TOWARDS ZERO-SHOT GENERALIZATION IN OFFLINE REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

In this work, we study offline reinforcement learning (RL) with zero-shot generalization property (ZSG), where the agent has access to an offline dataset including experiences from different environments, and the goal of the agent is to train a policy over the training environments which performs well on test environments without further interaction. Existing work showed that classical offline RL fails to generalize to new, unseen environments. We propose pessimistic empirical risk minimization (PERM) and pessimistic proximal policy optimization (PPPO), which leverage pessimistic policy evaluation to guide policy learning and enhance generalization. Theoretically, our framework is capable of finding a near-optimal policy with ZSG. Empirically, our framework demonstrates the ability to enhance the performance of the base offline RL methods. Our result serves as a first step in understanding the foundation of the generalization phenomenon in offline reinforcement learning. Our codes are released at this link.

1 INTRODUCTION

025 026

047

048

051

004

010 011

012

013

014

015

016

017

018

019

021

023

Offline reinforcement learning (RL) has become increasingly significant in modern RL because it 027 eliminates the need for direct interaction between the agent and the environment; instead, it relies solely on learning from an offline training dataset. However, in practical applications, the offline 029 training dataset often originates from a different environment than the one of interest. This discrepancy necessitates evaluating RL agents in a generalization setting, where the training involves a finite 031 number of environments drawn from a specific distribution, and the testing is conducted on a distinct set of environments from the same or different distribution. This scenario is commonly referred to as 033 the zero-shot generalization (ZSG) challenge which has been studied in online RL(Rajeswaran et al., 034 2017; Machado et al., 2018; Justesen et al., 2018; Packer et al., 2019; Zhang et al., 2018a;b), as the agent receives no training data from the environments it is tested on. 035

A number of recent empirical studies (Mediratta et al., 2023; Yang et al., 2023; Mazoure et al., 2022) 037 have recognized this challenge and introduced various offline RL methodologies that are capable of 038 ZSG. Notwithstanding the lack of theoretical backing, these methods are somewhat restrictive; for instance, some are only effective for environments that vary solely in observations (Mazoure et al., 040 2022), while others are confined to the realm of imitation learning (Yang et al., 2023), thus limiting their applicability to a comprehensive framework of offline RL with ZSG capabilities. Concurrently, 041 theoretical advancements (Bose et al., 2024; Ishfaq et al., 2024) in this domain have explored multi-042 task offline RL by focusing on representation learning. These approaches endeavor to derive a 043 low-rank representation of states and actions, which inherently requires additional interactions with 044 the downstream tasks to effectively formulate policies based on these representations. Therefore, we raise a natural question: 046

Can we design provable offline RL with zero-shot generalization ability?

We propose novel offline RL frameworks that achieve ZSG to address this question affirmatively. Our contributions are listed as follows.

We first analyze when existing offline RL approaches fail to generalize without further algorithm modifications. Specifically, we prove that if the offline dataset does not contain context information, then it is impossible for vanilla RL that equips a Markovian policy to achieve a ZSG property. We

054

061 062 063

065

067

068

Table 1: Summary of our algorithms and their suboptimality gaps, where \mathcal{A} is the action space, His the length of episode, n is the number of environments in the offline dataset. Note that in the multi-environment setting, π^* is the near-optimal policy w.r.t. expectation (defined in Section 3). \mathcal{N} is the covering number of the policy space Π w.r.t. distance $d(\pi^1, \pi^2) = \max_{s \in \mathcal{S}, h \in [H]} ||\pi_h^1(\cdot|s) - \pi_h^2(\cdot|s)||_1$. The uncertainty quantifier $\Gamma_{i,h}$ are tailored with the oracle return in the corresponding algorithms (details are in Section 5).

Algorithm	Suboptimality Gap
PERM (our Algo.2)	$\sqrt{\log(\mathcal{N})/n} + n^{-1} \sum_{i=1}^{n} \sum_{h=1}^{H} \mathbb{E}_{i,\pi^*} \left[\Gamma_{i,h}(s_h, a_h) s_1 = x_1 \right]$
PPPO (our Algo.3)	$\sqrt{\log \mathcal{A} H^2/n} + n^{-1} \sum_{i=1}^n \sum_{h=1}^H \mathbb{E}_{i,\pi^*} \left[\Gamma_{i,h}(s_h, a_h) s_1 = x_1 \right]$

show that the offline dataset from a contextual Markov Decision Process (MDP) is not distinguishable from a vanilla MDP which is the average of contextual Markov Decision Process over all contexts. Such an analysis verifies the necessity of new RL methods with ZSG property.

- We propose two meta-algorithms called pessimistic empirical risk minimization (PERM) and pessimistic proximal policy optimization (PPPO) that enable ZSG for offline RL (Jin et al., 2021). In detail, both of our algorithms take a pessimistic policy evaluation (PPE) oracle as its component and output policies based on offline datasets from multiple environments. Our result shows that the sub-optimalities of the output policies are bounded by both the supervised learning error, which is controlled by the number of different environments, and the reinforcement learning error, which is controlled by the coverage of the offline dataset to the optimal policy. Please refer to Table 1 for a summary of our results. To the best of our knowledge, our proposed algorithms are the first offline RL methods that provably enjoy the ZSG property.
- Based on the proposed meta-algorithms, we conduct real-data experiments on widely used Procgen benchmark for RL generalization (Cobbe et al., 2020). Results demonstrate that our algorithm outperforms the vanilla RL baselines like in terms of the average performance across different Procgen games, which suggests the effectiveness of our methods.

Notation We use lower case letters to denote scalars, and use lower and upper case bold face letters to denote vectors and matrices respectively. We denote by [n] the set $\{1, \ldots, n\}$. For a vector $\mathbf{x} \in \mathbb{R}^d$ and a positive semi-definite matrix $\mathbf{\Sigma} \in \mathbb{R}^{d \times d}$, we denote by $\|\mathbf{x}\|_2$ the vector's Euclidean norm and define $\|\mathbf{x}\|_{\mathbf{\Sigma}} = \sqrt{\mathbf{x}^\top \mathbf{\Sigma} \mathbf{x}}$. For two positive sequences $\{a_n\}$ and $\{b_n\}$ with $n = 1, 2, \ldots$, we write $a_n = O(b_n)$ if there exists an absolute constant C > 0 such that $a_n \leq Cb_n$ holds for all $n \geq 1$ and write $a_n = \Omega(b_n)$ if there exists an absolute constant C > 0 such that $a_n \geq Cb_n$ holds for all $n \geq 1$. We use $\widetilde{O}(\cdot)$ to further hide the polylogarithmic factors. We use $(x_i)_{i=1}^n$ to denote sequence $(x_1, ..., x_n)$, and we use $\{x_i\}_{i=1}^n$ to denote the set $\{x_1, ..., x_n\}$. We use $\mathrm{KL}(p\|q)$ to denote the KL distance between distributions p and q, defined as $\int p \log(p/q)$. We use $\mathbb{E}[x], \mathbb{V}[x]$ to denote expectation and variance of a random variable x.

The remaining parts are organized as follows. In Section 2, we discuss related works. In Section 3, we introduce the setting of our work. In Section 4, we analyze when existing offline RL approaches (Jin et al., 2021) fail to generalize without further algorithm modifications. In Section 5, we introduce our proposed meta-algorithms and provide their theoretical guarantees. In Section 6, we present our experiment on real data to empirically validate the theoretical observations in Section 5. Finally, in Section 7, we conclude our work and propose some future directions. Moreover, in Appendix D, we specify our meta-algorithms and analysis to a more concrete linear MDP setting.

098 099

100

2 RELATED WORKS

Offline RL Offline reinforcement learning (RL) (Ernst et al., 2005; Riedmiller, 2005; Lange et al., 2012; Levine et al., 2020) addresses the challenge of learning a policy from a pre-collected dataset without direct online interactions with the environment. A central issue in offline RL is the inadequate dataset coverage, stemming from a lack of exploration (Levine et al., 2020; Liu et al., 2020). A common strategy to address this issue is the application of the pessimism principle, which penalizes the estimated value of under-covered state-action pairs. Numerous studies have integrated pessimism into various single-environment offline RL methodologies. This includes model-based approaches (Rashidinejad et al., 2021; Uehara and Sun, 2021; Jin et al., 2021; Yu et al., 2020; Xie et al., 2021b;

Uehara et al., 2021; Yin et al., 2022), model-free techniques (Kumar et al., 2020; Wu et al., 2021; Bai et al., 2022; Ghasemipour et al., 2022; Yan et al., 2023), and policy-based strategies (Rezaeifar et al., 2022; Xie et al., 2021a; Zanette et al., 2021; Nguyen-Tang and Arora, 2024). (Yarats et al., 2022) has observed that with sufficient offline data diversity and coverage, the need for pessimism to mitigate extrapolation errors and distribution shift might be reduced. To the best of our knowledge, we are the first to theoretically study the generalization ability of offline RL in the contextual MDP setting.

114 Generalization in online RL There are extensive empirical studies on training online RL agents 115 that can generalize to new transition and reward functions (Rajeswaran et al., 2017; Machado et al., 116 2018; Justesen et al., 2018; Packer et al., 2019; Zhang et al., 2018a;b; Nichol et al., 2018; Cobbe 117 et al., 2018; Küttler et al., 2020; Bengio et al., 2020; Bertran et al., 2020; Ghosh et al., 2021; Kirk 118 et al., 2023; Juliani et al., 2019; Ajay et al., 2021; Samvelyan et al., 2021; Frans and Isola, 2022; Albrecht et al., 2022; Ehrenberg et al., 2022; Song et al., 2020; Lyle et al., 2022; Ye et al., 2020; Lee 119 et al., 2020; Jiang et al.). They use techniques including implicit regularization (Song et al., 2020), 120 data augmentation Ye et al. (2020); Lee et al. (2020), uncertainty-driven exploration (Jiang et al.), 121 successor feature (Touati et al., 2023), etc. These works focus mostly on the online RL setting and 122 do not provide theoretical guarantees, thus differing a lot from ours. Moreover, Touati et al. (2023) 123 has studied zero-shot generalization in offline RL, but to unseen reward functions rather than unseen 124 environments. Additional related works that have studied zero-shot RL include Park et al. (2024); 125 Jeen et al. (2023). 126

There are also some recent works aimed at understanding online RL generalization from a theoretical perspective. Wang et al. (2019) examined a specific class of reparameterizable RL problems and derived generalization bounds using Rademacher complexity and the PAC-Bayes bound. Malik et al. (2021) established lower bounds and introduced efficient algorithms that ensure a near-optimal policy for deterministic MDPs. A more recent work Ye et al. (2023) studied how much pre-training can improve online RL test performance under different generalization settings. To the best of our knowledge, no previous work exists on theoretical understanding of the zero-shot generalization of offline RL.

Our paper is also related to recent works studying multi-task learning in reinforcement learning (RL) (Brunskill and Li, 2013; Tirinzoni et al., 2020; Hu et al., 2021; Zhang and Wang, 2021; Lu et al., 2021; Bose et al., 2024; Ishfaq et al., 2024; Zhang et al., 2023), which focus on transferring the knowledge learned from upstream tasks to downstream ones. Additionally, these works typically assume that all tasks share similar transition dynamics or common representations while we do not. Meanwhile, they typically requires the agent to interact with the downstream tasks, which does not fall into the ZSG regime.

142 3 PRELIMINARIES

143 **Contextual MDP** We study *contextual episodic MDPs*, where each MDP \mathcal{M}_c is associated with 144 a context $c \in C$ belongs to the context space C. Furthermore, $\mathcal{M}_c = \{M_{c,h}\}_{h=1}^H$ consists of H145 different individual MDPs, where each individual MDP $M_{c,h} := (S, \mathcal{A}, P_{c,h}(s'|s, a), r_{c,h}(s, a))$. 146 Here S denotes the state space, \mathcal{A} denotes the action space, $P_{c,h}$ denotes the transition function and 147 $r_{c,h}$ denotes the reward function at stage h. We assume the starting state for each \mathcal{M}_c is the same 148 state x_1 . In this work, we interchangeablely use "environment" or MDP to denote the MDP \mathcal{M}_c with 149 different contexts.

Policy and value function We denote the policy π_h at stage h as a mapping $S \to \Delta(A)$, which maps the current state to a distribution over the action space. We use $\pi = {\pi_h}_{h=1}^H$ to denote their collection. Then for any episodic MDP \mathcal{M} , we define the value function for some policy π as

153
$$V_{\mathcal{M},h}^{\pi}(x) := \mathbb{E}[r_h + ... + r_H | s_h = x, a_{h'} \sim \pi_{h'}, r_{h'} \sim r_{h'}(s_{h'}, a_{h'}), s_{h'+1} \sim P_{h'}(\cdot | s_{h'}, a_{h'}), h' \ge h],$$

154
$$Q_{M,h}^{\pi}(x,a) := \mathbb{E}[r_h + \ldots + r_H | s_h = x, a_h = a, r_h \sim r_h(s_h, a_h), s_{h'} \sim P_{h'-1}(\cdot | s_{h'-1}, a_{h'-1}), a_{h'} \sim \pi_{h'},$$
155
$$r_{h'} \sim r_{h'}(s_{h'}, a_{h'}), h' \ge h + 1].$$

For any individual MDP M with reward r and transition dynamic P, we denote its Bellman operator $[\mathbb{B}_M f](x, a)$ as $[\mathbb{B}_M f](s, a) := \mathbb{E}[r_h(s, a) + f(s')|s' \sim P(\cdot|s, a)]$. Then we have the well-known Bellman equation

159
$$V_{\mathcal{M},h}^{\pi}(x) = \langle Q_{\mathcal{M},h}^{\pi}(x,\cdot), \pi_h(\cdot|x) \rangle_{\mathcal{A}}, \ Q_{\mathcal{M},h}^{\pi}(x,a) = [\mathbb{B}_{M_h} V_{\mathcal{M},h+1}^{\pi}](x,a)$$

For simplicity, we use $V_{c,h}^{\pi}, \mathbb{B}_{c,h}$ to denote $V_{\mathcal{M}_c,h}^{\pi}, \mathbb{B}_{M_c,h}$. We also use \mathbb{P}_c to denote $\mathbb{P}_{\mathcal{M}_c}$, the joint distribution of any potential objects under the \mathcal{M}_c episodic MDP. We would like to

find the near-optimal policy π^* w.r.t. expectation, i.e., $\pi^* := \operatorname{argmax}_{\pi \in \Pi} \mathbb{E}_{c \sim C} V_{c,1}^{\pi}(x_c)$, where Π is the set of collection of Markovian policies, and with a little abuse of notation, we use $\mathbb{E}_{c \sim C}$ to denote the expectation taken w.r.t. the i.i.d. sampling of context *c* from the context space. Then our goal is to develop the *generalizable RL* with small *zero-shot generalization gap* (*ZSG gap*), defined as follows:

166 167

194 195 196

197

198

199 200

201 202

203

204

205

206

2

 $\operatorname{SubOpt}(\pi) := \mathbb{E}_{c \sim C} \left[V_{c,1}^{\pi^*}(x_1) \right] - \mathbb{E}_{c \sim C} \left[V_{c,1}^{\pi}(x_1) \right].$

168 **Remark 1** We briefly compare generalizable RL with several related settings. Robust RL (Pinto et al., 169 2017) aims to find the best policy for the worst-case environment, whereas generalizable RL seeks 170 a policy that performs well in the average-case environment. Meta-RL (Beck et al., 2023) enables few-shot adaptation to new environments, either through policy updates (Finn et al., 2017) or via 171 history-dependent policies (Duan et al., 2016). In contrast, generalizable RL primarily focuses on 172 the zero-shot setting. In the general POMDP framework (Cassandra et al., 1994), agents need to 173 maintain history-dependent policies to implicitly infer environment information, while generalizable 174 RL aims to discover a single state-dependent policy that generalizes well across all environments. 175

176 **Remark 2** Ye et al. (2023) showed that in online RL, for a certain family of contextual MDPs, it is 177 inherently impossible to determine an optimal policy for each individual MDP. Given that offline RL 178 poses greater challenges than its online counterpart, this impossibility extends to finding optimal 179 policies for each MDP in a zero-shot offline RL setting as well, which justifies our optimization 180 objective on the ZSG gap. Moreover, Ye et al. (2023) showed that the few-shot RL is able to find the optimal policy for individual MDPs. Clearly, such a setting is stronger than ours, and the additional 181 interactions are often hard to be satisfied in real-world practice. We leave the study of such a setting 182 for future work. 183

Offline RL data collection process The data collection process is as follows. An experimenter i.i.d. samples number n of contextual episodic MDP M_i from the context set (e.g., $i \sim C$). For each episodic MDP M_i , the experimenter collects dataset $\mathcal{D}_i := \{(x_{i,h}^{\tau}, a_{i,h}^{\tau}, r_{i,h}^{\tau})_{h=1}^{H}\}_{\tau=1}^{K}$ which includes K trajectories. Note that the action $a_{i,h}^{\tau}$ selected by the experimenter can be arbitrary, and it does not need to follow a specific behavior policy (Jin et al., 2021). We assume that \mathcal{D}_i is compliant with the episodic MDP \mathcal{M}_i , which is defined as follows.

