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ABSTRACT

Offline reinforcement learning often relies on behavior regularization that enforces
policies to remain close to the dataset distribution. However, such approaches fail
to distinguish between high-value and low-value actions. We introduce Guided
Flow Policy (GFP), which couples a multi-step flow-matching policy with a dis-
tilled one-step actor. The actor directs the flow policy to focus on cloning high-
value actions from the dataset rather than imitating all state-action pairs indis-
criminately. In turn, the flow policy constrains the actor to remain aligned with
the dataset’s best transitions while maximizing the critic. This mutual guidance
enables GFP to achieve state-of-the-art performance across 129 tasks from the
OGBench, Minari, and D4RL benchmarks, with substantial gains on suboptimal
datasets and challenging tasks.

1 INTRODUCTION

Offline Reinforcement Learning (RL) aims to learn effective policies from static datasets without
further interaction with the environment S. Lange (2012); Ernst et al. (2005). This paradigm is
important in domains such as robotics and logistics, where online exploration can be unsafe or costly.
However, standard off-policy algorithms such as DDPG Lillicrap et al. (2015) and SAC Haarnoja
et al. (2018), which are successful in online RL, tend to underperform in offline settings since the RL
agent cannot interact with the environment. The main challenge is extrapolation error, corresponding
to the inability to properly evaluate out-of-distribution actions Wu et al. (2019); Fujimoto et al.
(2019); Kumar et al. (2019; 2020).

Two main lines of work have been proposed to address this challenge. The first one focuses on
learning a critic without querying the values of actions outside the dataset Kostrikov et al. (2021).
The second one, known as the Behavior-Regularized Actor–Critic (BRAC) family, mitigates these
errors by forcing the learned policy to stay ”close” to the unknown behavior policy that generated
the dataset Fujimoto & Gu (2021); Tarasov et al. (2023); Jaques et al. (2019); Laroche et al. (2019);
Wu et al. (2019). The key idea is that out-of-distribution state–action pairs are especially vulnerable
to Q-value overestimation, while staying near the empirical distribution reduces extrapolation errors.
Minimalist variants achieve this by simply adding a behavior cloning (BC) loss to the policy and/or
value updates with respect to dataset actions Fujimoto & Gu (2021); Tarasov et al. (2023). Although
this approach improves stability, it also raises a trade-off: regularizing too strictly to a potentially
suboptimal dataset action may restrict the policy from exploiting higher-reward actions contained in
the dataset.

Recent progress in generative modeling offers new opportunities. Flow and diffusion-based mod-
els Lipman et al. (2022); Ho et al. (2020); Song et al. (2020); Chi et al. (2023); Janner et al. (2022);
Wang et al. (2022); Zhang et al. (2025) can capture complex, multimodal action distributions. How-
ever, they come at the cost of high computational overhead: iterative sampling slows inference, and
recursive backpropagation complicates critic optimization. To address these challenges, Park et al.
(2025) proposed a flow-matching BC model distilled into a one-step policy that also optimizes the
critic, enabling expressive policy learning without the need for recursive backpropagation and iter-
ative sampling at inference. Despite these advances, a central limitation remains: the flow-based
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Figure 1: Overview of the Guided Flow Policy framework. GFP consists of three main components: (i) in
yellow, a multi-step flow policy πω trained via value-aware BC using the guidance term gη , (ii) in green,
a one-step actor πθ distilled from the flow policy, and (iii) in gray, a critic Qϕ guiding action evaluation. πω

regularizes the actor toward high-value actions from the dataset; in turn, the actor shapes the flow and optimizes
the critic following the actor–critic approach. The different components of the figure are introduced throughout
the paper. Each drawing represents the probability distribution of actions a ∈ A of a policy, in a current state
s, except for the gray ones, where it is the value of actions a ∈ A in state s, according to the critic.

BC component, similar to standard BC, does not incorporate reward information. An overview
comparing the characteristics of prior works is presented in Tab. 1.

We build upon Fujimoto & Gu (2021); Park et al. (2025) and propose Guided Flow Policy (GFP),
a dual-policy framework with a bidirectional guidance mechanism between a multi-step flow-
matching policy, termed Value-aware Behavior Cloning (VaBC), and a distilled one-step actor.
VaBC acts as a distributional regularizer for the actor, encouraging it to remain within the sup-
port of the behavior policy. However, unlike standard behavior cloning, VaBC leverages the actor
and its critic to prioritize cloning high-value actions from the dataset, rather than indiscriminately
imitating all state-action pairs as done in standard BC methods. In turn, the actor optimizes the
critic while being distilled toward VaBC, allowing it to align with the dataset’s high-value actions in
a given state, while maximizing expected returns. Fig. 1 illustrates the GFP framework in the offline
RL setting.

Our contributions are threefold: (i) we introduce Guided Flow Policy (GFP), an efficient yet simple
method inspired by BRAC, leveraging behavior cloning on the dataset’s most promising transitions;
(ii) we extensively evaluate GFP on 129 tasks from standard offline RL benchmarks, showing strong
performances with substantial gains on suboptimal datasets and challenging tasks; and (iii) we re-
assess two previous state-of-the-art offline RL algorithms on these benchmarks, highlighting the
critical role of hyperparameter choices and subtle implementation details, aligned in the spirit with
the retrospective analysis provided in Tarasov et al. (2023).

Table 1: Characteristics of offline-RL methods.

Approach to avoid out-of-distribution issue
Handles

suboptimal data
Expressive

actor

IQL Kostrikov et al. (2021) Critic trained only on dataset actions ✗ ✗

TD3+BC Fujimoto & Gu (2021)
ReBRAC Tarasov et al. (2023)

Actor regularized toward
↪→ dataset actions

✗ ✗

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FQL Park et al. (2025) ↪→ learned behavior cloning policy ✗ ✓

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
GFP (ours) ↪→ learned value-aware behavior cloning policy ✓ ✓
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2 BACKGROUND

Actor-critic framework in RL. RL problems are typically formalized as a Markov Decision Pro-
cess (MDP) Sutton et al. (1998); Konda & Tsitsiklis (1999), defined by the tuple (S,A, p, r, ρ, γ).
Here, S denotes the state space, A the action space, p the transition dynamics, r the reward func-
tion, ρ the initial state distribution, and γ ∈ [0, 1) the discount factor. The behavior of the agent
is governed by a policy π, mapping states to probability distributions over actions. The objective
is to maximize the expected discounted return Eat∼π(·|st) [

∑∞
t=0 γ

tr(st, at)], i.e., the expected cu-
mulative reward when following π in the MDP. In general, the policy π, also referred to as the
actor, is trained jointly with a critic Q, which approximates the state–action value function. The
Q-function is defined as Qπ(s, a) = Ea∼π(·|s) [

∑∞
t=0 γ

tr (st, at) | s0 = s, a0 = a], estimating the
expected return after taking action a in state s and subsequently following π.

Both actor and critic are parametrized as neural networks, with parameters θ and ϕ respectively, and
optimized by alternating gradient descent steps on the two objectives:

LA(θ) = Es∼D, aθ∼πθ(·|s)
[
−Qϕ(s, aθ)

]
, (1)

LC(ϕ) = E(s,a,r,s′)∼D, a′∼πθ(·|s′)

[(
Qϕ(s, a)− r − γQϕ̄(s

′, a′)
)2]

, (2)

where LA and LC refer to the actor and critic losses, respectively, and D is the set of transi-
tions (s, a, r, s′) collected during training. Qϕ̄ denotes a second target Q-function parameterized
by a slowly updated set of weights ϕ̄, maintained via Polyak averaging, a common stabilization
technique in actor–critic methods.

Minimalist approaches in offline RL. In offline RL, the agent learns exclusively from a static
dataset D, consisting of transitions (s, a, r, s′) generated by an unknown behavior policy. In a given
state s, the distribution of actions of such a behavior policy is illustrated on the left of Fig. 1. This
introduces a key challenge compared to the online setting: the distributional shift S. Lange (2012);
Kumar et al. (2019); Konda & Tsitsiklis (1999). Indeed, since the learned policy πθ may select
actions outside the dataset’s support, value estimates for such out-of-distribution actions can be
inaccurate Kumar et al. (2020); Fujimoto & Gu (2021). The BRAC approach addresses this issue by
constraining the policy πθ to remain close to the behavior policy Jaques et al. (2019); Kumar et al.
(2019). However, as emphasized in Fujimoto & Gu (2021), there is no fundamental justification for
preferring one divergence or distance metric over another for this purpose. A simple and effective
choice is to add a BC term directly into the actor objective. Incorporating this into the actor–critic
framework, the actor loss in Eq. 1 becomes:

LA(θ) = E(s,a)∼D,aθ∼πθ(·|s)

[
−Qϕ(s, aθ) + α

BC term︷ ︸︸ ︷
∥aθ − a∥2

]
, (3)

where α is a hyperparameter that balances between exploiting high Q-values and staying close to
the behavior policy. This objective encourages actions that both achieve high-expected returns and
remain within the support of the dataset. The critic loss in Eq. 2 remains unchanged.

