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ABSTRACT

In this work, we study offline reinforcement learning (RL) with zero-shot general-
ization property (ZSG), where the agent has access to an offline dataset including
experiences from different environments, and the goal of the agent is to train a
policy over the training environments which performs well on test environments
without further interaction. Existing work showed that classical offline RL fails
to generalize to new, unseen environments. We propose pessimistic empirical
risk minimization (PERM) and pessimistic proximal policy optimization (PPPO),
which leverage pessimistic policy evaluation to guide policy learning and enhance
generalization. Theoretically, our framework is capable of finding a near-optimal
policy with ZSG. Empirically, our framework demonstrates the ability to enhance
the performance of the base offline RL methods. Our result serves as a first
step in understanding the foundation of the generalization phenomenon in offline
reinforcement learning. Our codes are released at this link.

1 INTRODUCTION

Offline reinforcement learning (RL) has become increasingly significant in modern RL because it
eliminates the need for direct interaction between the agent and the environment; instead, it relies
solely on learning from an offline training dataset. However, in practical applications, the offline
training dataset often originates from a different environment than the one of interest. This discrepancy
necessitates evaluating RL agents in a generalization setting, where the training involves a finite
number of environments drawn from a specific distribution, and the testing is conducted on a distinct
set of environments from the same or different distribution. This scenario is commonly referred to as
the zero-shot generalization (ZSG) challenge which has been studied in online RL(Rajeswaran et al.,
2017; Machado et al., 2018; Justesen et al., 2018; Packer et al., 2019; Zhang et al., 2018a;b), as the
agent receives no training data from the environments it is tested on.

A number of recent empirical studies (Mediratta et al., 2023; Yang et al., 2023; Mazoure et al., 2022)
have recognized this challenge and introduced various offline RL methodologies that are capable of
ZSG. Notwithstanding the lack of theoretical backing, these methods are somewhat restrictive; for
instance, some are only effective for environments that vary solely in observations(Mazoure et al.,
2022), while others are confined to the realm of imitation learning(Yang et al., 2023), thus limiting
their applicability to a comprehensive framework of offline RL with ZSG capabilities. Concurrently,
theoretical advancements (Bose et al., 2024; Ishfaq et al., 2024) in this domain have explored multi-
task offline RL by focusing on representation learning. These approaches endeavor to derive a
low-rank representation of states and actions, which inherently requires additional interactions with
the downstream tasks to effectively formulate policies based on these representations. Therefore, we
raise a natural question:

Can we design provable offline RL with zero-shot generalization ability?

We propose novel offline RL frameworks that achieve ZSG to address this question affirmatively. Our
contributions are listed as follows.

• We first analyze when existing offline RL approaches fail to generalize without further algorithm
modifications. Specifically, we prove that if the offline dataset does not contain context information,
then it is impossible for vanilla RL that equips a Markovian policy to achieve a ZSG property. We
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Table 1: Summary of our algorithms and their suboptimality gaps, where A is the action space, H
is the length of episode, n is the number of environments in the offline dataset. Note that in the
multi-environment setting, π∗ is the near-optimal policy w.r.t. expectation (defined in Section 3). N
is the covering number of the policy space Π w.r.t. distance d(π1, π2) = maxs∈S,h∈[H] ∥π1

h(·|s)−
π2
h(·|s)∥1. The uncertainty quantifier Γi,h are tailored with the oracle return in the corresponding

algorithms (details are in Section 5).
Algorithm Suboptimality Gap

PERM (our Algo.2)
√
log(N )/n+ n−1

∑n
i=1

∑H
h=1 Ei,π∗ [Γi,h(sh, ah)|s1 = x1]

PPPO (our Algo.3)
√
log |A|H2/n+ n−1

∑n
i=1

∑H
h=1 Ei,π∗ [Γi,h(sh, ah)|s1 = x1]

show that the offline dataset from a contextual Markov Decision Process (MDP) is not distinguish-
able from a vanilla MDP which is the average of contextual Markov Decision Process over all
contexts. Such an analysis verifies the necessity of new RL methods with ZSG property.

• We propose two meta-algorithms called pessimistic empirical risk minimization (PERM) and
pessimistic proximal policy optimization (PPPO) that enable ZSG for offline RL (Jin et al., 2021).
In detail, both of our algorithms take a pessimistic policy evaluation (PPE) oracle as its component
and output policies based on offline datasets from multiple environments. Our result shows that the
sub-optimalities of the output policies are bounded by both the supervised learning error, which is
controlled by the number of different environments, and the reinforcement learning error, which is
controlled by the coverage of the offline dataset to the optimal policy. Please refer to Table 1 for a
summary of our results. To the best of our knowledge, our proposed algorithms are the first offline
RL methods that provably enjoy the ZSG property.

• Based on the proposed meta-algorithms, we conduct real-data experiments on widely used Procgen
benchmark for RL generalization (Cobbe et al., 2020). Results demonstrate that our algorithm
outperforms the vanilla RL baselines like in terms of the average performance across different
Procgen games, which suggests the effectiveness of our methods.

Notation We use lower case letters to denote scalars, and use lower and upper case bold face letters to
denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}. For a vector x ∈ Rd
and a positive semi-definite matrix Σ ∈ Rd×d, we denote by ∥x∥2 the vector’s Euclidean norm
and define ∥x∥Σ =

√
x⊤Σx. For two positive sequences {an} and {bn} with n = 1, 2, . . . , we

write an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn holds for all
n ≥ 1 and write an = Ω(bn) if there exists an absolute constant C > 0 such that an ≥ Cbn holds
for all n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors. We use (xi)

n
i=1 to denote

sequence (x1, ..., xn), and we use {xi}ni=1 to denote the set {x1, ..., xn}. We use KL(p∥q) to denote
the KL distance between distributions p and q, defined as

∫
p log(p/q). We use E[x],V[x] to denote

expectation and variance of a random variable x.

The remaining parts are organized as follows. In Section 2, we discuss related works. In Section 3,
we introduce the setting of our work. In Section 4, we analyze when existing offline RL approaches
(Jin et al., 2021) fail to generalize without further algorithm modifications. In Section 5, we introduce
our proposed meta-algorithms and provide their theoretical guarantees. In Section 6, we present our
experiment on real data to empirically validate the theoretical observations in Section 5. Finally, in
Section 7, we conclude our work and propose some future directions. Moreover, in Appendix D, we
specify our meta-algorithms and analysis to a more concrete linear MDP setting.

2 RELATED WORKS

Offline RL Offline reinforcement learning (RL) (Ernst et al., 2005; Riedmiller, 2005; Lange et al.,
2012; Levine et al., 2020) addresses the challenge of learning a policy from a pre-collected dataset
without direct online interactions with the environment. A central issue in offline RL is the inadequate
dataset coverage, stemming from a lack of exploration (Levine et al., 2020; Liu et al., 2020). A
common strategy to address this issue is the application of the pessimism principle, which penalizes
the estimated value of under-covered state-action pairs. Numerous studies have integrated pessimism
into various single-environment offline RL methodologies. This includes model-based approaches
(Rashidinejad et al., 2021; Uehara and Sun, 2021; Jin et al., 2021; Yu et al., 2020; Xie et al., 2021b;
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Uehara et al., 2021; Yin et al., 2022), model-free techniques (Kumar et al., 2020; Wu et al., 2021; Bai
et al., 2022; Ghasemipour et al., 2022; Yan et al., 2023), and policy-based strategies (Rezaeifar et al.,
2022; Xie et al., 2021a; Zanette et al., 2021; Nguyen-Tang and Arora, 2024). (Yarats et al., 2022) has
observed that with sufficient offline data diversity and coverage, the need for pessimism to mitigate
extrapolation errors and distribution shift might be reduced. To the best of our knowledge, we are the
first to theoretically study the generalization ability of offline RL in the contextual MDP setting.

Generalization in online RL There are extensive empirical studies on training online RL agents
that can generalize to new transition and reward functions (Rajeswaran et al., 2017; Machado et al.,
2018; Justesen et al., 2018; Packer et al., 2019; Zhang et al., 2018a;b; Nichol et al., 2018; Cobbe
et al., 2018; Küttler et al., 2020; Bengio et al., 2020; Bertran et al., 2020; Ghosh et al., 2021; Kirk
et al., 2023; Juliani et al., 2019; Ajay et al., 2021; Samvelyan et al., 2021; Frans and Isola, 2022;
Albrecht et al., 2022; Ehrenberg et al., 2022; Song et al., 2020; Lyle et al., 2022; Ye et al., 2020; Lee
et al., 2020; Jiang et al.). They use techniques including implicit regularization (Song et al., 2020),
data augmentation Ye et al. (2020); Lee et al. (2020), uncertainty-driven exploration (Jiang et al.),
successor feature (Touati et al., 2023), etc. These works focus mostly on the online RL setting and
do not provide theoretical guarantees, thus differing a lot from ours. Moreover, Touati et al. (2023)
has studied zero-shot generalization in offline RL, but to unseen reward functions rather than unseen
environments. Addtional related works that have studied zero-shot RL include Park et al. (2024);
Jeen et al. (2023).

There are also some recent works aimed at understanding online RL generalization from a theoretical
perspective. Wang et al. (2019) examined a specific class of reparameterizable RL problems and
derived generalization bounds using Rademacher complexity and the PAC-Bayes bound. Malik
et al. (2021) established lower bounds and introduced efficient algorithms that ensure a near-optimal
policy for deterministic MDPs. A more recent work Ye et al. (2023) studied how much pre-training
can improve online RL test performance under different generalization settings. To the best of our
knowledge, no previous work exists on theoretical understanding of the zero-shot generalization of
offline RL.

Our paper is also related to recent works studying multi-task learning in reinforcement learning
(RL) (Brunskill and Li, 2013; Tirinzoni et al., 2020; Hu et al., 2021; Zhang and Wang, 2021; Lu
et al., 2021; Bose et al., 2024; Ishfaq et al., 2024; Zhang et al., 2023), which focus on transferring
the knowledge learned from upstream tasks to downstream ones. Additionally, these works typically
assume that all tasks share similar transition dynamics or common representations while we do not.
Meanwhile, they typically requires the agent to interact with the downstream tasks, which does not
fall into the ZSG regime.

3 PRELIMINARIES

Contextual MDP We study contextual episodic MDPs, where each MDPMc is associated with
a context c ∈ C belongs to the context space C. Furthermore,Mc = {Mc,h}Hh=1 consists of H
different individual MDPs, where each individual MDP Mc,h := (S,A, Pc,h(s′|s, a), rc,h(s, a)).
Here S denotes the state space, A denotes the action space, Pc,h denotes the transition function and
rc,h denotes the reward function at stage h. We assume the starting state for eachMc is the same
state x1. In this work, we interchangeablely use “environment" or MDP to denote the MDPMc with
different contexts.

Policy and value function We denote the policy πh at stage h as a mapping S → ∆(A), which
maps the current state to a distribution over the action space. We use π = {πh}Hh=1 to denote their
collection. Then for any episodic MDPM, we define the value function for some policy π as
V π
M,h(x) := E[rh + ...+ rH |sh = x, ah′ ∼ πh′ , rh′ ∼ rh′(sh′ , ah′), sh′+1 ∼ Ph′(·|sh′ , ah′), h′ ≥ h] ,

Qπ
M,h(x, a) := E[rh + ...+ rH |sh = x, ah = a, rh ∼ rh(sh, ah), sh′ ∼ Ph′−1(·|sh′−1, ah′−1), ah′ ∼ πh′ ,

rh′ ∼ rh′(sh′ , ah′), h′ ≥ h+ 1].

