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ABSTRACT

Offline reinforcement learning often relies on behavior regularization that enforces
policies to remain close to the dataset distribution. However, such approaches fail
to distinguish between high-value and low-value actions in their regularization
components. We introduce Guided Flow Policy (GFP), which couples a multi-
step flow-matching policy with a distilled one-step actor. The actor directs the
flow policy through weighted behavior cloning to focus on cloning high-value ac-
tions from the dataset rather than indiscriminately imitating all state-action pairs.
In turn, the flow policy constrains the actor to remain aligned with the dataset’s
best transitions while maximizing the critic. This mutual guidance enables GFP to
achieve state-of-the-art performance across 144 state and pixel-based tasks from
the OGBench, Minari, and D4RL benchmarks, with substantial gains on subopti-
mal datasets and challenging tasks.

1 INTRODUCTION

Offline Reinforcement Learning (RL) aims to learn effective policies from static datasets without
further interaction with the environment |S. Lange (2012); |[Ernst et al.| (2005). This paradigm is
essential in domains such as robotics and logistics, where online exploration can be unsafe or costly.
However, standard off-policy algorithms such as DDPG [Lillicrap et al.| (2015) and SAC Haarnoja
et al.[(2018)), which are successful in online RL, tend to underperform in offline settings since the RL
agent cannot interact with the environment. The main challenge is extrapolation error, corresponding
to the inability to properly evaluate out-of-distribution actions [Wu et al.| (2019)); [Fujimoto et al.
(2019); Kumar et al.|(2019;[2020).

Two main lines of work have been proposed to address this challenge. The first one focuses on
learning a critic without querying the values of actions outside the dataset Kostrikov et al.[(2021);
Nair et al.| (2020). The second one, known as the Behavior-Regularized Actor—Critic (BRAC) fam-
il mitigates these errors by forcing the learned policy to stay “close” to the unknown behavior
policy that generated the dataset [Fujimoto & Gu| (2021); |Tarasov et al.[(2023)); Jaques et al.| (2019);
Laroche et al.| (2019); Wu et al.| (2019). The key idea is that out-of-distribution state—action pairs
are especially vulnerable to Q-value overestimation, while staying near the empirical distribution
reduces extrapolation errors. Minimalist variants achieve this by simply adding a behavior cloning
(BCO) loss to the policy and/or value updates with respect to dataset actions |Fujimoto & Gul(2021);
Tarasov et al|(2023). Although this approach improves stability, it also raises a trade-off: regular-
izing too strictly to a potentially suboptimal dataset action may restrict the policy from exploiting
higher-reward actions contained in the dataset.

Until recently, most offline RL algorithms were based on Gaussian policies, with limited model-
ing capacities. Recent development of flow and diffusion-based expressive models |[Lipman et al.
(2022); |Ho et al.[(2020); |Song et al.| (2020), led to new RL algorithms to capture complex and mul-
timodal action distributions |Chi et al.| (2023)); Janner et al.| (2022)); Wang et al.| (2022); |[Zhang et al.
(2025)). However, they come at the risk of high computational overhead: iterative sampling slows
inference, and directly optimizing the values of output actions would result in unstable backpropaga-
tion through time (BPTT). Among recent approaches to address these challenges, |[Park et al.| (2025)

!The abbreviation BRAC refers to the family of methods, not solely the BRAC paper Wu et al.|(2019).
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Figure 1: Overview of the Guided Flow Policy framework. GFP consists of three main components: (i) in
yellow, VaBC, a multi-step flow policy 7, trained via weighted BC using the guidance term g, (ii) in green,
a one-step actor 7y distilled from the flow policy, and (iii) in gray, a critic Q) guiding action evaluation.
regularizes the actor toward high-value actions from the dataset; in turn, the actor shapes the flow and optimizes
the critic following the actor—critic approach. The different components of the figure are introduced throughout
the paper. Each drawing represents the probability distribution of actions a € A of a policy, in a current state
s, except for the gray ones, where it is the value of actions a € A in state s, according to the critic.

proposed a BRAC method with a flow-matching BC model distilled into a one-step policy that also
optimizes the critic, enabling expressive policy learning while avoiding BPTT and iterative sampling
at inference. Despite these advances, a central limitation remains: the flow-based BC component,
similar to standard BC, does not incorporate reward information.

We propose Guided Flow Policy (GFP), a dual-policy BRAC framework with a bidirectional guid-
ance mechanism between a multi-step flow-matching policy, termed Value-aware Behavior Cloning
(VaBC), and a distilled one-step actor. VaBC acts as a distributional regularizer for the actor, en-
couraging it to remain within the support of the behavior policy. VaBC is trained via a weighted-BC
mechanism, close to|Peng et al.[(2019); Zhang et al.[(2025)), but leveraging the actor and the critic to
prioritize cloning high-value actions from the dataset. Unlike previous BRAC approaches, in which
the BC regularization indiscriminately treats all state-action pairs [Fujimoto & Gul(2021); [Park et al.
(2025), VaBC is a value-aware regularizer integrated into a BRAC approach. In turn, the actor opti-
mizes the critic while being distilled toward VaBC, allowing it to align with the dataset’s high-value
actions in a given state while maximizing expected returns. Fig.[T]illustrates the GFP framework and
Tab. [I|shows how it differs in the regularization mechanisms compared to other BRAC methods.