Behavior cloning with flow matching. Flow Matching (FM) Lipman et al. (2022) is a generative
modeling framework that learns a continuous-time transformation, or flow, which maps a simple
base distribution (in this work, a standard Gaussian) to a target data distribution. This transformation
is defined through a family of intermediate, time-dependent distributions governed by an ordinary
differential equation (ODE).

In the context of BC, FM is extended to a conditional setting, where the goal is to approximate a
behavior policy πω underlying the datasetD. This is achieved by learning a state and time dependent
velocity field vω : [0, 1]× S × Rd → Rd that governs the dynamics of a flow, where d is the action
dimension. This flow ψω(t, s, z) is the solution of the family of ODEs characterized by:

∀s ∈ S, d

dt
ψω(t, s, z) = vω(t, s, ψω(t, s, z)), ψω(0, s, z) = z. (4)

This flow, conditioned on the state s, maps noise samples z ∼ N (0, Id) into actions distributed
according to πω(· | s).
While sophisticated conditioning strategies can help enhance expressiveness (e.g., classifier-free
guidance Ho & Salimans (2022)), we adopt in this work the simplest variant of conditional flow
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Algorithm 1: Guided Flow Policy (GFP)
1 function Integrate µω(s, z)

// Explicit discrete Euler integration with M steps

2 for t = 0, 1, . . . ,M − 1 do
3 z ← z + 1

M vω(t/M, s, z)

4 return z
5 while not converged do
6 Sample {(s, a, r, s′)} ∼ D

// Step 1 -- Train critic Qϕ

7 z′ ∼ N (0, Id), a′ = µθ̃(s
′, z′)

8 Update ϕ to minimize E[(Qϕ(s, a)− r − γQϕ̄(s
′, a′))2]

// Step 2 -- Train the distilled one-step actor πθ
9 z ∼ N (0, Id), aπθ = µθ(s, z),

10 aπω̃ = µω̃(s, z) // Using the Integrate-µω function, Line. 1

11 Compute λ = 1
1
N

∑
|Qϕ(s,a

πθ )| // Stop gradient aπθ

12 Update θ to minimize E[−λQϕ(s, a
πθ ) + α∥aπθ − aπω̃∥22]

// Step 3 -- Train the value-aware BC policy πω

13 Compute gη(s, a) =
exp(λ

η Qϕ(s,a))
exp(λ

η Qϕ(s,a
πθ ))+exp(λ

η Qϕ(s,a))
// Stop gradient aπθ

14 at = (1− t)ϵ+ ta, with ϵ ∼ N (0, Id) and t ∼ U ([0, 1))

15 Update θ to minimize E
[
g(s, a)∥vω(t, s, at)− (a− ϵ)∥22

]
Output: πθ, πω , Qϕ

matching Holderrieth & Erives (2025). We further employ the optimal transport variant of FM,
which uses linear interpolation with uniformly sampled time points Lipman et al. (2022). For
(s, a) ∼ D, ϵ ∼ N (0, Id), and t ∼ U([0, 1]), we define the interpolated point at = (1 − t)ϵ + ta,
whose target velocity is a−ϵ. The velocity field vθ is then trained by least-squares regression toward
this reference, yielding the conditional flow-matching BC loss Holderrieth & Erives (2025):

LFM-BC(ω) = E(s,a)∼D,ϵ∼N (0,Id),t∼U([0,1])

[
∥vω(t, s, at)− (a− ϵ)∥22

]
. (5)

Once the velocity field is learned, the corresponding flow ψω : [0, 1] × S × Rd → A defines an
approximation of the behavior policy. At inference, an action is obtained by sampling a random
noise z ∼ N (0, Id) and integrating the flow from 0 to 1 using an ODE solver (e.g., an explicit Euler
method). We denote by µω(s, z) := ψω(1, s, z) the value of the integrated flow at time 1. In this
way, behavior cloning can be naturally expressed as conditional flow matching in the action space.

Flow policy for offline RL. Following the idea of Diffusion Q-Learning Wang et al. (2022), a
straightforward way to train a flow policy for offline RL is to replace the BC term in the actor
loss (Eq. 3) with the flow-matching BC loss (Eq. 5). However, the iterative sampling procedure
makes training expensive, due to recursive backpropagation through the actor loss, and also results
in slower inference at test time. To mitigate these limitations, Park et al. (2025) suggests distilling
the iterative flow-matching BC policy into a one-step policy that directly maximizes the critic.

3 GUIDED FLOW POLICY

We now detail the GFP algorithm that builds on top of Fujimoto & Gu (2021); Park et al. (2025).
GFP integrates a Value-aware Behavior Cloning (VaBC) flow policy with a distilled one-step actor
through bidirectional guidance. VaBC leverages the actor and the critic to selectively clone high-
value dataset actions, providing more targeted regularization than standard behavior cloning. The
distilled actor, in turn, maximizes the critic while avoiding recursive backpropagation and iterative
sampling. GFP is composed of three main components: the critic Qϕ, the actor πθ, and the VaBC
policy πω . The complete algorithm is presented in Algo. 1 and the approach is illustrated in Fig. 1.

Step 1 – Learning the critic Qϕ. The critic is trained using the Bellman mean-squared loss:

LC(ϕ) = E(s,a,r,s′)∼D, a′∼πθ(·|s′)
[(
Qϕ(s, a)− (r + γQϕ̄(s

′, a′))︸ ︷︷ ︸
Bellman target y

)2]
, (6)

where Qϕ̄ denotes the target network. y(s, r, s′) := r + γQϕ̄(s
′, a′) corresponds to the standard

Bellman target in actor-critic methods, which we use by default in this work. Yet, since VaBC is
designed to prioritize cloning the most promising dataset actions for a given state, we have also
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Behavior cloning Value-aware behavior cloning with varying temperature η

FQL Park et al. (2025)

t=0

t=1

Actor

Critic

Soft filtering
η ≥ 10−1

t=0

t=1

Moderate filtering
η ≈ 10−3

t=0

t=1

Strong filtering
η ≤ 10−5

t=0

t=1

Figure 2: Comparison of behavior cloning under different levels of guidance. Left: Prior work (e.g., FQL,
Park et al. (2025)) uses no filtering, indiscriminately imitating all state-action pairs. Right: In contrast, our
method introduces a temperature-controlled guidance mechanism, as shown in Eq. 10, resulting in VaBC. At
high temperatures, the guidance is weak, so the actor is influenced by many candidate actions. At moderate
temperatures, the filtering becomes sharper, giving more weight to higher-value actions while still keeping
enough regularization and exploration. At low temperatures, the filtering is very selective, concentrating almost
exclusively on the highest-value actions according to the critic. However, excessive concentration at very low
temperatures may allow the actor to escape the dataset’s action distribution, as shown on the right in green,
leading to critic overestimation and out-of-distribution issues. Importantly, VaBC cannot escape the dataset’s
action distribution even at very low temperatures, since it trains exclusively on in-distribution state-action pairs.
The dashed blue contours in the final yellow drawings (first row) illustrate this constraint.

considered a more conservative variant of the Bellman target:

yVaBC(s, r, s′) = r + γ
2

(
Qϕ̄(s

′, µθ(s
′, z)) +Qϕ̄(s

′, µω(s
′, z))

)
, z ∼ N (0, Id), (7)

where µθ(s
′, z) denotes the action from the actor and µω(s

′, z) the action from the VaBC policy.
Here, as mentioned in Sec. 2 and outlined in Line 1 of Alg. 1, µ(s, z) is the action sampled from
π(.|s) with initial input noise z. The Bellman target yVaBC(s, r, s′) corresponds to an averaging
between two estimates of the Q-value: Qϕ̄(s

′, µθ(s
′, z)) which can overestimate the real Q-value;

and Qϕ̄(s
′, µω(s

′, z) which can underestimate the real Q-value. This choice can lead to substantial
performance improvements in certain situations, as observed in Sec. 4.

Step 2 – Learning the actor πθ. The actor πθ is trained to maximize the Q-function while distilling
the distribution of valuable actions learned by πω . This is achieved by minimizing the following
objective:

LA(θ) = Es∼D,z∼N (0,Id)

[
− λQϕ (s, µθ(s, z)) + α∥µθ(s, z)− µω̄(s, z)∥22

]
. (8)

As already stated in step 1, µc(s, z) is the action sampled from πc(.|s) with initial input noise z,
where c = θ or ω. The normalization term λ = 1

1
N

∑
|Q(s,a)| is based on the average absolute value

of Q, estimated over mini-batches rather than over the entire dataset Fujimoto & Gu (2021).

The distillation term encourages the actor to stay close to VaBC. In this way, the actor learns to
select actions that maximize return while avoiding out-of-distribution actions, as it is constrained to
remain near the support of high-value dataset behaviors.