For any individual MDP M with reward r and transition dynamic P , we denote its Bellman operator
[BMf ](x, a) as [BMf ](s, a) := E[rh(s, a) + f(s′)|s′ ∼ P (·|s, a)]. Then we have the well-known
Bellman equation

V π
M,h(x) = ⟨Qπ

M,h(x, ·), πh(·|x)⟩A, Qπ
M,h(x, a) = [BMhV

π
M,h+1](x, a).

For simplicity, we use V πc,h, Q
π
c,h,Bc,h to denote V πMc,h

, QπMc,h
,BMc,h

. We also use Pc to denote
PMc , the joint distribution of any potential objects under theMc episodic MDP. We would like to
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find the near-optimal policy π∗ w.r.t. expectation, i.e., π∗ := argmaxπ∈Π Ec∼CV πc,1(xc), where Π is
the set of collection of Markovian policies, and with a little abuse of notation, we use Ec∼C to denote
the expectation taken w.r.t. the i.i.d. sampling of context c from the context space. Then our goal is to
develop the generalizable RL with small zero-shot generalization gap (ZSG gap), defined as follows:

SubOpt(π) := Ec∼C

[
V π∗
c,1 (x1)

]
− Ec∼C

[
V π
c,1(x1)

]
.

Remark 1 We briefly compare generalizable RL with several related settings. Robust RL (Pinto et al.,
2017) aims to find the best policy for the worst-case environment, whereas generalizable RL seeks
a policy that performs well in the average-case environment. Meta-RL (Beck et al., 2023) enables
few-shot adaptation to new environments, either through policy updates (Finn et al., 2017) or via
history-dependent policies (Duan et al., 2016). In contrast, generalizable RL primarily focuses on
the zero-shot setting. In the general POMDP framework (Cassandra et al., 1994), agents need to
maintain history-dependent policies to implicitly infer environment information, while generalizable
RL aims to discover a single state-dependent policy that generalizes well across all environments.

Remark 2 Ye et al. (2023) showed that in online RL, for a certain family of contextual MDPs, it is
inherently impossible to determine an optimal policy for each individual MDP. Given that offline RL
poses greater challenges than its online counterpart, this impossibility extends to finding optimal
policies for each MDP in a zero-shot offline RL setting as well, which justifies our optimization
objective on the ZSG gap. Moreover, Ye et al. (2023) showed that the few-shot RL is able to find the
optimal policy for individual MDPs. Clearly, such a setting is stronger than ours, and the additional
interactions are often hard to be satisfied in real-world practice. We leave the study of such a setting
for future work.

Offline RL data collection process The data collection process is as follows. An experimenter
i.i.d. samples number n of contextual episodic MDP Mi from the context set (e.g., i ∼ C). For
each episodic MDP Mi, the experimenter collects dataset Di := {(xτi,h, aτi,h, rτi,h)Hh=1}Kτ=1 which
includes K trajectories. Note that the action aτi,h selected by the experimenter can be arbitrary, and it
does not need to follow a specific behavior policy (Jin et al., 2021). We assume that Di is compliant
with the episodic MDPMi, which is defined as follows.

Definition 3 ((Jin et al., 2021)) For a dataset Di := {(xτi,h, aτi,h, rτi,h)Hh=1}Kτ=1, let PDi
be the joint

distribution of the data collecting process. We say Di is compliant with episodic MDPMi if for any
x′ ∈ S, r′, τ ∈ [K], h ∈ [H], we have

PDi
(rτi,h = r′, xτi,h+1 = x′|{(xji,h, a

j
i,h)}

τ
j=1, {(r

j
i,h, x

j
i,h+1)}

τ−1
j=1 )

= Pi(ri,h(sh, ah) = r′, sh+1 = x′|sh = xτh, ah = aτh).

In general, we claim Di is compliant with Mi when the conditional distribution of any tuple of
reward and next state in Di follows the conditional distribution determined by MDPMi.

4 OFFLINE RL WITHOUT CONTEXT INDICATOR INFORMATION

In this section, we show that directly applying existing offline RL algorithms over datasets from
multiple environments without maintaining their identity information cannot yield a sufficient ZSG
property, which is aligned with the existing observation of the poor generalization performance of
offline RL (Mediratta et al., 2023).

In detail, given contextual MDPsM1, ...,Mn and their corresponding offline datasets D1, ...,Dn,
we assume the agent only has the access to the offline dataset D̄ = ∪ni=1Di, where D̄ =
{(xτcτ ,h, a

τ
cτ ,h

, rτcτ ,h)
H
h=1}Kτ=1. Here cτ ∈ C is the context information of trajectory τ , which is

unknown to the agent. To explain why offline RL without knowing context information performs
worse, we have the following proposition suggesting the offline dataset from multiple MDPs is not
distinguishable from an “average MDP" if the offline dataset does not contain context information.

Proposition 4 D̄ is compliant with average MDP M̄ := {M̄h}Hh=1, M̄h :=
(
S,A, H, P̄h, r̄h

)
,

P̄h(x
′|x, a) := Ec∼C

Pc,h(x
′|x, a)µc,h(x, a)

Ec∼Cµc,h(x, a)
, P(r̄h = r|x, a) := Ec∼C

P(r̄c,h = r|x, a)µc,h(x, a)
Ec∼Cµc,h(x, a)

,

4
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where µc,h(·, ·) is the data collection distribution of (s, a) at stage h in dataset Dc.

Proof See Appendix A.1.

Proposition 4 suggests that if no context information is revealed, then the merged offline dataset D̄
is equivalent to a dataset collected from the average MDP M̄. Therefore, for any offline RL which
outputs a Markovian policy, it converges to the optimal policy π̄∗ of the average MDP M̄.

In general, π̄∗ can be very different from π∗ when the transition probability functions of each
environment are different. For example, consider the 2-context cMDP problem shown in Figure
1, each context consists of one state and three possible actions. The offline dataset distributions
µ are marked on the arrows that both of the distributions are following near-optimal policy. By
Proposition 4, in average MDP M̄ the reward of the middle action is deterministically 0, while both
upper and lower actions are deterministically 1. As a result, the optimal policy π̄∗ will only have
positive probabilities toward upper and lower actions. This leads to Ec∼C [V π

∗

c,1 (x1)] = 0, though
we can see that π∗ is deterministically choosing the middle action and Ec∼C [V π

∗

c,1 (x1)] = 0.5. This
theoretically illustrates that the generalization ability of offline RL algorithms without leveraging
context information is weak. In sharp contrast, imitation learning such as behavior cloning (BC)
converges to the teacher policy that is independent of the specific MDP. Therefore, offline RL methods
such as CQL (Kumar et al., 2020) might enjoy worse generalization performance compared with BC,
which aligns with the observation made by Mediratta et al. (2023).

x1 x1

µv(a1) =
1− ϵ rv(a1) = 1

µv(a2) = ϵ
rv(a2) = 0

µv(a3) = 0 rv(a3) = −1

µw(a1) =
0 rw(a1) = −1

µw(a2) = 0
rw(a2) = 1

µw(a3) = 1 rw(a3) = 1

Figure 1: Two Contextual MDPs with the same compliant average MDPs. The discrete contextual
space is defined as C = {v, w} and both MDPs satisfies S = {x1},A = {a1, a2, a3}, H = 1. The
data collection distributions µ and rewards r for each action of each context are specified in the graph.

5 PROVABLE OFFLINE RL WITH ZERO-SHOT GENERALIZATION

In this section, we propose offline RL with small ZSG gaps. We show that two popular offline RL
approaches, model-based RL and policy optimization-based RL, can output RL agent with ZSG ability,
with a pessimism-style modification that encourages the agent to follow the offline dataset pattern.

5.1 PESSIMISTIC POLICY EVALUATION

We consider a meta-algorithm to evaluate any policy π given an offline dataset, which serves as a key
component in our proposed offline RL with ZSG. To begin with, we consider a general individual
MDP and an oracle O, which returns us an empirical Bellman operator and an uncertainty quantifier,
defined as follows.

Definition 5 (Empirical Bellman operator and uncertainty quantifier, Jin et al. 2021) For any
individual MDP M , a dataset D ⊆ S × A × S × [0, 1] that is compliant with M , a test
function VD ⊆ [0, H]S and a confidence level ξ, we have an oracle O(D, VD, ξ) that returns
(B̂VD(·, ·),Γ(·, ·)), a tuple of Empirical Bellman operator and uncertainty quantifier, satisfying

PD

(∣∣(B̂VD)(x, a)− (BMVD)(x, a)
∣∣ ≤ Γ(x, a) for all (x, a) ∈ S ×A

)
≥ 1− ξ.

Remark 6 Here we adapt a test function VD that can depend on the dataset D itself. Therefore, Γ
is a function that depends on both the dataset and the test function class. We do not specify the test
function class in this definition, and we will discuss its specific realization in Section D.
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Algorithm 1 Pessimistic Policy Evaluation (PPE)
Require: Offline dataset {Di,h}Hh=1, policy π = (πh)

H
h=1, confidence probability δ ∈ (0, 1).

1: Initialize V̂ π
i,H+1(·)← 0, ∀i ∈ [n].

2: for step h = H,H − 1, . . . , 1 do
3: Let (B̂i,hV̂

π
i,h+1)(·, ·),Γi,h(·, ·)← O(Di,h, V̂

π
i,h+1, δ)

4: Set Q̂π
i,h(·, ·)← min{H − h+ 1, (B̂i,hV̂

π
i,h+1)(·, ·)− Γi,h(·, ·)}+

5: Set V̂ π
i,h(·)← ⟨Q̂π

i,h(·, ·), πh(·|·)⟩A
6: end for
7: return V̂ π

i,1(·), . . . , V̂ π
i,H(·), Q̂π

i,1(·, ·), . . . , Q̂π
i,H(·, ·).

Remark 7 For general non-linear MDPs, one may employ the bootstrapping technique to estimate
uncertainty, in line with the bootstrapped DQN approach developed by (Osband et al., 2016). We
note that when the bootstrapping method is straightforward to implement, the assumption of having
access to an uncertainty quantifier is reasonable.

Based on the oracle O, we propose our pessimistic policy evaluation (PPE) algorithm as Algorithm
1. In general, PPE takes a given policy π as its input, and its goal is to evaluate the V value and Q
value {(V πi,h, Qπi,h)}Hh=1 of π on MDPMi. Since the agent is not allowed to interact withMi, PPE
evaluates the value based on the offline dataset {Di,h}Hh=1. At each stage h, PPE utilizes the oracle
O and obtains the empirical Bellman operator based on Di,h as well as its uncertainty quantifier, with
high probability. Then PPE applies the pessimism principle to build the estimation of the Q function
based on the empirical Bellman operator and the uncertainty quantifier. Such a principle has been
widely studied and used in offline policy optimization, such as pessimistic value iteration (PEVI) (Jin
et al., 2021). To compare with, we use the pessimism principle in the policy evaluation problem.