Definition 3 ((Jin et al., 2021)) For a dataset $\mathcal{D}_i := \{(x_{i,h}^{\tau}, a_{i,h}^{\tau}, r_{i,h}^{\tau})_{h=1}^{H}\}_{\tau=1}^{K}$, let $\mathbb{P}_{\mathcal{D}_i}$ be the joint distribution of the data collecting process. We say \mathcal{D}_i is compliant with episodic MDP \mathcal{M}_i if for any $x' \in \mathcal{S}, r', \tau \in [K], h \in [H]$, we have

$$\mathbb{P}_{\mathcal{D}_i}(r_{i,h}^{\tau} = r', x_{i,h+1}^{\tau} = x' | \{(x_{i,h}^j, a_{i,h}^j)\}_{j=1}^{\tau}, \{(r_{i,h}^j, x_{i,h+1}^j)\}_{j=1}^{\tau-1})$$

= $\mathbb{P}_i(r_{i,h}(s_h, a_h) = r', s_{h+1} = x' | s_h = x_h^{\tau}, a_h = a_h^{\tau}).$

In general, we claim \mathcal{D}_i is compliant with \mathcal{M}_i when the conditional distribution of any tuple of reward and next state in \mathcal{D}_i follows the conditional distribution determined by MDP \mathcal{M}_i .

4 OFFLINE RL WITHOUT CONTEXT INDICATOR INFORMATION

In this section, we show that directly applying existing offline RL algorithms over datasets from multiple environments *without* maintaining their identity information cannot yield a sufficient ZSG property, which is aligned with the existing observation of the poor generalization performance of offline RL (Mediratta et al., 2023).

In detail, given contextual MDPs $\mathcal{M}_1, ..., \mathcal{M}_n$ and their corresponding offline datasets $\mathcal{D}_1, ..., \mathcal{D}_n$, we assume the agent only has the access to the offline dataset $\tilde{\mathcal{D}} = \bigcup_{i=1}^n \mathcal{D}_i$, where $\tilde{\mathcal{D}} = \{(x_{c_{\tau},h}^{\tau}, a_{c_{\tau},h}^{\tau}, r_{c_{\tau},h}^{\tau})_{h=1}^{H}\}_{\tau=1}^{K}$. Here $c_{\tau} \in C$ is the context information of trajectory τ , which is *unknown* to the agent. To explain why offline RL without knowing context information performs worse, we have the following proposition suggesting the offline dataset from multiple MDPs is not distinguishable from an "average MDP" if the offline dataset does not contain context information.

Proposition 4
$$\bar{\mathcal{D}}$$
 is compliant with average MDP $\bar{\mathcal{M}} := \{\bar{M}_h\}_{h=1}^H, \bar{M}_h := (\mathcal{S}, \mathcal{A}, H, \bar{P}_h, \bar{r}_h),$

¹⁵
$$\bar{P}_h(x'|x,a) := \mathbb{E}_{c\sim C} \frac{P_{c,h}(x'|x,a)\mu_{c,h}(x,a)}{\mathbb{E}_{c\sim C}\mu_{c,h}(x,a)}, \ \mathbb{P}(\bar{r}_h = r|x,a) := \mathbb{E}_{c\sim C} \frac{\mathbb{P}(\bar{r}_{c,h} = r|x,a)\mu_{c,h}(x,a)}{\mathbb{E}_{c\sim C}\mu_{c,h}(x,a)},$$

where $\mu_{c,h}(\cdot, \cdot)$ is the data collection distribution of (s, a) at stage h in dataset \mathcal{D}_c .

Proof See Appendix A.1.

Proposition 4 suggests that if no context information is revealed, then the merged offline dataset \overline{D} is equivalent to a dataset collected from the average MDP \overline{M} . Therefore, for any offline RL which outputs a Markovian policy, it converges to the optimal policy $\overline{\pi}^*$ of the average MDP \overline{M} .

In general, $\bar{\pi}^*$ can be very different from π^* when the transition probability functions of each environment are different. For example, consider the 2-context cMDP problem shown in Figure 1, each context consists of one state and three possible actions. The offline dataset distributions μ are marked on the arrows that both of the distributions are following near-optimal policy. By Proposition 4, in average MDP \mathcal{M} the reward of the middle action is deterministically 0, while both upper and lower actions are deterministically 1. As a result, the optimal policy $\bar{\pi}^*$ will only have positive probabilities toward upper and lower actions. This leads to $\mathbb{E}_{c\sim C}[V_{c,1}^{\overline{\pi}^*}(x_1)] = 0$, though we can see that π^* is deterministically choosing the middle action and $\mathbb{E}_{c\sim C}[V_{c,1}^{\pi^*}(x_1)] = 0.5$. This theoretically illustrates that the generalization ability of offline RL algorithms without leveraging context information is weak. In sharp contrast, imitation learning such as behavior cloning (BC) converges to the teacher policy that is independent of the specific MDP. Therefore, offline RL methods such as CQL (Kumar et al., 2020) might enjoy worse generalization performance compared with BC, which aligns with the observation made by Mediratta et al. (2023).

 (x_1)

$$\mu_{v}(a_{1}) = 1 - \epsilon r_{v}(a_{1}) = 1$$

$$\mu_{v}(a_{2}) = \epsilon r_{v}(a_{2}) = 0$$

$$\mu_{w}(a_{3}) = 0 \quad r_{v}(a_{3}) = -1$$

$$\mu_{w}(a_{3}) = 0 \quad r_{w}(a_{2}) = 0$$

$$\mu_{w}(a_{3}) = 0 \quad r_{w}(a_{2}) = 1$$

$$\mu_{w}(a_{3}) = 1 \quad r_{w}(a_{3}) = 1$$

Figure 1: Two Contextual MDPs with the same compliant average MDPs. The discrete contextual space is defined as $C = \{v, w\}$ and both MDPs satisfies $S = \{x_1\}, A = \{a_1, a_2, a_3\}, H = 1$. The data collection distributions μ and rewards r for each action of each context are specified in the graph.

5 PROVABLE OFFLINE RL WITH ZERO-SHOT GENERALIZATION

In this section, we propose offline RL with small ZSG gaps. We show that two popular offline RL approaches, *model-based RL* and *policy optimization-based RL*, can output RL agent with ZSG ability, with a pessimism-style modification that encourages the agent to follow the offline dataset pattern.

5.1 Pessimistic policy evaluation

We consider a meta-algorithm to evaluate any policy π given an offline dataset, which serves as a key component in our proposed offline RL with ZSG. To begin with, we consider a general individual MDP and an oracle \mathbb{O} , which returns us an empirical Bellman operator and an uncertainty quantifier, defined as follows.

Definition 5 (Empirical Bellman operator and uncertainty quantifier, Jin et al. 2021) For any **262** *individual MDP M, a dataset* $\mathcal{D} \subseteq \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times [0,1]$ *that is compliant with M, a test* **263** *function* $V_{\mathcal{D}} \subseteq [0,H]^{\mathcal{S}}$ *and a confidence level* ξ *, we have an oracle* $\mathbb{O}(\mathcal{D}, V_{\mathcal{D}}, \xi)$ *that returns* **264** $(\widehat{\mathbb{B}}V_{\mathcal{D}}(\cdot, \cdot), \Gamma(\cdot, \cdot))$, *a tuple of Empirical Bellman operator and uncertainty quantifier, satisfying*

$$\mathbb{P}_{\mathcal{D}}\Big(\big|(\widehat{\mathbb{B}}V_{\mathcal{D}})(x,a) - (\mathbb{B}_{M}V_{\mathcal{D}})(x,a)\big| \le \Gamma(x,a) \text{ for all } (x,a) \in \mathcal{S} \times \mathcal{A}\Big) \ge 1 - \xi.$$

Remark 6 Here we adapt a test function V_D that can depend on the dataset D itself. Therefore, Γ is a function that depends on both the dataset and the test function class. We do not specify the test function class in this definition, and we will discuss its specific realization in Section D. 270 Algorithm 1 Pessimistic Policy Evaluation (PPE) 271 **Require:** Offline dataset $\{\mathcal{D}_{i,h}\}_{h=1}^{H}$, policy $\pi = (\pi_h)_{h=1}^{H}$, confidence probability $\delta \in (0,1)$. 272 1: Initialize $\widehat{V}_{i,H+1}^{\pi}(\cdot) \leftarrow 0, \forall i \in [n].$ 273 2: for step h = H, H - 1, ..., 1 do 274 Let $(\widehat{\mathbb{B}}_{i,h}\widehat{V}_{i,h+1}^{\pi})(\cdot,\cdot), \Gamma_{i,h}(\cdot,\cdot) \leftarrow \mathbb{O}(\mathcal{D}_{i,h},\widehat{V}_{i,h+1}^{\pi},\delta)$ 3: 275 Set $\widehat{Q}_{i,h}^{\pi}(\cdot,\cdot) \leftarrow \min\{H-h+1, (\widehat{\mathbb{B}}_{i,h}\widehat{V}_{i,h+1}^{\pi})(\cdot,\cdot) - \Gamma_{i,h}(\cdot,\cdot)\}^+$ 4: 276 Set $\widehat{V}_{i,h}^{\pi}(\cdot) \leftarrow \langle \widehat{Q}_{i,h}^{\pi}(\cdot, \cdot), \pi_h(\cdot|\cdot) \rangle_{\mathcal{A}}$ 5: 277 6: end for 278 7: return $\widehat{V}_{i,1}^{\pi}(\cdot), \ldots, \widehat{V}_{i,H}^{\pi}(\cdot), \widehat{Q}_{i,1}^{\pi}(\cdot, \cdot), \ldots, \widehat{Q}_{i,H}^{\pi}(\cdot, \cdot).$ 279

280 281

282

283

284

Remark 7 For general non-linear MDPs, one may employ the bootstrapping technique to estimate uncertainty, in line with the bootstrapped DQN approach developed by (Osband et al., 2016). We note that when the bootstrapping method is straightforward to implement, the assumption of having access to an uncertainty quantifier is reasonable.

285 Based on the oracle \mathbb{O} , we propose our pessimistic policy evaluation (PPE) algorithm as Algorithm 286 1. In general, PPE takes a given policy π as its input, and its goal is to evaluate the V value and Q 287 value $\{(V_{i,h}^{\pi}, Q_{i,h}^{\pi})\}_{h=1}^{H}$ of π on MDP \mathcal{M}_i . Since the agent is not allowed to interact with \mathcal{M}_i , PPE 288 evaluates the value based on the offline dataset $\{\mathcal{D}_{i,h}\}_{h=1}^{H}$. At each stage h, PPE utilizes the oracle \mathbb{O} and obtains the empirical Bellman operator based on $\mathcal{D}_{i,h}$ as well as its uncertainty quantifier, with 289 290 high probability. Then PPE applies the *pessimism principle* to build the estimation of the Q function 291 based on the empirical Bellman operator and the uncertainty quantifier. Such a principle has been 292 widely studied and used in offline policy optimization, such as pessimistic value iteration (PEVI) (Jin 293 et al., 2021). To compare with, we use the pessimism principle in the policy evaluation problem.

Remark 8 In our framework, pessimism can indeed facilitate generalization, rather than hinder it. Specifically, we employ pessimism to construct reliable Q functions for each environment individually. This approach supports broader generalization by maintaining multiple Q-networks separately. By doing so, we ensure that each Q function is robust within its specific environment, while the collective set of Q functions enables the system to generalize across different environments.

295

296

297

5.2 MODEL-BASED APPROACH: PESSIMISTIC EMPIRICAL RISK MINIMIZATION

302 Given PPE, we propose algorithms that have the ZSG ability. We first propose a pessimistic empirical 303 risk minimization (PERM) method which is model-based and conceptually simple. The algorithm 304 details are in Algorithm 2. In detail, for each dataset \mathcal{D}_i drawn from *i*-th environments, PERM 305 builds a model using PPE to evaluate the policy π under the environment \mathcal{M}_i . Then PERM outputs a policy $\pi^{\text{PERM}} \in \Pi$ that maximizes the average pessimistic value, i.e., $1/n \sum_{i=1}^{n} \widehat{V}_{i,1}^{\pi}(x_1)$. Our 306 307 approach is inspired by the classical empirical risk minimization approach adopted in supervised learning, and the Optimistic Model-based ERM proposed in Ye et al. (2023) for online RL. Our 308 setting is more challenging than the previous ones due to the RL setting and the offline setting, 309 where the interaction between the agent and the environment is completely disallowed. Therefore, 310 unlike Ye et al. (2023), which adopted an optimism-style estimation to the policy value, we adopt a 311 pessimism-style estimation to fight the distribution shift issue in the offline setting. 312

Next we propose a theoretical analysis of PERM. Denote $\mathcal{N}_{\epsilon}^{\Pi}$ as the ϵ -covering number of the policy space Π w.r.t. distance $d(\pi^1, \pi^2) = \max_{s \in S, h \in [H]} \|\pi_h^1(\cdot|s) - \pi_h^2(\cdot|s)\|_1$. Then we have the following theorem to provide an upper bound of the suboptimality gap of the output policy π^{PERM} .

Theorem 9 Set the Evaluation subroutine in Algorithm 2 as PPE (Algo.1). Let $\Gamma_{i,h}$ be the uncertainty quantifier returned by \mathbb{O} through the PERM. Then w.p. at least $1 - \delta$, the output π^{PERM} of Algorithm 2 satisfies

$$\operatorname{SubOpt}(\pi^{\operatorname{PERM}}) \leq \underbrace{7\sqrt{\frac{2\log(6\mathcal{N}_{(Hn)^{-1}}^{\Pi}/\delta)}{n}}}_{I_1:\operatorname{Supervised learning (SL) error}} + \underbrace{\frac{2}{n} \sum_{i=1}^{n} \sum_{h=1}^{H} \mathbb{E}_{i,\pi^*} \left[\Gamma_{i,h}(s_h, a_h) | s_1 = x_1\right]}_{I_0:\operatorname{Reinforcement learning (RL) error}},$$
(1)

where \mathbb{E}_{i,π^*} is w.r.t. the trajectory induced by π^* with the transition \mathcal{P}_i in the underlying MDP \mathcal{M}_i .

324 Algorithm 2 Pessimistic Empirical Risk Minimization (PERM) 325 **Require:** Offline dataset $\mathcal{D} = \{\mathcal{D}_i\}_{i=1}^n, \mathcal{D}_i := \{(x_{i,h}^{\tau}, a_{i,h}^{\tau}, r_{i,h}^{\tau})_{h=1}^H\}_{\tau=1}^K$, policy class Π , confidence proba-326 bility $\delta \in (0, 1)$, a pessimistic offline policy evaluation algorithm **Evaluation** as a subroutine. 327 1: Set $\mathcal{D}_{i,h} = \{(x_{i,h}^{\tau}, a_{i,h}^{\tau}, r_{i,h}^{\tau}, x_{i,h+1}^{\tau})\}_{\tau=1}^{K}$ 328 2: $\pi^{\text{PERM}} = \operatorname{argmax}_{\pi \in \Pi} \frac{1}{n} \sum_{i=1}^{n} \widehat{V}_{i,1}^{\pi}(x_1),$ where $[\widehat{V}_{i,1}^{\pi}(\cdot), \cdot, \dots, \cdot] =$ **Evaluation** $\left(\{\mathcal{D}_{i,h}\}_{h=1}^{H}, \pi, \delta/(3nH\mathcal{N}_{(Hn)^{-1}}^{\Pi}))\right)$ 330 3: return π^{PERM} . 331 332 Algorithm 3 Pessimistic Proximal Policy Optimzation (PPPO) 333 **Require:** Offline dataset $\mathcal{D} = \{\mathcal{D}_i\}_{i=1}^n, \mathcal{D}_i := \{(x_{i,h}^{\tau}, a_{i,h}^{\tau}, r_{i,h}^{\tau})_{h=1}^H\}_{\tau=1}^K$, confidence probability $\delta \in (0, 1)$, 334 a pessimistic offline policy evaluation algorithm Evaluation as a subroutine. 335 1: Set $\mathcal{D}_{i,h} = \{(x_{i,h}^{\tau \cdot H+h}, a_{i,h}^{\tau \cdot H+h}, r_{i,h}^{\tau \cdot H+h}, x_{i,h+1}^{\tau \cdot H+h})\}_{\tau=0}^{\lfloor K/H \rfloor - 1}$ 336 337 2: Set $\pi_{0,h}(\cdot|\cdot)$ as uniform distribution over \mathcal{A} and $\widehat{Q}_{0,h}^{\pi_0}(\cdot,\cdot)$ as zero functions. 338 3: for $i = 1, 2, \dots, n$ do Set $\pi_{i,h}(\cdot|\cdot) \propto \pi_{i-1,h}(\cdot|\cdot) \cdot \exp(\alpha \cdot \widehat{Q}_{i-1,h}^{\pi_{i-1}}(\cdot,\cdot))$ 4: 339 Set $[\cdot, \ldots, \cdot, \widehat{Q}_{i,1}^{\pi_i}(\cdot, \cdot), \ldots, \widehat{Q}_{i,H}^{\pi_i}(\cdot, \cdot)] =$ Evaluation $(\{\mathcal{D}_{i,h}\}_{h=1}^H, \pi_i, \delta/(nH))$ 5: 340 6: end for 341 7: return $\pi^{\text{PPPO}} = \text{random}(\pi_1, ..., \pi_n)$ 342 343 344 **Proof** See Appendix B.1. 345 346 347 **Remark 10** The covering number $\mathcal{N}_{(Hn)^{-1}}^{\Pi}$ depends on the policy class Π . Without any specific 348 assumptions, the policy class Π that consists of all the policies $\pi = \{\pi_h\}_{h=1}^H, \pi_h : S \mapsto \Delta(\mathcal{A})$ and 349 the log ϵ -covering number $\log \mathcal{N}_{\epsilon}^{\Pi} = O(|\mathcal{A}||\mathcal{S}|H\log(1+|\mathcal{A}|/\epsilon)).$ 350 351 **Remark 11** The SL error can be easily improved to a distribution-dependent bound $\log N \cdot Var/\sqrt{n}$, 352 where \mathcal{N} is the covering number term denoted in I_1 , $Var = \max_{\pi} \mathbb{V}_{c \sim C} V_{c,1}^{\pi}(x_1)$ is the variance of 353 the context distribution, by using a Bernstein-type concentration inequality in our proof. Therefore, 354 for the singleton environment case where |C| = 1, our suboptimality gap reduces to the one of PEVI 355 in Jin et al. (2021). 356 357 **Remark 12** In real-world settings, as the number of sampled contexts n might become very large, it 358 is unrealistic to manage n models simultaneously in the implementation of PERM algorithm, thus we 359 provide the suboptimality bound in line with Theorem 9 when the offline dataset is merged into m360 contexts such that m < n. See Theorem 22 in Appendix C, as well as the real-data experiment in Section 6. 361 362 Theorem 9 shows that the ZSG gap of PERM is bounded by two terms I_1 and I_2 . I_1 , which we call 363 supervised learning error, depends on the number of environments n in the offline dataset \mathcal{D} and 364 the covering number of the function (policy) class, which is similar to the generalization error in 365 supervised learning. I_2 , which we call it *reinforcement learning error*, is decided by the optimal 366 policy π^* that achieves the best zero-shot generalization performance and the uncertainty quantifier 367 $\Gamma_{i,h}$. In general, I_2 is the "intrinsic uncertainty" denoted by Jin et al. (2021) over n MDPs, which 368 characterizes how well each dataset \mathcal{D}_i covers the optimal policy π^* .