Step 3 – Learning the flow policy πω . The VaBC policy πω is optimized via a flow-matching
objective weighted by a value-aware guiding function:

LVaBC(ω) = E(s,a)∼D,ϵ∼N (0,Id),t∼U([0,1])

[
gη(s, a) ∥vω(t, s, at)− (a− ϵ)∥22

]
, (9)

where

gη(s, a) :=
exp

(
λ
ηQϕ(s, a)

)
exp

(
λ
ηQϕ(s, a)

)
+ exp

(
λ
ηQϕ(s, µθ(s, z))

) , z ∼ N (0, Id). (10)
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Figure 3: Temperature analysis on challenging OGBench Puzzle (left) and Cube (right) tasks with sub-
optimal data. Plots (a) and (c): performance scores across temperature values η for our GFP method (Actor
πθ and VaBC πω) compared to baselines (FQL, ReBRAC) on puzzle-4x4-noisy-task3 and cube-double-noisy-
task2. Plots (b) and (d): probability that the guidance term gη is above different thresholds δ as a function of
temperature, illustrating how temperature controls the sharpness of value-guided filtering.

Intuitively, for a given state-action tuple (s, a) sampled from the dataset D, gη(s, a) compares the
quality between the dataset action a and a proposal of the actor µθ(s, z). If the dataset action
has a higher Q-value, this implies that gη(s, a) > 0.5, placing greater emphasis on cloning it.
Conversely, if the dataset action is worse, gη(s, a) < 0.5, then it reduces its influence. This ensures
that VaBC selectively clones high-value dataset behaviors. This makes sense because the actor itself
is constrained to remain close to the dataset’s action distribution.

Here, λ is the same Q-normalization factor used in the actor loss, ensuring consistent scaling across
components. The parameter η > 0 is a temperature hyperparameter that controls the sharpness of the
weighting: small η makes gη(s, a) more selective, while large η smooths the weighting. Importantly,
since gη(s, a) ∈ (0, 1), VaBC avoids degeneracy during early training when the critic is unreliable,
ensuring stable learning.

To the best of our knowledge, this is the first integration of value-aware behavior cloning into a
BRAC framework, explicitly mitigating distributional shift by guiding the policy toward the most
promising dataset actions.

Analysis of the guidance term. In Fig. 2, we illustrate how the temperature parameter con-
trols value-guided filtering, balancing dataset fidelity with value exploitation. Lower temperatures
sharpen the filter, shifting the policy from broadly imitating the dataset to emphasizing higher-value
actions. Moderate values achieve the best trade-off, prioritizing promising actions while preserving
diversity. In contrast, excessively low temperatures over-concentrate the VaBC policy, destabilizing
training and degrading the critic by pushing the actor out of distribution.

4 EXPERIMENTS

We conducted extensive experiments over OGBench Park et al. (2024), D4RL Fu et al. (2020), and
Minari Younis et al. (2024) benchmarks, evaluating our GFP, and prior state-of-the-art methods,
IQL Kostrikov et al. (2021), ReBRAC Tarasov et al. (2023) and FQL Park et al. (2025), where
needed, leading to about 13 000 runs. Our JAX-based implementation of GFP will be released after
the rebuttal phase. It can complete one training run in under 30 minutes on modern GPUs.

4.1 SUBOPTIMAL DATASETS

We first study the impact of the temperature-controlled guidance mechanism. In Fig. 3, GFP is
evaluated with varying temperature η on two challenging noisy benchmark tasks from OGBench,
characterized as highly suboptimal data according to Park et al. (2024). The presence of low-quality
demonstrations makes selective action emphasis decisive for effective learning, as shown in Fig. 3.

Figs. 3a and 3c demonstrate the advantages of moderate temperatures. Very low temperatures cause
training instability due to over-concentration on narrow action sets, while very high temperatures fail
to provide sufficient filtering of suboptimal actions. As the temperature decreases, VaBC πω per-
formance improves, confirming that the value-guided filtering mechanism successfully emphasizes
higher-value actions, until the temperature is too low.
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Figure 4: OGBench analysis: (a) Performance profiles for 90 tasks showing the fraction of tasks where each
algorithm achieves a score above threshold τ (b) Probability of improvement P(X > Y) with 95% confidence
intervals on the same 90 tasks (c) Performance profiles for 25 tasks from the noisy and explore environments.

Figs. 3b and 3d illustrate the filtering behavior by showing the probability that the guidance term
gη exceeds various thresholds δ (ranging from 0.01 to 0.75). At extremely low temperatures (η ≤
10−5), the guidance term exhibits near-binary behavior: any slight differences between Q(s, a),
with a from the dataset, and Q(s, aπθ ), with aπθ ∼ πθ(·|s), in state s, result in the guidance term
approaching either 1 or 0 according to Eq. 10, in this case P(gη > 0.75) ≈ P(gη > 0.01). As the
temperature increases, the filtering becomes softer, creating more gradual transitions in the guidance
values. This leads to a broader distribution of filtering probabilities across different thresholds,
demonstrating how higher temperatures preserve more of the original dataset diversity. In contrast,
lower temperatures create sharper distinctions between high-value and low-value actions.

4.2 EXTENSIVE OFFLINE RL BENCHMARKS

We evaluate GFP across a comprehensive suite of robot locomotion and manipulation tasks, span-
ning three major benchmarks: D4RL Fu et al. (2020), its successor Minari Younis et al. (2024),
and the recently proposed OGBench Park et al. (2024). For comparability with existing works, we
first evaluate on D4RL’s AntMaze (6 tasks) and Adroit (12 tasks). We also present results on Mi-
nari, evaluating both GFP and FQL, to facilitate the community’s migration from D4RL. Minari
includes all available Gym-Mujoco datasets (Hopper, HalfCheetah, and Walker, each with 3 tasks),
and Adroit (12 tasks). Our most extensive evaluation focuses on OGBench, which offers substan-
tially more complex and challenging tasks than D4RL. Following Park et al. (2025), we use the
reward-based single-task variants (”-singletask”) of OGBench. This yields 9 locomotion and 9 ma-
nipulation environments, each with 5 tasks, resulting in a total of 90 state-based tasks. Combined
with D4RL and Minari, we evaluate on 129 tasks overall.

Tab. 2 summarizes our results grouped by environment, with detailed per-task results in the appendix
(Tabs. 8, 9, 10, and 11). Together with performance profile plots and probability of improvement
metrics (Fig. 4, following Agarwal et al. (2021)), it shows that GFP achieves state-of-the-art per-
formance, with particularly substantial gains on noisy and challenging environments. For instance,
on the cube-double-noisy dataset, GFP achieves an average score of 63, compared to 38 and 20
for FQL and ReBRAC, respectively. Similarly, GFP stands out in some very challenging locomo-
tion tasks, such as humanoidmaze-large-navigate (18 vs. 7 for FQL and 13 for ReBRAC), and
manipulation tasks, like cube-triple-play (16 vs. 4 for FQL and 3 for ReBRAC). For cube and
humanoidmaze-medium environments, we use our conservative Bellman target yVaBC defined in
Eq. 7, which improves performances considerably; e.g., boosting cube-double-noisy score from 46
of 63 (see appendix, Tab. 6, for additional comparisons).

4.3 VALUE-AWARE BEHAVIOR CLONING

Through our bidirectional training procedure (Alg. 1), we obtain the VaBC policy πω as a byproduct
that can also be exploited and evaluated. Since this policy is trained using only in-distribution
state-action pairs from the dataset like in IQL, a direct comparison between these approaches is
informative. Notably, while both methods share this fundamental in-distribution constraint, VaBC
leverages the expressive power of flow matching, whereas IQL relies on Gaussian assumptions for
policy extraction.
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As shown in Tab. 2 and Fig. 4b, VaBC achieves good performance across benchmarks by combining
the stability of BC with value-based selectivity. Rather than optimizing Q-values directly as in
IQL’s expectile regression, it uses critic estimates to focus on high-value actions during cloning.
The strong empirical performance of this emergent VaBC policy justifies its role as a regularizer
during distillation, where it steers the distilled policy toward high-value regions while avoiding the
instabilities of pure Q-maximization.

4.4 RE-EVALUATION OF PRIOR WORK ON OGBENCH

To obtain a fair comparison of GFP against prior methods, we reevaluate existing baselines on
OGBench. During the development of our method, we observed that several task-specific hyper-
parameters (e.g., discount factor γ, minibatch size B, and critic aggregation scheme for doubled
Q-learning Fujimoto et al. (2018)) have a significant impact on performance. Tab. 3 reports re-
sults under these revised settings, showing that careful tuning can substantially improve the reported
scores of both ReBRAC and FQL. Since the optimal values for these hyperparameters were gener-
ally consistent across methods, we treated them as task-specific and, by default, applied the same
settings to GFP, FQL, and ReBRAC (see Tabs. 4 and 5 in the appendix for detailed values).

