
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PLAY2PROMPT: ZERO-SHOT TOOL INSTRUCTION OP-
TIMIZATION FOR LLM AGENTS VIA TOOL PLAY

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly integrated with external tools to
complete user requests. Many real-world applications require LLMs to use spe-
cialized tools in a zero-shot setting. To achieve this, current methods primarily
rely on prompting LLMs with tool-specific information, yet tool documentation
is often underspecified or noisy, limiting effectiveness. Manual improvements are
inefficient and impractical, as they require domain expertise to rewrite documenta-
tion and test on carefully curated held-out datasets to evaluate performance gains.
Automatic prompt engineering techniques are not applicable either, because they
require labeled examples, which is unavailable in the zero-shot setting. In this
work, we introduce PLAY2PROMPT, an automated framework that iteratively re-
fines tool documentation and generates usage examples. PLAY2PROMPT enables
LLMs to explore tool input-output behaviors, allowing us to effectively search the
space of possible tool descriptions and examples. The generated examples not
only guide LLM inference but also serve as validation data to ensure more effec-
tive tool use. Extensive experiments on real-world tasks demonstrate significant
improvements in zero-shot tool performance across both open- and closed-source
models.

1 INTRODUCTION

Recently, there has been growing research interest in enhancing large language models (LLMs)
by integrating external tools with specialized capabilities. This augmentation allows for automatic
planning and execution of tool usage, thereby enabling LLMs to solve complex tasks with greater
accuracy and produce responses that are more aligned with human preferences (Mialon et al., 2023;
Qin et al., 2024a). For instance, open-source models have been fine-tuned on manually curated
or synthetically generated function-calling data to improve performance in specific reasoning and
question-answering tasks (Schick et al., 2023; Yang et al., 2023). Additionally, both open-source
base models and closed-source black-box models are being trained to invoke a limited set of built-
in tools, such as mathematical calculators or search engines. However, while these tools address
general use cases, they often prove insufficient for real-world complicated tasks that require domain-
specific functionalities. Therefore, it is essential to develop methods that enable these tool-use
frameworks to dynamically learn how to use user-defined tools.

Training models to specialize in new tools necessitates extensive fine-tuning data and significant
computational resources, rendering this approach impractical for large-scale applications. A more
viable alternative involves augmenting the set of built-in tools by supplementing user-defined tools
at inference time in a zero- or few-shot manner via prompting (Lu et al., 2023; Shen et al., 2023).
This method capitalizes on the zero-shot tool-calling capabilities of current LLMs, which have been
tuned with tool-use instructions to facilitate this plug-and-play functionality.

One typical such paradigm is ReAct (Yao et al., 2023), wherein the model plans and selects ap-
propriate tools to accomplish the given task, interleaving reasoning steps with tool retrieval, tool
call predictions, and executions. In the ReAct paradigm, the success of learning to use new tools,
particularly in zero-shot scenarios, hinges on comprehensive tool documentation and demonstra-
tions (Hsieh et al., 2023; Patil et al., 2023). Such documentation generally consists of tool descrip-
tions, parameter specifications, output formats, and other related meta-information, which provides
critical information for equipping the LLM with necessary information to utilize the tools correctly.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The PLAY2PROMPT framework: Beam search iteratively searches demonstrations, incor-
porating tool play into the exploration and self-reflection process (Left). After demonstrations are
optimized, beam search is once again applied to optimize descriptions by evaluating on the demon-
strations as test set, and incorporating tool use outputs/errors (Right).

However, in numerous practical cases, users fail to provide adequate documentation or exemplar
demonstrations to the model, nor do they invest in crafting improved documentation tailored for
LLM utilization. This lack of information can lead to failures in tool usage, such as syntax errors
in both zero-shot and fine-tuned models (Zhang et al., 2023a), hallucinations due to lack of proper
tool documentation (Hsieh et al., 2023), and diminished performance resulting from insufficient
demonstrations (Xu et al., 2023). Manually enhancing tool documentation and creating example
demonstrations is laborious and inefficient, which is further compounded by the need for labeled
testing data for each tool to assess effectiveness. When attempting to scale up to larger API databases
or online code repositories, these challenges become even more pronounced.

While automatic prompt engineering techniques have been shown to outperform manual optimiza-
tion (Wang et al., 2024), they prove inapplicable in this context due to their reliance on labeled ex-
amples for testing—resources that are inherently unavailable in zero-shot settings (Wu et al., 2024).
Existing methods for revising tool documentation typically involve directly prompting LLMs to op-
timize tool descriptions (Yuan et al., 2024), lacking the capacity to evaluate whether the rewritten
documentation enhances the LLM’s tool use performance, instead depending heavily on meticu-
lously crafted meta-prompts and oracle example demonstrations supplied within the meta-prompts.

To address these challenges and facilitate general zero-shot tool utilization, we introduce
PLAY2PROMPT, an automated framework, which iteratively refines tool documentation and gen-
erates example tool usage demonstrations, as illustrated in figure 1. PLAY2PROMPT does not rely
on any external tool use examples. Instead, drawing inspiration from human trial-and-error method-
ologies, it prompts an LLM agent to “play” with the new tools to explore their functionalities and
usage, based on which the tool use examples and refined tool descriptions are generated.

