start our analysis with
a Baseline system optimized on Sign2Text alone with the following configurations: encoder and
decoder layers of N5, . = 2, NP "= 0 and Ny.. = 2 respectively, model dimension of d = 512,

feed-forward dimension of dy; = 2048, attention head of h = 8, and no CTC regularization. We
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ID System #params B @41
1  Baseline 15.8M 22.62
1.1 1 + sign embeddings from (Camgoz et al., 2020b) 15.8M 21.21
Explore CTC Regularization
2 1+CTCloss (a = 0.3) 16.3M 24.04
2 + relative positional encoding (Shaw et al., 2018) (k = 16) 16.3M 23.92
2+4a=0.2 16.3M 23.71
2+4a=04 16.3M 23.79
Explore Multi-task Learning
3 2 + multi-task training (Equation 4 without MT) 16.3M 25.10
3.1 3 + add Text2Gloss for training 16.3M 24.88
3.2 3 + remove Sign2Gloss at training 16.3M 23.96
3.3 3 + remove Gloss2Text at training 16.3M  24.60
4 3+ add MT task (mixing ratio for MT and SLT samples 3:1, vocab size: 1K — 8K) 23.6M 25.23
Explore Modality-Specific Modeling
5 4+ add modality-specific module (NP .. = 1, S 2, Ngee = 3) 34.1M 26.30
5.1 5 + add more modality-specific parameters (Njiw =2, Ngec = 4) 44.6M 2541
5 + change mix ratio from 3:1 to 5:1 34.1M 25.95
5 + apply CTC regularization to the output of visual encoder instead 34.1M 2548
Explore Model Regularization
6 5+ apply BPE dropout (Provilkov et al., 2020) to glosses and texts of rate 0.2 342M 26.04
6 + increase BPE dropout rate to 0.3 342M 25.67
6 + decrease BPE dropout rate to 0.1 342M  26.00
7 6 + stochastic BPE dropout of stochastic rate 0.5 342M 26.50
8 7 + apply random crop and horizontal flip (50%) to sign video frames for augmentation = 34.2M 26.76
8 + L2 weight regularization with a coefficient of 1e™> 342M 26.79
9 8 + change the gain hyperparameter in Xavier initialization to 0.5 342M 27.11
Explore Larger-Capacity Modeling
10 9 + increase model depth (N, = 1, N2, =5, Nygeo = 6) 56.2M 26.56
11 10 + reduce model dimension (d = 256, h = 4) 23.1M  27.38
11 + add more modality-specific parameters (N7, = 2, N2, =4, Ngee = 6) 24.5M 27.13
11 + increase feed-forward layer (dy; = 4096) 36.8M  27.09
12 11 + increase model depth (NE. =1, NS = 7, Ngec = 8) 28.9M 27.39
12 + layer dropout of rate 0.1 289M  26.99
Explore Capacity-Regularization Balance
13 11 + increase stochastic rate to 0.6 23.1M 27.44
14 13 + increase feed-forward layer (dy¢ = 4096) and its dropout rate to 0.5 36.8M 27.56
SLTUNET
15 14 + update sign embeddings with improved SMKD model 36.8M 27.87

Table 2: Ablation study of SLTUNET on Sign2Text on the PHOENIX-2014T dev set. #params: number of

trainable model parameters; B@4: tokenized 4-gram BLEU.

adopt the SMKD model (Hao et al., 2021)' to extract sign embeddings, and pretrain the model on
each benchmark separately on the Sign2Gloss task considering the large difference of sign videos
across benchmarks. More details about datasets and model settings are given in Appendix A.1.

Evaluation We report results mainly on the SLT task. Following previous evaluation protocol (Cam-
goz et al., 2018), we examine our model via the end-to-end (Sign2Text) and cascading (Sign2Gloss
+Gloss2Text) method for SLT; we measure the translation performance using tokenized BLEU with
n-grams from 1 to 4 (B@1-B@4) (Papineni et al., 2002) and Rouge-L F1 (ROUGE) (Lin, 2004),

and we employ Word Error Rate (WER) to evaluate Sign2Gloss.”