369 370 371

5.3 MODEL-FREE APPROACH: PESSIMISTIC PROXIMAL POLICY OPTIMIZATION

PERM in Algorithm 2 works as a general model-based algorithm framework to enable ZSG for any pessimistic policy evaluation oracle. However, note that in order to implement PERM, one needs to maintain *n* different models or critic functions simultaneously in order to evaluate $\sum_{i=1}^{n} \hat{V}_{i,1}^{\pi}(x_1)$ for any candidate policy π . Note that existing online RL (Ghosh et al., 2021) achieves ZSG by a model-free approach, which only maintains *n* policies rather than models/critic functions. Therefore, one natural question is whether we can design a *model-free* offline RL algorithm also with access only to policies. 378 We propose the pessimistic proximal policy optimization (PPPO) in Algorithm 3 to address this issue. 379 Our algorithm is inspired by the optimistic PPO (Cai et al., 2020) originally proposed for online RL. 380 PPPO also adapts PPE as its subroutine to evaluate any given policy pessimistically. Unlike PERM, 381 PPPO only maintains n policies $\pi_1, ..., \pi_n$, each of them is associated with an MDP \mathcal{M}_n from the 382 offline dataset. In detail, PPPO assigns an order for MDPs in the offline dataset and names them $\mathcal{M}_1, \dots, \mathcal{M}_n$. For *i*-th MDP \mathcal{M}_i , PPPO selects the *i*-th policy π_i as the solution of the proximal policy optimization starting from π_{i-1} , which is 384

$$\pi_i \leftarrow \operatorname*{argmax}_{\pi} V_{i-1,1}^{\pi}(x_1) - \alpha^{-1} \mathbb{E}_{i-1,\pi_{i-1}} [\operatorname{KL}(\pi \| \pi_{i-1}) | s_1 = x_1],$$
(2)

where α is the step size parameter. Since $V_{i-1,1}^{\pi}(x_1)$ is not achievable, we use a linear approximation 388 $L_{i-1}(\pi)$ to replace $V_{i-1,1}^{\pi}(x_1)$, where

$$L_{i-1}(\pi) = V_{i-1,1}^{\pi_{i-1}}(x_1) + \mathbb{E}_{i-1,\pi_{i-1}} \bigg[\sum_{h=1}^{H} \langle \widehat{Q}_{i-1,h}^{\pi_{i-1}}(x_h, \cdot), \pi_h(\cdot | x_h) - \pi_{i-1,h}(\cdot | x_h) \rangle \bigg| s_1 = x_1 \bigg], \quad (3)$$

where $\widehat{Q}_{i-1,h}^{\pi_{i-1}} \approx Q_{i-1,h}^{\pi_{i-1}}$ are the Q values evaluated on the offline dataset for \mathcal{M}_{i-1} . (2) and (3) give us a close-form solution of π in Line 4 in Algorithm 3. Such a routine corresponds to one iteration of PPO (Schulman et al., 2017). Finally, PPPO outputs π^{PPPO} as a random selection from $\pi_1, ..., \pi_n$.

Remark 13 In Algorithm 3, we adopt a data-splitting trick (Jin et al., 2021) to build $\mathcal{D}_{i,h}$, where we only utilize each trajectory once for one data tuple at some stage h. It is only used to avoid the statistical dependency of $\hat{V}_{i,h+1}^{\pi_i}(\cdot)$ and $x_{i,h+1}^{\tau}$ for the purpose of theoretical analysis.

Next we have our theorem to bound the suboptimality of PPPO. 400

Theorem 14 Set the Evaluation subroutine in Algorithm 3 as Algorithm 1. Let $\Gamma_{i,h}$ be the uncertainty quantifier returned by \mathbb{O} through the PPPO. Selecting $\alpha = 1/\sqrt{H^2 n}$. Then selecting $\delta = 1/8$, w.p. at least 2/3, we have

$$SubOpt(\pi^{PPPO}) \le 10 \left(\underbrace{\sqrt{\frac{\log |\mathcal{A}| H^2}{n}}}_{I_1:SL\ error} + \underbrace{\frac{1}{n} \sum_{i=1}^n \sum_{h=1}^h \mathbb{E}_{i,\pi^*} \left[\Gamma_{i,h}(s_h, a_h) | s_1 = x_1 \right]}_{I_2:RL\ error} \right).$$

where \mathbb{E}_{i,π^*} is w.r.t. the trajectory induced by π^* with the transition \mathcal{P}_i in the underlying MDP \mathcal{M}_i .

410 **Proof** See Appendix B.2.

411 412

409

386

387

393

394 395

396 397

398 399

401

402

403

413 414

415

Remark 15 As in Remark 12, we also provide the suboptimality bound in line with Theorem 14 when the offline dataset is merged into m contexts such that m < n. See Theorem 23 in Appendix C.

Theorem 14 shows that the suboptimality gap of PPPO can also be bounded by the SL error I_1 and 416 RL error I_2 . Interestingly, I_1 in Theorem 14 for PPPO only depends on the cardinality of the action 417 space $|\mathcal{A}|$, which is different from the covering number term in I_1 for PERM. Such a difference 418 is due to the fact that PPPO outputs the final policy π^{PPPO} as a random selection from *n* existing policies, while PERM outputs one policy π^{PERM} . Whether these two guarantees can be unified into 419 420 one remains an open question. 421

Provable generalization for offline linear MDPs In Appendix D, we provide a detailed instantiation 422 of our proposed algorithms for linear MDPs, which leverage known feature mappings to model both 423 the transition dynamics and reward functions. Specifically, we adapt our meta-algorithms (Algorithm 424 2 and Algorithm 3) by incorporating a policy evaluation subroutine (Algorithm 5) tailored for linear 425 MDPs. We establish theoretical guarantees on the suboptimality of the output policies, demonstrating 426 that the algorithms achieve provable generalization for offline linear MDPs. 427

428 429

430

EXPERIMENT ON REAL DATA 6

In this section, we run experiments on real-world data to validate the effectiveness of our proposed 431 methods. The main idea of our proposed algorithms (Algorithm 2 and Algorithm 3) is to leverage Table 2: Test performance of IQL-4V compared to the BC and IQL baselines, as reported by Mediratta et al. (2023), on the 1M Expert Dataset and the 1M Mixed Expert-Suboptimal Dataset. For IQL-4V, the mean and standard deviation of returns are computed over five random seeds. Mean and median of the min-max normalized returns for each algorithm is reported with uncertainty measures. Additionally, following the methodology proposed by Agarwal et al. (2021), we report the Interquartile Mean (IQM) with confidence intervals, calculated using min-max normalized returns across cumulative runs of 16 games for each algorithm.

		0	0			
Procgen game	BC(Expert)	IQL(Expert)	IQL-4V(Expert)	BC(Mixed)	IQL(Mixed)	IQL-4V(Mixed)
bigfish	4.38 ± 0.38	4.85 ± 0.52	2.72 ± 1.23	2.89 ± 0.15	4.14 ± 0.54	5.46 ± 3.03
bossfight	5.87 ± 0.26	7.62 ± 0.33	5.74 ± 1.05	5.13 ± 0.14	7.12 ± 0.43	6.8 ± 0.26
caveflyer	4.92 ± 0.28	3.43 ± 0.22	3.52 ± 1.46	4.05 ± 0.24	1.66 ± 0.67	3.2 ± 1.33
chaser	4.62 ± 0.36	3.17 ± 0.17	4.35 ± 0.55	3.43 ± 0.22	1.41 ± 0.6	1.32 ± 0.22
climber	4.91 ± 0.22	2.33 ± 0.33	3.92 ± 1.41	4.64 ± 0.29	0.57 ± 0.35	1.5 ± 0.80
miner	7.85 ± 0.32	1.66 ± 0.17	6.36 ± 1.85	6.56 ± 0.09	0.8 ± 0.1	1.64 ± 0.86
coinrun	8.26 ± 0.19	7.74 ± 0.21	9.8 ± 0.40	7.77 ± 0.24	6.0 ± 0.36	7.2 ± 1.17
dodgeball	0.98 ± 0.07	0.93 ± 0.12	1.0 ± 0.75	1.19 ± 0.14	0.87 ± 0.11	1.32 ± 0.48
fruitbot	21.18 ± 0.62	25.22 ± 0.94	22.24 ± 3.56	18.84 ± 0.7	22.0 ± 0.43	23.56 ± 4.43
heist	2.42 ± 0.14	0.58 ± 0.26	4.4 ± 0.80	2.37 ± 0.3	0.27 ± 0.03	0.6 ± 0.49
jumper	5.68 ± 0.18	4.06 ± 0.21	6.2 ± 1.17	4.63 ± 0.47	3.0 ± 0.5	4.2 ± 0.98
leaper	2.84 ± 0.07	2.44 ± 0.21	3.0 ± 1.41	2.6 ± 0.25	2.27 ± 0.53	3.6 ± 0.80
maze	4.46 ± 0.16	2.68 ± 0.31	5.0 ± 1.26	4.77 ± 0.32	2.1 ± 0.15	3.0 ± 0.63
ninja	5.88 ± 0.3	4.38 ± 0.12	6.0 ± 1.10	5.23 ± 0.12	3.23 ± 0.81	5.0 ± 1.41
plunder	4.94 ± 0.13	4.03 ± 0.14	5.38 ± 0.94	4.59 ± 0.16	3.86 ± 0.25	3.58 ± 0.83
starpilot	17.69 ± 0.59	22.88 ± 0.59	13.88 ± 3.35	17.93 ± 0.32	19.64 ± 1.79	11.72 ± 4.31
Mean	0.240 ± 0.06	0.114 ± 0.08	0.263 ± 0.07	0.189 ± 0.06	0.010 ± 0.08	0.096 ± 0.07
Median	0.261 ± 0.08	0.065 ± 0.10	0.183 ± 0.09	0.234 ± 0.07	-0.031 ± 0.10	0.076 ± 0.09
IQM	0.23 ± 0.04	0.08 ± 0.03	0.21 ± 0.05	0.17 ± 0.04	-0.01 ± 0.02	0.07 ± 0.02

Figure 2: Performance gaps between IQL-4V and IQL-1V, measured by the mean of **min-max nor-malized** test returns, on the Procgen **1M Expert Dataset** (**left**) and **1M Mixed Expert-Suboptimal Dataset** (**right**), evaluated across 5 random seeds. The games are ranked based on IQL's performance, starting from the lowest performance (left) to the highest performance (right).

multiple environments individually, unlike previous approaches which essentially treat different environments as the same one. Therefore, we will mainly verify how the different number of contexts affect the performance of the baseline algorithm, under our model-based framework PERM (Algorithm 2).

Algorithm details For conceptual simplicity, we adopt Implicit Q-Learning (IQL) Kostrikov et al. (2021), while simultaneously leveraging *n* critic value networks for different environments. Note that this isn't exactly the same optimization objective as we proposed in Algorithm 2, but nonetheless a first-order approximation of what could be achieved with PERM framework. Moreover, in the case of n = 1, our algorithm is equivalent to the original IQL. In our implementation of **IQL**-n**V**, we adapt the original implementation of IQL in Kostrikov et al. (2021) to the one with several value networks V_{ψ_i} , the expectile optimization objectives $L_V(\psi_i)$ are unchanged, while we use multiple MSE losses for Q network, with one for each V_{ψ_i} , that is $L_Q^i(\theta) = \mathbb{E}_{(s,a,s')\sim \mathcal{D}_i}[(r(s,a) + \gamma V_{\psi_i}(s') - Q_{\theta}(s,a))^2]$.

Environments We conduct an extensive evaluation over the widely used Procgen benchmark for RL generalization Cobbe et al. (2020). For the offline setting of Procgen, we adopt the offline dataset

486

Table 3: The IQL-nV ablation study results conducted on Miner, with 1M expert dataset tested. 487 nV-SP represents IQL-nV with a stochastic policy variant, where 1V-DP represents the default IQL 488 setup, recorded in Mediratta et al. (2023). Mean and standard deviation of test performance over 5 489 random seeds are reported. 490

Procgen game	8V-SP(Expert)	4V-SP(Expert)	2V-SP(Expert)	1V-SP(Expert)	1V-DP(Expert)
miner	7.88 ± 0.71	6.36 ± 1.85	6.85 ± 0.92	5.6 ± 1.89	1.66 ± 0.17

492 493

491

494

497

collected from Mediratta et al. (2023), which includes the Procgen expert dataset with 1M transitions 495 and the **mixed expert-suboptimal dataset** with 1M transitions. Following Mediratta et al. (2023), 496 for each game in Procgen, the data is collected from 200 different Procgen levels for offline training, validate the hyperparameters online to perform model selection on the another 50 unseen levels, and 498 evaluate the agents' online performance on the remaining 100 unseen levels. 499

500 As the offline dataset provided in Mediratta et al. (2023), there are 200 sampled training environments in each game, thus for practical reason we regard every 50 of them as one environment and only 501 leverage 4 different value networks in our IQL-4V implementation. 502

503 Experiment results We report the mean and standard deviation of returns of each algorithm and 504 each task in Table 2. To summarize results over all tasks, for each algorithm, we also report the 505 mean and median of the min-max normalized returns of each game, with r_{min} and r_{max} according 506 to Cobbe et al. (2020). From Table 2 we found that IQL-nV's min-max normalized returns across the set of Procgen games outperforms the baseline IQL, which suggests the effectiveness of our proposed 507 approach. 508

509 From another perspective, we list the difference between IQL-4V and IQL w.r.t. to different games, 510 and we arrange the order of games based on the performance of IQL. The results for both expert and 511 mixed expert-suboptimal datasets are recorded in Figure 2. From Figure 2, we can see that IQL-4V 512 improves IQL mainly from the games where IQL performs bad in the sense of min-max normalized returns. This is aligned with the idea we improve the ZSG performance of offline RL, since our 513 algorithm aims to improve the average performance over all games, rather than only a subset of 514 them.¹ 515

516 Ablation study In our ablation study, we aim to verify the effectiveness of multiple value networks 517 and the stochastic policy on the Procgen Miner game with the 1M expert dataset. We test IQL-nV518 with n = 1, 2, 4, 8 with stochastic policy. The results are shown in Table 3. We can see that by increasing the number of value networks, the performance of IQL also increases. Meanwhile, it is 519 worth noting by using the stochastic policy also helps the performance. We believe it is because that 520 the 1M Expert Dataset of Procgen games enjoys a higher diversity w.r.t. to the action selection, which 521 causes the performance gain brought by the use of stochastic policy. In Appendix E.1, we present an 522 additional ablation study to examine the effect of scaling the critic network parameters in IQL-1V 523 and compare the results with IQL-4V. 524

525 526

527

531

CONCLUSION AND FUTURE WORK 7

528 In this work, we study the zero-shot generalization (ZSG) performance of offline reinforcement 529 learning (RL). We propose two offline RL frameworks, pessimistic empirical risk minimization and 530 pessimistic proximal policy optimization, and show that both of them can find the optimal policy with ZSG ability. We also show that such a generalization property does not hold for offline RL 532 without knowing the context information of the environment, which demonstrates the necessity of 533 our proposed new algorithms. Currently, our theorems and algorithm design depend on the i.i.d. 534 assumption of the environment selection. How to relax such an assumption remains an interesting 535 future direction.