During each generation process, PLAY2PROMPT executes multiple trial-and-error iterations, lever-
aging both successful and erroneous tool-use instances to guide the search trajectory. We employ
self-reflection (Madaan et al., 2023; Pryzant et al., 2023; Shinn et al., 2023) to generate error feed-
back, thereby directing the search algorithm towards progressively improved outputs. Crucially,
we iteratively refine not only the tool descriptions but also generate example demonstrations. The
generated examples function as a validation set, enabling LLMs to interact with and evaluate tool
usage, which subsequently guides the further enhancement of tool descriptions. Throughout this
iterative process, PLAY2PROMPT systematically expands the search space in a tree structure, pri-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

oritizing paths with higher self-reflection or evaluation scores. PLAY2PROMPT operates entirely in
a zero-shot manner and is inherently task-agnostic, making it a practical and scalable solution for
enhancing LLM tool utilization without necessitating additional labeled data or manual intervention.

We demonstrate the effectiveness of PLAY2PROMPT by applying it to real-world scenarios. On
the StableToolBench benchmark (Guo et al., 2024), our approach consistently surpasses baseline
methods for both open-source LLaMA models (Dubey et al., 2024) and closed-source OpenAI GPT
models (Achiam et al., 2023). Extensive experiments and analyses further underscore the efficacy
of our approach.

Our contributions can be summarized as follows:

• We introduce PLAY2PROMPT, a novel automated framework that iteratively refines tool docu-
mentation and generates usage examples, empowering LLMs to utilize tools more effectively in
zero-shot settings without the need for labeled data.

• PLAY2PROMPT integrates a search-based trial-and-error process augmented with self-reflection,
enabling LLMs to interact with tools, explore their functionalities, and iteratively refine both tool
descriptions and demonstrations, thereby significantly enhancing performance.

• PLAY2PROMPT is entirely zero-shot, inherently scalable, and task-agnostic, making it broadly
applicable across a wide range of tools and domains, and practical for enhancing LLM tool use at
scale without additional manual effort.

2 METHODOLOGY

Tool documentation typically includes tool descriptions, parameter specifications, output formats,
and other related meta-information. In our framework, we define a tool as f = (u, I, g), where u
denotes the tool description, I represents tool-related meta-information (such as parameter speci-
fications and other relevant details), and g is the corresponding executable function call. Example
tool usage demonstrations often vary from simple question-answer pairs to comprehensive reason-
ing chains. We focus on demonstrations that illustrate when and how the tool can be used; thus,
we define an example demonstration as v = (x, y, i), comprising a question x, an answer y, and
a tool invocation i that specifies the tool call parameters. When utilizing tools during inference in
the ReAct paradigm, LLMs typically interleave reasoning steps with tool invocation and execution
in a chain-of-thought manner. Given an input user query x, a base LLM B, a set of available tools
F = {fj}Kj=1, and a set of example demonstrations VF = {vj}Mj=1 for the tools F , we denote the
entire ReAct chain as B(x;F ;VF ).

Problem Formulation Consider a set of testing samples Dtest = {xj , yj , Fj}Nj=1. The evaluation
of the tool-using ability of the base model B is given by EDtest [Score(B(xj ;Fj ;VFj ), yj)], where
Score is a scoring function assessing the alignment between the model’s output and the ground
truth yj . The primary objective is to maximize this evaluation score by improving tool descriptions
and generating effective example demonstrations. In a zero-shot scenario, we lack access to labeled
testing samples and the specific tool sets Fj for each test sample, rendering direct optimization of
the objective infeasible. Therefore, we require a proxy testing set Dproxy and a corresponding tool
set Fproxy. If a small validation set is available, as in automatic prompt optimization settings, it can
serve as the proxy testing set and tool set. In our setting, we assume access to a new tool t ∈ ∪jFj

and treat each incoming tool f independently by setting Fproxy = {f}. Assuming a fixed number of
demonstrations M , the optimization objective for the tool description u and example demonstrations
{vj}Mj=1 becomes u∗, {v∗j }Mj=1 = argmaxu∈U,vj∈V Score

(
B(x, {(u, I, g)}, {vj}Mj=1), y

)
, where

U and V represent the sample spaces for tool descriptions and example demonstrations, respectively.
Given the vastness of these spaces, it is essential to design an algorithm that can search through
them efficiently and effectively. To this end, we propose a framework that iteratively generates the
demonstrations VF , assigns Dproxy = {xj , yj , F} ∀(xj , yj , ij) ∈ VF , and refines the descriptions u.
In the following sections, we introduce PLAY2PROMPT and detail its two optimization tasks.

2.1 PLAY2PROMPT

The primary goal of PLAY2PROMPT is to integrate knowledge gained from tool interactions into
tool usage descriptions and example demonstrations while ensuring an efficient exploration of the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

large search space. Inspired by automatic prompt optimization methodologies (Wang et al., 2024),
we devise the optimization process as a search framework where each state s represents an iteration
of the variable being optimized—either a demonstration (s = v) or a tool description (s = u). Each
action a corresponds to a modification applied to the current state.