'https://github.com/ycmin95/VAC_CSLR

2Metric scripts https: //github.com/neccam/slt/blob/master/signjoey/metrics.py
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We note that the current evaluation practices in SLT do not align with more general MT research,
where B@1-B@3 and ROUGE are often considered inadequate to evaluate translation due to their
relatively inferior correlation with human judgement. We follow the recent recommendations from
MT (Kocmi et al., 2021) and further report detokenized BLEU (sBLEU) and ChrF (Popovi¢, 2015)
offered by SacreBLEU (Post, 2018), while we acknowledge that how to properly evaluate translation
is still an ongoing research topic. Note we always use character-level metrics for Chinese translation.

5.2 RESULTS AND ANALYSIS

We perform our main analyses on PHOENIX-2014T and summarize the results in Table 2.3

High-quality sign embedding and CTC regularization benefit SLT. Replacing sign embeddings
offered by Camgoz et al. (2020b) (24.88 WER/ on dev set) with the one from our retrained SMKD
model (19.80 WER) greatly improves SLT (+1.41 BLEU, 1.1—1). Changing the visual backbone
of SMKD to the 2D Resnet34 pretrained on ImageNet (He et al., 2016) delivers further quality gains
(18.90 WER, +0.31 BLEU, 14—15). Also, adding CTC regularization helps (+1.42 BLEU, 1—2)
resonating with previous findings (Camgoz et al., 2020b). We didn’t see obvious benefit from the
relative positional representation (Shaw et al., 2018).

Unified modeling via multi-task learning improves SLT and different tasks show different im-
pacts. Unified modeling could facilitate knowledge transfer across tasks especially when the tasks
are highly correlated. In Table 2, we observe that modeling Sign2Gloss, Sign2Text and Gloss2Text
together improves SLT (+1.06 BLEU, 2—3). But adding Text2Gloss deteriorates the performance (-
0.22 BLEU, 3—3.1). This might be caused by the large gap between text translation and sign video
that hinders the transfer in encoder. Sign2Gloss benefits the unified modeling more than Gloss2Text
(3.2 vs. 3.3). Leveraging external resources, such as MT data, also helps SLT though the quality
gain is small (+0.13 BLEU, 3—4). We still include MT in SLTUNET since it brings in rich training
data that could alleviate overfitting and allow us to explore higher-capacity models.

Mixing shared parameters with adequate modality-specific parameters improves the trans-
fer. Sharing parameters across modalities/tasks enables knowledge transfer but often at the cost of
cross-modality/task interference partially due to its insufficiency in describing modality/task-specific
characteristics (Wang et al., 2019; Liang et al., 2022). Previous studies also showed the trade-off
between shared parameters and task-specific parameters in a joint network (Zhang et al., 2021). As
shown in Figure 1a, we incorporate modality-specific (visual and textual) encoders to mitigate the
interference, which obtains significant quality boost (+1.07 BLEU, 4—5). Further increasing the
amount of modality-specific parameters helps little, though (-0.89 BLEU, 5—35.1).

Unified modeling benefits from an appropriate degree of model regularization. We next exam-
ine a set of regularization techniques for SLTUNET considering the low-resource condition of SLT.
BPE dropout regularizes neural models by producing diverse subword segmentations of a word with
randomness which greatly improves low-resource MT (Provilkov et al., 2020). Unfortunately, di-
rectly applying it to SLTUNET delivers inferior performance (-0.26 BLEU, 5—6). We then propose
a simple variant, named stochastic BPE dropout, that applies BPE dropout to a random proportion
of samples. We empirically set the stochastic rate to 0.5, i.e., only 50% of samples are handled by
BPE dropout with the rest retained, which slightly improves SLT (+0.2 BLEU, 5—7).

In image processing, a popular way of regularization is to augment the training data by applying
cropping and flipping operations. We follow Hao et al. (2021) and adopt random crop and horizontal
flip (50%) to sign frames, which delivers a gain of 0.26 BLEU (7—8). We find that the traditional
L2 weight decay helps little, but changing the gain parameter in Xavier initialization from 1.0 to 0.5
benefits the translation (+0.35 BLEU, 8—9).