Our contributions are threefold: (i) we introduce Guided Flow Policy, a simple yet effective BRAC
method that integrates value-awareness in the regularization term via a jointly trained weighted
flow BC policy, thereby regularizing the actor with the most promising transitions of the dataset;
(ii) we extensively evaluate GFP on 144 tasks from standard offline RL benchmarks, showing strong
performances with substantial gains on suboptimal datasets and challenging tasks compared to prior
works; (iii) we re-assess two previous state-of-the-art offline RL algorithms on these benchmarks,
highlighting the critical role of hyperparameter choices and subtle implementation details, aligned
in the spirit with the retrospective analysis provided in|Tarasov et al.| (2023).

Table 1: Overview of regularization mechanisms within the BRAC framework.

Regularization target Value-aware regularization Expressive variant
TD3+BC|Fujimoto & Gu|(2021)
ReBRAC Tarasov et al.|(2023) < dataset actions X Diffusion-QL|Wang et al.|(2022)
FQL |Park et al.|(2025) < learned behavior cloning policy v
GFP (ours) < learned value-aware behavior cloning policy v v
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2 BACKGROUND

Actor-critic framework in RL. RL problems are typically formalized as a Markov Decision Pro-
cess (MDP) |Sutton et al.| (1998); [Konda & Tsitsiklis| (1999), defined by the tuple (S, A, p,r, p,7).
Here, S denotes the state space, .4 the action space, p the transition dynamics, r the reward func-
tion, p the initial state distribution, and v € [0, 1) the discount factor. The behavior of the agent is
governed by a policy 7, mapping states to probability distributions over actions. The objective is to
maximize the expected discounted return Eq, wx(.s,) [>yeo V7 (5¢, ar)], i.e., the expected cumula-
tive reward when following 7 in the MDP. In actor-critic approaches, the policy 7, also referred to
as the actor, is trained jointly with a critic (), which approximates the state—action value function.
The Q-function is defined as Q™ (s,a) = Eqrun(.s) [Xroo V7 (st a¢) | so = s, a0 = al, estimating
the expected return after taking action a in state s and subsequently following 7.

Both actor and critic are parametrized as neural networks, with parameters 6 and ¢ respectively, and
optimized by alternating gradient descent steps on the two objectives:

‘CA(Q) = ESND,agmﬂ'gHs) [ - Q¢(57 QH)L (1)
‘Cc(d)) = E(S,a,r,s’)ND,a’NTrg(-\s’) [(Q(ﬁ(& a) - T —= ’-YQ(;;(S/a a/))2:| ) (2)

where £A and L£C refer to the actor and critic losses, respectively, and D is the set of transi-
tions (s, a,r,s’) collected during training. ()5 denotes a second target -function parameterized

by a slowly updated set of weights ¢, maintained via Polyak averaging, a common stabilization
technique in actor—critic methods.

Minimalist approaches in offline RL. In offline RL, the agent learns exclusively from a static
dataset D, consisting of transitions (s, a,r, s’) generated by an unknown behavior policy. In a given
state s, the distribution of actions of such a behavior policy is illustrated on the left of Fig.[I] This
introduces a key challenge compared to the online setting: the distributional shift|S. Lange|(2012);
Kumar et al.| (2019); |[Konda & Tsitsiklis| (1999). Indeed, since the learned policy g may select
actions outside the dataset’s support, value estimates for such out-of-distribution actions can be
inaccurate Kumar et al.|(2020); Fujimoto & Gu|(2021). The BRAC approach addresses this issue by
constraining the policy 7y to remain close to the behavior policy Jaques et al.[(2019); Kumar et al.
(2019). As emphasized in |[Fujimoto & Gu|(2021), a simple and effective choice is to add a BC term
directly into the actor objective. Incorporating this into the actor—critic framework, the actor loss in
Eq.[1|becomes:

BC term
A 2
L£A(0) = E(s.a)mp,agma(1s) | ~ Qo(s:00) + allas — al?], 3)

where « is a hyperparameter that balances between exploiting high J-values and staying close to
the behavior policy. This objective encourages actions that both achieve high-expected returns and
remain within the support of the dataset. The critic loss in Eq. [2]remains unchanged.

Behavior cloning with flow matching. Flow Matching (FM) [Lipman et al|(2022) is a generative
modeling framework that learns a continuous-time transformation, or flow, which maps a simple
base distribution (in this work, a standard Gaussian) to a target data distribution. This transformation
is defined through a family of intermediate, time-dependent distributions governed by an ordinary
differential equation (ODE).

In the context of BC, FM is extended to a conditional setting, where the goal is to approximate a
behavior policy 7, underlying the dataset D. This is achieved by learning a state and time dependent
velocity field v,, : [0,1] x S x R — R? that governs the dynamics of a flow, where d is the action
dimension. This flow #,,(t, s, z) is the solution of the family of ODEs characterized by:

%%(f, S,Z) = Uw(tvs7¢w(t737'z))a %(0’572) = z. 4)

This flow, conditioned on the state s, maps noise samples z ~ AN(0, I;) into actions distributed
according to 7, (- | s). While sophisticated conditioning strategies can help enhance expressiveness
(e.g., classifier-free guidance |Ho & Salimans|(2022)), we adopt in this work the simplest variant of
conditional flow matching Holderrieth & Erives| (2025). We further employ the optimal transport
variant of FM, which uses linear interpolation with uniformly sampled time points |[Lipman et al.