Remark 8 In our framework, pessimism can indeed facilitate generalization, rather than hinder it.
Specifically, we employ pessimism to construct reliable Q functions for each environment individually.
This approach supports broader generalization by maintaining multiple Q-networks separately. By
doing so, we ensure that each Q function is robust within its specific environment, while the collective
set of Q functions enables the system to generalize across different environments.

5.2 MODEL-BASED APPROACH: PESSIMISTIC EMPIRICAL RISK MINIMIZATION

Given PPE, we propose algorithms that have the ZSG ability. We first propose a pessimistic empirical
risk minimization (PERM) method which is model-based and conceptually simple. The algorithm
details are in Algorithm 2. In detail, for each dataset Di drawn from i-th environments, PERM
builds a model using PPE to evaluate the policy π under the environmentMi. Then PERM outputs
a policy πPERM ∈ Π that maximizes the average pessimistic value, i.e., 1/n

∑n
i=1 V̂

π
i,1(x1). Our

approach is inspired by the classical empirical risk minimization approach adopted in supervised
learning, and the Optimistic Model-based ERM proposed in Ye et al. (2023) for online RL. Our
setting is more challenging than the previous ones due to the RL setting and the offline setting,
where the interaction between the agent and the environment is completely disallowed. Therefore,
unlike Ye et al. (2023), which adopted an optimism-style estimation to the policy value, we adopt a
pessimism-style estimation to fight the distribution shift issue in the offline setting.

Next we propose a theoretical analysis of PERM. Denote NΠ
ϵ as the ϵ-covering number of the policy

space Π w.r.t. distance d(π1, π2) = maxs∈S,h∈[H] ∥π1
h(·|s)−π2

h(·|s)∥1. Then we have the following
theorem to provide an upper bound of the suboptimality gap of the output policy πPERM.

Theorem 9 Set the Evaluation subroutine in Algorithm 2 as PPE (Algo.1). Let Γi,h be the uncertainty
quantifier returned by O through the PERM. Then w.p. at least 1− δ, the output πPERM of Algorithm
2 satisfies

SubOpt(πPERM) ≤ 7

√
2 log(6NΠ

(Hn)−1/δ)

n︸ ︷︷ ︸
I1:Supervised learning (SL) error

+
2

n

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(sh, ah)|s1 = x1]︸ ︷︷ ︸
I2:Reinforcement learning (RL) error

, (1)

where Ei,π∗ is w.r.t. the trajectory induced by π∗ with the transition Pi in the underlying MDPMi.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Pessimistic Empirical Risk Minimization (PERM)
Require: Offline dataset D = {Di}ni=1,Di := {(xτ

i,h, a
τ
i,h, r

τ
i,h)

H
h=1}Kτ=1, policy class Π, confidence proba-

bility δ ∈ (0, 1), a pessimistic offline policy evaluation algorithm Evaluation as a subroutine.
1: Set Di,h = {(xτ

i,h, a
τ
i,h, r

τ
i,h, x

τ
i,h+1)}Kτ=1

2: πPERM = argmaxπ∈Π
1
n

∑n
i=1 V̂

π
i,1(x1),

where [V̂ π
i,1(·), ·, . . . , ·] = Evaluation

(
{Di,h}Hh=1, π, δ/(3nHNΠ

(Hn)−1))
)

3: return πPERM.

Algorithm 3 Pessimistic Proximal Policy Optimzation (PPPO)
Require: Offline dataset D = {Di}ni=1,Di := {(xτ

i,h, a
τ
i,h, r

τ
i,h)

H
h=1}Kτ=1, confidence probability δ ∈ (0, 1),

a pessimistic offline policy evaluation algorithm Evaluation as a subroutine.
1: Set Di,h = {(xτ ·H+h

i,h , aτ ·H+h
i,h , rτ ·H+h

i,h , xτ ·H+h
i,h+1 )}⌊K/H⌋−1

τ=0

2: Set π0,h(·|·) as uniform distribution over A and Q̂π0
0,h(·, ·) as zero functions.

3: for i = 1, 2, · · · , n do
4: Set πi,h(·|·) ∝ πi−1,h(·|·) · exp(α · Q̂

πi−1

i−1,h(·, ·))
5: Set [·, . . . , ·, Q̂πi

i,1(·, ·), . . . , Q̂
πi
i,H(·, ·)] = Evaluation({Di,h}Hh=1, πi, δ/(nH))

6: end for
7: return πPPPO = random(π1, ..., πn)

Proof See Appendix B.1.

Remark 10 The covering number NΠ
(Hn)−1 depends on the policy class Π. Without any specific

assumptions, the policy class Π that consists of all the policies π = {πh}Hh=1, πh : S 7→ ∆(A) and
the log ϵ-covering number logNΠ

ϵ = O(|A||S|H log(1 + |A|/ϵ)).

Remark 11 The SL error can be easily improved to a distribution-dependent bound logN · Var/
√
n,

where N is the covering number term denoted in I1, Var = maxπ Vc∼CV πc,1(x1) is the variance of
the context distribution, by using a Bernstein-type concentration inequality in our proof. Therefore,
for the singleton environment case where |C| = 1, our suboptimality gap reduces to the one of PEVI
in Jin et al. (2021).

Remark 12 In real-world settings, as the number of sampled contexts n might become very large, it
is unrealistic to manage n models simultaneously in the implementation of PERM algorithm, thus we
provide the suboptimality bound in line with Theorem 9 when the offline dataset is merged into m
contexts such that m < n. See Theorem 22 in Appendix C, as well as the real-data experiment in
Section 6.

Theorem 9 shows that the ZSG gap of PERM is bounded by two terms I1 and I2. I1, which we call
supervised learning error, depends on the number of environments n in the offline dataset D and
the covering number of the function (policy) class, which is similar to the generalization error in
supervised learning. I2, which we call it reinforcement learning error, is decided by the optimal
policy π∗ that achieves the best zero-shot generalization performance and the uncertainty quantifier
Γi,h. In general, I2 is the “intrinsic uncertainty" denoted by Jin et al. (2021) over n MDPs, which
characterizes how well each dataset Di covers the optimal policy π∗.

5.3 MODEL-FREE APPROACH: PESSIMISTIC PROXIMAL POLICY OPTIMIZATION

PERM in Algorithm 2 works as a general model-based algorithm framework to enable ZSG for any
pessimistic policy evaluation oracle. However, note that in order to implement PERM, one needs
to maintain n different models or critic functions simultaneously in order to evaluate

∑n
i=1 V̂

π
i,1(x1)

for any candidate policy π. Note that existing online RL (Ghosh et al., 2021) achieves ZSG by a
model-free approach, which only maintains n policies rather than models/critic functions. Therefore,
one natural question is whether we can design a model-free offline RL algorithm also with access
only to policies.

7
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We propose the pessimistic proximal policy optimization (PPPO) in Algorithm 3 to address this issue.
Our algorithm is inspired by the optimistic PPO (Cai et al., 2020) originally proposed for online RL.
PPPO also adapts PPE as its subroutine to evaluate any given policy pessimistically. Unlike PERM,
PPPO only maintains n policies π1, ..., πn, each of them is associated with an MDPMn from the
offline dataset. In detail, PPPO assigns an order for MDPs in the offline dataset and names them
M1, ...,Mn. For i-th MDPMi, PPPO selects the i-th policy πi as the solution of the proximal
policy optimization starting from πi−1, which is

πi ← argmax
π

V πi−1,1(x1)− α−1Ei−1,πi−1
[KL(π∥πi−1)|s1 = x1], (2)

where α is the step size parameter. Since V πi−1,1(x1) is not achievable, we use a linear approximation
Li−1(π) to replace V πi−1,1(x1), where

Li−1(π) = V
πi−1

i−1,1(x1) + Ei−1,πi−1

[ H∑
h=1

⟨Q̂πi−1

i−1,h(xh, ·), πh(·|xh)− πi−1,h(·|xh)⟩
∣∣∣∣s1 = x1

]
, (3)

where Q̂πi−1

i−1,h ≈ Q
πi−1

i−1,h are the Q values evaluated on the offline dataset forMi−1. (2) and (3) give
us a close-form solution of π in Line 4 in Algorithm 3. Such a routine corresponds to one iteration of
PPO (Schulman et al., 2017). Finally, PPPO outputs πPPPO as a random selection from π1, ..., πn.

Remark 13 In Algorithm 3, we adopt a data-splitting trick (Jin et al., 2021) to build Di,h, where
we only utilize each trajectory once for one data tuple at some stage h. It is only used to avoid the
statistical dependency of V̂ πi

i,h+1(·) and xτi,h+1 for the purpose of theoretical analysis.

Next we have our theorem to bound the suboptimality of PPPO.

Theorem 14 Set the Evaluation subroutine in Algorithm 3 as Algorithm 1. Let Γi,h be the uncertainty
quantifier returned by O through the PPPO. Selecting α = 1/

√
H2n. Then selecting δ = 1/8, w.p.

at least 2/3, we have

SubOpt(πPPPO) ≤ 10

(√
log |A|H2

n︸ ︷︷ ︸
I1:SL error

+
1

n

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(sh, ah)|s1 = x1]︸ ︷︷ ︸
I2:RL error

)
.

where Ei,π∗ is w.r.t. the trajectory induced by π∗ with the transition Pi in the underlying MDPMi.

Proof See Appendix B.2.

Remark 15 As in Remark 12, we also provide the suboptimality bound in line with Theorem 14 when
the offline dataset is merged into m contexts such that m < n. See Theorem 23 in Appendix C.

Theorem 14 shows that the suboptimality gap of PPPO can also be bounded by the SL error I1 and
RL error I2. Interestingly, I1 in Theorem 14 for PPPO only depends on the cardinality of the action
space |A|, which is different from the covering number term in I1 for PERM. Such a difference
is due to the fact that PPPO outputs the final policy πPPPO as a random selection from n existing
policies, while PERM outputs one policy πPERM. Whether these two guarantees can be unified into
one remains an open question.

Provable generalization for offline linear MDPs In Appendix D, we provide a detailed instantiation
of our proposed algorithms for linear MDPs, which leverage known feature mappings to model both
the transition dynamics and reward functions. Specifically, we adapt our meta-algorithms (Algorithm
2 and Algorithm 3) by incorporating a policy evaluation subroutine (Algorithm 5) tailored for linear
MDPs. We establish theoretical guarantees on the suboptimality of the output policies, demonstrating
that the algorithms achieve provable generalization for offline linear MDPs.

6 EXPERIMENT ON REAL DATA

In this section, we run experiments on real-world data to validate the effectiveness of our proposed
methods. The main idea of our proposed algorithms (Algorithm 2 and Algorithm 3) is to leverage

8
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Table 2: Test performance of IQL-4V compared to the BC and IQL baselines, as reported by Mediratta
et al. (2023), on the 1M Expert Dataset and the 1M Mixed Expert-Suboptimal Dataset. For
IQL-4V, the mean and standard deviation of returns are computed over five random seeds. Mean
and median of the min-max normalized returns for each algorithm is reported with uncertainty
measures. Additionally, following the methodology proposed by Agarwal et al. (2021), we report the
Interquartile Mean (IQM) with confidence intervals, calculated using min-max normalized returns
across cumulative runs of 16 games for each algorithm.