Larger-capacity modeling via tuning model depth/width with careful regularization further
improves translation. Jointly modeling multiple tasks gives us the chance to explore larger-capacity
modeling, but naively increasing model depth (9— 10) hurts the performance greatly (-0.55 BLEU).
We then reduce the model dimension from 512 to 256 which delivers positive gains (+0.82 BLEU,
10—11). On top of it, we explore increasing modality-specific layers or model depth, reducing

3Note we explore the near optimal setting for SLTUNET mainly based on our experience rather than a full-
space grid search. Aggressively optimizing the system might offer better SLT performance but requires massive
computing resources that we can’t afford.
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Task Sign2Gloss Gloss2Text Sign2Text Cascading
Metric WER| sBLEUT ChrFt sBLEUtT ChrFt sBLEUT ChrFf
Single Task 18.36 25.42 50.52 26.56 52.03 24.48 49.49
Single Task w/ MT 19.54 26.69 51.61 27.36 52.72 24.54 49.83
Multi Task 19.24 27.09 52.14 27.87 53.01 25.36 50.75

Table 3: Ablation results of single-task and multi-task training for SLTUNET with the setup of system 15 in
Table 2 on the PHOENIX-2014T dev set. w/ MT: augmenting each SLT task with MT; Cascading: cascading
performance on SLT where we chain a Sign2Gloss model and a Gloss2Text model trained separately for single-
task evaluation. Notice that we feed the reference glosses for the Gloss2Text task.

Dev Test
ROUGE B@4 ROUGE B@l B@2 B@3 B@4

Task & Systems

Cascading: Sign2Gloss +Gloss2Text

SL-Transf. (Camgoz et al., 2020b) - 2211 - 4847 3535 2757 2245
BN-TIN-Transf.+BT (Zhou et al., 2021) 49.53 23.51 49.35 4855 36.13 28.47 2351

STMC-Transf. (Yin & Read, 2020) 46.31 2247 46.77 48.73 36.53 29.03 24.00
ConSLT (Fu et al., 2022) - 2431 - 51.29 38.62 30.79 2548
VL-Transfer (Chen et al., 2022) 50.23 24.63 49.59 4994 3728 29.67 24.60

SLTUNET (sBLEU: 26.00, ChrF: 51.96) 49.61 25.36 49.98 5042 39.24 3141 26.00

End-to-end: Sign2Text

SL-Transf. (Camgoz et al., 2020b) - 2238 - 46.61 3373 26.19 21.32
BN-TIN-Transf.4+BT (Zhou et al., 2021) 50.29 2445 49.54 50.80 37.75 29.72 2432

STMC-T (Zhou et al., 2022) 48.24 24.09 46.65 50.80 37.75 29.72 24.32
PET (Jin et al., 2022) - - 4997 4954 37.19 2930 24.02
VL-Transfer (Chen et al., 2022) 53.10 27.61 52.65 53.97 41.75 33.84 28.39

SLTUNET (sBLEU: 28.47, ChrF: 53.78) 5223 27.87 52.11 5292 41.76 3399 2847

Table 4: Results of different systems on PHOENIX-2014T. B@ [-B@4: tokenized BLEU with n-grams from 1
to 4, respectively. The numbers in bracket for SLTUNET denote sSBLEU and ChrF on the test set. Best results
are highlighted in bold. SLTUNET achieves competitive and even the best performance. Note results from
previous papers might not be directly comparable as they might use different tokenizers and evaluation toolkits.

model dimension, and enlarging feed-forward layers, but don’t get encouraging results. We argue
that adding capacity leads to higher risk of model overfitting thus demanding more regularization.
Based on this, we increase the stochastic BPE dropout rate to 0.6 and the feed-forward layer to 4096.
This results in an improved system (14) with a BLEU gain of 0.18 (11—14).