To navigate the search space toward higher-quality regions, we generate actions based on inputs
and outputs obtained from tool interactions. Feedback from tool executions—including successful
outputs and usage errors—guides further revisions, ensuring that the updated state helps the base
model B avoid previous mistakes. This iterative refinement process is influenced by prior work on
self-reflection capabilities in LLMs (Shinn et al., 2023; Pryzant et al., 2023).

Specifically, given a state st, an action at is generated by sampling from an optimization modelM,
conditioned on the input-output information obtained from tool interactions. Applying the action at
to the state st—also performed via sampling fromM—yields the next state st+1. A scoring function
evaluates the quality of each state, assigning a score rt that reflects the effectiveness of the current
tool description or demonstration. This formulation allows for the integration of search algorithms
to efficiently traverse the search space. In our work, we employ beam search to identify high-scoring
states, treating each state as a node in a tree and exploring branches for potential improvements. The
sampling strategies for generating st+1 and at+1, as well as the reward definitions, differ between
the two optimization tasks. These details are elaborated in sections 2.2 and 2.3.

The two optimization tasks are inherently interdependent: refining tool descriptions requires evalua-
tion examples to calculate a score r, while generating high-quality example demonstrations depends
on detailed and accurate tool descriptions. By iteratively alternating between generating demon-
strations and refining descriptions, each step informs the other: improved demonstrations highlight
areas where the tool description may be lacking, while refined descriptions enable the generation of
more accurate and effective demonstrations. This synergy allows PLAY2PROMPT to progressively
enhance both components, ultimately improving the base model’s tool-using capabilities.

2.2 TOOL EXAMPLE DEMONSTRATION OPTIMIZATION

The objective of this task is to generate example tool usage demonstrations for a given tool f , uti-
lizing its initial tool description u, meta-information I , and function g, with the assistance of an op-
timization modelM. Directly sampling query-answer pairs (xt+1, yt+1) ∼ pM(x, y | xt, yt, u, I)
poses significant challenges, because generating high-quality queries is difficult given only poten-
tially incomplete or noisy tool descriptions and parameter information, especially without any other
query-answer demonstrations in zero-shot settings. Additionally, constraining the scope of the gen-
erated query to only the specific tool is challenging; generated queries might require the use of other
tools, thus expanding the search space beyond manageable limits.

To overcome these issues, we adopt an alternative approach by first sampling the tool invocation
i and then generate the corresponding query x and answer y. This method leverages the fact that
the search space for tool input parameters is considerably smaller and more constrained, especially
when informed by the parameter specifications in I . By sampling a tool invocation i first, we can
execute it using the function g to obtain the output o = g(i). This step not only validates the tool call
but also provides concrete input-output examples of the tool’s functionality. Generating the query x
conditioned on a valid tool call i and its output o benefits from this additional information, resulting
in more relevant and focused demonstrations. The optimization model M thus gains substantial
insight from interacting with the tool, effectively narrowing the search space.

Our sampling strategy consists of two stages. In the first stage, we perform rejection sampling of
the tool invocation. We sample a candidate tool invocation i ∼ pM(·) using the optimization model
M, execute the tool function to obtain o = g(i), and verify whether o is a valid output given the
meta-information I and description u withM. If the invocation is invalid, we reject it and repeat
the sampling process until a valid tool invocation is obtained.

In the second stage, once a valid tool invocation i is secured, we proceed to generate the corre-
sponding user query x and answer y. We sample the query x ∼ pM(·|i) and then the answer
y ∼ pM(·|x, i). To refine these samples and enhance their quality, we perform a rollout of Nrefine
steps, with self-reflection acting as the policy guiding the refinement process. During each rollout
step, the model evaluates the alignment of the query, answer, and tool output, and generates self-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 DEMONSTRATIONSTATETRANSITION

Input: st = vt = (xt, yt, it): demonstration, u: description, at: reflection
Output: st+1 = vt+1 = (xt+1, yt+1, it+1): demonstration, rt+1: score, at+1: reflection

1: c← false
2: while ¬c do ▷ Rejection Sampling of tool invocation i

3: it+1 ∼ pM(i|it, c, u, I, at,m1) ▷ Sample candidate tool invocation, incorporating reflection at

4: ot+1 ← g(it+1) ▷ Execute tool function
5: c ∼ pM(c|it+1, ot+1, u, I,m2) ▷ Verify validity of tool call
6: end while
7: for n← 1 to Nrefine do ▷ Rollout for with self-reflection policy
8: xt+1 ∼ pM(x|it+1, ot+1, u, I,m3) ▷ Sample user query x

9: yt+1 ∼ pM(y|it+1, ot+1, xt+1, u, I,m4) ▷ Sample corresponding answer y
10: rt+1 ∼ pM(r|yt+1, it+1, ot+1, xt+1, u, I,m5) ▷ Evaluate demonstration quality
11: at+1 ∼ pM(a|rt+1, yt+1, it+1, ot+1, xt+1, u, I,m6) ▷ Generate self-reflection action
12: end for

reflection actions to iteratively improve them. For scoring, we compute a reward rt+1 by querying
the modelM, conditioned on the sampled i, x, and y. This score reflects the quality and coherence
of the demonstration. Finally, we generate a self-reflection action at+1 to guide further optimization.
The detailed procedure is outlined in Algorithm 1, where each mi is a meta-prompt.