Table 2: Offline RL results. GFP achieves best or near-best performance on all 129 benchmark
tasks. Results are averaged over 8 seeds, with values reported from prior works Park et al. (2025);
Tarasov et al. (2023); Fu et al. (2020) in italic, and values within 95% of the best performance are
shown in bold. GFP actor πθ represents our primary policy, while GFP RaBC πω is reported as a
byproduct of the training procedure. Full results are provided in the appendix Tabs. 8, 9, 10, and 11.

Task Category Offline RL algorithms
IQL ReBRAC FQL GFP actor πθ GFP VaBC πω

OGBench antmaze-large-navigate-singletask (5 tasks) 53 ± 3 95.9± 0.4 88.1± 3.4 93.8± 1.5 90.0± 1.3

OGBench antmaze-large-stitch-singletask (5 tasks) 30.4± 3.2 89.2± 6.6 58.1± 8.7 68.9± 0.8 57.6± 3.2

OGBench antmaze-large-explore-singletask (5 tasks) 12.9± 1.7 82.7± 7.6 87.9± 6.6 91.9± 0.9 89.3± 1.1

OGBench antmaze-giant-navigate-singletask (5 tasks) 4 ± 1 33.2± 5.7 16.3± 8.2 27.9± 8.5 0.8± 0.2

OGBench humanoidmaze-medium-navigate-singletask (5 tasks) 33 ± 2 59.2± 12.1 58 ± 5 72.0± 2.8 35.9± 2.7

OGBench humanoidmaze-medium-stitch-singletask (5 tasks) 27.3± 2.9 61.1± 8.2 63.2± 6.7 66.2± 5.7 39.5± 2.1

OGBench humanoidmaze-large-navigate-singletask (5 tasks) 2 ± 1 12.9± 4.2 6.5± 2.7 17.8± 9.6 2.4± 1.1

OGBench antsoccer-arena-navigate-singletask (5 tasks) 8 ± 2 55.9± 1.5 60± 4 57.9± 1.9 10.3± 0.7

OGBench antsoccer-arena-stitch-singletask (5 tasks) 2.8± 1.0 22.0± 1.5 28.6± 2.3 30.5± 2.2 1.4± 0.3

OGBench cube-single-play-singletask (5 tasks) 83 ± 3 91 ± 2 96 ± 1 98.8± 0.4 39.7± 4.1

OGBench cube-single-noisy-singletask (5 tasks) 53.2± 4.1 98.4± 0.6 100.0± 0.0 100.0± 0.0 99.9± 0.1

OGBench cube-double-play-singletask (5 tasks) 7 ± 1 12.6± 1.8 29 ± 2 47.2± 1.6 6.4± 1.0

OGBench cube-double-noisy-singletask (5 tasks) 4.5± 0.8 19.6± 2.1 38.2± 5.3 63.1± 3.3 9.4± 0.8

OGBench cube-triple-play-singletask (5 tasks) 0.1± 0.1 2.9± 1.2 3.9± 1.5 15.9± 2.0 7.6± 1.6

OGBench puzzle-4×4-play-singletask (5 tasks) 7 ± 1 17.1± 1.3 17 ± 2 26.1± 2.1 9.5± 1.1

OGBench puzzle-4×4-noisy-singletask (5 tasks) 0.1± 0.0 1.1± 0.3 15.6± 1.1 18.8± 1.7 19.3± 1.0

OGBench scene-play-singletask (5 tasks) 28 ± 1 41.6± 3.6 56 ± 2 53.5± 2.9 57.6± 1.7

OGBench scene-noisy-singletask (5 tasks) 16.0± 1.2 39.9± 2.6 59.3± 1.4 57.5± 0.9 58.5± 1.0

D4RL antmaze (6 tasks) 17 76 .8 84 ± 3 83.1± 2.7 70.2± 3.0

D4RL Adroit (12 tasks) 48 59 52 ± 1 52.8± 1.4 49.6± 1.3

Minari Adroit (12 tasks) – – 40.6± 0.4 48.3± 2.3 46.1± 1.7

Minari hopper (3 tasks) – – 79.6± 10.3 91.7± 4.5 91.5± 12

Minari halfcheetah (3 tasks) – – 97.8± 2.0 109.1± 2.0 103.1± 1.8

Minari walker2d (3 tasks) – – 121.7± 1.3 124.5± 0.8 122.2± 1.1

Average OGBench (90 tasks) 20.7 46.4 48.9 56.0 N/A
Average D4RL (18 tasks) 54.0 64.8 62.1 63.0 N/A
Average Minari (21 tasks) – – 65.9 74.1 N/A

5 RELATED WORK

Our work builds on key developments in offline RL. Early methods addressed distributional shift in
different ways: Conservative Q-Learning (CQL) Kumar et al. (2020) penalized out-of-distribution
value estimates, Implicit Q-Learning (IQL) Kostrikov et al. (2021) avoided querying such values via
expectile regression, and AWR Peng et al. (2020) and AWAC Nair et al. (2020) framed offline RL
as supervised learning instances. These approaches established core principles but often required
complex implementations or struggled with multimodal action distributions.

A practical approach emerged with the use of BC regularization. TD3+BC Fujimoto & Gu (2021)
demonstrated that adding a BC term of the form α∥aθ − a∥2 to TD3 can match state-of-the-art
performance. Refining this idea, ReBRAC Tarasov et al. (2023), through careful hyperparameter
tuning and architectural choices, achieved strong D4RL performance. These methods highlight that
combining behavioral constraints with value optimization can be both simple and effective.
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Table 3: Impact of task-specific hyperparameters on OGBench performance.

Task Environment
Bigger discount factor γ

Previously reported Park et al. (2025) Our evaluations

ReBRAC FQL ReBRAC FQL
antmaze-large-navigate (5 tasks) 81 ± 5 79 ± 3 95.9± 0.4 88.1± 3.4

humanoidmaze-large-navigate (5 tasks) 2 ± 1 4 ± 2 12.9± 4.2 6.5± 2.7

Bigger minibatch size
Previously reported Park et al. (2025) Our evaluations

ReBRAC FQL ReBRAC FQL
antmaze-giant-navigate (5 tasks) 26 ± 8 9 ± 6 33.2± 5.7 16.3± 8.2

Same critic aggregation for ReBRAC as used in FQL
Previously reported Park et al. (2025) Our evaluations

ReBRAC ReBRAC
humanoidmaze-medium-navigate (5 tasks) 22 ± 8 59.2± 12.1

antsoccer-arena-navigate (5 tasks) 0 ± 0 55.9± 1.5

cube-double-play (5 tasks) 12 ± 1 12.6± 1.8

scene-play (5 tasks) 41 ± 3 41.6± 3.6

puzzle-4x4-play (5 tasks) 14 ± 1 17.1± 1.3

Generative models enable the learning of complex multimodal policies. Diffusion-QL Wang et al.
(2022) used diffusion models to generate actions while maximizing Q-values iteratively, but at high
computational cost. Flow-based methods Park et al. (2025) applied flow matching with one-step
distillation, achieving strong performance efficiently. Combining flow and diffusion with RL and
imitation learning is a thriving research area Janner et al. (2022); Ajay et al. (2022); Chi et al. (2023);
Zheng et al. (2023); Kang et al. (2023); Chen et al. (2023); Hansen-Estruch et al. (2023); Jackson
et al. (2024); Ding & Jin (2024); Jang et al. (2025).

6 DISCUSSION AND CONCLUSION

In this work, we revisited behavior regularization for offline RL. Conventional approaches constrain
the learned policy to remain near the dataset distribution, which reduces instability but fails to distin-
guish between high and low-value actions. This limitation is especially problematic in suboptimal
datasets, where imitating all transitions indiscriminately hinders performance.

To address this, we introduced Guided Flow Policy. GFP couples a multi-step flow-matching policy
trained with value-aware behavior cloning and a distilled one-step actor through a bidirectional
guidance mechanism. This design enables GFP to leverage the expressiveness of flow policies while
guiding them toward high-value actions identified by the actor–critic, striking a balance between
effective exploitation and robustness against distributional drift.

Our analysis provides several insights. First, although simple behavior regularized actor–critic
methods, such as ReBRAC, are competitive with good hyperparameter tuning, their dependence
on behavior regularization restricts their performance when data quality is imperfect. Second, while
generative models such as flow or diffusion policies can represent dataset distributions more flexi-
bly, without guidance, their expressiveness also reproduces suboptimal actions. GFP unifies these
perspectives: the flow policy gains value-aware guidance from the critic, while the actor benefits
from an expressive, value-aware regularization. This synergy enables GFP to consistently achieve
state-of-the-art results across more than 120 offline RL tasks.

Nonetheless, GFP depends on the availability of a sufficiently accurate critic. In datasets lacking
high-value actions or when the critic cannot reliably evaluate them, improvements are limited. Fu-
ture research directions could explore ways to reduce reliance on the critic or extend GFP to settings
with weaker or sparse reward signals.