- 536
- 537

⁵³⁸ ¹It is worth noting that our approach still lags behind BC, which is aligned with the observation made by Mediratta et al. (2023). We aim to develop offline RL with good ZSG performance that outperforms both BC 539 and offline RL in the future work.

540	REFERENCES
541	

542 543 544	Alekh Agarwal, Yuda Song, Wen Sun, Kaiwen Wang, Mengdi Wang, and Xuezhou Zhang. Prov- able benefits of representational transfer in reinforcement learning. In <i>The Thirty Sixth Annual</i> <i>Conference on Learning Theory</i> , pages 2114–2187. PMLR, 2023.
545 546 547	Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep reinforcement learning at the edge of the statistical precipice. <i>Advances in neural information</i> <i>processing systems</i> , 34:29304–29320, 2021.
548 549 550	Anurag Ajay, Ge Yang, Ofir Nachum, and Pulkit Agrawal. Understanding the generalization gap in visual reinforcement learning. 2021.
551 552 553 554	Joshua Albrecht, Abraham Fetterman, Bryden Fogelman, Ellie Kitanidis, Bartosz Wróblewski, Nicole Seo, Michael Rosenthal, Maksis Knutins, Zack Polizzi, James Simon, et al. Avalon: A benchmark for rl generalization using procedurally generated worlds. <i>Advances in Neural</i> <i>Information Processing Systems</i> , 35:12813–12825, 2022.
555 556 557 558	Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. <i>arXiv</i> preprint arXiv:2202.11566, 2022.
559 560	Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon Whiteson. A survey of meta-reinforcement learning. <i>arXiv preprint arXiv:2301.08028</i> , 2023.
561 562 563	Emmanuel Bengio, Joelle Pineau, and Doina Precup. Interference and generalization in temporal difference learning. <i>International Conference On Machine Learning</i> , 2020.
564 565 566	Martin Bertran, Natalia Martinez, Mariano Phielipp, and Guillermo Sapiro. Instance-based gen- eralization in reinforcement learning. <i>Advances in Neural Information Processing Systems</i> , 33: 11333–11344, 2020.
567 568 569	Avinandan Bose, Simon Shaolei Du, and Maryam Fazel. Offline multi-task transfer rl with represen- tational penalization. <i>arXiv preprint arXiv:2402.12570</i> , 2024.
570 571	Emma Brunskill and Lihong Li. Sample complexity of multi-task reinforcement learning. <i>arXiv</i> preprint arXiv:1309.6821, 2013.
572 573 574	Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimiza- tion. In <i>International Conference on Machine Learning</i> , pages 1283–1294. PMLR, 2020.
575 576	Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. Acting optimally in partially observable stochastic domains. In <i>Aaai</i> , volume 94, pages 1023–1028, 1994.
577 578 579	Karl Cobbe, Oleg Klimov, Christopher Hesse, Taehoon Kim, and J. Schulman. Quantifying general- ization in reinforcement learning. <i>International Conference On Machine Learning</i> , 2018.
580 581 582	Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to benchmark reinforcement learning. In <i>International conference on machine learning</i> , pages 2048–2056. PMLR, 2020.
583 584 585	Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast reinforcement learning via slow reinforcement learning. <i>arXiv preprint arXiv:1611.02779</i> , 2016.
586 587 588	Yaqi Duan, Zeyu Jia, and Mengdi Wang. Minimax-optimal off-policy evaluation with linear function approximation. In <i>International Conference on Machine Learning</i> , pages 2701–2709. PMLR, 2020.
589 590 591 592	Andy Ehrenberg, Robert Kirk, Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. A study of off-policy learning in environments with procedural content generation. In <i>ICLR Workshop on Agent Learning in Open-Endedness</i> , 2022.
593	Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.

Journal of Machine Learning Research, 6, 2005.

594 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of 595 deep networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017. 596 Kevin Frans and Phillip Isola. Powderworld: A platform for understanding generalization via rich 597 task distributions. arXiv preprint arXiv:2211.13051, 2022. 598 Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating 600 uncertainties for offline rl through ensembles, and why their independence matters. Advances in 601 Neural Information Processing Systems, 35:18267–18281, 2022. 602 Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why 603 generalization in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in 604 neural information processing systems, 34:25502-25515, 2021. 605 606 Jiachen Hu, Xiaoyu Chen, Chi Jin, Lihong Li, and Liwei Wang. Near-optimal representation learning for linear bandits and linear rl. In International Conference on Machine Learning, pages 4349–4358. 607 PMLR, 2021. 608 609 Haque Ishfaq, Thanh Nguyen-Tang, Songtao Feng, Raman Arora, Mengdi Wang, Ming Yin, and 610 Doina Precup. Offline multitask representation learning for reinforcement learning. arXiv preprint 611 arXiv:2403.11574, 2024. 612 Scott Jeen, Tom Bewley, and Jonathan M Cullen. Conservative world models. arXiv preprint 613 arXiv:2309.15178, 2023. 614 615 Yiding Jiang, J Zico Kolter, and Roberta Raileanu. Uncertainty-driven exploration for generalization 616 in reinforcement learning. In Deep Reinforcement Learning Workshop NeurIPS 2022. 617 Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement 618 learning with linear function approximation. arXiv preprint arXiv:1907.05388, 2019. 619 620 Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In 621 International Conference on Machine Learning, pages 5084–5096. PMLR, 2021. 622 Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng, Hunter Henry, 623 Adam Crespi, Julian Togelius, and Danny Lange. Obstacle Tower: A Generalization Challenge in 624 Vision, Control, and Planning. In *IJCAI*, 2019. 625 Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian Togelius, and 626 Sebastian Risi. Illuminating generalization in deep reinforcement learning through procedural 627 level generation. arXiv: Learning, 2018. 628 629 Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot 630 generalisation in deep reinforcement learning. Journal of Artificial Intelligence Research, 76: 631 201-264, 2023. 632 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit 633 q-learning. arXiv preprint arXiv:2110.06169, 2021. 634 635 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline 636 reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020. 637 Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward 638 Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. In Proceedings of the 639 Conference on Neural Information Processing Systems (NeurIPS), 2020. 640 641 Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement learning: State-of-the-art, pages 45-73. Springer, 2012. 642 643 Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple technique 644 for generalization in deep reinforcement learning. In International Conference on Learning 645 Representations. https://openreview.net/forum, 2020. 646 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, 647 review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

648 649 650	Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch off-policy reinforcement learning without great exploration. <i>Advances in neural information processing systems</i> , 33:1264–1274, 2020.
652 653	Rui Lu, Gao Huang, and Simon S Du. On the power of multitask representation learning in linear mdp. <i>arXiv preprint arXiv:2106.08053</i> , 2021.
654 655 656	Clare Lyle, Mark Rowland, Will Dabney, Marta Kwiatkowska, and Yarin Gal. Learning dynamics and generalization in deep reinforcement learning. In <i>International Conference on Machine Learning</i> , pages 14560–14581. PMLR, 2022.
657 658 659	Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and Michael H. Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for general agents. In <i>IJCAI</i> , 2018.
661 662	Dhruv Malik, Yuanzhi Li, and Pradeep Ravikumar. When is generalizable reinforcement learning tractable? <i>Advances in Neural Information Processing Systems</i> , 34, 2021.
663 664 665	Bogdan Mazoure, Ilya Kostrikov, Ofir Nachum, and Jonathan J Tompson. Improving zero-shot generalization in offline reinforcement learning using generalized similarity functions. <i>Advances in Neural Information Processing Systems</i> , 35:25088–25101, 2022.
666 667 668	Ishita Mediratta, Qingfei You, Minqi Jiang, and Roberta Raileanu. The generalization gap in offline reinforcement learning. <i>arXiv preprint arXiv:2312.05742</i> , 2023.
669 670 671	Thanh Nguyen-Tang and Raman Arora. On sample-efficient offline reinforcement learning: Data diversity, posterior sampling and beyond. <i>Advances in Neural Information Processing Systems</i> , 36, 2024.
672 673 674	Alex Nichol, V. Pfau, Christopher Hesse, O. Klimov, and John Schulman. Gotta learn fast: A new benchmark for generalization in rl. <i>ArXiv</i> , abs/1804.03720, 2018.
675 676	Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped dqn. <i>Advances in neural information processing systems</i> , 29, 2016.
677 678	Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song. Assessing generalization in deep reinforcement learning. <i>ICLR</i> , 2019.
680 681	Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations. <i>arXiv preprint arXiv:2402.15567</i> , 2024.
682 683 684	Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial rein- forcement learning. In <i>International conference on machine learning</i> , pages 2817–2826. PMLR, 2017.
685 686 687 688 689	 Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham M. Kakade. Towards generalization and simplicity in continuous control. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 6550–6561, 2017.
690 691 692	Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein- forcement learning and imitation learning: A tale of pessimism. <i>Advances in Neural Information</i> <i>Processing Systems</i> , 34:11702–11716, 2021.
693 694 695	Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier Pietquin, and Matthieu Geist. Offline reinforcement learning as anti-exploration. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 36, pages 8106–8114, 2022.
696 697 698 699	Martin Riedmiller. Neural fitted q iteration-first experiences with a data efficient neural reinforcement learning method. In <i>Machine Learning: ECML 2005: 16th European Conference on Machine Learning, Porto, Portugal, October 3-7, 2005. Proceedings 16</i> , pages 317–328. Springer, 2005.
700 701	Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro, Fabio Petroni, Heinrich Küttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet: A sandbox for open-ended reinforcement learning research. <i>arXiv preprint arXiv:2109.13202</i> , 2021.

702 703 704	John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. <i>arXiv preprint arXiv:1707.06347</i> , 2017.
705 706 707	Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational overfitting in reinforcement learning. In <i>International Conference on Learning Representations</i> , 2020. URL https://openreview.net/forum?id=HJli2hNKDH.
708 709 710	Andrea Tirinzoni, Riccardo Poiani, and Marcello Restelli. Sequential transfer in reinforcement learning with a generative model. In <i>International Conference on Machine Learning</i> , pages 9481–9492. PMLR, 2020.
711 712 713	Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist? In <i>ICLR</i> , 2023.
714 715	Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under partial coverage. <i>arXiv preprint arXiv:2107.06226</i> , 2021.
716 717 718	Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and offline rl in low-rank mdps. <i>arXiv preprint arXiv:2110.04652</i> , 2021.
719 720 721	Huan Wang, Stephan Zheng, Caiming Xiong, and Richard Socher. On the generalization gap in reparameterizable reinforcement learning. In <i>International Conference on Machine Learning</i> , pages 6648–6658. PMLR, 2019.
722 723 724	Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov, and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. <i>arXiv preprint arXiv:2105.08140</i> , 2021.
725 726 727 728	Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent pessimism for offline reinforcement learning. <i>Advances in neural information processing systems</i> , 34:6683–6694, 2021a.
729 730 731	Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg- ing sample-efficient offline and online reinforcement learning. <i>Advances in neural information</i> <i>processing systems</i> , 34:27395–27407, 2021b.
732 733	Yuling Yan, Gen Li, Yuxin Chen, and Jianqing Fan. The efficacy of pessimism in asynchronous q-learning. <i>IEEE Transactions on Information Theory</i> , 2023.
734 735 736	Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features. In <i>International Conference on Machine Learning</i> , pages 6995–7004, 2019.
737 738 739	Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang. What is essential for unseen goal generalization of offline goal-conditioned rl? In <i>International Conference on Machine Learning</i> , pages 39543–39571. PMLR, 2023.
740 741 742 742	Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric, and Lerrel Pinto. Don't change the algorithm, change the data: Exploratory data for offline reinforcement learning. <i>arXiv preprint arXiv:2201.13425</i> , 2022.
743 744 745 746	Chang Ye, Ahmed Khalifa, Philip Bontrager, and Julian Togelius. Rotation, translation, and cropping for zero-shot generalization. In <i>2020 IEEE Conference on Games (CoG)</i> , pages 57–64. IEEE, 2020.
747 748 749	Haotian Ye, Xiaoyu Chen, Liwei Wang, and Simon Shaolei Du. On the power of pre-training for generalization in rl: provable benefits and hardness. In <i>International Conference on Machine Learning</i> , pages 39770–39800. PMLR, 2023.
750 751 752 753	Ming Yin, Yaqi Duan, Mengdi Wang, and Yu-Xiang Wang. Near-optimal offline reinforcement learning with linear representation: Leveraging variance information with pessimism. <i>arXiv</i> preprint arXiv:2203.05804, 2022.
754 755	Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. <i>Advances in Neural Information Processing Systems</i> , 33:14129–14142, 2020.

756 757 758	Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic methods for offline reinforcement learning. <i>Advances in neural information processing systems</i> , 34:13626–13640, 2021.
759 760 761	Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in continuous reinforcement learning. <i>ArXiv</i> , abs/1806.07937, 2018a.
762 763 764	Chicheng Zhang and Zhi Wang. Provably efficient multi-task reinforcement learning with model transfer. <i>Advances in Neural Information Processing Systems</i> , 34, 2021.
765 766	Chiyuan Zhang, Oriol Vinyals, Rémi Munos, and Samy Bengio. A study on overfitting in deep reinforcement learning. <i>ArXiv</i> , abs/1804.06893, 2018b.
767 768 769 770 771	Weitong Zhang, Jiafan He, Dongruo Zhou, Amy Zhang, and Quanquan Gu. Provably efficient representation selection in low-rank markov decision processes: from online to offline rl. In <i>Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence</i> , pages 2488–2497, 2023.
772	
773	
774	
775	
776	
777	
778	
779	
780	
781	
782	
703	
795	
786	
787	
788	
789	
790	
791	
792	
793	
794	
795	
796	
797	
798	
799	
800	
801	
802	
803	
804	
805	
805	
802	
200	
003	

We provide missing proofs and theoretical results of our paper in the Appendix sections:

- In Appendix A, we provide the missing results of Section 4. We first provide the proof of Proposition 4, then we analyze the suboptimality gap of the Pessimistic Value Iteration (PEVI) (Jin et al. (2021)) in the contextual linear MDP setting without context information.
 - In Appendix B, we provide the proofs of our main theorems on the suboptimality bounds of PERM and PPPO in Section 5.
 - In Appendix C, we state and prove the suboptimality bounds we promised in Remarks 12 and 15, where we merge the sampled contexts into m groups (m < n) to reduce the computational complexity in practical settings.
 - In Appendix D, we instantiate our Algo.2 and Algo.3 for general MDPs on special classes of linear MDPs.
 - In Appendix E, we provide hyperparameter selection details of our real-data experiment. We also provide an additional numerical experiment on synthetic data in Appendix E.3.
 - A RESULTS IN SECTION 4
 - A.1 PROOF OF PROPOSITION 4

Let $\mathcal{D}' = \{(x_{c_{\tau},h}^{\tau}, a_{c_{\tau},h}^{\tau}, r_{c_{\tau},h}^{\tau})\}_{h=1,\tau=1}^{H,K}$ denote the merged dataset, where each trajectory belongs to a context c_{τ} . For simplicity, let \mathcal{D}_c denote the collection of trajectories that belong to MDP \mathcal{M}_c . Then each trajectory in \mathcal{D}' is generated by the following steps:

- The experimenter randomly samples an environment $c \sim C$.
- The experimenter collect a trajectory from the episodic MDP \mathcal{M}_c .
- Then for any x', r', τ we have

$$\mathbb{P}_{\mathcal{D}'}(r_{c_{\tau},h}^{\tau} = r', x_{c_{\tau},h+1}^{\tau} = x' | \{ (x_{c_{j},h}^{j}, a_{c_{j},h}^{j}) \}_{j=1}^{\tau}, \{ r_{c_{j},h}^{j}, x_{c_{j},h+1}^{j} \}_{j=1}^{\tau-1}) \\
= \frac{\mathbb{P}_{\mathcal{D}'}(r_{c_{\tau},h}^{\tau} = r', x_{c_{\tau},h+1}^{\tau} = x', \{ (x_{c_{j},h}^{j}, a_{c_{j},h}^{j}) \}_{j=1}^{\tau}, \{ r_{c_{j},h}^{j}, x_{c_{j},h+1}^{j} \}_{j=1}^{\tau-1}) \\
\mathbb{P}_{\mathcal{D}'}(\{ (x_{c_{j},h}^{j}, a_{c_{j},h}^{j}) \}_{j=1}^{\tau}, \{ r_{c_{j},h}^{j}, x_{c_{j},h+1}^{j} \}_{j=1}^{\tau-1}) \\
= \sum_{c \in C} \mathbb{P}_{\mathcal{D}'}(r_{c_{\tau},h}^{\tau} = r', x_{c_{\tau},h+1}^{\tau} = x' | \{ (x_{c_{j},h}^{j}, a_{c_{j},h}^{j}) \}_{j=1}^{\tau}, \{ r_{c_{j},h}^{j}, x_{c_{j},h+1}^{j} \}_{j=1}^{\tau-1}, c_{\tau} = c)q(c), \quad (4)$$

where

$$q(c') := \frac{\mathbb{P}_{\mathcal{D}'}(\{(x_{c_j,h}^j, a_{c_j,h}^j)\}_{j=1}^{\tau}, \{r_{c_j,h}^j, x_{c_j,h+1}^j\}_{j=1}^{\tau-1}, c_{\tau} = c')}{\sum_{c \in C} \mathbb{P}_{\mathcal{D}'}(\{(x_{c_j,h}^j, a_{c_j,h}^j)\}_{j=1}^{\tau}, \{r_{c_j,h}^j, x_{c_j,h+1}^j\}_{j=1}^{\tau-1}, c_{\tau} = c)}.$$

Next, we further have

(4)

$$\begin{split} &= \sum_{c \in C} \mathbb{P}_{c}(r_{c,h}(s_{h}) = r', s_{h+1} = x' | s_{h} = x_{c_{\tau},h}^{\tau}, a_{h} = a_{c_{\tau},h}^{\tau})q(c) \\ &= \sum_{c \in C} \frac{\mathbb{P}_{c}(r_{c,h}(s_{h}) = r', s_{h+1} = x' | s_{h} = x_{c_{\tau},h}^{\tau}, a_{h} = a_{c_{\tau},h}^{\tau})\mathbb{P}_{\mathcal{D}'}(s_{h} = x_{c_{\tau},h}^{\tau}, a_{h} = a_{c_{\tau},h}^{\tau}, c_{\tau} = c) \\ &= \sum_{c \in C} p(c) \cdot \frac{\mathbb{P}_{c}(r_{c,h}(s_{h}) = r', s_{h+1} = x' | s_{h} = x_{c_{\tau},h}^{\tau}, a_{h} = a_{c_{\tau},h}^{\tau})\mathbb{P}_{c}(s_{h} = x_{c_{\tau},h}^{\tau}, a_{h} = a_{c_{\tau},h}^{\tau})}{\sum_{c \in C} p(c) \cdot \mathbb{P}_{c}(s_{h} = x_{c_{\tau},h}^{\tau}, a_{h} = a_{c_{\tau},h}^{\tau})} \\ &= \mathbb{E}_{c \sim C} \frac{\mathbb{P}_{c}(r_{c,h}(s_{h}) = r', s_{h+1} = x' | s_{h} = x_{c_{\tau},h}^{\tau}, a_{h} = a_{c_{\tau},h}^{\tau})\mu_{c,h}(x_{c_{\tau},h}^{\tau}, a_{c_{\tau},h}^{\tau})}{\mathbb{E}_{c \sim C} \mu_{c,h}(x_{c_{\tau},h}^{\tau}, a_{c_{\tau},h}^{\tau})}, \end{split}$$

where the first equality holds since for all trajectories τ satisfying $c_{\tau} = c$, they are compliant with \mathcal{M}_c , the second one holds since all trajectories are independent of each other, the third and fourth ones hold due to the definition of $\mu_{c,h}(\cdot, \cdot)$.

864 A.2 PEVI ALGORITHM 865

Algorithm 4 (Jin et al., 2021) Pessimistic Value Iteration (PEVI) **Require:** Dataset $\mathcal{D} = \{(x_{c_{\tau},h}^{\tau}, a_{c_{\tau},h}^{\tau}, r_{c_{\tau},h}^{\tau})_{h=1}^{H}\}_{\tau=1}^{K}$, confidence probability $\delta \in (0, 1)$. 1: Initialization: Set $\widehat{V}_{H+1}(\cdot) \leftarrow 0$. 2: for step h = H, H - 1, ..., 1 do Set $\Lambda_h \leftarrow \sum_{\tau=1}^{K} \phi(x_h^{\tau}, a_h^{\tau}) \phi(x_h^{\tau}, a_h^{\tau})^{\top} + \lambda \cdot I.$ Set $\widehat{w}_h \leftarrow \Lambda_h^{-1}(\sum_{\tau=1}^{K} \phi(x_h^{\tau}, a_h^{\tau}) \cdot (r_h^{\tau} + \widehat{V}_{h+1}(x_{h+1}^{\tau}))).$ Set $\Gamma_h(\cdot, \cdot) \leftarrow \beta(\delta) \cdot (\phi(\cdot, \cdot)^\top \Lambda_h^{-1} \phi(\cdot, \cdot))^{1/2}$. Set $\widehat{Q}_h(\cdot, \cdot) \leftarrow \min\{\phi(\cdot, \cdot)^\top \widehat{w}_h - \Gamma_h(\cdot, \cdot), H - h + 1\}^+$. Set $\widehat{\pi}_h(\cdot | \cdot) \leftarrow \operatorname{argmax}_{\pi_h} \langle \widehat{Q}_h(\cdot, \cdot), \pi_h(\cdot | \cdot) \rangle_{\mathcal{A}}.$ Set $\widehat{V}_h(\cdot) \leftarrow \langle \widehat{Q}_h(\cdot, \cdot), \widehat{\pi}_h(\cdot | \cdot) \rangle_{\mathcal{A}}$. 9: end for 10: return $\pi^{\text{PEVI}} = \{\widehat{\pi}_h\}_{h=1}^H$.

879 880

884

891

892 893

894

895

896

901 902 903

904 905

866

We analyze the suboptimality gap of the Pessimistic Value Iteration (PEVI) (Jin et al. (2021)) in the 882 contextual linear MDP setting without context information to demonstrate that by finding the optimal 883 policy for \mathcal{M} is not enough to find the policy that performs well on MDPs with context information.

Pessimistic Value Iteration (PEVI). Let $\overline{\pi}^*$ be the optimal policy w.r.t. the average MDP $\overline{\mathcal{M}}$. 885 We analyze the performance of the Pessimistic Value Iteration (PEVI) (Jin et al., 2021) under the 886 unknown context information setting. The details of PEVI is in Algo.4. 887

888 Suppose that \mathcal{D} consists of K number of trajectories generated i.i.d. following by a fixed behavior policy $\bar{\pi}$. Then the following theorem shows the suboptimality gap for Algo.4 does not converge to 0 889 even when the data size grows to infinity. 890

Theorem 16 Assume that $\bar{\pi}$ In Algo.5, we set

$$\lambda = 1, \quad \beta(\delta) = c' \cdot dH \sqrt{\log(4dHK/\delta)}, \tag{5}$$

where c' > 0 is a positive constant. Suppose we have $K \geq \tilde{c} \cdot d\log(4dH/\xi)$, where $\tilde{c} > 0$ is a sufficiently large positive constant that depends on c. Then we have: w.p. at least $1 - \delta$, for the output policy π^{PEVI} of Algo.4,

$$\sup_{\pi} V_{\bar{\mathcal{M}},1}^{\pi} - V_{\bar{\mathcal{M}},1}^{\pi^{PEVI}} \le c'' \cdot d^{3/2} H^2 K^{-1/2} \sqrt{\log(4dHK/\delta)},\tag{6}$$

and the suboptimality gap satisfies

$$\text{SubOpt}(\pi^{\text{PEVI}}) \le c'' \cdot d^{3/2} H^2 K^{-1/2} \sqrt{\log(4dHK/\delta)} + 2 \sup_{\pi} |V_{\bar{\mathcal{M}},1}^{\pi}(x_1) - \mathbb{E}_{c \sim C} V_{c,1}^{\pi}(x_1)|, \quad (7)$$

where c'' > 0 is a positive constant that only depends on c and c'.

Proof [Proof of Theorem 16] First, we define the value function on the average MDP $\overline{\mathcal{M}}$ as follows.

$$\overline{V}_{h}^{\pi}(x) = \mathbb{E}_{\pi, \bar{\mathcal{M}}} \left[\sum_{i=h}^{H} r_{i}(s_{i}, a_{i}) \, \big| \, s_{h} = x \right].$$
(8)

We then decompose the suboptimality gap as follows.

912 SubOpt(π^{PEVI}) 013

$$= \mathbb{E}_{c \sim C} \left[V_{c,1}^{\pi^*}(x_1) \right] - \mathbb{E}_{c \sim C} \left[V_{c,1}^{\pi^{\text{PEVI}}}(x_1) \right] \\= \overline{V}_{1}^{\overline{\pi}^*}(x_1) - \overline{V}_{1}^{\pi^{\text{PEVI}}}(x_1) + \left(\mathbb{E}_{c \sim C} \left[V_{c,1}^{\pi^*}(x_1) \right] - \overline{V}_{1}^{\overline{\pi}^*}(x_1) \right) + \left(\overline{V}_{1}^{\pi^{\text{PEVI}}}(x_1) - \mathbb{E}_{c \sim C} \left[V_{c,1}^{\pi^{\text{PEVI}}}(x_1) \right] \right) \\\leq \overline{V}_{1}^{\overline{\pi}^*}(x_1) - \overline{V}_{1}^{\pi^{\text{PEVI}}}(x_1) + 2 \sup_{\pi} |V_{\mathcal{M},1}^{\pi}(x_1) - \mathbb{E}_{c \sim C} V_{c,1}^{\pi}(x_1)| .$$
(9)

Then, applying Corollary 4.6 in Jin et al. (2021), we can get that w.p. at least $1 - \delta$ $\overline{V}_1^{\overline{\pi}^*}(x_1) - \overline{V}_1^{\overline{\pi}^{\text{PEVI}}}(x_1) \le c'' \cdot d^{3/2} H^2 K^{-1/2} \sqrt{\log(4dHK/\delta)}$, (10)

which, together with Eq.(9) completes the proof.

Theorem 16 shows that by adapting the standard pessimistic offline RL algorithm over the offline dataset without context information, the learned policy π^{PEVI} converges to the optimal policy $\bar{\pi}^*$ over the average MDP $\bar{\mathcal{M}}$.

B PROOF OF THEOREMS IN SECTION 5

B.1 PROOF OF THEOREM 9

We define the model estimation error as

$$\iota_{i,h}^{\pi}(x,a) = (\mathbb{B}_{i,h}\widehat{V}_{i,h+1}^{\pi})(x,a) - \widehat{Q}_{i,h}^{\pi}(x,a).$$
(11)

And we define the following condition

$$\left| \left(\widehat{\mathbb{B}}_{i,h} \widehat{V}_{i,h+1}^{\pi}\right)(x,a) - \left(\mathbb{B}_{i,h} \widehat{V}_{i,h+1}^{\pi}\right)(x,a) \right| \leq \Gamma_{i,h}(x,a) \text{ for all } i \in [n], \pi \in \Pi, (x,a) \in \mathcal{S} \times \mathcal{A}, h \in [H]$$

$$(12)$$

We introduce the following lemma to bound the model estimation error.

Lemma 17 (Model estimation error bound (Adapted from Lemma 5.1 in Jin et al. (2021)) Under the condition of Eq.(12), we have

$$0 \le \iota_{i,h}^{\pi}(x,a) \le 2\Gamma_{i,h}(x,a), \quad \text{for all } i \in [n], \ \pi \in \Pi, \ (x,a) \in \mathcal{S} \times \mathcal{A}, \ h \in [H].$$
(13)

Then, we prove the following lemma for pessimism in V values.

Lemma 18 (Pessimism for Estimated V Values) Under the condition of Eq.(12), for any $i \in [n], \pi \in \Pi, x \in S$, we have

 $\geq r_{i,h}(x,a) + (\mathbb{B}_{i,h}V_{i,h+1}^{\pi})(x,a) - \left(r_{i,h}(s,a) + (\widehat{\mathbb{B}}_{i,h}\widehat{V}_{i,h+1}^{\pi})(x,a) - \Gamma_{i,h}(x,a)\right)$

$$V_{i,h}^{\pi}(x) \ge V_{i,h}^{\pi}(x)$$
. (14)

a)

Proof For any $i \in [n], \pi \in \Pi, x \in S, a \in \mathcal{A}$, we have

 $Q_{i,h}^{\pi}(x,a) - \widehat{Q}_{i,h}^{\pi}(x,a)$

$$= (\mathbb{B}_{i,h}V_{i,h+1}^{\pi})(x,a) - (\mathbb{B}_{i,h}\hat{V}_{i,h+1}^{\pi})(x,a) + \Gamma_{i,h}(x, - ((\widehat{\mathbb{B}}_{i,h}\hat{V}_{i,h+1}^{\pi})(x,a) - \mathbb{B}_{i,h}\hat{V}_{i,h+1}^{\pi})(x,a))$$

$$\geq (\mathbb{B}_{i,h}V_{i,h+1}^{\pi})(x,a) - (\mathbb{B}_{i,h}\hat{V}_{i,h+1}^{\pi})(x,a)$$

$$= (P_{i,h}(V_{i,h+1}^{\pi} - \hat{V}_{i,h+1}^{\pi}))(x,a),$$

where the second inequality is because of Eq.(12). And since in the H + 1 step we have $V_{i,H+1}^{\pi} = \hat{V}_{i,h+1}^{\pi} = 0$, we can get $Q_{i,H}^{\pi}(x,a) - \hat{Q}_{i,H}^{\pi}(x,a)$. Then we use induction to prove $Q_{i,h}^{\pi}(x,a) \ge \hat{Q}_{i,h}^{\pi}(x,a)$ for all h. Given $Q_{i,h+1}^{\pi}(x,a) \ge \hat{Q}_{i,h+1}^{\pi}(x,a)$, we have

Then we have $V_{i\,h}^{\pi}(x) - \widehat{V}_{i\,h}^{\pi}(x) = \langle Q_{i\,h}^{\pi}(x,\cdot) - \widehat{Q}_{i\,h}^{\pi}(x,\cdot), \pi_{h}(\cdot \,|\, x) \rangle_{\mathcal{A}} \ge 0.$

Then we start our proof.

Proof [Proof of Theorem 9]

First, we decompose the suboptimality gap as follows

$$SubOpt(\pi^{PERM}) = \mathbb{E}_{c \sim C} V_{c,1}^{\pi^*}(x_1) - V_{c,1}^{\widehat{\pi}^*}(x_1)$$

$$= \mathbb{E}_{c \sim C} V_{c,1}^{\pi^*}(x_1) - \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi^*}(x_1) + \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi^{PERM}}(x_1) - \mathbb{E}_{c \sim C} V_{c,1}^{\pi^{PERM}}(x_1)$$

$$+ \frac{1}{n} \sum_{i=1}^{n} \left(V_{i,1}^{\pi^*}(x_1) - V_{i,1}^{\pi^{PERM}}(x_1) \right).$$
(16)

For the first two terms, we can bound them following the standard generalization techniques (Ye et al. (2023)), *i.e.*, we use the covering argument, Chernoff bound, and union bound.