2.3 TOOL DESCRIPTION OPTIMIZATION

Optimizing tool descriptions requires a strategy that effectively incorporates feedback from the base
model’s tool usage, particularly when errors occur. During a state transition, we sample a new tool
description ut+1 ∼ pM(u|ut) using the optimization modelM. To evaluate the effectiveness of this
new description, we utilize the previously generated example demonstrations V = {(xj , yj , ij)}Mj=1.
We calculate the score rt+1 by testing the base model B in the ReAct framework on the demonstra-
tion set V using ut+1, the new tool description: rt+1 = Ej [Score(B(xj , {(ut+1, I, g)}, {}), yj)].
A critical aspect of this optimization task is incorporating tool-use information derived from the
base model’s interactions with the tool. When the base model B uses the tool incorrectly—resulting
in errors such as invalid parameter usage, incorrect function calls, or misinterpretation of the tool’s
purpose—the errors provide valuable feedback. These errors, along with the tool outputs, are col-
lected during the ReAct chains. We condition the generation of the self-reflection action at+1 on
this collected information.

By analyzing the errors encountered, the optimization modelM can identify deficiencies or ambi-
guities in the current tool description ut+1 that may have contributed to the incorrect usage. The
self-reflection action at+1 then suggests specific modifications to the tool description aimed at mit-
igating these issues. For instance, if the base model frequently misuses a parameter due to unclear
specifications, the self-reflection process may recommend clarifying that parameter’s description
or providing examples of correct usage. Similarly, if the base model misunderstands the overall
functionality of the tool, the reflection may suggest rephrasing the tool description to be more ex-
plicit. By iteratively refining the tool description in response to observed errors, we enhance the base
model’s ability to use the tool correctly in future interactions, reducing the likelihood of repeated
mistakes. This iterative refinement process not only improves the clarity and usefulness of the tool
description but also contributes to more effective and efficient tool usage by the base model. The
detailed procedure for tool description optimization is presented in Algorithm 2.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Task To assess the effectiveness of tool instruction optimization in real-world applications, we
evaluate on StableToolBench (Guo et al., 2024), a benchmark containing diverse user requests across

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 DESCRIPTIONSTATETRANSITION

Input: st = ut: description, V = {(xj , yj , ij)}Mj=1: demonstration set, at: reflection
Output: : st+1 = ut+1: description, rt+1: score, at+1: reflection

1: ut+1 ∼ pM(u|ut, at, I,m7) ▷ Sample description ut+1 fromM, applying reflection at

2: oj , ej ← B(xj , {(ut+1, I, g)}, {}) ∀j ▷ Gather I/O & errors ej from running B on demo set V with ut+1

3: rt+1 ← Ej [Score(oj , yj)] ▷ Evaluation score on V

4: at+1 ∼ pM(a|ut+1, rt+1, I, {xj , oj , ej},m8) ▷ Self-reflection action

a large set of publicly available REST APIs from the RapidAPI Hub. StableToolBench improves
upon the commonly used ToolBench (Qin et al., 2024b) by addressing the instability of RapidAPIs in
the original version. If API access is unavailable, the benchmark employs a fallback system that uses
caching and an API simulator. StableToolBench includes 16,464 APIs spanning 49 categories. Our
experiments cover all six subsets of the benchmark, which include single-tool (I1) and multi-tool
(I2-same category and I3-different category) test cases. In this context, an API service represents
a tool that contains multiple sub-tools, with each sub-tool corresponding to f in our definition.
Thus, I1 test queries often require multiple sub-tool calls within a tool, making them not strictly
”single-tool.” Although the original subsets evaluate different types of generalizability based on tool
overlap with training data, our zero-shot setting does not rely on any training data, rendering these
differences less significant.

Inference and Evaluation We adhere to the inference setting used in the original benchmark,
where a set of tools is provided for the base LLM B to select from to answer user queries. ReAct
serves as our baseline performance method, for which we run on the testing data using the ReAct
prompts provided in dataset, with the original tool descriptions and no example demonstrations,
as we operate in zero-shot setting. For PLAY2PROMPT, we run ReAct again but with the opti-
mized descriptions and demonstrations. To test different base models B, we evaluate with Meta
LLaMA models and OpenAI GPT models, both of which are trained with tool use instructions
and have zero-shot tool-calling capabilities. Specifically, we tested llama-3-8b-instruct
and llama-3-70b-instruct for LLaMA, while gpt-3.5-turbo-1106 was used for
GPT experiments. Since ReAct outputs are free-form, an evaluation LLM determines whether
a response adequately answers a user query. Following the original benchmark’s evaluation
pipeline, we reuse the provided prompts and employ solvable pass rate as our evaluation met-
ric, which measures the percentage of queries deemed solvable by the evaluation LLM. We use
llama-3.1-70b-instruct as the evaluation LLM, as previous work (Guo et al., 2024) re-
ported potential evaluation instabilities with weaker models, which we do not observe with this
evaluation LLM. Additional details on inference and evaluation are provided in appendix A.