Procgen game BC(Expert) IQL(Expert) IQL-4V(Expert) BC(Mixed) IQL(Mixed) IQL-4V(Mixed)
bigfish 4.38 ± 0.38 4.85 ± 0.52 2.72 ± 1.23 2.89 ± 0.15 4.14 ± 0.54 5.46 ± 3.03

bossfight 5.87 ± 0.26 7.62 ± 0.33 5.74 ± 1.05 5.13 ± 0.14 7.12 ± 0.43 6.8 ± 0.26
caveflyer 4.92 ± 0.28 3.43 ± 0.22 3.52 ± 1.46 4.05 ± 0.24 1.66 ± 0.67 3.2 ± 1.33

chaser 4.62 ± 0.36 3.17 ± 0.17 4.35 ± 0.55 3.43 ± 0.22 1.41 ± 0.6 1.32 ± 0.22
climber 4.91 ± 0.22 2.33 ± 0.33 3.92 ± 1.41 4.64 ± 0.29 0.57 ± 0.35 1.5 ± 0.80
miner 7.85 ± 0.32 1.66 ± 0.17 6.36 ± 1.85 6.56 ± 0.09 0.8 ± 0.1 1.64 ± 0.86

coinrun 8.26 ± 0.19 7.74 ± 0.21 9.8 ± 0.40 7.77 ± 0.24 6.0 ± 0.36 7.2 ± 1.17
dodgeball 0.98 ± 0.07 0.93 ± 0.12 1.0 ± 0.75 1.19 ± 0.14 0.87 ± 0.11 1.32 ± 0.48
fruitbot 21.18 ± 0.62 25.22 ± 0.94 22.24 ± 3.56 18.84 ± 0.7 22.0 ± 0.43 23.56 ± 4.43

heist 2.42 ± 0.14 0.58 ± 0.26 4.4 ± 0.80 2.37 ± 0.3 0.27 ± 0.03 0.6 ± 0.49
jumper 5.68 ± 0.18 4.06 ± 0.21 6.2 ± 1.17 4.63 ± 0.47 3.0 ± 0.5 4.2 ± 0.98
leaper 2.84 ± 0.07 2.44 ± 0.21 3.0 ± 1.41 2.6 ± 0.25 2.27 ± 0.53 3.6 ± 0.80
maze 4.46 ± 0.16 2.68 ± 0.31 5.0 ± 1.26 4.77 ± 0.32 2.1 ± 0.15 3.0 ± 0.63
ninja 5.88 ± 0.3 4.38 ± 0.12 6.0 ± 1.10 5.23 ± 0.12 3.23 ± 0.81 5.0 ± 1.41

plunder 4.94 ± 0.13 4.03 ± 0.14 5.38 ± 0.94 4.59 ± 0.16 3.86 ± 0.25 3.58 ± 0.83
starpilot 17.69 ± 0.59 22.88 ± 0.59 13.88 ± 3.35 17.93 ± 0.32 19.64 ± 1.79 11.72 ± 4.31
Mean 0.240 ± 0.06 0.114 ± 0.08 0.263 ± 0.07 0.189 ± 0.06 0.010 ± 0.08 0.096 ± 0.07

Median 0.261 ± 0.08 0.065 ± 0.10 0.183 ± 0.09 0.234 ± 0.07 -0.031 ± 0.10 0.076 ± 0.09
IQM 0.23 ± 0.04 0.08 ± 0.03 0.21 ± 0.05 0.17 ± 0.04 -0.01 ± 0.02 0.07 ± 0.02

Figure 2: Performance gaps between IQL-4V and IQL-1V, measured by the mean of min-max nor-
malized test returns, on the Procgen 1M Expert Dataset (left) and 1M Mixed Expert-Suboptimal
Dataset (right), evaluated across 5 random seeds. The games are ranked based on IQL’s performance,
starting from the lowest performance (left) to the highest performance (right).

multiple environments individually, unlike previous approaches which essentially treat different
environments as the same one. Therefore, we will mainly verify how the different number of
contexts affect the performance of the baseline algorithm, under our model-based framework PERM
(Algorithm 2).

Algorithm details For conceptual simplicity, we adopt Implicit Q-Learning (IQL) Kostrikov et al.
(2021), while simultaneously leveraging n critic value networks for different environments. Note that
this isn’t exactly the same optimization objective as we proposed in Algorithm 2, but nonetheless a
first-order approximation of what could be achieved with PERM framework. Moreover, in the case of
n = 1, our algorithm is equivalent to the original IQL. In our implementation of IQL-nV, we adapt
the original implementation of IQL in Kostrikov et al. (2021) to the one with several value networks
Vψi

, the expectile optimization objectives LV (ψi) are unchanged, while we use multiple MSE losses
for Q network, with one for each Vψi , that isLiQ(θ) = E(s,a,s′)∼Di

[(r(s, a)+γVψi(s
′)−Qθ(s, a))2].

Environments We conduct an extensive evaluation over the widely used Procgen benchmark for RL
generalization Cobbe et al. (2020). For the offline setting of Procgen, we adopt the offline dataset
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Table 3: The IQL-nV ablation study results conducted on Miner, with 1M expert dataset tested.
nV-SP represents IQL-nV with a stochastic policy variant, where 1V-DP represents the default IQL
setup, recorded in Mediratta et al. (2023). Mean and standard deviation of test performance over 5
random seeds are reported.

Procgen game 8V-SP(Expert) 4V-SP(Expert) 2V-SP(Expert) 1V-SP(Expert) 1V-DP(Expert)
miner 7.88± 0.71 6.36± 1.85 6.85± 0.92 5.6± 1.89 1.66± 0.17

collected from Mediratta et al. (2023), which includes the Procgen expert dataset with 1M transitions
and the mixed expert-suboptimal dataset with 1M transitions. Following Mediratta et al. (2023),
for each game in Procgen, the data is collected from 200 different Procgen levels for offline training,
validate the hyperparameters online to perform model selection on the another 50 unseen levels, and
evaluate the agents’ online performance on the remaining 100 unseen levels.

As the offline dataset provided in Mediratta et al. (2023), there are 200 sampled training environments
in each game, thus for practical reason we regard every 50 of them as one environment and only
leverage 4 different value networks in our IQL-4V implementation.

Experiment results We report the mean and standard deviation of returns of each algorithm and
each task in Table 2. To summarize results over all tasks, for each algorithm, we also report the
mean and median of the min-max normalized returns of each game, with rmin and rmax according
to Cobbe et al. (2020). From Table 2 we found that IQL-nV’s min-max normalized returns across the
set of Procgen games outperforms the baseline IQL, which suggests the effectiveness of our proposed
approach.

From another perspective, we list the difference between IQL-4V and IQL w.r.t. to different games,
and we arrange the order of games based on the performance of IQL. The results for both expert and
mixed expert-suboptimal datasets are recorded in Figure 2. From Figure 2, we can see that IQL-4V
improves IQL mainly from the games where IQL performs bad in the sense of min-max normalized
returns. This is aligned with the idea we improve the ZSG performance of offline RL, since our
algorithm aims to improve the average performance over all games, rather than only a subset of
them.1

Ablation study In our ablation study, we aim to verify the effectiveness of multiple value networks
and the stochastic policy on the Procgen Miner game with the 1M expert dataset. We test IQL-nV
with n = 1, 2, 4, 8 with stochastic policy. The results are shown in Table 3. We can see that by
increasing the number of value networks, the performance of IQL also increases. Meanwhile, it is
worth noting by using the stochastic policy also helps the performance. We believe it is because that
the 1M Expert Dataset of Procgen games enjoys a higher diversity w.r.t. to the action selection, which
causes the performance gain brought by the use of stochastic policy. In Appendix E.1, we present an
additional ablation study to examine the effect of scaling the critic network parameters in IQL-1V
and compare the results with IQL-4V.

7 CONCLUSION AND FUTURE WORK

In this work, we study the zero-shot generalization (ZSG) performance of offline reinforcement
learning (RL). We propose two offline RL frameworks, pessimistic empirical risk minimization and
pessimistic proximal policy optimization, and show that both of them can find the optimal policy
with ZSG ability. We also show that such a generalization property does not hold for offline RL
without knowing the context information of the environment, which demonstrates the necessity of
our proposed new algorithms. Currently, our theorems and algorithm design depend on the i.i.d.
assumption of the environment selection. How to relax such an assumption remains an interesting
future direction.

1It is worth noting that our approach still lags behind BC, which is aligned with the observation made by
Mediratta et al. (2023). We aim to develop offline RL with good ZSG performance that outperforms both BC
and offline RL in the future work.
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We provide missing proofs and theoretical results of our paper in the Appendix sections:

• In Appendix A, we provide the missing results of Section 4. We first provide the proof of Proposition
4, then we analyze the suboptimality gap of the Pessimistic Value Iteration (PEVI) (Jin et al. (2021))
in the contextual linear MDP setting without context information.

• In Appendix B, we provide the proofs of our main theorems on the suboptimality bounds of PERM
and PPPO in Section 5.

• In Appendix C, we state and prove the suboptimality bounds we promised in Remarks 12 and
15, where we merge the sampled contexts into m groups (m < n) to reduce the computational
complexity in practical settings.

• In Appendix D, we instantiate our Algo.2 and Algo.3 for general MDPs on special classes of linear
MDPs.

• In Appendix E, we provide hyperparameter selection details of our real-data experiment. We also
provide an additional numerical experiment on synthetic data in Appendix E.3.

A RESULTS IN SECTION 4

A.1 PROOF OF PROPOSITION 4

Let D′ = {(xτcτ ,h, a
τ
cτ ,h

, rτcτ ,h)}
H,K
h=1,τ=1 denote the merged dataset, where each trajectory belongs

to a context cτ . For simplicity, let Dc denote the collection of trajectories that belong to MDPMc.
Then each trajectory in D′ is generated by the following steps:

• The experimenter randomly samples an environment c ∼ C.
• The experimenter collect a trajectory from the episodic MDPMc.

Then for any x′, r′, τ we have

PD′(rτcτ ,h = r′, xτcτ ,h+1 = x′|{(xjcj ,h, a
j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 )

=
PD′(rτcτ ,h = r′, xτcτ ,h+1 = x′, {(xjcj ,h, a

j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 )

PD′({(xjcj ,h, a
j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 )

=
∑
c∈C

PD′(rτcτ ,h = r′, xτcτ ,h+1 = x′|{(xjcj ,h, a
j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 , cτ = c)q(c), (4)

where

q(c′) :=
PD′({(xjcj ,h, a

j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 , cτ = c′)∑

c∈C PD′({(xjcj ,h, a
j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 , cτ = c)

.