Putting all together, SLTUNET achieves substantial improvements against Baseline. SLTUNET
achieves a BLEU score of 27.87, surpassing Baseline by 5.25 BLEU, a large margin (1—15). Further
ablation study in Table 3 shows that the benefits from the unified modeling and multi-task learning
are still promising under the optimized setup for SLTUNET. We summarize the final configuration
(i.e. system 15 in Table 2) below: d = 256, h = 4,d;; = 4096, NI . = 1, N5 . =5, Ny = 6,
CTC regularization with o = 0.3, stochastic BPE dropout with dropout rate of 0.2 and stochastic rate
of 0.6, Xavier initialization with gain of 0.5, sign frame augmentation (random crop and horizontal
flip), and objective Equation 4. We adopt this setup for next experiments unless otherwise specified.

SLTUNET achieves (near) the state-of-the-art on two previous benchmarks. We compare the
results of SLTUNET with previous studies on PHOENIX-2014T and CSL-Daily in Table 4 and 5,
respectively. Our model produces competitive and even state-of-the-art results on these benchmarks
regardless of using the end-to-end or the cascading method. In particular, SLTUNET largely out-
performs the previous best system on CSL-Daily by 1.0+ B@4 and 0.8+ ROUGE. We also show
sBLEU and ChrF scores on the test set to facilite future research. Note VL-Transfer adopts large-
scale pretrained language models and includes much more model parameters than SLTUNET (Chen
et al., 2022). This shows the superiority of SLTUNET on sample and parameter efficiency.
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Dev Test
ROUGE B@4 ROUGE B@l B@2 B@3 B@4

Task & Systems

Cascading: Sign2Gloss +Gloss2Text

SL-Transf. (Camgoz et al., 2020b) 44.18 15.94 44.81 47.09 3249 22.61 16.24
BN-TIN-Transf.+BT (Zhou et al., 2021) 48.38 19.53 48.21 50.68 36.00 2620 19.67
VL-Transfer (Chen et al., 2022) 51.35 21.88 5143 5033 3744 28.08 21.46

SLTUNET (sBLEU: 23.76, ChrF: 21.09) 52.89 22.95 53.10 54.39 40.28 30.52 23.76
End-to-end: Sign2Text

SL-Transf. (Camgoz et al., 2020b) 37.06 11.88 36.74 3738 2436 16.55 11.79
BN-TIN-Transf.+BT (Zhou et al., 2021) 49.49 20.80 4931 5142 3726 27.76 21.34
VL-Transfer (Chen et al., 2022) 53.38 24.42 5325 5331 4041 30.87 23.92

SLTUNET (sBLEU: 25.01, ChrF: 21.99) 53.58 23.99 54.08 5498 41.44 31.84 25.01

Table 5: Results of different systems on CSL-Daily. SLTUNET obtains the best test performance.

Dev Test Test
ROUGE B@4 ROUGE B@l B@2 B@3 B@4 sBLEU ChrF

Cascading: Sign2Gloss +Gloss2Text
SL-Transformer 24.38  3.00 2213 2130 8.69 4.13 221 221 19.33

SLTUNET 2640 3.49 23.24 21.00 8.65 425 229 2.28 18.96

End-to-end: Sign2Text
SL-Transformer 2537 3.3 2250 21.53 832 385 2.00 2.00 18.55

SLTUNET 2795 394 24.53 2311 10.05 513 281 2.82  20.56

Task & Systems

Table 6: Results of different systems on DGS3-T. SL-Transformer is a baseline system following SL-
Transf. (Camgoz et al., 2020b) with SMKD sign embeddings. SLTUNET still delivers improved translation.

The DGS Corpus presents unique challenges and SLTUNET still obtains improved perfor-
mance. For this experiment, we mix SLT and MT (MuST-C En-De) samples with a ratio of 1:1.
Table 6 shows that overall neural SLT models deliver poor results on DGS3-T although SLTUNET
still obtains decent quality gains. Based on manual analysis, we find that models suffer greatly from
hallucinations where the generation shows limited correlation with the sign video as in Table 9 in
the Appendix. The challenge is also reflected in the poor Sign2Gloss result, where SMKD produces
a WER| score of 67.00 on the dev set. We argue that the large number of signers and the diverse
contents present serious challenges in video understanding, and the Zipfian distribution of glosses
and words, with most occurring fewer than 10 times in the training data, as shown in Figure 2 in the
Appendix, further increases the learning difficulty.