Optimization Details For PLAY2PROMPT, we follow the proposed algorithms, first running beam
search to optimize example demonstrations. Nrefine is set to 5 for the demonstration optimization
procedure. We set a depth limit of 5, beam width of 3 and conduct 3 explorations per node. The
top 3 examples are generated and selected for each tool, which are then passed to the description
optimization phase. Beam search is again applied with the same settings to select the best tool
description. llama-3-8b-instruct is used forM.

3.2 RESULTS AND ANALYSES

Main Results on StableToolbench The top and bottom rows for each base model in table 1
show the solvable pass rates of running ReAct with demonstrations and descriptions generated by
PLAY2PROMPT, compared to the baseline of ReAct with original descriptions and no demonstra-
tions. Across all 6 subsets, we see that PLAY2PROMPT outperforms on all base models, observing
3-6% absolute gains (6-9% relative gains) on average across all base models. For the smaller model
LLaMA-3-8B, gains mainly come from I1-Cat, I1-Tool, and I3-Inst subsets, while the larger GPT-
3.5 and LLaMA-3-70B models maintain consistent gains across all subsets. It is noteworthy that
LLaMA-3-70B achieves the highest performance out of all 3 models, for both baseline ReAct and
PLAY2PROMPT, and especially performs well on I3-Inst, the most challenging subset, where the
other models struggle with the most. PLAY2PROMPT essentially boosts performance of models up

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Results on StableToolBench. Scores indicate the solvable pass rate.
Base Model Method I1-Inst I1-Cat I1-Tool I2-Inst I2-Cat I3-Inst Avg

LLaMA-3-8B

ReAct 59.2 60.8 55.8 58.1 56.7 47.7 56.4
PLAY2PROMPT - Desc 59.9 65.9 57.7 58.0 56.7 50.8 58.1
PLAY2PROMPT - Demo 57.9 65.5 58.5 58.0 56.7 59.4 59.3
PLAY2PROMPT 60.0 65.6 61.0 59.0 57.8 53.4 59.5

LLaMA-3-70B

ReAct 70.3 75.9 66.1 70.6 76.4 76.5 72.7
PLAY2PROMPT - Desc 71.1 78.0 66.5 76.1 78.2 79.2 74.9
PLAY2PROMPT - Demo 73.6 78.5 71.8 76.3 83.1 76.3 76.6
PLAY2PROMPT 73.6 79.4 72.5 76.7 80.9 80.3 77.2

GPT-3.5

ReAct 57.4 67.8 65.1 61.2 62.9 53.0 61.2
PLAY2PROMPT - Desc 60.1 67.5 66.0 61.9 67.9 55.7 63.2
PLAY2PROMPT - Demo 62.2 70.2 70.3 64.6 65.4 56.6 64.9
PLAY2PROMPT 62.0 70.7 71.7 64.6 67.9 64.7 66.9

to the baseline performance of models that are much larger. This underscores the effectiveness of
PLAY2PROMPT, operating entirely without supervision with only access to the newly given tool
itself.

Effects of Demonstrations vs Descriptions To study the effectiveness of PLAY2PROMPT, we
break down how much the newly optimized demonstrations contribute to the performance gains
compared to the optimized descriptions. We keep our optimization procedure the same, but during
inference we add two other settings: one where we use optimized demonstrations along with origi-
nal descriptions, and one where we do not use demonstrations but update the descriptions with op-
timized ones. The results can be found labeled as PLAY2PROMPT-Desc and PLAY2PROMPT-Demo
for each model in table 1. Compared against each other, we observe that the optimized example
demonstrations generally contribute more to performance than optimized descriptions do. However,
we still observe several subsets where one does well while the other remains close to the baseline.
This varies across different base models, and we do not observe a pattern of when to choose one over
another. On the other hand, using both together consistently obtains the best performance, especially
for the larger models, giving us higher assurance of performance gains. This suggest that informa-
tion from the optimized descriptions and demonstrations may complement each other in assisting
LLMs’ tool use, validating our iterative approach.

Ablation on Search Strategies To investigate the effect of search effectiveness in
PLAY2PROMPT, we conduct an ablation study by comparing beam search to alternative search
strategies. Specifically, we compare to Monte Carlo (MC) search with different depths, using the
same transition and action strategy as in PLAY2PROMPT and only replace beam search with MC.
MC in this context would be a single step of sampling a state and an action. In this ablation, we run
MC with depth of 1 and 5. Additionally, we aim to quantify the effect of having Nrefine rollout steps
with the self-reflection policy when sampling query-answer pairs, and compare against a strategy
of not rolling out. We run the experiments on I3-Inst, which is generally the hardest subset due to
the inclusion of tools across categories. The results are presented in table 2, where MC is shown
to perform worse than beam search (PLAY2PROMPT), as it does not explore the search space well
enough to reach better states. Rollout refinement helps, as does increasing the depth of search due
to information gained from tool play and self-reflection actions.