Vs €S,
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Algorithm 1: Guided Flow Policy (GFP)
1 function Integrate ju1,(s, z)
// Explicit discrete Euler integration with M steps
2 fort=0,1,...,M —1do
3 L Z 4 24 37v0(t/M, 5, 2)

4 return z

s while not converged do

6 Sample {(s,a,r,s')} ~ D

// Step 1 -- Train critic Qg

7 2~ N(0, 1), o = pg(s',2)

8 Update ¢ to minimize E[(Qq(s,a) —r —7Q;(s',a’))?]

// Step 2 -- Train the distilled one-step actor my
o | 2~ N(0 1), 0™ = p(s,2),
10 a™ = pg (s, z) // Using the Integrate-j, function, Line.

n Compute A = W // Stop gradient a™®
& :

G
2 Update 6 to minimize E[-AQy (s, a™) + alla™ — a™||3]

// Step 3 -- Train the value-aware BC policy 7,
exp(3Qo(s,a))
exp(2Qy(s,a70)) +exp(2Qy(s,a))
u | a;=(1—t)e+ta, withe ~ N(0,14) and t ~ U ([0,1))
15 | Update w to minimize E [g, (s, a)||ve (¢, s,a:) — (a — €)|13]
Output: 79, 7, Qp

13 Compute g, (s,a) = // Stop gradient a™

(2022)). For (s,a) ~ D, e ~ N(0,1;), and ¢ ~ U([0,1]), we define the interpolated point a; =
(1 — t)e + ta, whose target velocity is a — e. The velocity field vy is then trained by least-squares
regression toward this reference, yielding the conditional flow-matching BC loss |Holderrieth &
Erives| (2025)):

£FM-BC(W) — E(&a)N’D,ENN(Oyld)vtwu([OJ]) [va(t, s,a) — (a— 6)”%} &)

Once the velocity field is learned, the corresponding flow v, : [0,1] x S x R? — A defines an
approximation of the behavior policy. At inference, an action is obtained by sampling a random
noise z ~ N(0, I;) and integrating the flow from 0 to 1 using an ODE solver (e.g., an explicit Euler
method). We denote by (s, z) := ¥,(1, s, z) the value of the integrated flow at time 1. In this
way, behavior cloning can be naturally expressed as conditional flow matching in the action space.

Flow policy for offline RL. Following the idea of Diffusion Q-Learning [Wang et al| (2022), a
straightforward way to train a flow policy for offline RL is to replace the BC term in the actor loss
(Eq.[3) with the flow-matching BC loss (Eq.[5). However, the iterative sampling procedure makes
training expensive, due to recursive backpropagation through time (BPTT) in the actor loss, and
also results in a slow inference at test time. To mitigate these limitations, |[Park et al.|(2025) suggests
distilling the iterative flow-matching BC policy into a one-step policy that also maximizes the critic.

3 GUIDED FLow PoOLICY

We now detail the GFP algorithm that builds on top of |[Fujimoto & Gu| (2021); [Park et al.| (2025).
GFP integrates a Value-aware Behavior Cloning (VaBC) flow policy with a distilled one-step actor
through bidirectional guidance. VaBC leverages the actor and the critic to selectively clone high-
value dataset actions, providing more targeted regularization than in standard BRAC approaches.
The distilled actor, in turn, maximizes the critic while avoiding BPTT and iterative sampling. GFP
is composed of three main components: the critic ()4, the actor 7, and the VaBC policy ,,. The
complete algorithm is presented in Algo. [T} and the approach is illustrated in Fig.[I]

Step 1 — Learning the critic ). The critic is trained using the Bellman mean-squared loss:

2
EC(¢) = ]E(s,a,r,s/)ND, a’~mg(-|s”) [(QCZ)(Sv a) - (T + 7@&(5/7 a/)) ) ] ) (6)
—_———
Bellman target y

where Q5 denotes the target network. y(s,r,s’) := 7+ yQz(s’,a’) corresponds to the standard
Bellman target in actor-critic methods, which we use by default in this work. Yet, since VaBC is
designed to prioritize cloning the most promising dataset actions for a given state, we have also
considered a more conservative variant of the Bellman target:

g (s 1) = 1+ 3 (Qals (5, 2) + Quls s puls'2))s 2~ N O, (D)
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Figure 2: Comparison of behavior cloning under different levels of guidance. Left: Prior work (e.g., FQL,
Park et al.| (2025)) uses no filtering, indiscriminately imitating all state-action pairs. Right: In contrast, our
method introduces a temperature-controlled guidance mechanism, as shown in Eq.[I0] resulting in VaBC. At
high temperatures, the guidance is weak, so the actor is influenced by many candidate actions. At moderate
temperatures, the filtering becomes sharper, giving more weight to higher-value actions while still keeping
enough regularization and exploration. At low temperatures, the filtering is very selective, concentrating almost
exclusively on the highest-value actions according to the critic. However, excessive concentration at very low
temperatures may allow the actor to escape the dataset’s action distribution, as shown on the right in green,
leading to critic overestimation and out-of-distribution issues. Importantly, VaBC cannot escape the dataset’s
action distribution even at very low temperatures, since it trains exclusively on in-distribution state-action pairs.
The dashed blue contours in the final yellow drawings (first row) illustrate this constraint.

where 19(s’, z) denotes the action from the actor and p,, (s, z) the action from the VaBC pol-
icy. Here, as mentioned in Sec. 2] and outlined in Line |1| of Alg. (1} 1o (s,2) and p,,(s, ) are ac-
tions sampled from 7y (+|s) and 7, (:|s), respectively, with initial input noise z. The Bellman target
y“*BC (s, r, s") corresponds to an averaging between two estimates of the Q-value: Q(s’, 1o (s', 2))
which can overestimate the real Q-value; and Q(s’, piw (s, 2)) which can underestimate the real
Q-value. This choice can lead to substantial performance improvements in certain situations, as
studied in the appendix, Sec.