6 CONCLUSION AND FUTURE WORK

In this paper, we explore unified modeling for SLT with the objective to transfer knowledge across
tasks and particularly to benefit SLT. We present SLTUNET, a simple encoder-decoder model that
supports multiple SLT-related tasks including Sign2Gloss, Gloss2Text, Sign2Text and machine
translation. SLTUNET adopts shared parameters and modality-specific parameters to achieve its
best result under a set of optimization techniques. We show in experiments that SLTUNET achieves
(near) state-of-the-art performance on traditional benchmarks.

We also emphasize that using a corpus such as the DGS Corpus for end-to-end SLT is more meaning-
ful, as it includes more signers, more glosses, richer topics and more training data, presenting unique
challenges to SLT. Our initial results show that previous progress might over-estimate the success of
neural models on SLT. Further research is needed to make SLT practical on broader-domain datasets.

In the future, we are interested in exploring large-scale pretrained models and devising larger and
multilingual datasets for SLT. We are also interested in studying the feasibility of designing unified
models to support translation between any pair of speech, sign and text.
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A APPENDIX

A.1 SETUP

Datasets PHOENIX-2014T is the first publicly available SLT dataset for German Sign Language
(DGS) collected from weather forecasts of the German TV station PHOENIX; CSL-Daily is a Chi-
nese Sign Language (CSL) dataset recording the daily life of the deaf community, covering multiple
topics such as family life, medical care, school life and so on.
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Figure 2: Distribution of gloss frequency, word (in text translation), the number of glosses per sample and the
number of words per sample on the DGS3-T train set.

The MuST-C corpus is extracted from TED talks with rich contents from any discipline and culture
and has nearly no overlap with the above SLT datasets. This makes it an adequate candidate to study
transfer learning for SLT. Note English sentences differ greatly from gloss annotations in grammar,
structure and wording. To narrow the gap and facilitate the transfer, we remove punctuation from all
English source sentences (Moryossef et al., 2021).

We tokenize all unprocessed texts using Moses (Koehn et al., 2007) and also exclude punctuation
from MuST-C German sentences for PHOENIX-2014T.

Model Settings We tie the parameters for the input embedding in the textual encoder and the input
and softmax embedding in the decoder, and the CTC layer predicts over the shared vocabulary. To
avoid overfitting, we apply dropout to the residual connections and feed-forward middle layer of
rate 0.4 and to the attention weights of rate 0.3.

We train all SLT models using Adam (51 = 0.9, 2 = 0.998) (Kingma & Ba, 2015) with Noam
learning rate schedule (Vaswani et al., 2017), a label smoothing of 0.1 and warmup step of 4K. We
employ Xavier initialization to initialize model parameters with a gain of 1.0. We average the best
10 checkpoints based on the dev set result on Sign2Text for the final evaluation. We use beam search
for decoding for all tasks and set the beam size to 8. We tune the length penalty on the dev set.

Evaluation We adopt SacreBLEU (Post, 2018) to report detokenized BLEU (sBLEU) and ChrF.
The signatures for SBLEU and ChrF are BLEU+c.mixed+ #refs.1+s.exp+tok.{13a,zh}+v.1.4.2 and
chrF2+c.mixed+#chars.6+#refs. I +space.False+v.1.4.2, respectively. Note, on PHOENIX-2014T
and CSL-Daily, the value of sSBLEU equals to B@4. This is because texts in PHOENIX-2014T are
well tokenized with punctuation removed while CSL-Daily uses character-level evaluation. In both
cases, tokenization becomes unimportant.

A.2 DETAILS ON THE DGS3-T TRANSLATION PROTOCOL

We used release version 3 of the Public DGS Corpus (Hanke et al., 2020b). We excluded 2 videos
because they have an incorrect framerate of 25 instead of 50. We then randomly assign documents to
either the training, development or test split. The desired number of documents in the development
and test set is 10. No other preprocessing was performed to create the data split.
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train validation test
# signers # signers  # unknown # signers  # unknown
328 20 0 20 2

Table 7: Distribution of signers (individuals) in DGS3-T. # unknown = number of signers that do not appear in
the training data.