Next, we further have

(4)

=
∑
c∈C

Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτcτ ,h, ah = aτcτ ,h)q(c)

=
∑
c∈C

Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτcτ ,h, ah = aτcτ ,h)PD′(sh = xτcτ ,h, ah = aτcτ ,h, cτ = c)∑
c∈C PD′(sh = xτcτ ,h, ah = aτcτ ,h, cτ = c)

=
∑
c∈C

p(c) ·
Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτcτ ,h, ah = aτcτ ,h)Pc(sh = xτcτ ,h, ah = aτcτ ,h)∑

c∈C p(c) · Pc(sh = xτcτ ,h, ah = aτcτ ,h)

= Ec∼C
Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτcτ ,h, ah = aτcτ ,h)µc,h(x

τ
cτ ,h

, aτcτ ,h)

Ec∼Cµc,h(xτcτ ,h, a
τ
cτ ,h

)
,

where the first equality holds since for all trajectories τ satisfying cτ = c, they are compliant with
Mc, the second one holds since all trajectories are independent of each other, the third and fourth
ones hold due to the definition of µc,h(·, ·).
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A.2 PEVI ALGORITHM

Algorithm 4 (Jin et al., 2021) Pessimistic Value Iteration (PEVI)
Require: Dataset D = {(xτcτ ,h, a

τ
cτ ,h

, rτcτ ,h)
H
h=1}Kτ=1, confidence probability δ ∈ (0, 1).

1: Initialization: Set V̂H+1(·)← 0.
2: for step h = H,H − 1, . . . , 1 do
3: Set Λh ←

∑K
τ=1 ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λ · I .
4: Set ŵh ← Λ−1

h (
∑K
τ=1 ϕ(x

τ
h, a

τ
h) · (rτh + V̂h+1(x

τ
h+1))).

5: Set Γh(·, ·)← β(δ) · (ϕ(·, ·)⊤Λ−1
h ϕ(·, ·))1/2.

6: Set Q̂h(·, ·)← min{ϕ(·, ·)⊤ŵh − Γh(·, ·), H − h+ 1}+.
7: Set π̂h(· | ·)← argmaxπh

⟨Q̂h(·, ·), πh(· | ·)⟩A.
8: Set V̂h(·)← ⟨Q̂h(·, ·), π̂h(· | ·)⟩A.
9: end for

10: return πPEVI = {π̂h}Hh=1.

We analyze the suboptimality gap of the Pessimistic Value Iteration (PEVI) (Jin et al. (2021)) in the
contextual linear MDP setting without context information to demonstrate that by finding the optimal
policy for M̄ is not enough to find the policy that performs well on MDPs with context information.

Pessimistic Value Iteration (PEVI). Let π∗ be the optimal policy w.r.t. the average MDP M̄.
We analyze the performance of the Pessimistic Value Iteration (PEVI) (Jin et al., 2021) under the
unknown context information setting. The details of PEVI is in Algo.4.

Suppose that D̄ consists of K number of trajectories generated i.i.d. following by a fixed behavior
policy π̄. Then the following theorem shows the suboptimality gap for Algo.4 does not converge to 0
even when the data size grows to infinity.

Theorem 16 Assume that π̄ In Algo.5, we set

λ = 1, β(δ) = c′ · dH
√

log(4dHK/δ) , (5)

where c′ > 0 is a positive constant. Suppose we have K ≥ c̃ · d log(4dH/ξ), where c̃ > 0 is a
sufficiently large positive constant that depends on c. Then we have: w.p. at least 1− δ, for the output
policy πPEVI of Algo.4,

sup
π
V πM̄,1 − V

πPEVI

M̄,1 ≤ c
′′ · d3/2H2K−1/2

√
log(4dHK/δ), (6)

and the suboptimality gap satisfies

SubOpt(πPEVI) ≤ c′′ · d3/2H2K−1/2
√
log(4dHK/δ) + 2 sup

π
|V πM̄,1(x1)− Ec∼CV πc,1(x1)| , (7)

where c′′ > 0 is a positive constant that only depends on c and c′.

Proof [Proof of Theorem 16] First, we define the value function on the average MDP M̄ as follows.

V
π

h(x) = Eπ,M̄
[ H∑
i=h

ri(si, ai)
∣∣ sh = x

]
. (8)

We then decompose the suboptimality gap as follows.

SubOpt(πPEVI)

= Ec∼C
[
V π

∗

c,1 (x1)
]
− Ec∼C

[
V π

PEVI

c,1 (x1)
]

= V
π∗

1 (x1)− V
πPEVI

1 (x1) +
(
Ec∼C

[
V π

∗

c,1 (x1)
]
− V π

∗

1 (x1)
)
+
(
V
πPEVI

1 (x1)− Ec∼C
[
V π

PEVI

c,1 (x1)
])

≤ V π
∗

1 (x1)− V
πPEVI

1 (x1) + 2 sup
π
|V πM̄,1(x1)− Ec∼CV πc,1(x1)| . (9)
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Then, applying Corollary 4.6 in Jin et al. (2021), we can get that w.p. at least 1− δ

V
π∗

1 (x1)− V
πPEVI

1 (x1) ≤ c′′ · d3/2H2K−1/2
√

log(4dHK/δ) , (10)

which, together with Eq.(9) completes the proof.

Theorem 16 shows that by adapting the standard pessimistic offline RL algorithm over the offline
dataset without context information, the learned policy πPEVI converges to the optimal policy π̄∗ over
the average MDP M̄.

B PROOF OF THEOREMS IN SECTION 5

B.1 PROOF OF THEOREM 9

We define the model estimation error as

ιπi,h(x, a) = (Bi,hV̂ πi,h+1)(x, a)− Q̂πi,h(x, a). (11)

And we define the following condition∣∣(B̂i,hV̂ πi,h+1)(x, a)−(Bi,hV̂ πi,h+1)(x, a)
∣∣ ≤ Γi,h(x, a) for all i ∈ [n], π ∈ Π, (x, a) ∈ S×A, h ∈ [H] .

(12)
We introduce the following lemma to bound the model estimation error.

Lemma 17 (Model estimation error bound (Adapted from Lemma 5.1 in Jin et al. (2021))
Under the condition of Eq.(12), we have

0 ≤ ιπi,h(x, a) ≤ 2Γi,h(x, a), for all i ∈ [n], π ∈ Π, (x, a) ∈ S ×A, h ∈ [H]. (13)

Then, we prove the following lemma for pessimism in V values.

Lemma 18 (Pessimism for Estimated V Values) Under the condition of Eq.(12), for any i ∈
[n], π ∈ Π, x ∈ S, we have

V πi,h(x) ≥ V̂ πi,h(x) . (14)

Proof For any i ∈ [n], π ∈ Π, x ∈ S, a ∈ A, we have

Qπi,h(x, a)− Q̂πi,h(x, a)

≥ ri,h(x, a) + (Bi,hV πi,h+1)(x, a)−
(
ri,h(s, a) + (B̂i,hV̂ πi,h+1)(x, a)− Γi,h(x, a)

)
= (Bi,hV πi,h+1)(x, a)− (Bi,hV̂ πi,h+1)(x, a) + Γi,h(x, a)

−
(
(B̂i,hV̂ πi,h+1)(x, a)− Bi,hV̂ πi,h+1)(x, a)

)
≥ (Bi,hV πi,h+1)(x, a)− (Bi,hV̂ πi,h+1)(x, a)

=
(
Pi,h(V

π
i,h+1 − V̂ πi,h+1)

)
(x, a) ,

where the second inequality is because of Eq.(12). And since in the H + 1 step we have V πi,H+1 =

V̂ πi,h+1 = 0, we can get Qπi,H(x, a) − Q̂πi,H(x, a). Then we use induction to prove Qπi,h(x, a) ≥
Q̂πi,h(x, a) for all h. Given Qπi,h+1(x, a) ≥ Q̂πi,h+1(x, a), we have

Qπi,h(x, a)− Q̂πi,h(x, a) ≥
(
Pi,h(V

π
i,h+1 − V̂ πi,h+1)

)
(x, a)

= E
[
⟨Qπi,h+1(sh+1, ·)− Q̂πi,h+1(sh+1, ·), πh+1(·|sh+1)⟩A|sh = x, ah = a

]
≥ 0 . (15)
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Then we have

V πi,h(x)− V̂ πi,h(x) = ⟨Qπi,h(x, ·)− Q̂πi,h(x, ·), πh(· |x)⟩A ≥ 0 .

Then we start our proof.

Proof [Proof of Theorem 9]

First, we decompose the suboptimality gap as follows

SubOpt(πPERM)

= Ec∼CV π
∗

c,1 (x1)− V π̂
∗

c,1 (x1)

= Ec∼CV π
∗

c,1 (x1)−
1

n

n∑
i=1

V π
∗

i,1 (x1) +
1

n

n∑
i=1

V π
PERM

i,1 (x1)− Ec∼CV π
PERM

c,1 (x1)

+
1

n

n∑
i=1

(
V π

∗

i,1 (x1)− V π
PERM

i,1 (x1)
)
. (16)

For the first two terms, we can bound them following the standard generalization techniques (Ye et al.
(2023)), i.e., we use the covering argument, Chernoff bound,and union bound.

Define the distance between policies d(π1, π2) ≜ maxs∈S,h∈[H] ∥π1
h(·|s)− π2

h(·|s)∥1. We construct
the ϵ-covering set Π̃ w.r.t. d such that

∀π ∈ Π,∃π̃ ∈ Π̃, s.t. d(π, π̃) ≤ ϵ. (17)

Then we have

∀i ∈ [n], π ∈ Π,∃π̃ ∈ Π̃, s.t.V πi,1(x1)− V π̃i,1(x1) ≤ Hϵ. (18)

By the definition of the covering number,
∣∣∣Π̃∣∣∣ = NΠ

ϵ . By Chernoff bound and union bound over the

policy set Π̃, we have with prob. at least 1− δ
3 , for any π̃ ∈ Π̃,∣∣∣∣∣ 1n

n∑
i=1

V π̃i,1(x1)− Ec∼CV π̃c,1(x1)

∣∣∣∣∣ ≤
√

2 log(6NΠ
ϵ /δ)

n
. (19)

By Eq.(18) and Eq.(19), ∀i ∈ [n], π ∈ Π,∃π̃ ∈ Π̃ with
∣∣∣Π̃∣∣∣ = NΠ

ϵ , s.t.V
π
i,1(x1)− V π̃i,1(x1) ≤ Hϵ,

and with probability at least 1− δ/3, we have∣∣∣∣∣ 1n
n∑
i=1

V πi,1(x1)− Ec∼CV πc,1(x1)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

V π̃i,1(s1)− Ec∼CV π̃c,1(x1)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

V πi,1(s1)−
1

n

n∑
i=1

V π̃i,1(s1)

∣∣∣∣∣+ ∣∣∣Ec∼CV π̃c,1(x1)− Ec∼CV πc,1(x1)
∣∣∣

≤
√

2 log(6NΠ
ϵ /δ)

n
+ 2Hϵ . (20)

Therefore, we have for the first two terms, w.p. at least 1 − 2
3δ we can upper bound them with

4Hϵ+ 2

√
2 log(6NΠ

ϵ /δ)
n .

Then, what remains is to bound the term 1
n

∑n
i=1

(
V π

∗

i,1 (x1)− V π
PERM

i,1 (x1)
)
.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

First, by similar arguments, we have

V π
∗

i,1 (x1)− V π
PERM

i,1 (x1) ≤
(
V π

∗

i,1 (x1)− V π̃
PERM

i,1 (x1)
)
+ |V π̃

PERM

i,1 (x1)− V π
PERM

i,1 (x1)|

≤ Hϵ+ V π
∗

i,1 (x1)− V π̃
PERM

i,1 (x1) , (21)

where π̃PERM ∈ Π̃ such that |V π̃PERM

i,1 (x1)− V π
PERM

i,1 (x1)| ≤ Hϵ.
By the definition of the oracle in Definition.5, the algorithm design of Algo.1 (e.g., we call oracle
O(Dh, V̂h+1, δ/(3nHNΠ

(Hn)−1))), and use a union bound over H steps, n contexts, and NΠ
(Hn)−1

policies, we have: with probability at least 1− δ/3, the condition in Eq.(12) holds (with the policy
class Π replaced by Π̃ (and ϵ = 1/(Hn)).