Step 2 — Learning the actor my. The actor 7y is trained by behavior regularized policy gradients,
to maximize the Q-function while distilling the distribution of valuable actions learned by m,,. This
is achieved by minimizing the following objective:

LA0) = Boup (0,10 | — Qs (5. 10(5,2)) + allpa(s,2) —pia(s,2) 3. ®)

The normalization term \ = is based on the average absolute Q-value, estimated over

-1
o ~ 2 Qg (s,0)] ~
mini-batches rather than over the entire dataset [Fujimoto & Gu| (2021)).

The distillation term encourages the actor to stay close to VaBC. In this way, the actor learns to
select actions that maximize return while avoiding out-of-distribution actions, as it is constrained to
remain near the support of high-value dataset behaviors.

Step 3 — Learning the flow policy 7,,. The VaBC policy 7, is optimized via a weighted flow-
matching behavior cloning:

LY (@) = (g amd et (0,100 424(0,1) | 90(5: ) 10w (b 5,00) = (@ = O], ©)

where

exp (%Q¢(s,a))
exp (%Q(b(s, a)) + exp (%Qd)(s, o (s, z)))

Intuitively, for a given state-action pair (s, a) sampled from the dataset D, g, (s,a) compares the
quality between the dataset action ¢ and a proposal of the actor uy(s, z) in a soft-max approach. If

gn(s,a) == . 2~ N(0,1y). (10)
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the dataset action has a higher Q-value, this implies that g, (s,a) > 0.5, placing greater emphasis
on cloning it. Conversely, if the dataset action is worse, g, (s, a) < 0.5, then it reduces its influence.
This ensures that VaBC selectively clones high-value dataset behaviors. This makes sense because
the actor itself is constrained to remain close to the dataset’s action distribution. Importantly, VaBC
is learned jointly with the actor and the critic, not beforehand.

Here, ) is the same Q-normalization factor used in the actor loss, ensuring consistent scaling across
components. The parameter > 0 is a temperature hyperparameter that controls the sharpness of the
weighting: small 77 makes g,,(s, a) more selective, while large 1 smooths the weighting. Importantly,
since g, (s,a) € (0,1), VaBC avoids degeneracy during early training when the critic is unreliable,
ensuring stable learning.

The key contribution of GFP is to add value-awareness in the behavior regularization component of
a BRAC framework, effectively combining the two predominant policy extraction methods studied
by |Park et al.|(2024b)): weighted-BC and behavior regularized policy gradients, further presented in
Sec. 5} One could employ an advantage weighted term, similar to AWR [Peng et al| (2019), using
the actor to compute a baseline:

QSWR(S’ a) := exp (%(Q(b(s,a) — Qo(s, po(s, z)))) (11)

As recommended by [Peng et al.| (2019)), in that case, a clipping term should be added for stability.

Instead, we propose the guiding function g,,, which corresponds to a soft-max between Q4 (s, a) and

%¢(s,kug(s, z)). In appendix, Sec. Tab. reports results when using g?WR instead of g, over
tasks.

Analysis of the temperature in the guidance function g,. In Fig. 2| we illustrate how the tem-
perature parameter controls value-guided filtering, balancing dataset fidelity with value exploitation.
Lower temperatures sharpen the filter, shifting the policy from broadly imitating the dataset to em-
phasizing higher-value actions. Moderate values achieve the best trade-off, prioritizing promising
actions while preserving diversity. In contrast, excessively low temperatures over-concentrate the
VaBC policy, destabilizing training and degrading the critic by pushing the actor out of distribution.

4 EXPERIMENTS

4.1 MAIN RESULTS: EXTENSIVE OFFLINE RL BENCHMARKS

Benchmarks. We conducted extensive experiments over a suite of robot locomotion and manipu-
lation tasks, spanning three major benchmarks: D4RL |Fu et al.| (2020), its successor Minari |Younis
et al.|(2024), and the recently proposed OGBench |Park et al.|(2024a). For comparability with exist-
ing works, we first evaluate on D4RL’s AntMaze (6 tasks) and Adroit (12 tasks). We also present re-
sults on Minari, evaluating both GFP and FQL, to facilitate the community’s migration from D4RL.
Minari includes all available Gym-Mujoco datasets (Hopper, HalfCheetah, and Walker, each with
3 tasks), as well as Adroit (12 tasks). Our most extensive evaluation focuses on OGBench, which
offers substantially more complex and challenging tasks than D4RL. Following |Park et al.| (2025),
we use the reward-based single-task variants of OGBench. We evaluate across 9 locomotion and
11 manipulation environments, each with 5 tasks, for a total of 100 state-based tasks, and we also
consider 5 pixel-based tasks. Combined with D4RL and Minari, we benchmark GFP on 144 tasks
overall, including evaluation of prior methods, we did about 15 000 runs in total. Our JAX-based
implementation of GFP will be released after the rebuttal phase. It can complete one training run in
under 30 minutes on modern GPUs.