Analysis on Single-Tool Queries and Incomplete Descriptions We attempt to gain more insight
into how the optimized demonstrations and descriptions enhance base model’s tool use by focusing
on certain user queries of interest. One such set contains queries that use only a single sub-tool, as it
most closely matches to our optimization scenario, where we denote as the I1-Sub subset. Another
interesting set are instances where a query’s corresponding tool set contains at least one tool that
lacks tool description, i.e., only has meta-information in the form of tool names and parameter
structures. We denote this set as NoDesc. Evaluation results on these two subsets are shown in
table 3. PLAY2PROMPT greatly enhances the performance of LLaMA-3-8B on both I1-Sub and
NoDesc, and almost reaches the performance of the 70B model on I1-Sub. However, the 70B model

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Ablation on search strategies,
ran on I3-Inst. LLaMA-3-8B is used
for B in this experiment. MC denotes
Monte Carlo search.

Search strategy I3-Inst

MC (depth= 1) 48.1
MC (depth= 5) 49.9
MC (depth= 5) & Nrefine = 5 51.9
Beam search (PLAY2PROMPT) 53.4

Table 3: Solvable pass rate on instances only using a sin-
gle subtool (I1-Sub) and instances whose toolset includes
at least one tool without a tool description (NoDesc).
Demo indicates performance evaluated on the generated
demonstration set.

Base Model Method I1-Sub NoDesc
demo test demo test

LLaMA-3-8B ReAct 85.0 59.7 85.0 57.5
ReAct+PLAY2PROMPT 93.6 72.4 98.5 72.9

LLaMA-3-70B ReAct 92.8 74.9 93.9 86.9
ReAct+PLAY2PROMPT 100.0 75.7 99.6 87.5

sees way less gains, even when performance on the demonstration set improves. This suggests
that 1) there is still quite a generalization gap between optimized demonstrations and the testing
distribution, suggesting room for improvement; and 2) meta-information conveys a certain degree
of information that may be easily picked up by larger models compared to smaller models. The
information gained through tool play for these tools are still very helpful for the smaller model,
which essentially bridges that information gap with PLAY2PROMPT.

Table 4: DifferentM on I3-Inst. LLaMA-3-
70B is used as B in this experiment.

Method M I3-Inst

ReAct - 76.5
ReAct+PLAY2PROMPT LM-3-8B 80.3
ReAct+PLAY2PROMPT LM-3-70B 85.8

Optimization Model M We further explore the
effects of using a stronger optimization model M,
as they not only may generalize better, but also pro-
vide better self-reflection capabilities to enable bet-
ter search. Due to computational constraints, we ex-
plore using LLaMA-3-70B in place of LLaMA-3-8B
on the subset I3-Inst, and report results in table 4.
We observe a fairly large improvement, essentially
doubling the performance gain on this small subset,
which suggest potential overall performance gains.

Qualitative Analysis To illustrate how PLAY2PROMPT leverages tool play errors to optimize
demonstrations and descriptions, we show a qualitative example in figure 2, where the tool doc-
umentation is outdated, specifying start date and end date instead of from and to, in addi-
tion to setting them to be required parameters when in fact they are optional. We show one query
out of the three we generate for the demonstration set. In this case, PLAY2PROMPT in the early
states is confused by contradictory information from the tool error and the documentation, but adds
more detailed information and solves some of the queries that did not require the start and end dates.
It ultimately starts exploring and ends up finding the correct parameter names, leading to superior
performance. An additional example of a more typical improvement by PLAY2PROMPT is shown
in appendix B.

4 RELATED WORK

LLMs for Tool Use Recent years have witnessed significant advances in employing large lan-
guage models (LLMs) as agents to master tool use for solving complex tasks (Mialon et al., 2023;
Qin et al., 2024a), thereby enhancing LLMs’ capabilities in areas such as multi-modal understand-
ing (Gupta & Kembhavi, 2023; Surı́s et al., 2023; Wu et al., 2023), programming tools (Gao et al.,
2023; Paranjape et al., 2023; Team et al., 2023; Zhang et al., 2023b; Cai et al., 2024), and other
domain-specific functionalities. The conventional strategy involves training base models with tool-
use data (Thoppilan et al., 2022; Dubey et al., 2024) or fine-tuning LLMs (Patil et al., 2023; Schick
et al., 2023; Yang et al., 2023) to learn to use tools, which works well on specific tasks with a small
fixed number of tools. Specifically, Parisi et al. (2022) explored tool play in a self-training context,
aiming to automatically fine-tune a language model on a small number of tools. However, these
approaches require continual learning as new tools are added, making the training process not scal-
able. Hao et al. (2023) addressed this by training tool embeddings that can be augmented onto fixed

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: An example of PLAY2PROMPT facing incorrect documentation. The beam search trajec-
tory with the highest evaluation solve rate on the demonstration set is shown. At each state transition,
a new description is explored based on error feedback.

LLMs for plug-and-play usage; however, they still require labeled data to obtain the embeddings.
Alternatively, LLMs can access tools via handcrafted meta-prompts or by being trained with tool-
use instructions, and then supplied the tools during inference through prompts (Lu et al., 2023; Shen
et al., 2023; Song et al., 2023; Qin et al., 2024b; Zhuang et al., 2024). With the increasing number of
applications and tools in which LLMs are utilized, enhancing LLMs’ tool-use capabilities for novel
tools remains an important problem, which we explore and improve upon with PLAY2PROMPT.