Define the distance between policies $d(\pi^1, \pi^2) \triangleq \max_{s \in S, h \in [H]} \|\pi_h^1(\cdot|s) - \pi_h^2(\cdot|s)\|_1$. We construct the ϵ -covering set $\widetilde{\Pi}$ w.r.t. d such that

$$\forall \pi \in \Pi, \exists \widetilde{\pi} \in \Pi, s.t. \quad d(\pi, \widetilde{\pi}) \le \epsilon.$$
(17)

Then we have

$$\forall i \in [n], \pi \in \Pi, \exists \widetilde{\pi} \in \widetilde{\Pi}, s.t. V_{i,1}^{\pi}(x_1) - V_{i,1}^{\widetilde{\pi}}(x_1) \le H\epsilon.$$
(18)

By the definition of the covering number, $\left|\widetilde{\Pi}\right| = \mathcal{N}_{\epsilon}^{\Pi}$. By Chernoff bound and union bound over the policy set $\widetilde{\Pi}$, we have with prob. at least $1 - \frac{\delta}{3}$, for any $\widetilde{\pi} \in \widetilde{\Pi}$,

$$\left|\frac{1}{n}\sum_{i=1}^{n}V_{i,1}^{\tilde{\pi}}(x_1) - \mathbb{E}_{c\sim C}V_{c,1}^{\tilde{\pi}}(x_1)\right| \le \sqrt{\frac{2\log(6\mathcal{N}_{\epsilon}^{\Pi}/\delta)}{n}}.$$
(19)

(20)

By Eq.(18) and Eq.(19), $\forall i \in [n], \pi \in \Pi, \exists \widetilde{\pi} \in \widetilde{\Pi} \text{ with } \left| \widetilde{\Pi} \right| = \mathcal{N}_{\epsilon}^{\Pi}, \ s.t.V_{i,1}^{\pi}(x_1) - V_{i,1}^{\widetilde{\pi}}(x_1) \leq H\epsilon$ and with probability at least $1 - \delta/3$, we have

1011
1012
1013
1014

$$\left| \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi}(x_{1}) - \mathbb{E}_{c \sim C} V_{c,1}^{\pi}(x_{1}) - \mathbb{E}_{c \sim C} V_{c,1}^{\pi}(x_{1}) \right| = 0$$

$$\leq \left| \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\tilde{\pi}}(s_1) - \mathbb{E}_{c \sim C} V_{c,1}^{\tilde{\pi}}(x_1) \right|$$

$$+ \left| \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi}(s_1) - \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\tilde{\pi}}(s_1) \right| + \left| \mathbb{E}_{c \sim C} V_{c,1}^{\tilde{\pi}}(x_1) - \mathbb{E}_{c \sim C} V_{c,1}^{\pi}(x_1) \right|$$

 $\leq \sqrt{\frac{2\log(6\mathcal{N}_{\epsilon}^{\Pi}/\delta)}{n}} + 2H\epsilon\,.$

Therefore, we have for the first two terms, w.p. at least $1 - \frac{2}{3}\delta$ we can upper bound them with $4H\epsilon + 2\sqrt{\frac{2\log(6\mathcal{N}_{\epsilon}^{\Pi}/\delta)}{n}}$

Then, what remains is to bound the term $\frac{1}{n} \sum_{i=1}^{n} (V_{i,1}^{\pi^*}(x_1) - V_{i,1}^{\pi^{\text{PERM}}}(x_1)).$

First, by similar arguments, we have

$$V_{i,1}^{\pi^{*}}(x_{1}) - V_{i,1}^{\pi^{\text{PERM}}}(x_{1}) \leq \left(V_{i,1}^{\pi^{*}}(x_{1}) - V_{i,1}^{\tilde{\pi}^{\text{PERM}}}(x_{1})\right) + |V_{i,1}^{\tilde{\pi}^{\text{PERM}}}(x_{1}) - V_{i,1}^{\pi^{\text{PERM}}}(x_{1})|$$

$$\leq H\epsilon + V_{i,1}^{\pi^{*}}(x_{1}) - V_{i,1}^{\tilde{\pi}^{\text{PERM}}}(x_{1}), \qquad (21)$$

where $\widetilde{\pi}^{\text{PERM}} \in \widetilde{\Pi}$ such that $|V_{i,1}^{\widetilde{\pi}^{\text{PERM}}}(x_1) - V_{i,1}^{\pi^{\text{PERM}}}(x_1)| \leq H\epsilon$.

By the definition of the oracle in Definition.5, the algorithm design of Algo.1 (e.g., we call oracle $\mathbb{O}(\mathcal{D}_h, \widehat{V}_{h+1}, \delta/(3nH\mathcal{N}_{(Hn)^{-1}}^{\Pi})))$, and use a union bound over H steps, n contexts, and $\mathcal{N}_{(Hn)^{-1}}^{\Pi}$ policies, we have: with probability at least $1 - \delta/3$, the condition in Eq.(12) holds (with the policy class Π replaced by Π (and $\epsilon = 1/(Hn)$).

Then, we have

 $\frac{1}{n} \sum_{i=1}^{n} \left(V_{i,1}^{\pi^*}(x_1) - V_{i,1}^{\widetilde{\pi}^{\text{PERM}}}(x_1) \right)$ $\leq \frac{1}{n} \sum_{n=1}^{n} \left(V_{i,1}^{\pi^*}(x_1) - \widehat{V}_{i,1}^{\widetilde{\pi}^{\text{PERM}}}(x_1) \right)$ $=\frac{1}{n}\sum_{i=1}^{n}\left(V_{i,1}^{\pi^{*}}(x_{1})-\widehat{V}_{i,1}^{\pi^{\mathrm{PERM}}}(x_{1})\right)+\frac{1}{n}\sum_{i=1}^{n}\left(\widehat{V}_{i,1}^{\pi^{\mathrm{PERM}}}(x_{1})-\widehat{V}_{i,1}^{\widetilde{\pi}^{\mathrm{PERM}}}(x_{1})\right)$ $\leq \frac{1}{n} \sum_{i=1}^{n} \left(V_{i,1}^{\pi^*}(x_1) - \hat{V}_{i,1}^{\pi^{\text{PERM}}}(x_1) \right) + H \cdot \frac{1}{Hn}$ $\leq \frac{1}{n} \sum_{i=1}^{n} \left(V_{i,1}^{\pi^*}(x_1) - \widehat{V}_{i,1}^{\pi^*}(x_1) \right) + 1/n \,,$ (22)

where the first inequality holds because of the pessimism in Lemma 18, the second inequality holds because $|\widehat{V}_{i,1}^{\widetilde{\pi}^{\text{PERM}}}(x_1) - \widehat{V}_{i,1}^{\pi^{\text{PERM}}}(x_1)| \le H\epsilon$ with ϵ here specified as 1/(Hn), and the last inequality holds because that in the algorithm design of Algo.2 we set $\pi^{\text{PERM}} = \operatorname{argmax}_{\pi \in \Pi} \frac{1}{n} \sum_{i=1}^{n} \widehat{V}_{i,1}^{\pi}(x_1)$.

Then what left is to bound $V_{i,1}^{\pi^*}(x_1) - \widehat{V}_{i,1}^{\pi^*}(x_1)$.

And using Lemma A.1 in Jin et al. (2021), we have

1059
1060
1061
1061
1062
1063
1064

$$V_{i,1}^{\pi^*}(x_1) - \widehat{V}_{i,1}^{\pi^*}(x_1) = -\sum_{h=1}^{H} \mathbb{E}_{\widehat{\pi}^*,\mathcal{M}_i} \left[\iota_{i,h}^{\pi^*}(s_h, a_h) \, \middle| \, s_1 = x \right] + \sum_{h=1}^{H} \mathbb{E}_{\pi^*,\mathcal{M}_i} \left[\iota_{i,h}^{\pi^*}(s_h, a_h) \, \middle| \, s_1 = x \right] + \sum_{h=1}^{H} \mathbb{E}_{\pi^*,\mathcal{M}_i} \left[\iota_{i,h}^{\pi^*}(s_h, a_h) \, \middle| \, s_1 = x \right] + \sum_{h=1}^{H} \mathbb{E}_{\pi^*,\mathcal{M}_i} \left[\iota_{i,h}^{\pi^*}(s_h, a_h) \, \middle| \, s_1 = x \right]$$

 $\leq 2\sum_{i=1}^{H} \mathbb{E}_{\pi^*,\mathcal{M}_i} \left[\Gamma_{i,h}(s_h, a_h) \, \big| \, s_1 = x \right],$ (23)

where in the last inequality we use Lemma 17.

Finally, with Eq.(16), Eq.(20), Eq.(21), Eq.(22), and Eq.(23), with ϵ set as $\frac{1}{nH}$, we can get w.p. at least $1 - \delta$

$$\mathbb{E}_{c\sim C} V_{c,1}^{\pi^*}(x_1) - V_{c,1}^{\pi^{\text{PERM}}}(x_1) \\ \leq \frac{5}{n} + 2\sqrt{\frac{2\log(6\mathcal{N}_{(Hn)^{-1}}^{\Pi}/\delta)}{n}} + \frac{2}{n} \sum_{i=1}^n \sum_{h=1}^H \mathbb{E}_{\pi^*,\mathcal{M}_i} \left[\Gamma_{i,h}(s_h, a_h) | s_1 = x_1 \right] \\ \sqrt{\sqrt{2\log(6\mathcal{N}_{(Hn)^{-1}}^{\Pi}/\delta)}} = 1$$

1078
1079
$$\leq 7\sqrt{\frac{2\log(6\mathcal{N}_{(Hn)^{-1}}^{\Pi}/\delta)}{n}} + \frac{2}{n}\sum_{i=1}^{n}\sum_{h=1}^{H}\mathbb{E}_{\pi^{*},\mathcal{M}_{i}}\left[\Gamma_{i,h}(s_{h},a_{h})|s_{1}=x_{1}\right].$$

B.2 PROOF OF THEOREM 14 Our proof has two steps. First, we define that $\iota_{i,h}(x,a) := \mathbb{B}_{i,h} V_{i,h+1}(x,a) - Q_{i,h}(x,a)$ (24)Then we have the following lemma from Jin et al. (2021): **Lemma 19** Define the event \mathcal{E} as $\mathcal{E} = \left\{ \left| (\widehat{\mathbb{B}} \widehat{V}_{i,h+1}^{\pi_i})(x,a) - (\mathbb{B}_{i,h} \widehat{V}_{i,h+1}^{\pi_i})(x,a) \right| \le \Gamma_{i,h}(x,a) \ \forall (x,a) \in \mathcal{S} \times \mathcal{A}, \forall h \in [H], \forall i \in [n] \right\},$ Then by selecting the input parameter $\xi = \delta/(Hn)$ in \mathbb{O} , we have $\mathbb{P}(\mathcal{E}) \ge 1 - \delta$ and $0 < \iota_{i,b}(x,a) < 2\Gamma_{i,b}(x,a).$ **Proof** The proof is the same as [Lemma 5.1, Jin et al. 2021] with the probability assigned as $\delta/(Hn)$ and a union bound over $h \in [H], i \in [n]$. Next lemma shows the difference between the value of the optimal policy π^* and number n of different policies π_i for *n* MDPs. **Lemma 20** Let π be an arbitrary policy. Then we have $\sum_{i=1}^{n} [V_{i,1}^{\pi}(x_1) - V_{i,1}^{\pi^i}(x_1)] = \sum_{i=1}^{n} \sum_{k=1}^{H} \mathbb{E}_{i,\pi} [\langle Q_{i,h}(\cdot, \cdot), \pi_h(\cdot|\cdot) - \pi_{i,h}(\cdot|\cdot) \rangle_{\mathcal{A}}]$ + $\sum_{i=1}^{n} \sum_{k=1}^{n} (\mathbb{E}_{i,\pi}[\iota_{i,h}(x_h, a_h)] - \mathbb{E}_{i,\pi_i}[\iota_{i,h}(x_h, a_h)])$ (25)**Proof** The proof is the same as Lemma 3.1 in Jin et al. (2021) except substituting π into the lemma. We also have the following one-step lemma: **Lemma 21 (Lemma 3.3, Cai et al. 2020)** For any distribution $p^*, p \in \Delta(\mathcal{A})$, if $p'(\cdot) \propto p(\cdot) \cdot \exp(\alpha \cdot p^*)$ $Q(x, \cdot))$, then $\langle Q(x,\cdot), p^*(\cdot) - p(\cdot) \rangle \le \alpha H^2 / 2 + \alpha^{-1} \cdot \left(\mathsf{KL}(p^*(\cdot) \| p(\cdot)) - \mathsf{KL}(p^*(\cdot) \| p'(\cdot)) \right).$ Given the above lemmas, we begin our proof of Theorem 14. Proof [Proof of Theorem 14] Combining Lemma 19 and Lemma 20, we have $\sum_{i=1}^{n} \left[V_{i,1}^{\pi^*}(x_1) - V_{i,1}^{\pi^i}(x_1) \right]$ $\leq \sum_{i=1}^{n} \sum_{k=1}^{H} \mathbb{E}_{i,\pi^*} [\langle Q_{i,h}, \pi_h^* - \pi_{i,h} \rangle] + 2 \sum_{i=1}^{n} \sum_{k=1}^{H} \mathbb{E}_{i,\pi^*} [\Gamma_{i,h}(x_h, a_h)]$ $\leq \sum_{h=1}^{n} \sum_{h=1}^{H} \alpha H^{2}/2 + \alpha^{-1} \mathbb{E}_{i,\pi^{*}} [\mathrm{KL}(\pi_{h}^{*}(\cdot|x_{h}) \| \pi_{i,h}(\cdot|x_{h})) - \mathrm{KL}(\pi_{h}^{*}(\cdot|x_{h}) \| \pi_{i+1,h}(\cdot|x_{h}))]$ $+2\sum_{i=1}^{n}\sum_{j=1}^{H}\mathbb{E}_{i,\pi^{*}}[\Gamma_{i,h}(x_{h},a_{h})]$

1134
1135
$$\leq \alpha H^3 n/2 + \alpha^{-1} \cdot \sum_{h=1}^{H} \mathbb{E}_{i,\pi^*} [\text{KL}(\pi_h^*(\cdot|x_h) \| \pi_{1,h}(\cdot|x_h))] + 2 \sum_{i=1}^{n} \sum_{h=1}^{H} \mathbb{E}_{i,\pi^*} [\Gamma_{i,h}(x_h, a_h)]$$
1136

$$\leq \alpha H^3 n/2 + \alpha^{-1} H \log |A| + 2 \sum_{i=1}^n \sum_{h=1}^H \mathbb{E}_{i,\pi^*} [\Gamma_{i,h}(x_h, a_h)],$$

where the last inequality holds since $\pi_{1,h}$ is the uniform distribution over \mathcal{A} . Then, selecting $\alpha = 1/\sqrt{H^2 n}$, we have

$$\sum_{i=1}^{n} [V_{i,1}^{\pi^*}(x_1) - V_{i,1}^{\pi^i}(x_1)] \le 2\sqrt{n\log|A|H^2} + 2\sum_{i=1}^{n} \sum_{h=1}^{H} \mathbb{E}_{i,\pi^*}[\Gamma_{i,h}(s_h, a_h)]$$

which holds for the random selection of \mathcal{D} with probability at least $1 - \delta$. Meanwhile, note that each MDP M_i is drawn i.i.d. from C. Meanwhile, note that π_i only depends on MDP $M_1, ..., M_{i-1}$. Therefore, by the standard online-to-batch conversion, we have

1149
1149
1150
$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}[V_{i,1}^{\pi^{*}}(x_{1}) - V_{i,1}^{\pi_{i}}(x_{1})] + \left(\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}_{c\sim C}V_{c,1}^{\pi_{i}}(x_{1}) - \mathbb{E}_{c\sim C}V_{c,1}^{\pi^{*}}(x_{1})\right) \le 2H\sqrt{\frac{2\log 1/\delta}{n}}\right) \ge 1 - \delta,$$

which suggests that with probability at least $1 - 2\delta$,

1152
1153
1154
$$\mathbb{E}_{c\sim C}V_{c,1}^{\pi^*}(x_1) - \frac{1}{n}\sum_{i=1}^n \mathbb{E}_{c\sim C}V_{c,1}^{\pi_i}(x_1) \le 2\sqrt{\frac{\log|A|H^2}{n}} + \frac{2}{n}\sum_{i=1}^n\sum_{h=1}^H \mathbb{E}_{\pi^*}[\Gamma_{i,h}(x_h, a_h)] + 2\sqrt{\frac{2H\log 1/\delta}{n}}$$
1155

Therefore, by selecting $\pi^{\text{PPO}} := \text{random}(\pi_1, ..., \pi_n)$ and applying the Markov inequality, setting $\delta = 1/8$, we have our bound holds.

С SUBOPTIMALITY BOUNDS FOR REAL-WORLD SETUPS

In this section we state and prove the suboptimality bounds we promised in Remarks 12 and 15, where we merge the sampled contexts into m groups (generally, $m \ll n$) to reduce the computational complexity in practical settings. The bound in Theorem 22 serves as a partial justification for the effectiveness of IQL-mV in our real-data experiments (Section 6).

Assume m|n and the n contexts from offline dataset are equally partitioned into m groups. We write the resulting average MDPs (see Proposition 4) for each group as $\overline{\mathcal{M}}_1, \ldots, \overline{\mathcal{M}}_m$. For each $\overline{\mathcal{M}}_i$, we regard it as an individual context in the sense of (12) and denote the resulting uncertainty quantifier and value function as $\Gamma'_{i,h}, V'^{\pi}_{i,h}$.

Theorem 22 (Suboptimality bound for Remark 12) Assume the same setting as Theorem 9 with the original n contexts grouped as m contexts, and denote the resulting algorithm as PERM-mV. Then w.p. at least $1 - \delta$, the output π' of PERM-mV satisfies

$$\begin{aligned} \text{SubOpt}(\pi') &\leq \underbrace{2\sqrt{\frac{2\log(6\mathcal{N}_{(Hm)}^{\Pi}-1/\delta)}{n}}}_{I_1: \text{Supervised learning (SL) error}} + \underbrace{\frac{2}{m} \sum_{j=1}^m \sum_{h=1}^m \mathbb{E}_{\pi^*, \bar{\mathcal{M}}_j} \left[\Gamma'_{j,h}(s_h, a_h) | s_1 = x_1 \right]}_{I_2: \text{Reinforcement learning (RL) error}} \\ &+ \underbrace{\frac{5}{m} + 2\sup_{\pi} \left| \frac{1}{n} \sum_{i=1}^n V_{i,1}^{\pi}(x_1) - \frac{1}{m} \sum_{j=1}^m V_{j,1}^{\prime}(x_1) \right|}_{I_2: \text{Reinforcement learning (RL) error}}, \end{aligned}$$

where \mathbb{E}_{i,π^*} is w.r.t. the trajectory induced by π^* with the transition $\overline{\mathcal{P}}_i$ in the underlying average MDP \mathcal{M}_i .