Comparison against previous works. We first compare GFP against 10 prior methods, including
standard offline RL, flow, and diffusion-based methods on the 50 OGBench tasks reported by [Park
et al.| (2025) (see Sec. E] and Fig E] for a presentation of prior works, Tab. for the full results).
Performance profiles synthesizing these comparisons are presented Fig.[3a] following|Agarwal et al.
(2021). GFP clearly stands out compared to all these prior works. We also compare against 6
methods on D4RL (Tab. and evaluate both GFP and FQL on Minari (see Tab. to facilitate
the community’s migration from D4RL.

Extensive study on 144 tasks. GFP is further evaluated against 3 baselines: (i) FQL [Park et al.
(2025)), as it comes second only to GFP on the first 50 tasks; (ii) ReBRAC Tarasov et al.|(2023), as
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Figure 3: OGBench analysis. (a) Performance profiles for 50 tasks comparing GFP against a wide range of
prior works, showing the fraction of tasks where each algorithm achieves a score above threshold 7, using the
evaluation reported by |[Park et al.| (2025). (b) Performance profiles on 105 tasks, including more challenging
ones, and carefully reevaluated prior methods. (c) Performance profiles restricted to 30 noisy and explore tasks.

we were able to improve its performance compared to previously reported results substantially, see
Sec.[83] and (iii) IQL [Kostrikov et al| (2021) to represent in-sampling approaches. Tab. 2] summa-
rizes our results grouped by environment, with detailed per-task results in the appendix (Tabs. 8] [0}
[[1] and[T2)). Together with performance profile plots Figs.[3b]and [3d it confirms that GFP achieves
state-of-the-art performance, with particularly substantial gains on noisy and challenging environ-
ments. For instance, on the cube-double-noisy and cube-triple-noisy datasets, GFP achieves an
average score of 63 and 24, respectively, compared to 38 and 4 for FQL, and 20 and 5 for ReBRAC.
Similarly, GFP stands out in some very challenging locomotion tasks, such as humanoidmaze-large-
navigate (18 vs. 7 for FQL and 13 for ReBRAC), and manipulation tasks, such as cube-triple-play
(16 vs. 4 for FQL and 3 for ReBRAC).

Table 2: Offline RL results. GFP achieves best or near-best performance on all 144 benchmark tasks. Results
are averaged over 8 seeds for state-based tasks and 4 seeds for pixel-based ones, with values reported from
prior works Park et al.[(2025); [Tarasov et al.|(2023); |Fu et al.|(2020) in italic, and values within 95% of the best
performance are shown in bold. GFP actor 7y represents our primary policy, while GFP VaBC 7, is reported
as a byproduct of the training procedure. Full per-task results are provided in the appendix Tabs. |§|, EL m and
IEI’ and the comparison with 10 methods on the 50 previously evaluated OGBench tasks Tab. @

Ta Offline RL algorithms
ask Category

IQL ReBRAC FQL || GFP actor mp | GFP VaBC 7,
OGBench antmaze-large-navigate-singletask (5 tasks) 53 +3 95.9+04 88.1+34 93.8+t15 90.0 £ 1.3
OGBench antmaze-large-stitch-singletask (5 tasks) 304432 89.24+66 58.1+ts7 68.9 + 0.8 57.6 £ 3.2
OGBench antmaze-large-explore-singletask (5 tasks) 129+17 827476 87.9+66 91.9 t o9 89.3+1.1
OGBench antmaze-giant-navigate-singletask (5 tasks) 4 £1 33.2+ts57 16.3+s2 279 £85 0.8+0.2
OGBench humanoidmaze-medium-navigate-singletask (5 tasks) 38 +2 59.2 £+ 121 58 +5 72.0 + 28 35.9 + 2.7
OGBench humanoidmaze-medium-stitch-singletask (5 tasks) 27.3+29 61.1+s2 63.2 +6.7 66.2 + 5.7 39.5 +2.1
OGBench humanoidmaze-large-navigate-singletask (5 tasks) 2+1 129+ 42 6.5+27 17.8 96 24+1a
OGBench antsoccer-arena-navigate-singletask (5 tasks) 8+2 559+ 1.5 60 £ 4 57.9+19 10.3 £o07
OGBench antsoccer-arena-stitch-singletask (5 tasks) 28+1.0 22.0£15 28.6 2.3 30.5 £2.2 14403
OGBench cube-single-play-singletask (5 tasks) 83 £3 91 £2 96 +1 98.8 £ 0.4 39.7+ 41
OGBench cube-single-noisy-singletask (5 tasks) 53.24+41 98.4+06 100.0%00 100.0 £ 0.0 99.9 £ 0.1
OGBench cube-double-play-singletask (5 tasks) 71 126£138 29 2 472 %16 6.4+£10
OGBench cube-double-noisy-singletask (5 tasks) 45+0s 19.6Ef21 38.2+53 63.1 £33 94+o0s
OGBench cube-triple-play-singletask (5 tasks) 0.1+01 29412 39+15 15.9 2.0 76+16
OGBench cube-triple-noisy-singletask (5 tasks) 48+f12 52429 3.5+16 24.5+ 238 8.6+12
OGBench puzzle-3 x 3-play-singletask (5 tasks) 9+ 2141 30 £1 23.1 %22 19.2+029
OGBench puzzle-4 x4-play-singletask (5 tasks) 7TE1 171413 17 +2 26.1+21 9.5+ 1.1
OGBench puzzle-4 x4-noisy-singletask (5 tasks) 0.1+0.0 1.1+03 156 £1.1 18.8+1.7 19.3 £ 1.0
OGBench scene-play-singletask (5 tasks) 28 +1 41.6 = 3.6 56 £2 53.5£29 57.6 £ 1.7
OGBench scene-noisy-singletask (5 tasks) 16.0+12 399426 59.3+14 57.5 0.9 58.5 £ 1.0
OGBench visual manipulation (5 tasks) 42+ 60 £ 2 65 +2 62.8+t15 -
D4RL antmaze (6 tasks) 17 76.8 84 t3 83.1t27 70.2 £ 3.0
D4RL Adroit (12 tasks) 48 59 52 £1 52.8 £ 1.4 49.6 £1.3
Minari Adroit (12 tasks) - - 40.6 £ 0.4 48.3 £ 23 46.1 £ 1.7
Minari hopper (3 tasks) - - 79.6 £ 103 91.7 t45 91.5 + 12
Minari halfcheetah (3 tasks) - - 97.8 + 2.0 109.1 £+ 2.0 103.1 + 1.8
Minari walker2d (3 tasks) - - 121.7+1.3 124.5 + 0.8 122.2 4+ 1.1
Average OGBench (105 tasks) 204 439 46.7 53.2 33.12
Average D4RL (18 tasks) 54.0 64.8 62.1 63.0 56.5
Average Minari (21 tasks) - - 65.9 74.1 71.6