Then, we have

1

n

n∑
i=1

(
V π

∗

i,1 (x1)− V π̃
PERM

i,1 (x1)
)

≤ 1

n

n∑
i=1

(
V π

∗

i,1 (x1)− V̂ π̃
PERM

i,1 (x1)
)

=
1

n

n∑
i=1

(
V π

∗

i,1 (x1)− V̂ π
PERM

i,1 (x1)
)
+

1

n

n∑
i=1

(
V̂ π

PERM

i,1 (x1)− V̂ π̃
PERM

i,1 (x1)
)

≤ 1

n

n∑
i=1

(
V π

∗

i,1 (x1)− V̂ π
PERM

i,1 (x1)
)
+H · 1

Hn

≤ 1

n

n∑
i=1

(
V π

∗

i,1 (x1)− V̂ π
∗

i,1 (x1)
)
+ 1/n , (22)

where the first inequality holds because of the pessimism in Lemma 18, the second inequality holds
because |V̂ π̃PERM

i,1 (x1)− V̂ π
PERM

i,1 (x1)| ≤ Hϵ with ϵ here specified as 1/(Hn), and the last inequality
holds because that in the algorithm design of Algo.2 we set πPERM = argmaxπ∈Π

1
n

∑n
i=1 V̂

π
i,1(x1).

Then what left is to bound V π
∗

i,1 (x1)− V̂ π
∗

i,1 (x1).

And using Lemma A.1 in Jin et al. (2021), we have

V π
∗

i,1 (x1)− V̂ π
∗

i,1 (x1) = −
H∑
h=1

Eπ̂∗,Mi

[
ιπ

∗

i,h(sh, ah)
∣∣ s1 = x

]
+

H∑
h=1

Eπ∗,Mi

[
ιπ

∗

i,h(sh, ah)
∣∣ s1 = x

]
+

H∑
h=1

Eπ∗,Mi

[
⟨Q̂π

∗

i,h(sh, ·), π∗
h(· | sh)− π∗

h(· | sh)⟩A
∣∣ s1 = x

]
≤ 2

H∑
h=1

Eπ∗,Mi

[
Γi,h(sh, ah)

∣∣ s1 = x
]
, (23)

where in the last inequality we use Lemma 17.

Finally, with Eq.(16), Eq.(20), Eq.(21), Eq.(22), and Eq.(23), with ϵ set as 1
nH , we can get w.p. at

least 1− δ

Ec∼CV π
∗

c,1 (x1)− V π
PERM

c,1 (x1)

≤ 5

n
+ 2

√
2 log(6NΠ

(Hn)−1/δ)

n
+

2

n

n∑
i=1

H∑
h=1

Eπ∗,Mi [Γi,h(sh, ah)|s1 = x1]

≤ 7

√
2 log(6NΠ

(Hn)−1/δ)

n
+

2

n

n∑
i=1

H∑
h=1

Eπ∗,Mi
[Γi,h(sh, ah)|s1 = x1] .
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B.2 PROOF OF THEOREM 14

Our proof has two steps. First, we define that

ιi,h(x, a) := Bi,hVi,h+1(x, a)−Qi,h(x, a) (24)

Then we have the following lemma from Jin et al. (2021):

Lemma 19 Define the event E as

E =

{∣∣(B̂V̂ πi

i,h+1)(x, a)− (Bi,hV̂ πi

i,h+1)(x, a)
∣∣ ≤ Γi,h(x, a) ∀(x, a) ∈ S ×A,∀h ∈ [H],∀i ∈ [n]

}
,

Then by selecting the input parameter ξ = δ/(Hn) in O, we have P(E) ≥ 1− δ and

0 ≤ ιi,h(x, a) ≤ 2Γi,h(x, a).

Proof The proof is the same as [Lemma 5.1, Jin et al. 2021] with the probability assigned as δ/(Hn)
and a union bound over h ∈ [H], i ∈ [n].

Next lemma shows the difference between the value of the optimal policy π∗ and number n of
different policies πi for n MDPs.

Lemma 20 Let π be an arbitrary policy. Then we have

n∑
i=1

[V πi,1(x1)− V π
i

i,1 (x1)] =

n∑
i=1

H∑
h=1

Ei,π[⟨Qi,h(·, ·), πh(·|·)− πi,h(·|·)⟩A]

+

n∑
i=1

H∑
h=1

(Ei,π[ιi,h(xh, ah)]− Ei,πi
[ιi,h(xh, ah)]) (25)

Proof The proof is the same as Lemma 3.1 in Jin et al. (2021) except substituting π into the lemma.

We also have the following one-step lemma:

Lemma 21 (Lemma 3.3, Cai et al. 2020) For any distribution p∗, p ∈ ∆(A), if p′(·) ∝ p(·)·exp(α·
Q(x, ·)), then

⟨Q(x, ·), p∗(·)− p(·)⟩ ≤ αH2/2 + α−1 ·
(

KL(p∗(·)∥p(·))− KL(p∗(·)∥p′(·))
)
.

Given the above lemmas, we begin our proof of Theorem 14.

Proof [Proof of Theorem 14] Combining Lemma 19 and Lemma 20, we have
n∑
i=1

[V π
∗

i,1 (x1)− V π
i

i,1 (x1)]

≤
n∑
i=1

H∑
h=1

Ei,π∗ [⟨Qi,h, π∗
h − πi,h⟩] + 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(xh, ah)]

≤
n∑
i=1

H∑
h=1

αH2/2 + α−1Ei,π∗ [KL(π∗
h(·|xh)∥πi,h(·|xh))− KL(π∗

h(·|xh)∥πi+1,h(·|xh))]

+ 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(xh, ah)]
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≤ αH3n/2 + α−1 ·
H∑
h=1

Ei,π∗ [KL(π∗
h(·|xh)∥π1,h(·|xh))] + 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(xh, ah)]

≤ αH3n/2 + α−1H log |A|+ 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(xh, ah)],

where the last inequality holds since π1,h is the uniform distribution over A. Then, selecting
α = 1/

√
H2n, we have
n∑
i=1

[V π
∗

i,1 (x1)− V π
i

i,1 (x1)] ≤ 2
√
n log |A|H2 + 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(sh, ah)],

which holds for the random selection of D with probability at least 1 − δ. Meanwhile, note that
each MDP Mi is drawn i.i.d. from C. Meanwhile, note that πi only depends on MDP M1, ...,Mi−1.
Therefore, by the standard online-to-batch conversion, we have

P
(
1

n

n∑
i=1

[V π∗
i,1 (x1)− V πi

i,1 (x1)] +

(
1

n

n∑
i=1

Ec∼CV
πi
c,1(x1)− Ec∼CV

π∗
c,1 (x1)

)
≤ 2H

√
2 log 1/δ

n

)
≥ 1− δ,

which suggests that with probability at least 1− 2δ,

Ec∼CV π
∗

c,1 (x1)−
1

n

n∑
i=1

Ec∼CV πi
c,1(x1) ≤ 2

√
log |A|H2

n
+

2

n

n∑
i=1

H∑
h=1

Eπ∗ [Γi,h(xh, ah)] + 2

√
2H log 1/δ

n
.

Therefore, by selecting πPPPO := random(π1, ..., πn) and applying the Markov inequality, setting
δ = 1/8, we have our bound holds.

C SUBOPTIMALITY BOUNDS FOR REAL-WORLD SETUPS

In this section we state and prove the suboptimality bounds we promised in Remarks 12 and 15, where
we merge the sampled contexts into m groups (generally, m << n) to reduce the computational
complexity in practical settings. The bound in Theorem 22 serves as a partial justification for the
effectiveness of IQL-mV in our real-data experiments (Section 6).

Assume m|n and the n contexts from offline dataset are equally partitioned into m groups. We write
the resulting average MDPs (see Proposition 4) for each group as M̄1, . . . ,M̄m. For each M̄j , we
regard it as an individual context in the sense of (12) and denote the resulting uncertainty quantifier
and value function as Γ′

j,h, V
′π
j,h.

Theorem 22 (Suboptimality bound for Remark 12) Assume the same setting as Theorem 9 with
the original n contexts grouped as m contexts, and denote the resulting algorithm as PERM-mV.
Then w.p. at least 1− δ, the output π′ of PERM-mV satisfies

SubOpt(π′) ≤ 2

√
2 log(6NΠ

(Hm)−1/δ)

n︸ ︷︷ ︸
I1:Supervised learning (SL) error

+
2

m

m∑
j=1

H∑
h=1

Eπ∗,M̄j

[
Γ′

j,h(sh, ah)|s1 = x1

]
︸ ︷︷ ︸

I2:Reinforcement learning (RL) error

+
5

m
+ 2 sup

π

∣∣∣∣∣ 1n
n∑

i=1

V π
i,1(x1)−

1

m

m∑
j=1

V ′π
j,1(x1)

∣∣∣∣∣︸ ︷︷ ︸
Additional approximation error

,

where Ej,π∗ is w.r.t. the trajectory induced by π∗ with the transition P̄j in the underlying average
MDP M̄j .

Proof [Proof of Theorem 22]

Similar to the proof of Theorem 9, we decompose the suboptimality gap as follows

SubOpt(π′)
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= Ec∼CV π
∗

c,1 (x1)− V π
′

c,1(x1)

= Ec∼CV π
∗

c,1 (x1)−
1

n

n∑
i=1

V π
∗

i,1 (x1) +
1

n

n∑
i=1

V π
′

i,1(x1)− Ec∼CV π
′

c,1(x1)

+
1

n

n∑
i=1

V π
∗

i,1 (x1)−
1

m

m∑
j=1

V ′π∗

j,1(x1) +
1

m

m∑
j=1

V ′π′

j,1(x1)−
1

n

n∑
i=1

V π
′

i,1(x1)

+
1

m

m∑
j=1

(
V ′π∗

j,1(x1)− V ′π′

j,1(x1)
)
. (26)

Note that we can bound the first and third lines of (26) with the exactly same arguments as the proof
of Theorem 9, the only notation-wise difference is that the uncertainty quantifier becomes Γ′ as we
are operating on the level of average MDP M̄j .

The only thing left is to bound the second line of (26). This is the same in spirit of the bound (9), so
that we can express the bound as follows

1

n

n∑
i=1

V π
∗

i,1 (x1)−
1

m

m∑
j=1

V ′π∗

j,1(x1) +
1

m

m∑
j=1

V ′π′

j,1(x1)−
1

n

n∑
i=1

V π
′

i,1(x1)

≤ 2 sup
π

∣∣∣∣∣∣ 1n
n∑
i=1

V πi,1(x1)−
1

m

m∑
j=1

V ′π
j,1(x1)

∣∣∣∣∣∣ .
To conclude, our final bound can be expressed as: with ϵ set as 1

mH , we can get w.p. at least 1− δ

SubOpt(π′)

≤ 2

√
2 log(6NΠ

(Hm)−1/δ)

n
+

2

m

m∑
j=1

H∑
h=1

Eπ∗,M̄j
[Γ′

j,h(sh, ah)|s1 = x1]

+
5

m
+ 2 sup

π

∣∣∣∣∣∣ 1n
n∑
i=1

V πi,1(x1)−
1

m

m∑
j=1

V ′π
j,1(x1)

∣∣∣∣∣∣ .