Note on LLM usage: In this work, we only used LLMs for grammar and spelling corrections.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Network architectures. All critic, actor, and flow neural networks use [512, 512, 512, 512] multi-
layer perceptrons with GeLU activations. Layer normalization is applied to the critic network.

Flow matching. The number of Euler steps, M , used in Algo. 1, Line 1, is fixed to 10 for both GFP
and FQL, except on the humanoidmaze-large-navigate environment, where we set M to 30. For
GFP, we employ a sinusoidal position embedding of the flow step t, with an embedding size of 64.

Doubled Q-learning. Following standard practice, two separate critic networks are trained and then
aggregated to compute action values, either by taking the mean or minimum Fujimoto et al. (2018).
As detailed in Sec. 4.4, we find that the aggregation function has a significant impact on performance
for specific tasks. Specifically, by reevaluating ReBRAC on OGBench using the same aggregation
function as GFP and FQL, we achieved substantial performance improvements.

Minibatch size. We use a minibatch size of B = 256 across most experiments, except on the
most challenging tasks, where we evaluate each method with both B = 256 and B = 1024. The
humanoidmaze-large-navigate environment is the only task where methods benefit from different
batch sizes: GFP performs best with B = 1024, while other methods work better with B = 256.
Note that on this task, using γ = 0.999 substantially improves the performance of ReBRAC and
FQL compared to previously reported results. For Minari Gym-Mujoco, we useB = 1024 following
the recommendation in Tarasov et al. (2023) for D4RL Gym-Mujoco.

Training and evaluation. To ensure a fair comparison with FQL, we use identical training dura-
tions: 1 M gradient steps on OGBench and 500 K steps on D4RL. For Minari, we adopt 1 M steps
following standard practices. Evaluation differs according to the benchmark: D4RL and Minari
scores are computed at the end of training, while OGBench scores are averaged over the final three
checkpoints (800K, 900K, and 1M steps) following their official evaluation protocol. All results are
reported across 8 random seeds that were not used during the hyperparameter tuning process. Tab. 4
summarizes the set of parameter values used by the different evaluated methods.

Parameter search methodology. Our hyperparameter search follows a systematic approach for
each method and task. First, we conduct a logarithmic sweep over the BC coefficient α. For Re-
BRAC, we sweep over the actor coefficient α1 while keeping the critic coefficient α2 fixed at 0.01.
Then, we sweep over α2 after selecting the optimal α1. For GFP, we fix η = 10−3 and sweep over
η after determining the optimal α. Hyperparameter search uses four training seeds, separate from
the eight seeds used for final evaluation. On OGBench, hyperparameters are shared across the five
tasks within each environment.

Table 4: Summary of shared hyperparameters used across all methods and benchmark evalu-
ations. Environment-specific variations are indicated where applicable.

Hyperparameter Value
Learning rate 0.0003
Gradient steps 1,000,000 (OGBench, Minari), 50,0000 (D4RL)
Minibatch size 256 (default), 1024 (Minari Gym-Mujoco), OGBench Tab. 5
Discount factor 0.99 (D4RL, Minari), OGBench Tab. 5
Euler integration steps 10 (default), 30 on humanoidmaze-large-navigate
Critic aggregation function mean (default), min (D4RL-antmaze, OGBench-antmaze)
Critic target network smoothing coefficient 0.005
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Table 5: Discount factor and minibatch size for OGBench environments. The asterisk * in some
discount factors indicates cases where we modified the discount factor used in prior work, which led
to significant performance improvements for the corresponding methods.

Environment Discount factor γ Minibatch size
antmaze-large-navigate-singletask (5 tasks) 0.995* 256
antmaze-large-stitch-singletask (5 tasks) 0.995 (except for FQL, 0.99) 256
antmaze-large-explore-singletask (5 tasks) 0.995 1024
antmaze-giant-navigate-singletask (5 tasks) 0.995 1024
humanoidmaze-medium-navigate-singletask (5 tasks) 0.995 256
humanoidmaze-medium-stitch-singletask (5 tasks) 0.999 256
humanoidmaze-large-navigate-singletask (5 tasks) 0.999* 256 (except for GFP, 1024)
antsoccer-arena-navigate-singletask (5 tasks) 0.99 256
antsoccer-arena-stitch-singletask (5 tasks) 0.99 256
cube-single-play-singletask (5 tasks) 0.99 256
cube-single-noisy-singletask (5 tasks) 0.99 256
cube-double-play-singletask (5 tasks) 0.99 256
cube-double-noisy-singletask (5 tasks) 0.99 256
cube-triple-play-singletask (5 tasks) 0.99 1024
puzzle-4×4-play-singletask (5 tasks) 0.99 256
puzzle-4×4-noisy-singletask (5 tasks) 0.99 256
scene-play-singletask 0.99 256
scene-noisy-singletask 0.99 256

A.2 ADDITIONAL EXPERIMENTS

Modified Bellman target. As described in Sec. 3, we propose a variant of the Bellman target, yVaBC

(Eq. 7), that leverages the VaBC policy. Our experiments demonstrate that this modified target
provides improvements in the cube and humanoid maze-medium environments. Tab. 6 presents
experimental results showing average scores over 8 seeds for the selected hyperparameters, with
“∼” indicating configurations that were tested but not ultimately chosen.

Table 6: Comparison of the modified Bellman target for GFP.

Task Category Standard target Modified yVaBC Eq. 7

cube-double-play (5 tasks) ∼ 28 47.2± 1.6

cube-double-noisy (5 tasks) ∼ 46 63.1± 3.3

humanoidmaze-medium-navigate (5 tasks) ∼ 64 72.0± 2.8

humanoidmaze-medium-stitch (5 tasks) ∼ 59 66.2± 5.7

puzzle-4x4-play (5 tasks) 26.1± 2.1 ∼ 22
scene-play (5 tasks) 53.5± 2.9 ∼ 50

Modified guiding function. Our guiding function gη , defined in Eq. 10, compares a dataset action a
to aπθ , which is an action sampled from the actor. Since we also sample actions using the VaBC flow
policy (Algo. 1, Line 10), we can alternatively use aπω for a more conservative guiding function,
leading to a modified guided function:

gmin
η (s, a) =

exp
(

λ
ηQϕ(s, a)

)
exp

(
λ
ηQϕ(s, a)

)
+ exp

(
λ
η min (Qϕ(s, aπθ ), Qϕ(s, aπω ))

) (11)

This modified guiding function is more conservative because it only filters out action a when both
policies produce more valuable alternatives. Initially, we employed gmin

η (s, a) for evaluation on
OGBench antmaze, humanoidmaze, and antsoccer environments. However, we found no significant
performance difference, so all remaining tasks use the standard gη defined in Eq. 10.

Minari MuJoCo reference scores. Since reference scores for the MuJoCo locomotion tasks are not
yet available in Minari Younis et al. (2024), we use the reference scores reported in its predecessor
D4RL Fu et al. (2020).
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Temperature analysis. To complete the analysis presented in Sec. 4.1, we conducted experiments
on two additional tasks beyond those shown in Fig. 3. We tested humanoidmaze-medium-stitch as a
locomotion task and cube-triple-play as a non-noisy manipulation task. The results of this extended
temperature analysis are reported in Fig. 5, illustrating how temperature controls the sharpness of
value-guided filtering.
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(d) Cube-triple P(gη > δ)

Figure 5: Temperature analysis on two additional very challenging tasks. Plots (a) and (c), performance
scores across temperature values η for our GFP method (Actor πθ and VaBC πω) compared to baselines (FQL,
ReBRAC) on humanoidmaze-medium-stitch-task1 and cube-triple-play-task1. Plots (b) and (d), probability
that the guidance term gη is above different thresholds δ as a function of temperature, illustrating how temper-
ature controls the sharpness of value-guided filtering.

Table 7: Task-specific hyperparameters for offline RL.