2 average without pixel-based tasks.

Value-aware behavior cloning. VaBC serves as the regularization component of GFP, encouraging
the actor maximizing the value to stay close to some actions from the dataset. While the actor gy
is GFP primary policy, through our bidirectional training procedure, we obtain the VaBC policy
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Figure 4: Temperature analysis on challenging OGBench Puzzle (left) and Cube (right) tasks with sub-
optimal data. Plots (a) and (c): performance scores across temperature values 1 for our GFP method (Actor
mg and VaBC 7,,) compared to baselines (FQL, ReBRAC) on puzzle-4x4-noisy-task3 and cube-double-noisy-
task2. Plots (b) and (d): probability that the guidance term g, is above different thresholds § as a function of
temperature, illustrating how temperature controls the sharpness of value-guided filtering.

7., as a byproduct that can also be exploited and evaluated. As shown in Tab. 2] VaBC achieves
good performance across benchmarks while being fundamentally in-sample, justifying its role as a
value-aware regularizer for the main actor.

4.2 ANALYSIS OF THE TEMPERATURE PARAMETER 7)

We investigate the impact of the temperature-controlled guidance mechanism. In Fig. 4] GFP is
evaluated with varying temperature 1 on two challenging noisy tasks from OGBench, characterized
as highly suboptimal data according to Park et al|(2024a)). The presence of low-quality demonstra-
tions makes selective action emphasis decisive for effective learning. Figs. #a] and [ic|demonstrate
the advantages of moderate temperatures. Very low temperatures cause training instability due to
over-concentration on narrow action sets, while very high temperatures fail to provide sufficient
filtering of suboptimal actions. As the temperature decreases, VaBC 7, performance improves,
confirming that the value-guided filtering mechanism successfully emphasizes higher-value actions,
until the temperature is too low.

Figs. 4b and [4d| illustrate the filtering behavior by showing the probability that the guidance term
g exceeds various thresholds J (ranging from 0.01 to 0.75). At extremely low temperatures ( <
10~?), the guidance term exhibits near-binary behavior: any slight differences between Q(s,a),
with a from the dataset, and Q(s,a™), with a™ ~ my(+|s), in state s, result in the guidance term
approaching either 1 or 0 according to Eq. (10} in this case P(g, > 0.75) ~ P(g, > 0.01). As the
temperature increases, the filtering becomes softer, creating more gradual transitions in the guidance
values. This leads to a broader distribution of filtering probabilities across different thresholds,
demonstrating how higher temperatures preserve more of the original dataset diversity. In contrast,
lower temperatures create sharper distinctions between high-value and low-value actions. In the
appendix, in Sec. we extend this study to two additional tasks.

Sensitivity analysis to « and 7). In Sec. [B.5] we evaluate how sensitive GFP is to variations of c,
the BC coefficient, and 7, on 12 tasks, with comparisons to FQL. It reveals how they relate and
demonstrates that GFP is only mostly sensitive to the proper choice of «, as for any BRAC method.

4.3 RE-EVALUATION OF PRIOR WORKS ON OGBENCH

To obtain a fair comparison of GFP against prior methods, we reevaluate existing baselines on
OGBench. During the development of our method, we observed that several task-specific hyper-
parameters (e.g., discount factor -, minibatch size B, and critic aggregation scheme for doubled
Q-learning [Fujimoto et al| (2018)) have a significant impact on performance. Tab. [3] reports re-
sults under these revised settings, showing that careful tuning can substantially improve the reported
scores of both ReBRAC and FQL. Since the optimal values for these hyperparameters were gener-
ally consistent across methods, we treated them as task-specific and, by default, applied the same
settings to GFP, FQL, and ReBRAC (see Tabs. 4] and [5]in the appendix for detailed values).
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Table 3: Impact of task-specific hyperparameters on OGBench performance.