14 ——— SLTUNET Loss
Sign2Text MLE Loss
——— Sign2Text CTC Loss
— Sign2Gloss MLE Loss
——— Gloss2Text & MT MLE Loss
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Figure 3: Learning curve of different losses in SLTUNET as a function of training steps on PHOENIX-2014T.

Identity of signers The identity of signers has a great impact on models that extract features di-
rectly from videos. For tasks involving only glosses and text we assume that the identity of the signer
is less important. The overlap of individual signers between training and testing data also matters.
We added additional statistics about signers in Table 7. Since most individuals appear in several
recording sessions, most signers in our validation and test set are “known”. All validation signers
also appear in the training set, 18 out of 20 test signers also appear in the training set. Generalization
to signers not seen in the training set is known to be more challenging, but the DGS Corpus already
has a large number of signers overall (over 300 individuals), improving generalization.

Figure 2 shows distributions of glosses and German words in the data set.

A.3 ADDITIONAL ANALYSIS

The convergence of different tasks in SLTUNET follows a similar trend. Apart from positive
knowledge transfer, sharing parameters across tasks might incur inter-task interference hurting the
convergence of some tasks. Figure 3 shows the learning curve of different tasks in SLTUNET, which
follows a similar trend without obvious convergence disagreement across tasks. This also supports
the unified modeling of different SLT-related tasks.

Aggressive modality-specific modeling hurts SLT performance. Table 8 shows the results of
SLTUNET with either separate encoders or separate decoders. Modeling different modalities with
separate modules leads to worse translation results, resonating with our findings in Table 2. Besides,
sharing parameters over gloss and text on the decoder side facilitates knowledge transfer, while the
transfer between sign video and gloss/text on the encoder side is harder.

A.4 CASE STUDY FOR PHOENIX-2014T, CSL-DAILY AND DGS3-T
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Dev Test Test
ROUGE B@4 ROUGE B@l B@2 B@3 B@4 sBLEU ChrF

Cascading: Sign2Gloss +Gloss2Text
SLTUNET 49.61 25.36 4998 50.42 39.24 3141 26.00 26.00 51.96

+ separate encoder 50.12 25.77 49.17 49.26 3848 30.88 25.59 25.59 50.89
+ separate decoder 48.89 24.68 48.46 4832 3749 2994 2477 2477 50.26

End-to-end: Sign2Text
SLTUNET 52.23 27.87 52.11 5292 41.76 3399 2847 2847 53.78

+ separate encoder 51.62 27.64 51.73 5195 40.86 33.08 27.62 27.62 53.50
+ separate decoder 51.52 27.19 5095 51.03 40.38 3276 27.33 2733 5275

Task & Systems

Table 8: Further ablation results of shared and modality-specific modeling for SLTUNET on PHOENIX-
2014T. Experiments are based on system 15 in Table 2. separate encoder: different encoders for sign video
and gloss/text; separate decoder: different decoders for gloss and text.

Gold Gloss: MEISTENS1 TAUB-GEHORLOS1 BESUCHEN1 WAS1 WUNSCHENI1 ZIEL4 WASI
REEPERBAHNI TYPISCH1
Gold Text: Die meisten Gehorlosen, die mich besuchen, wollen typischerweise auf die Reeperbahn.
(Most deaf people who visit me typically want to go to the Reeperbahn.)
SLTUNET: Meistens haben wir Gehorlose besucht und uns wiinschen, dass es ein Ziel gibt, eine andere
Familie zu bekommen. (Mostly we visited deaf people and wish that there is a goal to get
another family.)

Gold Gloss: ODERI1 $LIST1:20f2 $ALPHA1:S $ALPHA1:M RUND-LANG4 BEKANNT1 $INDEX1
Gold Text: Die St. Michaelis-Kirche ist auch bekannt fiir Hamburg. (St. Michaelis Church is also
Sfamous for Hamburg.)
SLTUNET: Zweitens gibt es den Smartturm, aber das ist nicht berithmt. (Secondly, there is the smart
tower, but that is not famous.)