Task GFP (ours)
(α, η)

D4RL antmaze-umaze (1e−1, 1e−3)
D4RL antmaze-umaze-diverse (1e−1, 1e−3)
D4RL antmaze-medium-play (3e−2, 1e−3)
D4RL antmaze-medium-diverse (3e−2, 1e−3)
D4RL antmaze-large-play (3e−2, 1e−5)
D4RL antmaze-large-diverse (3e−2, 1e−5)
D4RL pen-human-v1 (3e+0, 1e−4)
D4RL pen-cloned-v1 (3e+0, 1e−5)
D4RL pen-expert-v1 (1e+0, 1e−3)
D4RL door-human-v1 (1e+1, 1e−2)
D4RL door-cloned-v1 (1e+1, 1e−2)
D4RL door-expert-v1 (1e+1, 1e−2)
D4RL hammer-human-v1 (1e+1, 1e−5)
D4RL hammer-cloned-v1 (1e+1, 1e−5)
D4RL hammer-expert-v1 (1e+1, 1e−2)
D4RL relocate-human-v1 (1e+1, 1e−4)
D4RL relocate-cloned-v1 (1e+1, 1e−4)
D4RL relocate-expert-v1 (1e+1, 1e−4)

(a) D4RL

Task FQL GFP (ours)
α (α, η)

Minari pen-human-v2 1e+4 (3e+0, 1e−6)
Minari pen-cloned-v2 3e+3 (1e+0, 1e−4)
Minari pen-expert-v2 1e+3 (3e−1, 1e−6)
Minari door-human-v2 3e+4 (1e−2, 1e−2)
Minari door-cloned-v2 3e+4 (3e−2, 1e−6)
Minari door-expert-v2 3e+4 (3e+0, 1e−3)
Minari hammer-human-v2 3e+4 (1e+0, 1e−2)
Minari hammer-cloned-v2 3e+4 (3e+0, 1e−5)
Minari hammer-expert-v2 1e+4 (1e+0, 1e−5)
Minari relocate-human-v2 3e+3 (3e+0, 1e−5)
Minari relocate-cloned-v2 3e+4 (3e+0, 1e−4)
Minari relocate-expert-v2 3e+4 (3e+0, 1e−3)
Minari halfcheetah-simple-v0 1e+2 (3e−2, 1e−6)
Minari halfcheetah-medium-v0 1e+2 (1e−1, 1e−3)
Minari halfcheetah-expert-v0 1e+3 (3e+0, 1e−2)
Minari hopper-simple-v0 3e+2 (3e+0, 1e−3)
Minari hopper-medium-v0 3e+2 (3e+0, 1e−3)
Minari hopper-expert-v0 1e+3 (3e+0, 1e−2)
Minari walker2d-simple-v0 1e+3 (3e+0, 1e−1)
Minari walker2d-medium-v0 3e+2 (3e−1, 1e−2)
Minari walker2d-expert-v0 3e+2 (3e+0, 1e−3)

(b) Minari

A.3 COMPLETE RESULTS OVER 129 TASKS

This section presents the comprehensive experimental results across all 129 tasks from OGBench
(Tabs. 8 and 9), D4RL (Tab. 10), and Minari (Tab. 11) benchmarks. We evaluate our proposed GFP
method against state-of-the-art baselines including IQL, ReBRAC, and FQL, with results averaged
over 8 random seeds per task. The evaluation encompasses approximately 13,000 individual train-
ing runs, providing detailed performance comparisons across diverse offline reinforcement learning
scenarios including navigation, manipulation, and locomotion tasks. The used hyperparameters are
stated in Tabs. 7 and 12.
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Table 8: Offline RL full results on OGBench: Models were trained with 8 random seeds and
evaluated over 100 episodes, following the setup of prior work Park et al. (2024; 2025). Scores are
averaged across seeds; values within 95% of the best performance are shown in bold, while italics
indicate scores reported from prior work Park et al. (2025). GFP actor πθ is our primary policy,
while GFP RaBC πω is reported as a byproduct of training. The ± symbol denotes the standard
deviation over seeds.

Task Category Offline RL algorithms
IQL ReBRAC FQL GFP actor πθ GFP VaBC πω

antmaze-large-navigate-singletask-task1-v0 48 ± 9 97.7± 0.5 92.6± 1.8 95.4± 0.8 92.0± 2.3

antmaze-large-navigate-singletask-task2-v0 42 ± 6 92.2± 1.6 80.0± 10.4 92.2± 3.0 88.5± 1.6

antmaze-large-navigate-singletask-task3-v0 72 ± 7 98.5± 1.8 93.5± 1.6 95.6± 2.7 94.4± 3.0

antmaze-large-navigate-singletask-task4-v0 51 ± 9 94.4± 0.9 82.3± 15.5 90.6± 2.6 85.6± 3.7

antmaze-large-navigate-singletask-task5-v0 54 ± 22 96.5± 0.9 92.3± 1.5 95.0± 1.3 89.8± 1.7

antmaze-large-stitch-singletask-task1-v0 28.2± 7.8 88.4± 16.2 71.8± 28.4 90.3± 2.1 85.0± 9.7

antmaze-large-stitch-singletask-task2-v0 5.5± 4.1 85.2± 5.9 25.4± 25.3 82.9± 2.3 69.5± 7.2

antmaze-large-stitch-singletask-task3-v0 83.4± 2.5 98.0± 0.8 88.4± 3.5 93.2± 3.4 90.2± 1.5

antmaze-large-stitch-singletask-task4-v0 8.8± 2.9 79.4± 29.9 23.7± 24.6 0.2± 0.6 1.2± 3.1

antmaze-large-stitch-singletask-task5-v0 26.2± 14.9 95.1± 1.7 81.5± 7.2 77.9± 7.1 42.2± 8.7

antmaze-large-explore-singletask-task1-v0 0.4± 1.0 91.8± 6.1 91.0± 10.9 92.8± 4.1 92.3± 1.0

antmaze-large-explore-singletask-task2-v0 0.0± 0.0 86.4± 5.2 90.8± 3.4 88.5± 3.6 84.1± 3.1

antmaze-large-explore-singletask-task3-v0 54.8± 7.7 99.1± 0.6 97.5± 0.9 98.0± 0.5 92.8± 1.1

antmaze-large-explore-singletask-task4-v0 9.2± 4.1 54.4± 30.5 89.0± 2.9 87.1± 2.3 87.0± 2.8

antmaze-large-explore-singletask-task5-v0 0.0± 0.1 81.8± 23.7 71.1± 32.0 93.1± 2.1 90.2± 9.7

antmaze-giant-navigate-singletask-task1-v0 0 ± 0 17.5± 3.8 0.8± 2.1 12.6± 15.1 0.1± 0.1

antmaze-giant-navigate-singletask-task2-v0 1 ± 1 44.9± 6.7 23.2± 15.3 52.2± 26.5 1.2± 0.7

antmaze-giant-navigate-singletask-task3-v0 0 ± 0 2.5± 1.3 0.9± 1.1 13.7± 10.2 0.2± 0.2

antmaze-giant-navigate-singletask-task4-v0 0 ± 0 20.0± 20.0 9.9± 10.8 17.8± 19.9 0.4± 0.3

antmaze-giant-navigate-singletask-task5-v0 19± 7 81.4± 6.1 46.9± 25.5 43.2± 35.7 2.0± 0.7

humanoidmaze-medium-navigate-singletask-task1-v0 32 ± 7 34.1± 16.4 19 ± 12 83.5± 3.7 28.8± 6.5

humanoidmaze-medium-navigate-singletask-task2-v0 41 ± 9 75.8± 29. 94 ± 3 91.2± 6.3 60.2± 9.4

humanoidmaze-medium-navigate-singletask-task3-v0 25 ± 5 69.5± 25.7 74 ± 18 86.3± 10.7 28.9± 4.1

humanoidmaze-medium-navigate-singletask-task4-v0 0 ± 1 19.5± 17.5 3 ± 4 3.0± 6.6 1.3± 2.0

humanoidmaze-medium-navigate-singletask-task5-v0 66 ± 4 97.0± 0.9 97 ± 2 95.8± 1.3 60.1± 6.1

humanoidmaze-medium-stitch-singletask-task1-v0 26.4± 3.0 29.1± 18.3 48.0± 25.4 77.9± 9.2 28.7± 6.5

humanoidmaze-medium-stitch-singletask-task2-v0 27.9± 9.9 94.4± 1.9 87.5± 3.7 95.2± 1.8 49.2± 6.3

humanoidmaze-medium-stitch-singletask-task3-v0 30.0± 4.4 56.6± 24.5 85.4± 17.8 55.2± 33.9 44.3± 3.2

humanoidmaze-medium-stitch-singletask-task4-v0 3.7± 1.6 33.1± 28.4 0.8± 0.8 3.6± 9.5 14.9± 9.0

humanoidmaze-medium-stitch-singletask-task5-v0 48.5± 4.6 92.5± 3.1 94.1± 2.5 98.9± 0.5 60.2± 7.4

humanoidmaze-large-navigate-singletask-task1-v0 3 ± 1 27.8± 13.4 19.8± 13.1 57.2± 23.7 4.5± 2.9

humanoidmaze-large-navigate-singletask-task2-v0 0 ± 0 0.5± 0.7 0.0± 0.1 0.1± 0.2 0.0± 0.0

humanoidmaze-large-navigate-singletask-task3-v0 7± 3 25.9± 8.5 8.8± 4.0 14.6± 16.2 5.5± 2.8

humanoidmaze-large-navigate-singletask-task4-v0 1 ± 0 8.3± 14.4 1.6± 1.8 3.7± 4.1 0.7± 0.5

humanoidmaze-large-navigate-singletask-task5-v0 1 ± 1 1.9± 1.5 2.2± 3.9 13.1± 15.5 1.5± 0.9