Bigger discount factor

Task Environment

Previously reported [Park et al.|(2025) Our evaluations
ReBRAC FQL ReBRAC FQL
antmaze-large-navigate (5 tasks) 81+£5 79 £33 95.9+ 04 88.1+34
humanoidmaze-large-navigate (5 tasks) 2+ 4 t2 129+ 4.2 6.5+ 2.7
Bigger minibatch size
Previously reported [Park et al.|(2025) Our evaluations
ReBRAC FQL ReBRAC FQL
antmaze-giant-navigate (5 tasks) 26 £38 9+e 33.2+57 16.3 £ 8.2
Same critic aggregation for ReBRAC as used in FQL
Previously reported [Park et al.|(2025) Our evaluations
ReBRAC ReBRAC
humanoidmaze-medium-navigate (5 tasks) 22 +38 59.2 + 121
antsoccer-arena-navigate (5 tasks) 0+o 559+ 15
cube-double-play (5 tasks) 12+ 12.6 £1.8
scene-play (5 tasks) 41 +£3 41.6 - 3.6
puzzle-4x4-play (5 tasks) 14 +1 17.1+13

5 RELATED WORK

Offline RL. Early methods addressed distributional shift by working on both how the critic is learned
and how the policy is extracted. On the critic side, Conservative Q-Learning (CQL) |Kumar et al.
(2020) penalizes out-of-distribution value estimates and Implicit Q-Learning (IQL) Kostrikov et al.
(2021) avoids querying such values via expectile regression, see Fig[5al For policy extraction,
weighted behavior cloning treats offline RL as supervised learning, typically using the advantage
value as the weight, as in AWR or AWAC [Peng et al.| (2019); [Nair et al.| (2020)), see Fig @ The
policy extraction method found to lead to the best performance and scalability in standard offline-
RL is behavior-regularized policy gradient |Fujimoto & Gul(2021); Park et al.| (2024b)), abbreviated
DDPG+BC and also called reparametized policy gradients, which consists in directly maximizing
the value function, while regularizing with a behavior cloning term. The BRAC family studied in
this paper uses behavior-regularized policy gradient and trains the critic directly using the actor, see
Fig ReBRAC [Tarasov et al.| (2023) demonstrated state-of-the-art performance from this simple
idea, through careful hyperparameter tuning and architectural choices.

Control with diffusion and flow models. Expressive generative models enable multi-modal action
and trajectory distributions modeling and have been integrated into control along several axes. They
have been used for trajectory and motion planning, trajectory optimization, hierarchical control
Janner et al.[(2022); Ajay et al.| (2022);|Zheng et al.|(2023); |Liang et al.|(2023)); L1 et al.| (2023)); [Suh
et al.|(2023)); Venkatraman et al.|(2023)); [Lee et al.|(2023)); [Ma et al. (2024); |[Chen et al. (2024a)); [Pan
et al.[ (2024); ILe Hellard et al.[ (2025), as well as for world modeling |Ding et al.| (2024b); |Alonso
et al.| (2024); [Lee et al| (2024). In offline RL, numerous ideas emerged to integrate diffusion and
flow models in the various policy extraction methods.

Weighted behavior cloning. A straightforward approach is to add weight in front of the cloning
loss of diffusion and flow models, examples include FAWAC [Park et al.| (2025), EDP |[Kang et al.
(2023), and QVPO Ding et al.| (2024a). Related energy-guided methods explicitly target to sample
from mg(a | s) o< p(a | ) exp(nQ(s,a)), where i is the behaviour policy. This includes CEP [Lu
et al.| (2023) and QIPO Zhang et al.| (2025); |Alles et al.[(2025), see Fig@

Behavior-regularized policy gradient. Combining the most effective policy extraction method
with expressive models is a motivating research direction: Diffusion-QL Wang et al[(2022) (Fig[5c),
DiffCPS He et al| (2023)), trust-region formulations for diffusion policies (DTQL) |(Chen et al.
(2024b)), entropy Q-ensemble regularization Zhang et al.| (2024])), Consistency-AC with consistency
models Ding & Jinl(2023), and diffusion policy gradients|L1 et al.|(2024)); Yang et al.| (2023). In that
case, the main challenge is the drawbacks of backpropagation through time (BPTT) when trying to
directly optimize the value of the outputs of an iterative process. To avoid BPTT, FQL [Park et al.
(2025)) (Fig[5e) trains a flow matching with a standard BC loss, and then leverages it in the BC reg-
ularization term of a one-step BRAC actor. Beyond these families, other policy extractors include
rejection sampling from a fixed BC generative policy: IDQL Hansen-Estruch et al.| (2023) (Fig[5b),
DICE Mao et al.| (2024)), and SfBC |Chen et al.| (2022)).
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Figure 5: Overview of some offline-RL frameworks. The symbol x indicates the use of a diffusion or a
flow model, and specifically in which component. Each box, provides the name of the component (e.g. critic)
and the working principle that is used to train it (e.g. TD learning). The arrows indicate how the components
depend on each other, while the dashed arrow is optional (see Eq.