Tool Use Instructions and Optimization Tool documentation and example demonstrations are
crucial components in prompting LLMs for effective tool use, as demonstrated by various studies.
Hsieh et al. (2023) reported that documentation is more important than demonstrations for some
tasks, and that LLMs often hallucinate tools when lacking proper documentation. Xu et al. (2023)
investigated the effects of in-context example demonstrations on tool use techniques, observing
diminished performance when such examples were omitted. To automate the generation of tool-use
instances, Shen et al. (2024) proposed sampling tool calls from a graph of tool relations and back-
instructing to construct queries, which relies on the availability of external tool graphs. In an effort to
improve tool documentation, Yuan et al. (2024) utilized direct prompting to summarize and rewrite
tool descriptions, but their approach relies on related documentation examples and lacks the ability
to systematically search and optimize. While automatic prompt tuning methods (Pryzant et al.,
2023; Wang et al., 2024) have been developed to adapt LLMs to domain-specific tasks by rewriting
prompts, they typically depend on held-out testing sets to measure optimization quality, making
them unsuitable for zero-shot tool instruction rewriting (Wu et al., 2024). These challenges highlight
the necessity for approaches that can automatically optimize tool instructions and demonstrations
without requiring labeled data or manual effort, which PLAY2PROMPT addresses by leveraging
interactions with the tool itself.

5 CONCLUSION

We present PLAY2PROMPT, an automated framework that iteratively refines tool documentation
and generates example tool usage demonstrations, enhancing the ability of large language models to
utilize tools effectively in zero-shot settings. By employing a search-based trial-and-error approach
with self-reflection, PLAY2PROMPT enables models to interact with tools, explore their function-
alities, and improve both tool descriptions and demonstrations without the need for labeled data or
extensive manual effort. This approach addresses the limitations of existing methods that rely on

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

handcrafted prompts or labeled data, offering a scalable and task-agnostic solution applicable to a
wide range of tools and domains. Our experiments on StableToolBench demonstrated significant
improvements over baseline methods for both open-source and closed-source models. By systemat-
ically enhancing the tool-use capabilities of LLMs, this work contributes to the development of AI
agents that can autonomously adapt to new tools and challenges, extending their utility in real-world
applications.

LIMITATIONS AND FUTURE WORK

In this work, we generate proxy testing sets based only on a single given tool and do not cover
multi-tool use. Scaling from single-tool scenarios to multiple tools can likely enhance LLM’s tool
use effectiveness. Additionally, for example demonstrations, we use rejection sampling to generate
tool invocations first, which do not work for functions whose parameter space is too large, for
instance parameters that take long ID string inputs or authentication tokens that require calls to
other tools beforehand. Exploring multi-tool dependencies could potentially resolve this issue and
improve tool play. In our work we focus on tool descriptions and demonstrations only, relegating
other information as meta-information, which could be potential next steps to explore.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models as
tool makers. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=qV83K9d5WB.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
Wong, Cristian Cantón Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz,
Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego
Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab A. AlBadawy, Elina Lobanova, Emily Dinan,
Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriele Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guanglong Pang, Guillem Cucurell, Hai-
ley Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Is-
abel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Laurens Geffert,
Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao
Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Ju-
Qing Jia, Kalyan Vasuden Alwala, K. Upasani, Kate Plawiak, Keqian Li, Ken-591 neth Heafield,
Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lau-
ren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis
Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Made-
line C. Muzzi, Mahesh Babu Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melissa Hall Melanie Kambadur, Mike Lewis, Min Si,
Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay
Bogoychev, Niladri S. Chatterji, Olivier Duchenne, Onur cCelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasić, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krish-
nan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapa-
thy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar,
Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva,
Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Chandra Raparthy,

10

https://openreview.net/forum?id=qV83K9d5WB


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Ba-
tra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky,
Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speck-
bacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Wei-
wei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiao-
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yas-
mine Babaei, Yiqian Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zhengxu Yan, Zhengxing Chen, Zoe Papakipos, Aaditya K. Singh, Aaron Grattafiori,
Abha Jain, Adam Kelsey, Adam Shajnfeld, Adi Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples,
Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco,
Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman,
Azadeh Yazdan, Beau James, Ben Maurer, Ben Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Shang-Wen
Li, Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Di-
ana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa
Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Es-
teban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel,
Francesco Caggioni, Francisco Guzm’an, Frank J. Kanayet, Frank Seide, Gabriela Medina Flo-
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman,
Grigory G. Sizov, Guangyi Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Han-
nah Wang, Han Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter
Goldman, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Ge-
boski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan,
Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cum-
mings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kaixing(Kai) Wu, U KamHou, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Ku-
nal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, A Lavender, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt,
Madian Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan
Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan
Keneally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,
Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat,
Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,
Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning
Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,
Pierre Roux, Piotr Dollár, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,
Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes,
Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha
Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe,
Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sung-Bae Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Andrei Poenaru, Vlad T. Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xia Tang, Xiaofang
Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu,
Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu Wang, Yuchen
Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yang, and Zhiwei Zhao. The llama 3 herd of models. ArXiv, abs/2407.21783, 2024. URL
https://api.semanticscholar.org/CorpusID:271571434.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. StableToolBench: Towards stable large-scale benchmarking on tool learning
of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics ACL 2024, pp. 11143–11156, Bangkok, Thailand
and virtual meeting, August 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.findings-acl.664. URL https://aclanthology.org/2024.findings-acl.
664.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953–14962, 2023.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Advances in neural information processing sys-
tems, 36, 2023.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa Fujii, Alexander Ratner, Chen-Yu Lee,
Ranjay Krishna, and Tomas Pfister. Tool documentation enables zero-shot tool-usage with large
language models. arXiv preprint arXiv:2308.00675, 2023.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els. arXiv preprint arXiv:2304.09842, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: iterative refinement
with self-feedback. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, pp. 46534–46594, 2023.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ramakanth Pasunuru,
Roberta Raileanu, Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard
Grave, Yann LeCun, and Thomas Scialom. Augmented language models: a survey. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=jh7wH2AzKK. Survey Certification.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 7957–7968, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.494. URL https://aclanthology.org/2023.
emnlp-main.494.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu
Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li,
Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao,