antsoccer-arena-navigate-singletask-task1-v0 14 ± 5 62.1± 3.6 77 ± 4 77.0± 1.7 17.0± 2.8

antsoccer-arena-navigate-singletask-task2-v0 17 ± 7 78.5± 2.8 88 ± 3 91.2± 2.2 16.8± 2.6

antsoccer-arena-navigate-singletask-task3-v0 6 ± 4 55.5± 1.7 61 ± 6 51.9± 4.9 7.8± 2.9

antsoccer-arena-navigate-singletask-task4-v0 3 ± 2 34.8± 5.0 39 ± 6 40.2± 4.2 5.2± 2.1

antsoccer-arena-navigate-singletask-task5-v0 2 ± 2 48.5± 6.1 36 ± 9 29.1± 8.9 4.6± 2.1

antsoccer-arena-stitch-singletask-task1-v0 5.3± 3.3 44.6± 5.0 53.4± 3.5 51.8± 3.5 3.0± 1.2

antsoccer-arena-stitch-singletask-task2-v0 5.6± 1.9 30.0± 6.0 49.1± 8.1 53.0± 7.6 3.0± 1.4

antsoccer-arena-stitch-singletask-task3-v0 1.3± 1.7 15.9± 2.4 19.3± 2.7 18.7± 1.4 0.4± 0.3

antsoccer-arena-stitch-singletask-task4-v0 0.4± 0.5 14.8± 4.2 20.0± 6.4 26.1± 4.7 0.1± 0.2

antsoccer-arena-stitch-singletask-task5-v0 1.3± 1.8 4.8± 1.6 1.2± 0.4 2.9± 2.9 0.6± 0.4

cube-single-play-singletask-task1-v0 88 ± 3 89 ± 5 97 ± 2 99.1± 0.4 42.1± 5.9

cube-single-play-singletask-task2-v0 85 ± 8 92 ± 4 97 ± 2 99.4± 0.7 38.8± 6.4

cube-single-play-singletask-task3-v0 91 ± 5 93 ± 3 98 ± 2 99.4± 0.5 48.5± 9.1

cube-single-play-singletask-task4-v0 73 ± 6 92 ± 3 94 ± 3 99.1± 0.7 32.8± 9.3

cube-single-play-singletask-task5-v0 78 ± 9 87 ± 8 93 ± 3 97.0± 1.6 36.3± 5.5

cube-single-noisy-singletask-task1-v0 52.3± 7.2 99.2± 1.1 100.0± 0.0 100.0± 0.0 99.9± 0.2

cube-single-noisy-singletask-task2-v0 55.3± 8.0 96.0± 3.5 100.0± 0.1 100.0± 0.1 99.9± 0.2

cube-single-noisy-singletask-task3-v0 34.3± 8.1 97.4± 1.6 100.0± 0.0 100.0± 0.0 100.0± 0.0

cube-single-noisy-singletask-task4-v0 63.2± 7.5 99.7± 0.5 100.0± 0.1 100.0± 0.0 99.9± 0.1

cube-single-noisy-singletask-task5-v0 60.9± 11.7 99.8± 0.2 100.0± 0.1 99.9± 0.2 99.8± 0.3

cube-double-play-singletask-task1-v0 27 ± 5 43.0± 8.9 61 ± 9 76.1± 4.6 28.5± 5.0

cube-double-play-singletask-task2-v0 1 ± 1 16.2± 5.0 36 ± 6 53.3± 8.9 1.8± 1.0

cube-double-play-singletask-task3-v0 0 ± 0 1.3± 0.4 22 ± 5 43.3± 8.9 0.4± 0.4

cube-double-play-singletask-task4-v0 0 ± 0 0.4± 0.3 5 ± 2 7.1± 3.1 0.8± 0.6

cube-double-play-singletask-task5-v0 4 ± 3 2.0± 1.0 19 ± 10 56.3± 11.3 0.7± 0.6

cube-double-noisy-singletask-task1-v0 20.8± 3.4 51.3± 9.5 77.1± 8.0 89.5± 4.5 32.2± 3.9

cube-double-noisy-singletask-task2-v0 0.0± 0.1 21.1± 4.3 43.1± 10.5 75.7± 7.6 5.8± 1.3

cube-double-noisy-singletask-task3-v0 0.8± 1.0 8.0± 3.4 26.3± 5.8 75.0± 4.4 3.2± 1.2

cube-double-noisy-singletask-task4-v0 0.2± 0.2 6.5± 1.8 15.5± 3.9 41.8± 4.6 1.6± 0.9

cube-double-noisy-singletask-task5-v0 0.5± 0.5 11.2± 3.3 29.0± 7.9 33.4± 7.6 3.9± 1.5
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Table 9: Offline RL full results on OGBench. Models were trained with 8 random seeds and
evaluated over 100 episodes, following the setup of prior work Park et al. (2024; 2025). Scores are
averaged across seeds; values within 95% of the best performance are shown in bold, while italics
indicate scores reported from prior work Park et al. (2025). GFP actor πθ is our primary policy,
while GFP RaBC πω is reported as a byproduct of training. The ± symbol denotes the standard
deviation over seeds.

Task Category Offline RL algorithms
IQL ReBRAC FQL GFP actor πω GFP VaBC πθ

cube-triple-play-singletask-task1-v0 0.4± 0.3 14.0± 5.8 17.2± 7.3 54.8± 6.2 32.4± 8.4

cube-triple-play-singletask-task2-v0 0.0± 0.0 0.1± 0.1 0.8± 0.2 6.6± 6.3 0.6± 0.7

cube-triple-play-singletask-task3-v0 1.3± 0.6 0.3± 0.3 1.3± 0.6 14.9± 9.9 3.2± 2.1

cube-triple-play-ingletask-task4-v0 0.0± 0.0 0.0± 0.0 0.3± 0.4 2.5± 1.7 0.8± 0.2

cube-triple-play-singletask-task5-v0 0.1± 0.2 0.3± 0.5 0.1± 0.2 0.6± 0.5 1.0± 0.9

scene-play-singletask-task1-v0 94 ± 3 95 ± 2 100 ± 0 99.8± 0.4 99.8± 0.2

scene-play-singletask-task2-v0 12 ± 3 50 ± 13 76 ± 9 89.0± 4.1 93.0± 5.1

scene-play-singletask-task3-v0 32 ± 7 55 ± 16 98 ± 1 78.0± 13.2 93.5± 5.1

scene-play-singletask-task4-v0 0 ± 0 3 ± 3 5 ± 1 0.6± 0.6 1.8± 1.3

scene-play-singletask-task5-v0 0 ± 0 0 ± 0 0 ± 0 0.0± 0.0 0.0± 0.0

scene-noisy-singletask-task1-v0 74.2± 5.4 94.8± 3.7 100.0± 0.0 99.9± 0.2 99.9± 0.2

scene-noisy-singletask-task2-v0 0.1± 0.2 18.1± 5.9 87.4± 3.7 94.2± 2.0 97.4± 1.9

scene-noisy-singletask-task3-v0 5.7± 1.1 81.1± 5.5 94.4± 3.7 93.3± 4.3 95.2± 3.2

scene-noisy-singletask-task4-v0 0.0± 0.1 5.6± 3.4 14.8± 4.6 0.0± 0.0 0.1± 0.2

scene-noisy-singletask-task5-v0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

puzzle-4×4-play-singletask-task1-v0 12 ± 2 45.4± 3.7 34 ± 8 50.0± 8.1 16.2± 3.3

puzzle-4×4-play-singletask-task2-v0 7 ± 4 2.7± 1.0 16 ± 5 9.9± 2.5 7.0± 1.8

puzzle-4×4-play-singletask-task3-v0 9 ± 3 27.8± 4.0 18 ± 5 46.2± 3.8 10.2± 2.9

puzzle-4×4-play-singletask-task4-v0 5 ± 2 9.1± 2.1 11 ± 3 17.2± 2.5 7.4± 1.9

puzzle-4×4-play-singletask-task5-v0 4 ± 1 0.8± 0.7 7 ± 3 7.3± 3.6 6.6± 1.8

puzzle-4×4-noisy-singletask-task1-v0 0.1± 0.1 3.9± 1.2 41.0± 3.8 38.5± 3.6 39.6± 4.8

puzzle-4×4-noisy-singletask-task2-v0 0.0± 0.1 0.4± 0.4 5.9± 1.7 0.7± 0.5 3.5± 1.1

puzzle-4×4-noisy-singletask-task3-v0 0.1± 0.2 0.9± 0.5 20.8± 2.7 51.1± 6.5 44.0± 4.7

puzzle-4×4-noisy-singletask-task4-v0 0.0± 0.0 0.4± 0.4 6.5± 1.6 3.0± 1.6 6.3± 2.2

puzzle-4×4-noisy-singletask-task5-v0 0.0± 0.0 0.0± 0.1 3.7± 1.7 0.7± 0.7 3.1± 2.0

Table 10: Offline RL full results on D4RL. For each task, models were trained with 8 random seeds
and evaluated at the end of training. Reported values are the average normalized scores over the final
100 evaluation episodes, with± denoting the standard deviation across seeds. Italics indicate scores
from prior work Fu et al. (2020); Fujimoto & Gu (2021); Tarasov et al. (2023); Park et al. (2025),
and bold denotes values within 95% of the best performance. GFP actor πθ is our primary policy,
while GFP RaBC πω is reported as a byproduct of training.