Gold Gloss: TURMI1 SEHEN1 $PMS TURMI SEHEN-AUF3 REEPERBAHNI SEHR-GUTI
BEKANNT!
Gold Text: Der Fernsehturm und die Reeperbahn, die sind doch bekannt. (The TV tower and the
Reeperbahn are well known.)
SLTUNET: Wenn die Horenden in Amerika mehr sind, dann muss man die Horenden beide beide beide
beiden. (If the hearing in America are more, then you have to have the hearing both both
both both.)

Gold Gloss: MORGEN3 FISCHI MARKT4 BEKANNT1 $INDEX2
Gold Text: Morgens geht man zum Fischmarkt, der ist bekannt. (In the morning you go to the fish
market, it’s well known.)
SLTUNET: Ja, das ist bekannt. (Yes, that is known.)

Table 9: Case study for SLTUNET on DGS3-T. Examples are from the test set. The model only translates a
tiny part of the input and suffers from hallucinations greatly. Sentences in brackets are our English translations.
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Examples from PHOENIX-2014T

Gold Gloss: WOCHENENDE IX MEHR KALT
Gold Text: und zum wochenende wird es dann sogar wieder ein bisschen kilter (and by the weekend it
will even be a bit colder again)
SLTUNET: und am wochenende wird es dann auch wieder Kilter (and on the weekend it will be colder
again)

Gold Gloss: DONNERSTAG NORDWEST REGEN REGION SONNE WOLKE WECHSELHAFT

DANN FREITAG AEHNLICH WETTER
Gold Text: am donnerstag regen in der nordhilfte in der siidhilfte mal sonne mal wolken dhnliches

wetter dann auch am freitag (on thursday rain in the northern half in the southern half
sometimes sunny sometimes cloudy similar weather then also on friday)

SLTUNET: am donnerstag in kiistennihe regen sonst mal sonne mal wolken im wechsel dann am fre-
itag dhnliches wetter (on thursday rain near the coast otherwise sometimes sun sometimes
clouds alternately then similar weather on friday)

Gold Gloss: SONNTAG NAECHSTE NORDWEST WOLKE SONNE WOLKE GEWITTER REGEN
DABEI
Gold Text: am sonntag im nordwesten eine mischung aus sonne und wolken mit einigen zum teil ge-
wittrigen schauern (on sunday in the northwest a mixture of sun and clouds with some partly
thundery showers)
SLTUNET: am sonntag im norden und westen mal sonne mal wolken mit einzelnen gewittern (on sun-
day in the north and west sometimes sunny sometimes cloudy with some thunderstorms)

Gold Gloss: MORGEN DANN HERBST MISCHUNG HOCH NEBEL WOLKE SONNE
Gold Text: auch morgen erwartet uns eine ruhige herbstmischung aus hochnebel wolken und sonne (a
calm autumn mix of high fog clouds and sun awaits us tomorrow as well)
SLTUNET: morgen erwartet uns eine meist triilbe mischung aus nebel wolken und sonne (tomorrow we
can expect a mostly dull mix of fog clouds and sunshine)

Examples from CSL-Daily
Gold Gloss: 1R/ I8/ 58/ A+ 4/ B 1A/ 138

Gold Text: A ]» 5kt 4 B4R INIR 692 (When did you meet Zhang ?)
SLTUNET: R4 B4A%INIRA5K?  (When did you meet Zhang?)

Gold Gloss: 4K/ %/ 18/ @
Gold Text: S R&KB L@ % . (I want to eat noodles today.)
SLTUNET: A KE*L@% . (I want to eat noodles today.)

Gold Gloss: 4K/ X/ B/ #/ 18/ "B/ ¥&

Gold Text: 4~ X&) Z4F %, KB BIRA . (The food is very salty today, and I want to drink.)
SLTUNET: A K& ¥MR&, KRBEGLI . (The food is very salty today and I want to drink.)
Gold Gloss: %/ %/ &/ 'a &

Gold Text: & FRIKNRAANF 4 . (I don’t know that boy.)
SLTUNET: MAF AR KEILTF . (That boy is my son.)

Table 10: Case study for SLTUNET on CSL-Daily and PHOENIX-2014T. Examples are from the test set.
Sentences in bracket are our English translations. While SLTUNET achieves better translations on these two
benchmarks, it still suffers from difficulties with sign video understanding and delivers inadequate outputs.
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