To prove the suboptimality bound for Remark 15, we denote that the policies produced by PPPO after
merging dataset to m groups to be π1, . . . , πm, and the original PPPO algorithm would produce the
policies as π′

1, . . . , π
′
n. We assume that the merging of dataset from n to m groups is only to combine

the consecutive n/m terms from π′
1, . . . , π

′
n and preserves the order.

Theorem 23 (Suboptimality bound for Remark 15) Assume the same setting as Theorem 14 with
the original n contexts grouped as m contexts, and denote the resulting algorithm as PPPO-mV.
Let Γ′

j,h be the uncertainty quantifier returned by O through the PPPO-mV algorithm. Selecting
α = 1/

√
H2m. Then selecting δ = 1/8, w.p. at least 2/3, we have

SubOpt(πPPPO−mV ) ≤ 10

(√
log |A|H2

m︸ ︷︷ ︸
I1:SL error

+
1

m

m∑
j=1

H∑
h=1

Ej,π∗
[
Γ′

j,h(sh, ah)|s1 = x1

]
︸ ︷︷ ︸

I2:RL error

+ sup
π

∣∣∣∣∣ 1n
n∑

i=1

V π
i,1(x1)−

1

m

m∑
j=1

V ′π
j,1(x1)

∣∣∣∣∣+ 1

n

n∑
i=1

sup
π

∣∣Ec[V
π
c,1(x1)]− V π

i,1(x1)
∣∣

+
1

m

m∑
j=1

sup
π

∣∣Ec[V
′π
c,1(x1)]− V ′π

j,1(x1)
∣∣ ).

where Ej,π∗ is w.r.t. the trajectory induced by π∗ with the transition P̄j in the underlying MDP M̄j .
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Proof [Proof of Theorem 23]

Using the same arguments as in the proof of Theorem 14 with α = 1/
√
H2m, we can derive the

bound

m∑
j=1

[V ′π∗

j,1(x1)− V ′πj

j,1(x1)] ≤ 2
√
m log |A|H2 + 2

m∑
j=1

H∑
h=1

Ej,π∗ [Γ′
j,h(sh, ah)].

Leveraging this bound and online-to-batch, we obtain the following estimation

Ec[V π
∗

c,1 (x1)]−
1

m

m∑
j=1

Ec[V
πj

c,1 (x1)]

=Ec[V π
∗

c,1 (x1)]−
1

n

n∑
i=1

Ec[V
π′
i

c,1(x1)] +
1

n

n∑
i=1

Ec[V
π′
i

c,1(x1)]−
1

m

m∑
j=1

Ec[V
πj

c,1 (x1)]

≤2H
√

2 log 1/δ

n
+

1

n

n∑
i=1

(
Ec[V

π′
i

c,1(x1)]− V
π′
i

i,1 (x1)
)
+

1

n

n∑
i=1

V π
∗

i,1 (x1)−
1

m

m∑
j=1

Ec[V
πj

c,1 (x1)]

=2H

√
2 log 1/δ

n
+

1

n

n∑
i=1

V π
∗

i,1 (x1)−
1

m

m∑
j=1

V ′π∗

j,1(x1)

+
1

m

m∑
j=1

V ′π∗

j,1(x1)−
1

m

m∑
j=1

V ′πj

j,1(x1)

+
1

n

n∑
i=1

(
Ec[V

π′
i

c,1(x1)]− V
π′
i

i,1 (x1)
)
+

1

m

m∑
j=1

V ′πj

j,1(x1)−
1

m

m∑
j=1

Ec[V
πj

c,1 (x1)]

≤2H
√

2 log 1/δ

n
+ sup

π

∣∣∣∣∣∣ 1n
n∑
i=1

V πi,1(x1)−
1

m

m∑
j=1

V ′π
j,1(x1)

∣∣∣∣∣∣
+ 2

√
log |A|H2

m
+

2

m

m∑
j=1

H∑
h=1

Ej,π∗ [Γ′
j,h(sh, ah)]

+
1

n

n∑
i=1

sup
π

∣∣Ec[V πc,1(x1)]− V πi,1(x1)∣∣+ 1

m

m∑
j=1

sup
π

∣∣Ec[V ′π
c,1(x1)]− V ′π

j,1(x1)
∣∣ .

Finally we apply Markov inequality and take δ = 1/8 as in the proof of Theorem 14.

D PROVABLE GENERALIZATION FOR OFFLINE LINEAR MDPS

In this section, we instantiate our Algo.2 and Algo.3 for general MDPs on specific MDP classes. We
consider the linear MDPs defined as follows.

Assumption 24 (Linear MDP, Yang and Wang 2019; Jin et al. 2019) We assume ∀i ∈ C,Mi is
a linear MDP with a known feature map ϕ : S × A → Rd if there exist d unknown measures
µi,h = (µ

(1)
i,h , . . . , µ

(d)
i,h) over S and an unknown vector θi,h ∈ Rd such that

Pi,h(x
′ |x, a) = ⟨ϕ(x, a), µi,h(x′)⟩, E

[
ri,h(sh, ah)

∣∣ sh = x, ah = a
]
= ⟨ϕ(x, a), θi,h⟩ (27)

for all (x, a, x′) ∈ S × A × S at every step h ∈ [H]. We assume ∥ϕ(x, a)∥ ≤ 1 for all (x, a) ∈
S × A and max{∥µi,h(S)∥, ∥θi,h∥} ≤

√
d at each step h ∈ [H], and we define ∥µi,h(S)∥ =∫

S ∥µi,h(x)∥ dx.
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Remark 25 We assume that each environmentMi shares the same feature mapping ϕ(x, a). Such
an assumption is for the ease of presentation, and our results can be easily extended to the setting
where different environments enjoy different feature mappings.

We first specialize the general PPE algorithm (Algo.1) to obtain the PPE algorithm tailored for linear
MDPs (Algo.5). This specialization is achieved by constructing B̂i,hV̂ πi,h+1, Γi,h, and V̂ πi,h based on
the dataset Di. We denote the set of trajectory indexes in Di,h as Bi,h. Algo.5 subsequently functions
as the policy evaluation subroutine in Algo.2 and Algo.3 for linear MDPs. In detail, we construct
B̂i,hV̂i,h+1 (which is the estimation of Bi,hV̂i,h+1) as (B̂i,hV̂i,h+1)(x, a) = ϕ(x, a)⊤ŵi,h, where

ŵi,h = argminw∈Rd

∑
τ∈Bi,h

(
rτi,h + V̂i,h+1(x

−,τ
i,h )− ϕ(xτi,h, aτi,h)⊤w

)2
+ λ · ∥w∥22 (28)

with λ > 0 being the regularization parameter. The closed-form solution to (28) is in Line 4 in
Algorithm 5. Besides, we construct the uncertainty quantifier Γi,h based on Di as

Γi,h(x, a) = β(δ) · ∥ϕ(x, a)∥Λ−1
i,h
,Λi,h =

∑
τ∈Bi,h

ϕ(xτi,h, a
τ
i,h)ϕ(x

τ
i,h, a

τ
i,h)

⊤ + λ · I2, (29)

with β(δ) > 0 being the scaling parameter.

Algorithm 5 Pessimistic Policy Evaluation (PPE): Linear MDP
Require: Offline dataset {Di,h}Hh=1,Di,h = {(xτ

i,h, a
τ
i,h, r

τ
i,h, x

−,τ
i,h )}τ∈Bi,h , policy π, confidence probability

δ ∈ (0, 1).
1: Initialize V̂ π

i,H+1(·)← 0, ∀i ∈ [n].
2: for step h = H,H − 1, . . . , 1 do
3: Set Λi,h ←

∑
τ∈Bi,h

ϕ(xτ
i,h, a

τ
i,h)ϕ(x

τ
i,h, a

τ
i,h)

⊤ + λ · I .

4: Set ŵi,h ← Λ−1
i,h(

∑
τ∈Bi,h

ϕ(xτ
i,h, a

τ
i,h) · (rτi,h + V̂ π

i,h+1(x
−,τ
i,h ))).

5: Set Γi,h(·, ·)← β(δ) · (ϕ(·, ·)⊤Λ−1
i,hϕ(·, ·))

1/2.
6: Set Q̂π

i,h(·, ·)← min{ϕ(·, ·)⊤ŵi,h − Γi,h(·, ·), H − h+ 1}+.
7: Set V̂ π

i,h(·)← ⟨Q̂π
i,h(·, ·), πh(·|·)⟩A

8: end for
9: return V̂ π

i,1(·), . . . , V̂ π
i,H(·), Q̂π

i,1(·, ·), . . . , Q̂π
i,H(·, ·).

The following theorem shows the suboptimality gaps for Algo.2 (utilizing subroutine Algo.5) and
Algo.3 (also with subroutine Algo.5).

Theorem 26 Under Assumption 24, in Algorithm 5, we set λ = 1, β(δ) = c ·dH
√

log(2dHK/δ),
where c > 0 is a positive constant. Then, we have:
(i) for the output policy πPERM of Algo.2 with subroutine Algo.5, with probability at least 1− δ, the
suboptimality gap satisfies

SubOpt(πPERM) ≤ 7

√
7 log(6NΠ

(Hn)−1/δ)

n
+

2β
(

δ
3nHNΠ

(Hn)−1

)
n

n∑
i=1

H∑
h=1

Ei,π∗

[
∥ϕ(sh, ah)∥Λ̃−1

i,h

∣∣ s1 = x1

]
,

(30)

(ii) for the output policy πPPPO of Algo.3 with subroutine Algo.5, setting δ = 1/8, then with
probability at least 2/3, the suboptimality gap satisfies

SubOpt(πPPPO) ≤ 10

(√
log |A|H2

n
+

β
(

1
4nH

)
n

n∑
i=1

H∑
h=1

Ei,π∗

[
∥ϕ(sh, ah)∥Λ̄−1

i,h

∣∣ s1 = x1

])
, (31)

where Ei,π∗ is with respect to the trajectory induced by π∗ with the transition Pi in the underlying
MDPMi given the fixed matrix Λ̃i,h or Λ̄i,h.