Proof [Proof of Theorem 22]

Similar to the proof of Theorem 9, we decompose the suboptimality gap as follows

 $SubOpt(\pi')$

$$= \mathbb{E}_{c \sim C} V_{c,1}^{\pi^*}(x_1) - V_{c,1}^{\pi'}(x_1)$$

$$= \mathbb{E}_{c \sim C} V_{c,1}^{\pi^*}(x_1) - \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi^*}(x_1) + \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi'}(x_1) - \mathbb{E}_{c \sim C} V_{c,1}^{\pi'}(x_1)$$

$$n \sum_{i=1}^{n} n \sum_{i=1}^{n} n \sum_{i=1}^{n} n \sum_{i=1}^{n} 1$$

$$+ \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi^*}(x_1) - \frac{1}{m} \sum_{j=1}^{m} V_{j,1}^{\prime\pi^*}(x_1) + \frac{1}{m} \sum_{j=1}^{m} V_{j,1}^{\prime\pi'}(x_1) - \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi'}(x_1)$$

$$(x_1) = \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi^*}(x_1) + \frac{1}{n} \sum_{i=1}^{m} V_{i,1}^{\prime\pi'}(x_1) + \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\prime\pi'}(x_1) + \frac{1}{n$$

$$+\frac{1}{n}\sum_{i=1}^{\infty}V_{i,1}^{\pi^*}(x_1) - \frac{1}{m}\sum_{i=1}^{\infty}V_{j,1}^{\pi}(x_1)$$

$$+ \frac{1}{m} \sum_{j=1}^{m} \left(V_{j,1}^{\prime \pi^{*}}(x_{1}) - V_{j,1}^{\prime \pi^{\prime}}(x_{1}) \right).$$

$$(26)$$

Note that we can bound the first and third lines of (26) with the exactly same arguments as the proof of Theorem 9, the only notation-wise difference is that the uncertainty quantifier becomes Γ' as we are operating on the level of average MDP $\overline{\mathcal{M}}_i$.

The only thing left is to bound the second line of (26). This is the same in spirit of the bound (9), so that we can express the bound as follows

$$\frac{1}{n}\sum_{i=1}^{n}V_{i,1}^{\pi^{*}}(x_{1}) - \frac{1}{m}\sum_{j=1}^{m}V'_{j,1}^{\pi^{*}}(x_{1}) + \frac{1}{m}\sum_{j=1}^{m}V'_{j,1}^{\pi'}(x_{1}) - \frac{1}{n}\sum_{i=1}^{n}V_{i,1}^{\pi'}(x_{1})$$

$$\leq 2 \sup_{\pi} \left| \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi}(x_1) - \frac{1}{m} \sum_{j=1}^{m} {V'}_{j,1}^{\pi}(x_1) \right|$$

To conclude, our final bound can be expressed as: with ϵ set as $\frac{1}{mH}$, we can get w.p. at least $1 - \delta$

SubOpt(
$$\pi'$$
)
< $2\sqrt{\frac{2\log(6\mathcal{N}_{(Hm)}^{\Pi})^{-1}/6}{2}}$

$$\leq 2\sqrt{\frac{2\log(6\mathcal{N}_{(Hm)^{-1}}^{11}/\delta)}{n}} + \frac{2}{m}\sum_{j=1}^{m}\sum_{h=1}^{H}\mathbb{E}_{\pi^{*},\bar{\mathcal{M}}_{j}}\left[\Gamma'_{j,h}(s_{h},a_{h})|s_{1}=x_{1}\right]$$

**

$$+ \frac{5}{m} + 2 \sup_{\pi} \left| \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi}(x_1) - \frac{1}{m} \sum_{j=1}^{m} V_{j,1}^{\prime \pi}(x_1) \right|$$

To prove the suboptimality bound for Remark 15, we denote that the policies produced by PPPO after merging dataset to m groups to be π_1, \ldots, π_m , and the original PPPO algorithm would produce the policies as π'_1, \ldots, π'_n . We assume that the merging of dataset from n to m groups is only to combine the consecutive n/m terms from π'_1, \ldots, π'_n and preserves the order.

Theorem 23 (Suboptimality bound for Remark 15) Assume the same setting as Theorem 14 with the original n contexts grouped as m contexts, and denote the resulting algorithm as PPPO-mV. Let $\Gamma'_{j,h}$ be the uncertainty quantifier returned by \mathbb{O} through the PPPO-mV algorithm. Selecting $\alpha = 1/\sqrt{H^2m}$. Then selecting $\delta = 1/8$, w.p. at least 2/3, we have

$$SubOpt(\pi^{PPPO-mV}) \le 10 \left(\underbrace{\sqrt{\frac{\log|\mathcal{A}|H^2}{m}}}_{I_1:SL\ error} + \underbrace{\frac{1}{m}\sum_{j=1}^m \sum_{h=1}^{m} \mathbb{E}_{j,\pi^*}\left[\Gamma'_{j,h}(s_h, a_h)|s_1 = x_1\right]}_{I_2:RL\ error}\right)$$

1236
1237
1238
$$+ \sup_{\pi} \left| \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi}(x_{1}) - \frac{1}{m} \sum_{j=1}^{m} V_{j,1}^{\prime \pi}(x_{1}) \right| + \frac{1}{n} \sum_{i=1}^{n} \sup_{\pi} \left| \mathbb{E}_{c}[V_{c,1}^{\pi}(x_{1})] - V_{i,1}^{\pi}(x_{1}) \right|$$
1238

1239
$$1 \sum_{m=1}^{m} |m| |m| / \pi / \pi$$

1239
1240
$$+ \frac{1}{m} \sum_{j=1}^{m} \sup_{\pi} \left| \mathbb{E}_{c} [V_{c,1}^{\pi}(x_{1})] - V_{j,1}^{\pi}(x_{1}) \right| \right).$$
1241

where \mathbb{E}_{j,π^*} is w.r.t. the trajectory induced by π^* with the transition \mathcal{P}_j in the underlying MDP \mathcal{M}_j .

12421243Proof [Proof of Theorem 23]

Using the same arguments as in the proof of Theorem 14 with $\alpha = 1/\sqrt{H^2 m}$, we can derive the bound

$$\sum_{j=1}^{m} [V'_{j,1}^{\pi^*}(x_1) - V'_{j,1}^{\pi_j}(x_1)] \le 2\sqrt{m\log|A|H^2} + 2\sum_{j=1}^{m} \sum_{h=1}^{H} \mathbb{E}_{j,\pi^*}[\Gamma'_{j,h}(s_h, a_h)].$$

Leveraging this bound and online-to-batch, we obtain the following estimation

$$\begin{split} \mathbb{E}_{c}[V_{c,1}^{\pi^{*}}(x_{1})] &= \frac{1}{m} \sum_{j=1}^{m} \mathbb{E}_{c}[V_{c,1}^{\pi_{j}}(x_{1})] \\ &= \mathbb{E}_{c}[V_{c,1}^{\pi^{*}}(x_{1})] - \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{c}[V_{c,1}^{\pi_{i}'}(x_{1})] + \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{c}[V_{c,1}^{\pi_{i}'}(x_{1})] - \frac{1}{m} \sum_{j=1}^{m} \mathbb{E}_{c}[V_{c,1}^{\pi_{j}}(x_{1})] \\ &\leq 2H\sqrt{\frac{2\log 1/\delta}{n}} + \frac{1}{n} \sum_{i=1}^{n} \left(\mathbb{E}_{c}[V_{c,1}^{\pi_{i}'}(x_{1})] - V_{i,1}^{\pi_{i}'}(x_{1}) \right) + \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi^{*}}(x_{1}) - \frac{1}{m} \sum_{j=1}^{m} \mathbb{E}_{c}[V_{c,1}^{\pi_{j}}(x_{1})] \\ &= 2H\sqrt{\frac{2\log 1/\delta}{n}} + \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi^{*}}(x_{1}) - \frac{1}{m} \sum_{j=1}^{m} V_{j,1}^{\prime\pi^{*}}(x_{1}) \\ &+ \frac{1}{m} \sum_{j=1}^{m} V_{j,1}^{\prime\pi^{*}}(x_{1}) - \frac{1}{m} \sum_{j=1}^{m} V_{j,1}^{\prime\pi_{j}}(x_{1}) \\ &+ \frac{1}{n} \sum_{i=1}^{n} \left(\mathbb{E}_{c}[V_{c,1}^{\pi_{i}'}(x_{1})] - V_{i,1}^{\pi_{i}'}(x_{1}) \right) + \frac{1}{m} \sum_{j=1}^{m} V_{j,1}^{\prime\pi_{j}}(x_{1}) - \frac{1}{m} \sum_{j=1}^{m} \mathbb{E}_{c}[V_{c,1}^{\pi_{j}}(x_{1})] \\ &\leq 2H\sqrt{\frac{2\log 1/\delta}{n}} + \sup_{\pi} \left| \frac{1}{n} \sum_{i=1}^{n} V_{i,1}^{\pi}(x_{1}) - \frac{1}{m} \sum_{j=1}^{m} V_{j,1}^{\prime\pi_{j}}(x_{1}) \right| \\ &+ 2\sqrt{\frac{\log |A|H^{2}}{m}} + \frac{2}{m} \sum_{j=1}^{n} \sum_{h=1}^{n} \mathbb{E}_{j,\pi^{*}}[\Gamma'_{j,h}(s_{h}, a_{h})] \\ &+ \frac{1}{n} \sum_{i=1}^{n} \sup_{\pi} \left| \mathbb{E}_{c}[V_{c,1}^{\pi}(x_{1})] - V_{i,1}^{\pi}(x_{1}) \right| + \frac{1}{m} \sum_{j=1}^{m} \sup_{\pi} \left| \mathbb{E}_{c}[V_{c,1}^{\prime\pi_{j}}(x_{1})] - V_{j,1}^{\prime\pi_{j}}(x_{1}) \right| . \end{split}$$

Finally we apply Markov inequality and take $\delta = 1/8$ as in the proof of Theorem 14.

D PROVABLE GENERALIZATION FOR OFFLINE LINEAR MDPS

In this section, we instantiate our Algo.2 and Algo.3 for general MDPs on specific MDP classes. We
 consider the linear MDPs defined as follows.

Assumption 24 (Linear MDP, Yang and Wang 2019; Jin et al. 2019) We assume $\forall i \in C, M_i$ is a linear MDP with a known feature map $\phi : S \times A \to \mathbb{R}^d$ if there exist d unknown measures $\mu_{i,h} = (\mu_{i,h}^{(1)}, \dots, \mu_{i,h}^{(d)})$ over S and an unknown vector $\theta_{i,h} \in \mathbb{R}^d$ such that

$$P_{i,h}(x' \mid x, a) = \langle \phi(x, a), \mu_{i,h}(x') \rangle, \quad \mathbb{E} \Big[r_{i,h}(s_h, a_h) \mid s_h = x, a_h = a \Big] = \langle \phi(x, a), \theta_{i,h} \rangle \quad (27)$$

1294 for all $(x, a, x') \in S \times A \times S$ at every step $h \in [H]$. We assume $\|\phi(x, a)\| \leq 1$ for all $(x, a) \in S \times A$ and $\max\{\|\mu_{i,h}(S)\|, \|\theta_{i,h}\|\} \leq \sqrt{d}$ at each step $h \in [H]$, and we define $\|\mu_{i,h}(S)\| = \int_{S} \|\mu_{i,h}(x)\| \, dx$.

Remark 25 We assume that each environment \mathcal{M}_i shares the same feature mapping $\phi(x, a)$. Such an assumption is for the ease of presentation, and our results can be easily extended to the setting where different environments enjoy different feature mappings.

We first specialize the general PPE algorithm (Algo.1) to obtain the PPE algorithm tailored for linear MDPs (Algo.5). This specialization is achieved by constructing $\widehat{\mathbb{B}}_{i,h}\widehat{V}_{i,h+1}^{\pi}$, $\Gamma_{i,h}$, and $\widehat{V}_{i,h}^{\pi}$ based on the dataset \mathcal{D}_i . We denote the set of trajectory indexes in $\mathcal{D}_{i,h}$ as $\mathcal{B}_{i,h}$. Algo.5 subsequently functions as the policy evaluation subroutine in Algo.2 and Algo.3 for linear MDPs. In detail, we construct $\widehat{\mathbb{B}}_{i,h}\widehat{V}_{i,h+1}$ (which is the estimation of $\mathbb{B}_{i,h}\widehat{V}_{i,h+1}$) as $(\widehat{\mathbb{B}}_{i,h}\widehat{V}_{i,h+1})(x,a) = \phi(x,a)^{\top}\widehat{w}_{i,h}$, where

$$\widehat{w}_{i,h} = \operatorname{argmin}_{w \in \mathbb{R}^d} \sum_{\tau \in \mathcal{B}_{i,h}} \left(r_{i,h}^{\tau} + \widehat{V}_{i,h+1}(x_{i,h}^{-,\tau}) - \phi(x_{i,h}^{\tau}, a_{i,h}^{\tau})^{\top} w \right)^2 + \lambda \cdot \|w\|_2^2$$
(28)

with $\lambda > 0$ being the regularization parameter. The closed-form solution to (28) is in Line 4 in Algorithm 5. Besides, we construct the uncertainty quantifier $\Gamma_{i,h}$ based on \mathcal{D}_i as

$$\Gamma_{i,h}(x,a) = \beta(\delta) \cdot \|\phi(x,a)\|_{\Lambda_{i,h}^{-1}}, \Lambda_{i,h} = \sum_{\tau \in \mathcal{B}_{i,h}} \phi(x_{i,h}^{\tau}, a_{i,h}^{\tau}) \phi(x_{i,h}^{\tau}, a_{i,h}^{\tau})^{\top} + \lambda \cdot I^{2},$$
(29)

1312 with $\beta(\delta) > 0$ being the scaling parameter.

Algorithm 5 Pessimistic Policy Evaluation (PPE): Linear MDP

Require: Offline dataset $\{\mathcal{D}_{i,h}\}_{h=1}^{H}, \mathcal{D}_{i,h} = \{(x_{i,h}^{\tau}, a_{i,h}^{\tau}, r_{i,h}^{\tau}, x_{i,h}^{-,\tau})\}_{\tau \in \mathcal{B}_{i,h}}$, policy π , confidence probability 1316 $\delta \in (0, 1).$ 1317 1: Initialize $\widehat{V}_{i,H+1}^{\pi}(\cdot) \leftarrow 0, \forall i \in [n].$ 2: for step $h = H, H - 1, \dots, 1$ do 3: Set $\Lambda_{i,h} \leftarrow \sum_{\tau \in \mathcal{B}_{i,h}} \phi(x_{i,h}^{\tau}, a_{i,h}^{\tau}) \phi(x_{i,h}^{\tau}, a_{i,h}^{\tau})^{\top} + \lambda \cdot I.$ 1318 1319 1320 Set $\widehat{w}_{i,h} \leftarrow \Lambda_{i,h}^{-1} (\sum_{\tau \in \mathcal{B}_{i,h}} \phi(x_{i,h}^{\tau}, a_{i,h}^{\tau}) \cdot (r_{i,h}^{\tau} + \widehat{V}_{i,h+1}^{\pi}(x_{i,h}^{-,\tau}))).$ 4: 1321 Set $\Gamma_{i,h}(\cdot, \cdot) \leftarrow \beta(\delta) \cdot (\phi(\cdot, \cdot)^{\top} \Lambda_{i,h}^{-1} \phi(\cdot, \cdot))^{1/2}$. 5: 1322 Set $\widehat{Q}_{i,h}^{\pi}(\cdot, \cdot) \leftarrow \min\{\phi(\cdot, \cdot)^{\top} \widehat{w}_{i,h} - \Gamma_{i,h}(\cdot, \cdot), H - h + 1\}^+$. 6: 1323 Set $\widehat{V}_{i\,h}^{\pi}(\cdot) \leftarrow \langle \widehat{Q}_{i\,h}^{\pi}(\cdot, \cdot), \pi_h(\cdot|\cdot) \rangle_{\mathcal{A}}$ 1324 7: 8: end for 9: return $\widehat{V}_{i,1}^{\pi}(\cdot),\ldots,\widehat{V}_{i,H}^{\pi}(\cdot),\widehat{Q}_{i,1}^{\pi}(\cdot,\cdot),\ldots,\widehat{Q}_{i,H}^{\pi}(\cdot,\cdot).$ 1326

1327 1328

1348

1349

1306 1307

1310

1311

1314

1315

The following theorem shows the suboptimality gaps for Algo.2 (utilizing subroutine Algo.5) and Algo.3 (also with subroutine Algo.5).