Task Category Offline RL algorithms
BC CQL IQL TD3 + BC ReBRAC FQL GFP actor πω GFP VaBC πθ

D4RL antmaze-umaze 55 74 .0 87 .5 78 .6 97 .8 ± 1.0 96 ± 2 96.8± 1.9 94.9± 2.0

D4RL antmaze-umaze-diverse 47 84 .0 62 .2 71 .4 88 .3 ± 13.0 89 ± 5 91.9± 2.7 90.1± 3.8

D4RL antmaze-medium-play 0 61 .2 71 .2 3 .0 84 .0 ± 4.2 78 ± 7 81.9± 5.2 57.4± 9.1

D4RL antmaze-medium-diverse 1 53 .7 70 .0 10 .6 76 .3 ± 13.5 71 ± 13 61.6± 20.9 45.6± 9.5

D4RL antmaze-large-play 0 15 .8 39 .6 0 .0 60 .4 ± 26.1 84 ± 7 82.6± 5.4 62.6± 8.8

D4RL antmaze-large-diverse 0 14 .9 47 .5 0 .2 54 .4 ± 25.1 83 ± 4 84.1± 5.4 70.6± 4.7

D4RL pen-human-v1 71 37 .5 71 .5 81 .8 103 .5 53 64.6± 5.4 67.4± 6.9

D4RL pen-cloned-v1 52 39 .2 37 .3 61 .4 91 .8 74 77.1± 10.4 70.5± 4.2

D4RL pen-expert-v1 110 107 .0 133 .6 146 154 .1 142 140.4± 4.7 123.2± 5.4

D4RL door-human-v1 2 9 .9 4 .3 −0 .1 0 .0 0 .0 0.3± 0.3 4.1± 2.4

D4RL door-cloned-v1 −0 0 .4 1 .6 0 .1 1 .1 2 1.6± 1.9 0.6± 0.6

D4RL door-expert-v1 105 101 .5 105 .3 84 .6 104 .6 104 104.1± 0.6 103.1± 0.9

D4RL hammer-human-v1 3 4 .4 1 .4 0 .4 0 .2 1 4.4± 4.9 2.5± 1.1

D4RL hammer-cloned-v1 1 2 .1 2 .1 0 .8 6 .7 11 12.4± 5.4 2.5± 0.9

D4RL hammer-expert-v1 127 86 .7 129 .6 117 .0 133 .8 125 123.6± 2.0 116.6± 4.1

D4RL relocate-human-v1 0 0 .20 0 .1 −0 .2 0 .0 0 0.5± 0.3 0.0± 0.0

D4RL relocate-cloned-v1 −0 −0 .1 −0 .2 −0 .1 1 .9 −0 1.6± 0.7 0.1± 0.1

D4RL relocate-expert-v1 108 95 .0 106 .5 107 .3 106 .6 107 103.2± 3.7 104.0± 3.1
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Table 11: Offline RL full results on Minari. For each task, models were trained using 8 different
random seeds, and evaluation was performed at the end of training. The reported values represent
the average normalized score, computed over the final 100 evaluation episodes and averaged across
the 8 seeds. GFP actor πθ represents our primary policy, while GFP VaBC πω is reported as a
byproduct of our training procedure.

Task Category Offline RL algorithms
FQL GFP actor πθ GFP VaBC πω

Minari pen-human-v2 11.5± 4.9 50.1± 6.3 54.4± 6.7

Minari pen-cloned-v2 41.8± 3.7 60.4± 4.2 54.0± 5.5

Minari pen-expert-v2 92.7± 6.2 115.9± 4.5 108.7± 2.8

Minari door-human-v2 1.1± 0.5 0.4± 0.1 2.7± 1.9

Minari door-cloned-v2 0.4± 0.2 0.3± 0.3 0.1± 0.1

Minari door-expert-v2 102.0± 0.9 94.1± 20.9 99.0± 10.3

Minari hammer-human-v2 1.0± 0.6 2.7± 0.8 3.1± 0.8

Minari hammer-cloned-v2 1.0± 0.6 22.9± 19.5 5.9± 4.1

Minari hammer-expert-v2 121.2± 4.2 130.2± 5.4 119.0± 6.7

Minari relocate-human-v2 −0.0± 0.0 0.1± 0.2 −0.0± 0.1

Minari relocate-cloned-v2 0.0± 0.0 0.3± 0.2 0.0± 0.0

Minari relocate-expert-v2 103.7± 1.2 102.1± 5.3 105.9± 1.2

Minari halfcheetah-simple-v0 59.2± 0.3 72.5± 0.5 64.4± 0.4

Minari halfcheetah-medium-v0 100.2± 6.7 121.3± 5.8 108.6± 5.3

Minari halfcheetah-expert-v0 134.1± 2.3 133.4± 1.3 136.4± 0.8

Minari hopper-simple-v0 57.2± 5.9 91.6± 4.3 87.4± 6.6

Minari hopper-medium-v0 81.9± 23.9 79.6± 14.5 78.2± 24.2

Minari hopper-expert-v0 99.6± 10.9 103.9± 10.6 108.8± 13.1

Minari walker2d-simple-v0 89.4± 0.7 90.0± 0.9 89.7± 0.9

Minari walker2d-medium-v0 127.6± 3.0 133.7± 1.1 126.1± 3.5

Minari walker2d-expert-v0 148.0± 1.8 149.9± 2.0 150.8± 0.4

Table 12: Task-specific hyperparameters for offline RL on OGBench.

Task Category
Offline RL algorithms

IQL ReBRAC FQL GFP (ours)
α (α1, α2) α (α, η)

antmaze-large-navigate-singletask-task{1,2,3,4,5}-v0 1e+1 (1e−2, 1e−2) 1e+1 (3e−1, 1e−4)
antmaze-large-stitch-singletask-task{1,2,3,4,5}-v0 1e+1 (1e−2, 1e−2) 3e+0 (3e−2, 1e−6)
antmaze-large-explore-singletask-task{1,2,3,4,5}-v0 1e+0 (1e−3, 1e−1) 1e+0 (1e−2, 1e−6)
antmaze-large-giant-singletask-task{1,2,3,4,5}-v0 – (1e−2, 1e−2) 3e+1 (1e−1, 1e−1)

humanoidmaze-medium-navigate-singletask-task{1,2,3,4,5}-v0 – (1e−2, 1e−2) 3e+1 (3e−1, 1e−3)
humanoidmaze-medium-stitch-singletask-task{1,2,3,4,5}-v0 1e+1 (1e−2, 1e−2) 1e+2 (3e−1, 1e−3)
humanoidmaze-large-navigate-singletask-task{1,2,3,4,5}-v0 – (1e−2, 0e+0) 1e+2 (3e−1, 1e−4)

antsoccer-arena-navigate-singletask-task{1,2,3,4,5}-v0 – (1e−2, 0e+0) – (1e−1, 1e−2)
antsoccer-arena-stitch-singletask-task{1,2,3,4,5}-v0 1e+0 (1e−2, 1e−3) 1e+1 (1e−1, 1e−2)

cube-single-play-singletask-task{1,2,3,4,5}-v0 1 - - (1e+1, 1e−1)
cube-single-noisy-singletask-task{1,2,3,4,5}-v0 3e+0 (1e−1, 1e−1) 3e+1 (1e+1, 1e−3)
cube-double-play-singletask-task{1,2,3,4,5}-v0 – (1e−1, 3e−1) – (1e+0, 1e−2)
cube-double-noisy-singletask-task{1,2,3,4,5}-v0 3e−1 (1e−2, 1e−2) 1e+1 (1e−1, 1e−4)
cube-triple-play-singletask-task{1,2,3,4,5}-v0 1e+0 (1e−1, 1e−3) 3e+2 (1e+0, 1e−5)

scene-play-singletask-task{1,2,3,4,5}-v0 – (1e−1, 1e−3) – (1e+1, 1e−3)
scene-noisy-singletask-task{1,2,3,4,5}-v0 1e+1 (3e−3, 0e+0) 3e+1 (1e+0, 1e−4)

puzzle-4×4-play-singletask-task{1,2,3,4,5}-v0 – (1e−1, 0e+0) – (3e+0, 1e−5)
puzzle-4×4-noisy-singletask-task{1,2,3,4,5}-v0 1e+0 (3e−2, 1e−2) 3e+2 (3e+0, 1e−3)
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