2Spefically, for Algo.2, Λ̃i,h =
∑K

τ=1 ϕ(x
τ
i,h, a

τ
i,h)ϕ(x

τ
i,h, a

τ
i,h)

⊤ + λ · I , for Algo.3, Λ̄i,h =∑⌊K/H⌋−1
τ=1 ϕ(xτ ·H+h

i,h , aτ ·H+h
i,h )ϕ(xτ ·H+h

i,h , aτ ·H+h
i,h )⊤ + λ · I due to the data-splitting techniques.
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Proof By Jin et al. (2021), the parameters specified as λ = 1, β(δ) = c · dH
√
log(2dHK/δ),

and applying union bound, we can get: for Algo.5, with probability at least 1− δ/3∣∣(B̂i,hV̂ πi,h+1)(x, a)− (Bi,hV̂ πi,h+1)(x, a)
∣∣ ≤ β( δ

3nHNΠ
(Hn)−1

)(
ϕ(x, a)⊤Λ−1

i,hϕ(x, a)
)1/2

,

for all i ∈ [n], π ∈ Π̃, (x, a) ∈ S ×A, h ∈ [H] , (32)

where Π̃ is the 1
Hn -covering set of the policy space Π w.r.t. distance d(π1, π2) =

maxs∈S,h∈[H] ∥π1
h(·|s)− π2

h(·|s)∥1.

Therefore, we can specify the Γi,h(·, ·) in Theorem 9 with β
(

δ
3nHNΠ

(Hn)−1

)(
ϕ(x, a)⊤Λ−1

i,hϕ(x, a)
)1/2

,

and follow the same process as the proof of Theorem 9 to get the result for Algo.2 with subroutine
Algo.5.

Similarly, we can get: we can get: for Algo.5, with probability at least 1− 1/4∣∣(B̂i,hV̂i,h+1)(x, a)− (Bi,hV̂i,h+1)(x, a)
∣∣ ≤ β( δ

4nH

)(
ϕ(x, a)⊤Λ−1

i,hϕ(x, a)
)1/2

,

for all i ∈ [n], (x, a) ∈ S ×A, h ∈ [H] . (33)

Therefore, we can specify the Γi,h(·, ·) in Theorem 14 with β
(

δ
4nH

)(
ϕ(x, a)⊤Λ−1

i,hϕ(x, a)
)1/2

and
follow the same process as the proof of Theorem 14 to get the result for Algo.3 with subroutine
Algo.5.

∥ϕ(sh, ah)∥Λ−1
i,h

indicates how well the state-action pair (sh, ah) is covered by the dataset Di. The

term
∑n
i=1

∑H
h=1 Ei,π∗

[
∥ϕ(sh, ah)∥Λ−1

i,h

∣∣ s1 = x1

]
in the suboptimality gap in Theorem 26 is small

if for each context i ∈ [n], the dataset Di well covers the trajectory induced by the optimal policy π∗

on the corresponding MDPMi.

Well-explored behavior policy Next we consider a case where the dataset D consists of
i.i.d. trajectories collecting from different environments. Suppose D consists of n indepen-
dent datasets D1, . . . ,Dn, and for each environment i, Di consists of K trajectories Di =
{(xτi,h, aτi,h, rτi,h)Hh=1}Kτ=1 independently and identically induced by a fixed behavior policy π̄i in the
linear MDPMi. We have the following assumption:

Definition 27 (Well-Explored Policy, Duan et al. 2020; Jin et al. 2021) For an behavior policy π̄
and an episodic linear MDPM with the feature mapping ϕ, we say π̄ well-exploresM with constant
c if there exists an absolute positive constant c > 0 such that

∀h ∈ [H], λmin(Σh) ≥ c/d, where Σh = Eπ̄,M
[
ϕ(sh, ah)ϕ(sh, ah)

⊤].
A well-explored policy guarantees that the obtained trajectories is “uniform" enough to represent
any policy and value function. The following corollary shows that with the above assumption, the
suboptimality gaps of Algo.2 (with subroutine Algo.5) and Algo.3 (with subroutine Algo.5) decay to
0 when n and K are large enough.

Corollary 28 Suppose that for each i ∈ [n], Di is generated by behavior policy π̄i which well-
explores MDPMi with constant ci ≥ cmin. In Algo.5, we set λ = 1, β(δ) = c′ · dH

√
log(4dHK/δ)

where c′ > 0 is a positive constant. Suppose we have K ≥ 40d/cmin log(4dnH/δ) and set C∗
n :=

1/n ·
∑n
i=1 c

−1/2
i . Then we have:

(i) for the output πPERM of Algo.2 with subroutine Algo.5, with probability at least 1 − δ, the
suboptimality gap satisfies

SubOpt(πPERM) ≤ 7

√
2 log(6NΠ

(Hn)−1/δ)

n
+ 2
√
2c′ · d3/2H2K−1/2

√
log(12dHnKNΠ

(Hn)−1/δ) · C∗
n ,

(34)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(ii) for the output policy πPPPO of Algo.3 with subroutine Algo.5, setting δ = 1/8, then with
probability at least 2/3, the suboptimality gap satisfies

SubOpt(πPPPO) ≤ 10

(√
log |A|H2

n
+ 2
√
2c′ · d3/2H2.5K−1/2

√
log(16dHnK) · C∗

n

)
. (35)

Proof By the assumption that Di is generated by behavior policy π̄i which well-explores MDPMi

with constant ci (where the well-explore is defined in Def.27), the proof of Corollary 4.6 in Jin et al.
(2021), and applying a union bound over n contexts, we have that for Algo.2 with subroutine Algo.5
w.p. at least 1− δ/2

∥ϕ(x, a)∥Λ−1
i,h
≤

√
2d

ciK
for all i ∈ [n], (x, a) ∈ S ×A and all h ∈ [H] , (36)

and for Algo.2 with subroutine Algo.5 w.p. at least 1− δ/2

∥ϕ(x, a)∥Λ−1
i,h
≤

√
2dH

ciK
for all i ∈ [n], (x, a) ∈ S ×A and all h ∈ [H] , (37)

because we use the data splitting technique and we only utilize each trajectory once for one data tuple
at some stage h, so we replace K with K/H .

Then, the result follows by plugging the results above into Theorem26.

Remark 29 The mixed coverage parameter C∗
n = 1

n

∑n
i=1

1√
ci

is small if for any i ∈ [n], ci is large,

i.e., the minimum eigenvalue of Σi,h = Eπ̄i,Mi

[
ϕ(sh, ah)ϕ(sh, ah)

⊤] is large. Note that λmin(Σi,h)
indicates how well the behavior policy π̄i explores the state-action pairs on MDPMi; this shows
that if for each environment i ∈ [n], the behavior policy exploresMi well, the suboptimality gap will
be small.

Remark 30 Under the same conditions of Corollary 28, we have:

(i) If n ≥
392 log(6NΠ

(Hn)−1/δ)

ϵ2 and K ≥ max{ 40dcmin
log( 4dnHδ ),

32c′2d3H4 log(12dHnKNΠ
(Hn)−1/δ)C

∗2
n

ϵ2 },
then w.p. at least 1− δ, SubOpt(πPERM) ≤ ϵ.
(ii) If n ≥ 400H2 log(|A|)

ϵ2 and K ≥ max{ 40dcmin
log(16dnH),

32c′2d3H5 log(16dHnK)C∗2
n

ϵ2 }, then w.p. at
least 2/3, SubOpt(πPPPO) ≤ ϵ.
Corollary 28 suggests that both of our proposed algorithms enjoy the O(n−1/2 + K−1/2 · C∗

n)
convergence rate to the optimal policy π∗ given a well-exploration data collection assumption, where
C∗
n is a mixed coverage parameter over n environments defined in Corollary 28.

E ADDITIONAL EXPERIMENT DETAILS

E.1 ABLATION STUDY ON SCALING CRITIC PARAMETERS

In this section, we present an additional ablation study to examine the effect of scaling the critic
network parameters in IQL-1V and compare the results with IQL-4V. Specifically, we increase the
hidden dimension of the fully connected layers in the value network from 256 to 1024 within the
IQL-1V framework, ensuring that the total number of critic parameters matches that of IQL-4V. The
results, summarized in Table 4, indicate that enlarging the critic network to four times its original
size fails to achieve performance comparable to either the IQL-4V or the original IQL-1V settings.

Table 4: Ablation study on Miner game on the effects of scaling the critic parameters of IQL-1V
algorithm.

Procgen game 4V-SP (256 hidden dim) 1V-SP (256 hidden dim) 1V-SP (1024 hidden dim)
Miner 6.36± 1.85 5.6± 1.89 2.18± 1.05
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E.2 HYPERPARAMETERS FOR EXPERIMENTS ON REAL DATA

Table 5 shows our hyperparameters for experiment settings reported in Table 2.

Table 5: Hyperparameters in our experiment. We note that the policy extraction via Soft Actor-Critic
(SAC) implementation endows IQL-4V’s policy a stochastic nature in some settings, so we tune the
policy sampling method to leverage this effect.

Hyperparameter IQL-4V (Expert) IQL-4V (Mixed)
Learning Rate 0.0005 0.0005

Target model Weight Update Polyak Polyak
Batch Size 512 512

τ 0.005 0.005
Target update frequency 100 100

Temperature 3.0 3.0
Expectile 0.8 0.8

Policy Sampling Stochastic Deterministic

E.3 EXPERIMENTS ON SYNTHETIC DATA

Environments We are using the comblock framework that we adapted from (Bose et al., 2024),
where we directly record the policies and Q-values through state-action pairs instead of recovering
them linear-algebraically through rich observations. We leverage the PyTorch framework with CPU
device to process the tabular numerical operations. The entire dataset generation and experiment
process is conducted on MacBook Pro with M3 Max chip where the dataset generation process takes
about 2 hours.

We consider the Combination Lock environment adapted from (Bose et al., 2024). At each timestep
h, there are three states s0,h, s1,h, s2,h with 5 possible actions; only s0,h, s1,h are considered as
desirable states that are reachable toward final reward. The environment uniformly and independently
samples 1 out of 5 actions for each desirable state a0,h, a1,h at each timestep, where taking these
actions will result transition to one of the good states s0,h+1, s1,h+1 with equal probability, otherwise
the transition will deterministically to the bad state s2,h+1 and remains in the bad states for the rest
of the horizon. If the agent is staying in the good states at the end of the horizon, the reward will be 1;
otherwise the agent has 0.5 probability to receive a 0.1 reward.

Implementation details We consider two experiment settings, one with 5 context environments and
the other with 10 context environments. Each context environment is generated randomly. For the
generation of the offline dataset, as in (Bose et al., 2024), we adopt the Exploratory Policy Search
(EPS) algorithm proposed by (Agarwal et al., 2023) to obtain exploratory policies (not necessarily
optimal) that cover as much of the feature space. For each context environment, 500 exploratory
trajectories are i.i.d. sampled. We compare our proposed PPPO with the previous baseline PEVI Jin
et al. (2021) w.r.t. their average reward. In our experiment, we calibrate the β(δ) parameter for PEVI
to reflect the optimal performance, as well as the β(δ), α parameters for PPPO to reflect near-optimal
performance.

Experiment results We find that PPPO generally outperforms PEVI on average rewards in both
contextual settings as shown in Table 6, this validates our theory hypothesis (see discussion in
Appendix A.2 for an analysis of PEVI).

Table 6: The average rewards for PEVI and PPPO algorithms in two different contextual settings with
5 and 10 contexts. In PPPO, noting that the result policy is randomly sampled from n policies, we
are taking the average value and calculating the standard deviation (reported as 1-sigma error bars) of
the evaluation results for trained policies π1, . . . , πn.

Number of Contexts PEVI (Jin et al., 2021) PPPO
5 0.0628 0.0670± 0.0141

10 0.0514 0.0650± 0.0173
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