Theorem 26 Under Assumption 24, in Algorithm 5, we set $\lambda = 1$, $\beta(\delta) = c \cdot dH \sqrt{\log(2dHK/\delta)}$, where c > 0 is a positive constant. Then, we have:

(i) for the output policy π^{PERM} of Algo.2 with subroutine Algo.5, with probability at least $1 - \delta$, the suboptimality gap satisfies

1336
1337
$$SubOpt(\pi^{PERM}) \le 7\sqrt{\frac{7\log(6\mathcal{N}_{(Hn)^{-1}}^{\Pi}/\delta)}{n}} + \frac{2\beta\left(\frac{3nH\mathcal{N}_{(Hn)^{-1}}^{\Pi}}{n}\right)}{n} \sum_{i=1}^{n} \sum_{h=1}^{H} \mathbb{E}_{i,\pi^*}\left[\|\phi(s_h, a_h)\|_{\tilde{\Lambda}_{i,h}^{-1}} \, \Big| \, s_1 = x_1\right],$$
(30)

(ii) for the output policy π^{PPPO} of Algo.3 with subroutine Algo.5, setting $\delta = 1/8$, then with probability at least 2/3, the suboptimality gap satisfies

$$\mathsf{SubOpt}(\pi^{\mathsf{PPPO}}) \le 10 \bigg(\sqrt{\frac{\log |\mathcal{A}| H^2}{n}} + \frac{\beta \big(\frac{1}{4nH}\big)}{n} \sum_{i=1}^n \sum_{h=1}^H \mathbb{E}_{i,\pi^*} \Big[\|\phi(s_h, a_h)\|_{\bar{\Lambda}_{i,h}^{-1}} \, \big| \, s_1 = x_1 \Big] \bigg), \tag{31}$$

where \mathbb{E}_{i,π^*} is with respect to the trajectory induced by π^* with the transition \mathcal{P}_i in the underlying MDP \mathcal{M}_i given the fixed matrix $\widetilde{\Lambda}_{i,h}$ or $\overline{\Lambda}_{i,h}$.

²Spefically, for Algo.2, $\tilde{\Lambda}_{i,h} = \sum_{\tau=1}^{K} \phi(x_{i,h}^{\tau}, a_{i,h}^{\tau}) \phi(x_{i,h}^{\tau}, a_{i,h}^{\tau})^{\top} + \lambda \cdot I$, for Algo.3, $\bar{\Lambda}_{i,h} = \sum_{\tau=1}^{\lfloor K/H \rfloor - 1} \phi(x_{i,h}^{\tau \cdot H + h}, a_{i,h}^{\tau \cdot H + h}) \phi(x_{i,h}^{\tau \cdot H + h}, a_{i,h}^{\tau \cdot H + h})^{\top} + \lambda \cdot I$ due to the data-splitting techniques.

Proof By Jin et al. (2021), the parameters specified as $\lambda = 1$, $\beta(\delta) = c \cdot dH \sqrt{\log(2dHK/\delta)}$, and applying union bound, we can get: for Algo.5, with probability at least $1 - \delta/3$

1356

$$\left| \left(\widehat{\mathbb{B}}_{i,h} \widehat{V}_{i,h+1}^{\pi} \right)(x,a) - \left(\mathbb{B}_{i,h} \widehat{V}_{i,h+1}^{\pi} \right)(x,a) \right| \leq \beta \left(\frac{\sigma}{3nH\mathcal{N}_{(Hn)^{-1}}^{\Pi}} \right) \left(\phi(x,a)^{\top} \Lambda_{i,h}^{-1} \phi(x,a) \right)^{1/2},$$

for all $i \in [n], \pi \in \widetilde{\Pi}, (x,a) \in \mathcal{S} \times \mathcal{A}, h \in [H],$ (32)

where $\widetilde{\Pi}$ is the $\frac{1}{Hn}$ -covering set of the policy space Π w.r.t. distance $d(\pi^1, \pi^2) = \max_{s \in S, h \in [H]} \|\pi_h^1(\cdot|s) - \pi_h^2(\cdot|s)\|_1$.

Therefore, we can specify the $\Gamma_{i,h}(\cdot,\cdot)$ in Theorem 9 with $\beta\left(\frac{\delta}{3nH\mathcal{N}_{(Hn)}^{\Pi}-1}\right)\left(\phi(x,a)^{\top}\Lambda_{i,h}^{-1}\phi(x,a)\right)^{1/2}$, and follow the same process as the proof of Theorem 9 to get the result for Algo.2 with subroutine Algo.5.

1364 Similarly, we can get: we can get: for Algo.5, with probability at least 1 - 1/4

1365 1366

1367

$$\left| (\widehat{\mathbb{B}}_{i,h} \widehat{V}_{i,h+1})(x,a) - (\mathbb{B}_{i,h} \widehat{V}_{i,h+1})(x,a) \right| \le \beta \left(\frac{\delta}{4nH}\right) \left(\phi(x,a)^\top \Lambda_{i,h}^{-1} \phi(x,a) \right)^{1/2},$$

for all $i \in [n], (x,a) \in \mathcal{S} \times \mathcal{A}, h \in [H].$ (33)

Therefore, we can specify the $\Gamma_{i,h}(\cdot, \cdot)$ in Theorem 14 with $\beta\left(\frac{\delta}{4nH}\right)\left(\phi(x,a)^{\top}\Lambda_{i,h}^{-1}\phi(x,a)\right)^{1/2}$ and follow the same process as the proof of Theorem 14 to get the result for Algo.3 with subroutine Algo.5.

1373

1388 1389

1374 $\|\phi(s_h, a_h)\|_{\Lambda_{i,h}^{-1}}$ indicates how well the state-action pair (s_h, a_h) is covered by the dataset \mathcal{D}_i . The 1375 term $\sum_{i=1}^n \sum_{h=1}^H \mathbb{E}_{i,\pi^*} \left[\|\phi(s_h, a_h)\|_{\Lambda_{i,h}^{-1}} \, | \, s_1 = x_1 \right]$ in the suboptimality gap in Theorem 26 is small 1377 if for each context $i \in [n]$, the dataset \mathcal{D}_i well covers the trajectory induced by the optimal policy π^* 1378 on the corresponding MDP \mathcal{M}_i .

1379 1380 1380 1381 1382 1382 1384 Well-explored behavior policy Next we consider a case where the dataset \mathcal{D} consists of n indepen-1381 1382 1382 1384 Well-explored behavior policy \bar{n}_i and for each environment i, \mathcal{D}_i consists of K trajectories $\mathcal{D}_i = \{(x_{i,h}^{\tau}, a_{i,h}^{\tau}, r_{i,h}^{\tau})_{h=1}^{H}\}_{\tau=1}^{K}$ independently and identically induced by a fixed behavior policy $\bar{\pi}_i$ in the 1384 1384

Definition 27 (Well-Explored Policy, Duan et al. 2020; Jin et al. 2021) For an behavior policy $\bar{\pi}$ and an episodic linear MDP \mathcal{M} with the feature mapping ϕ , we say $\bar{\pi}$ well-explores \mathcal{M} with constant c if there exists an absolute positive constant c > 0 such that

$$\forall h \in [H], \lambda_{\min}(\Sigma_h) \ge c/d, \text{ where } \Sigma_h = \mathbb{E}_{\bar{\pi},\mathcal{M}} \left[\phi(s_h, a_h) \phi(s_h, a_h)^{\top} \right].$$

1390 A well-explored policy guarantees that the obtained trajectories is "uniform" enough to represent 1391 any policy and value function. The following corollary shows that with the above assumption, the 1392 suboptimality gaps of Algo.2 (with subroutine Algo.5) and Algo.3 (with subroutine Algo.5) decay to 1393 0 when n and K are large enough.

Corollary 28 Suppose that for each $i \in [n]$, \mathcal{D}_i is generated by behavior policy $\bar{\pi}_i$ which wellexplores MDP \mathcal{M}_i with constant $c_i \geq c_{min}$. In Algo.5, we set $\lambda = 1, \beta(\delta) = c' \cdot dH \sqrt{\log(4dHK/\delta)}$ where c' > 0 is a positive constant. Suppose we have $K \geq 40d/c_{min}\log(4dnH/\delta)$ and set $C_n^* := 1/n \cdot \sum_{i=1}^n c_i^{-1/2}$. Then we have:

(i) for the output π^{PERM} of Algo.2 with subroutine Algo.5, with probability at least $1 - \delta$, the suboptimality gap satisfies

1401
1402
1403
$$SubOpt(\pi^{PERM}) \le 7\sqrt{\frac{2\log(6\mathcal{N}_{(Hn)^{-1}}^{\Pi}/\delta)}{n}} + 2\sqrt{2}c' \cdot d^{3/2}H^2K^{-1/2}\sqrt{\log(12dHnK\mathcal{N}_{(Hn)^{-1}}^{\Pi}/\delta)} \cdot C_n^*,$$
(34)

(ii) for the output policy π^{PPPO} of Algo.3 with subroutine Algo.5, setting $\delta = 1/8$, then with probability at least 2/3, the suboptimality gap satisfies

$$\mathsf{SubOpt}(\pi^{\mathsf{PPPO}}) \le 10 \bigg(\sqrt{\frac{\log |\mathcal{A}| H^2}{n}} + 2\sqrt{2}c' \cdot d^{3/2} H^{2.5} K^{-1/2} \sqrt{\log(16dHnK)} \cdot C_n^* \bigg).$$
(35)

Proof By the assumption that \mathcal{D}_i is generated by behavior policy $\bar{\pi}_i$ which well-explores MDP \mathcal{M}_i with constant c_i (where the well-explore is defined in Def.27), the proof of Corollary 4.6 in Jin et al. (2021), and applying a union bound over *n* contexts, we have that for Algo.2 with subroutine Algo.5 w.p. at least $1 - \delta/2$

$$\|\phi(x,a)\|_{\Lambda_{i,h}^{-1}} \le \sqrt{\frac{2d}{c_i K}} \text{ for all } i \in [n], \ (x,a) \in \mathcal{S} \times \mathcal{A} \text{ and all } h \in [H],$$
(36)

and for Algo.2 with subroutine Algo.5 w.p. at least $1 - \delta/2$

$$\|\phi(x,a)\|_{\Lambda_{i,h}^{-1}} \le \sqrt{\frac{2dH}{c_i K}} \text{ for all } i \in [n], \ (x,a) \in \mathcal{S} \times \mathcal{A} \text{ and all } h \in [H],$$
(37)

because we use the data splitting technique and we only utilize each trajectory once for one data tuple at some stage h, so we replace K with K/H.

1422 Then, the result follows by plugging the results above into Theorem26.

1423 1424

1407 1408

1413 1414 1415

1417 1418 1419

1425

Remark 29 The mixed coverage parameter $C_n^* = \frac{1}{n} \sum_{i=1}^n \frac{1}{\sqrt{c_i}}$ is small if for any $i \in [n]$, c_i is large, i.e., the minimum eigenvalue of $\sum_{i,h} = \mathbb{E}_{\bar{\pi}_i,\mathcal{M}_i} [\phi(s_h, a_h)\phi(s_h, a_h)^\top]$ is large. Note that $\lambda_{\min}(\sum_{i,h})$ indicates how well the behavior policy $\bar{\pi}_i$ explores the state-action pairs on MDP \mathcal{M}_i ; this shows that if for each environment $i \in [n]$, the behavior policy explores \mathcal{M}_i well, the suboptimality gap will be small.

1432 **Remark 30** Under the same conditions of Corollary 28, we have: 1433 (i) If $n \ge \frac{392 \log(6\mathcal{N}_{(Hn)}^{\Pi} - 1/\delta)}{\epsilon^2}$ and $K \ge \max\{\frac{40d}{c_{min}}\log(\frac{4dnH}{\delta}), \frac{32c'^2d^3H^4\log(12dHnK\mathcal{N}_{(Hn)}^{\Pi} - 1/\delta)C_n^{*2}}{\epsilon^2}\}$, 1435 then w.p. at least $1 - \delta$, SubOpt $(\pi^{PERM}) \le \epsilon$. 1436 (ii) If $n \ge \frac{400H^2\log(|\mathcal{A}|)}{\epsilon^2}$ and $K \ge \max\{\frac{40d}{c_{min}}\log(16dnH), \frac{32c'^2d^3H^5\log(16dHnK)C_n^{*2}}{\epsilon^2}\}$, then w.p. at 1437 least 2/3, SubOpt $(\pi^{PPPO}) \le \epsilon$.

1439 Corollary 28 suggests that both of our proposed algorithms enjoy the $O(n^{-1/2} + K^{-1/2} \cdot C_n^*)$ 1440 convergence rate to the optimal policy π^* given a well-exploration data collection assumption, where C_n^* is a mixed coverage parameter over n environments defined in Corollary 28.

1442 1443

1444

1453

E ADDITIONAL EXPERIMENT DETAILS

1445 E.1 ABLATION STUDY ON SCALING CRITIC PARAMETERS

In this section, we present an additional ablation study to examine the effect of scaling the critic network parameters in IQL-1V and compare the results with IQL-4V. Specifically, we increase the hidden dimension of the fully connected layers in the value network from 256 to 1024 within the IQL-1V framework, ensuring that the total number of critic parameters matches that of IQL-4V. The results, summarized in Table 4, indicate that enlarging the critic network to four times its original size fails to achieve performance comparable to either the IQL-4V or the original IQL-1V settings.

1454Table 4: Ablation study on Miner game on the effects of scaling the critic parameters of IQL-1V1455algorithm.

1455	algorithm.			
1456	Procgen game	4V-SP (256 hidden dim)	1V-SP (256 hidden dim)	1V-SP (1024 hidden dim)
1/57	Miner	6.36 ± 1.85	5.6 ± 1.89	2.18 ± 1.05
1407				

1458 E.2 HYPERPARAMETERS FOR EXPERIMENTS ON REAL DATA

Table 5 shows our hyperparameters for experiment settings reported in Table 2.

1462
1463Table 5: Hyperparameters in our experiment. We note that the policy extraction via Soft Actor-Critic
(SAC) implementation endows IQL-4V's policy a stochastic nature in some settings, so we tune the
policy sampling method to leverage this effect.

• •	<u> </u>		
	Hyperparameter	IQL-4V (Expert)	IQL-4V (Mixed)
	Learning Rate	0.0005	0.0005
	Target model Weight Update	Polyak	Polyak
	Batch Size	512	512
	au	0.005	0.005
	Target update frequency	100	100
	Temperature	3.0	3.0
	Expectile	0.8	0.8
	Policy Sampling	Stochastic	Deterministic

1473 1474 1475

1461

1476 E.3 EXPERIMENTS ON SYNTHETIC DATA

Environments We are using the comblock framework that we adapted from (Bose et al., 2024), where we directly record the policies and Q-values through state-action pairs instead of recovering them linear-algebraically through rich observations. We leverage the PyTorch framework with CPU device to process the tabular numerical operations. The entire dataset generation and experiment process is conducted on MacBook Pro with M3 Max chip where the dataset generation process takes about 2 hours.

1483 We consider the Combination Lock environment adapted from (Bose et al., 2024). At each timestep 1484 h, there are three states $s_{0,h}$, $s_{1,h}$, $s_{2,h}$ with 5 possible actions; only $s_{0,h}$, $s_{1,h}$ are considered as 1485 desirable states that are reachable toward final reward. The environment uniformly and independently 1486 samples 1 out of 5 actions for each desirable state $a_{0,h}$, $a_{1,h}$ at each timestep, where taking these 1487 actions will result transition to one of the good states $s_{0,h+1}$, $s_{1,h+1}$ with equal probability, otherwise 1488 the transition will deterministically to the bad state $s_{2,h+1}$ and remains in the bad states for the rest 1489 of the horizon. If the agent is staying in the good states at the end of the horizon, the reward will be 1; otherwise the agent has 0.5 probability to receive a 0.1 reward. 1490

1491 Implementation details We consider two experiment settings, one with 5 context environments and 1492 the other with 10 context environments. Each context environment is generated randomly. For the 1493 generation of the offline dataset, as in (Bose et al., 2024), we adopt the Exploratory Policy Search 1494 (EPS) algorithm proposed by (Agarwal et al., 2023) to obtain exploratory policies (not necessarily 1495 optimal) that cover as much of the feature space. For each context environment, 500 exploratory trajectories are i.i.d. sampled. We compare our proposed PPPO with the previous baseline PEVI Jin 1496 et al. (2021) w.r.t. their average reward. In our experiment, we calibrate the $\beta(\delta)$ parameter for PEVI 1497 to reflect the optimal performance, as well as the $\beta(\delta), \alpha$ parameters for PPPO to reflect near-optimal 1498 performance. 1499

Experiment results We find that PPPO generally outperforms PEVI on average rewards in both contextual settings as shown in Table 6, this validates our theory hypothesis (see discussion in Appendix A.2 for an analysis of PEVI).

1503 1504

Table 6: The average rewards for PEVI and PPPO algorithms in two different contextual settings with 5 and 10 contexts. In PPPO, noting that the result policy is randomly sampled from n policies, we are taking the average value and calculating the standard deviation (reported as 1-sigma error bars) of the evaluation results for trained policies π_1, \ldots, π_n .

1508	Number of Contexts	PEVI (Jin et al., 2021)	PPPO
1509	5	0.0628	0.0670 ± 0.0141
1510	10	0.0514	0.0650 ± 0.0173
1511			