12

https://api.semanticscholar.org/CorpusID:271571434
https://aclanthology.org/2024.findings-acl.664
https://aclanthology.org/2024.findings-acl.664
https://openreview.net/forum?id=jh7wH2AzKK
https://openreview.net/forum?id=jh7wH2AzKK
https://aclanthology.org/2023.emnlp-main.494
https://aclanthology.org/2023.emnlp-main.494


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang
Wu, Heng Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models, 2024a.
URL https://arxiv.org/abs/2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. In The Twelfth International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?id=dHng2O0Jjr.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint
arXiv:2303.17580, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dong-
sheng Li, and Yueting Zhuang. Taskbench: Benchmarking large language models for task
automation. In ICLR 2024 Workshop on Large Language Model (LLM) Agents, 2024. URL
https://openreview.net/forum?id=ZUbraGNpAq.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=vAElhFcKW6.

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li, Ke Wang, Ye Tian, and Sujian Li. Restgpt:
Connecting large language models with real-world applications via restful apis. arXiv preprint
arXiv:2306.06624, 2023.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. arXiv preprint arXiv:2303.08128, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=22pyNMuIoa.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang, Michihiro Yasunaga, Kaidi Cao, Vassilis N
Ioannidis, Karthik Subbian, Jure Leskovec, and James Zou. Avatar: Optimizing llm agents for
tool-assisted knowledge retrieval. arXiv preprint arXiv:2406.11200, 2024.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models. arXiv preprint arXiv:2305.16504,
2023.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching
large language model to use tools via self-instruction. Advances in Neural Information Processing
Systems, 36, 2023.

13

https://arxiv.org/abs/2304.08354
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=ZUbraGNpAq
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=22pyNMuIoa


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, and
Deqing Yang. Easytool: Enhancing llm-based agents with concise tool instruction. arXiv preprint
arXiv:2401.06201, 2024.

Kexun Zhang, Hongqiao Chen, Lei Li, and William Wang. Syntax error-free and generalizable tool
use for llms via finite-state decoding. arXiv preprint arXiv:2310.07075, 2023a.

Tianhua Zhang, Jiaxin Ge, Hongyin Luo, Yung-Sung Chuang, Mingye Gao, Yuan Gong, Xixin Wu,
Yoon Kim, Helen Meng, and James Glass. Natural language embedded programs for hybrid
language symbolic reasoning, 2023b.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A. Rossi, Somdeb
Sarkhel, and Chao Zhang. Toolchain*: Efficient action space navigation in large language models
with a* search. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=B6pQxqUcT8.

A INFERENCE AND EVALUATION DETAILS FOR STABLETOOLBENCH

For GPT models, we keep the exact same setting as used in the original benchmark, except for
requiring it to return an action from the provided toolset by supplying a flag to the OpenAI API.
For LLaMA models, we adapt the ReAct prompts into its format but keep everything else fixed as
much as possible. To provide fairer comparison, since LLaMA models do not have built in ways
to restrict its tool calling to the provided tool set as GPT models can, we re-sample outputs for a
certain amount of times if a tool hallucination falls outside of the tool set. This may also be quite
easily done by constraining output tokens with certain syntax or grammar.

During inference, for PLAY2PROMPT we set the number of example demonstrations to 1, sampling
temperature to 0.2 for LLaMA models.

B MORE QUALITATIVE EXAMPLES

Figure 3: A typical example of PLAY2PROMPT assisting LLMs in correcting errors in gener-
ating parameter values. The base LLM gets confused by the query specifying the year, which
PLAY2PROMPT first attempts to remove “year” from the description, and further explicitly prompts
the base LLM to not use the parameter. The base LLM in this instance is LLaMA-3-8B.

14

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=B6pQxqUcT8

	Introduction
	Methodology
	Play2Prompt
	Tool Example Demonstration Optimization
	Tool Description Optimization

	Experiments
	Experimental Setup
	Results and Analyses

	Related Work
	Conclusion
	Inference and Evaluation Details for StableToolBench
	More Qualitative Examples