Positioning GFP within prior work. Our method, GFP (illustrated Fig[I|and Fig[5), extends the
BRAC family of offline RL algorithms and is closely related to FQL [Park et al.| (2025)), sharing the
same goal of avoiding backpropagation through time. However, the distinctive contribution of GFP
lies in integrating the weighted BC approach for the regularization component of the BRAC actor.
Rather than using weighted BC to train the final actor directly (as in Fig [5d), GFP employs it to
inject value-awareness into the regularizer VaBC. Compared to other methods using a weighted-
BC policy, VaBC is not GFP’s actor, its weights are computed using the one-step actor trained by
DDPG+BC, with the latter using VaBC as a regularizer. This bidirectional guidance between the
two policies fundamentally distinguishes GFP from other methods that use weighted BC as their
main actor, computing the weights based on the weighted BC policy itself, see Fig[5d|

Removing the value-aware guidance from GFP flow policy would yield FQL (Fig[5¢), and removing
the one-step actor would imply using the flow policy to train the critic, yielding FAWAC (Fig [5d).
Alternatively, one could use rejection sampling instead of weighted-BC to regularize the actor with
the best actions found by a BC policy, yet at the cost of sampling multiple actions from the flow
policy for each policy update step.

6 DISCUSSION AND CONCLUSION

In this work, we revisited behavior regularization for offline RL. BRAC approaches have been shown
to be highly effective for policy extraction [Tarasov et al.| (2023); |[Park et al.| (2024b). However,
conventional BRAC approaches constrain the learned policy to remain close to the raw dataset dis-
tribution. While this reduces instability, the regularization term itself typically does not distinguish
between the high and low-value actions. This limitation is problematic in suboptimal datasets, where
regularizing with all transitions indiscriminately can hinder performance.

To address this, we introduced Guided Flow Policy (GFP). GFP couples a multi-step flow-matching
policy trained with value-aware behavior cloning and a distilled one-step actor through a bidirec-
tional guidance mechanism. GFP leverages the expressiveness of flow policies while adding value
awareness directly in the flow part, without the drawbacks of backpropagation through time.

Our analysis provides several insights. First, although standard behavior-regularized actor—critic
methods, such as ReBRAC, are competitive with good hyperparameter tuning, their dependence
on value-agnostic behavior regularization limits performance on suboptimal datasets. In particular,
in prior BRAC approaches, adding low-quality transitions in the dataset will degrade performance,
while the value-awareness of VaBC filters them out. Second, while generative models such as flow
or diffusion policies can represent dataset distributions more flexibly, they inherit these same limita-
tions if trained to match the raw dataset without explicit guidance. GFP leverages the benefits of two
distinct policy extraction methods: the effectiveness and scalability of behavior-regularized policy
gradient, and the stability of weighted BC. This combination exploits well the expressivity of flow
models, without backpropagating through time. This synergy enables GFP to consistently achieve
state-of-the-art results, as demonstrated by our extensive and rigorous study on 144 offline RL tasks.

Nonetheless, GFP depends on the availability of a sufficiently accurate critic. In datasets lacking
high-value actions or when the critic cannot reliably evaluate them, improvements are limited. Fu-
ture research directions could explore ways to reduce reliance on the critic or extend GFP to settings
with weaker or sparse reward signals.
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A IMPLEMENTATION DETAILS

Network architectures. All critic, actor, and flow neural networks use [512,512, 512, 512] multi-
layer perceptrons with GeLU activations. Layer normalization is applied to the critic network.

Flow matching. The number of Euler steps, M, used in Algo.[T} Line[I] is fixed to 10 for both GFP
and FQL, except on the humanoidmaze-large-navigate environment, where we set M to 30. For
GFP, we employ a sinusoidal position embedding of the flow step ¢, with an embedding size of 64.

Doubled Q-learning. Following standard practice, two separate critic networks are trained and then
aggregated to compute action values, either by taking the mean or minimum [Fujimoto et al.| (2018).
As detailed in Sec. we find that the aggregation function has a significant impact on performance
for specific tasks. Specifically, by reevaluating ReBRAC on OGBench using the same aggregation
function as GFP and FQL, we achieved substantial performance improvements.

Minibatch size. We use a minibatch size of B = 256 across most experiments, except on the
most challenging tasks, where we evaluate each method with both B = 256 and B = 1024. The
humanoidmaze-large-navigate environment is the only task where methods benefit from different
batch sizes: GFP performs best with B = 1024, while other methods work better with B = 256.
Note that on this task, using v = 0.999 substantially improves the performance of ReBRAC and
FQL compared to previously reported results. For Minari Gym-Mujoco, we use B = 1024 following
the recommendation in Tarasov et al.|(2023)) for D4ARL Gym-Mujoco.

Training and evaluation. To ensure a fair comparison with FQL, we use identical training dura-
tions: 1M gradient steps on OGBench state-based environments, and 500 K steps on D4RL and
OGBench pixel-based tasks. For Minari, we adopt 1 M steps following standard practices. Eval-
vation differs according to the benchmark: D4RL and Minari scores are computed at the end of
training, while OGBench scores are averaged over the final three checkpoints (800K, 900K, and 1M
steps for state-based, 300K, 400K and 500K steps for pixel-based) following their official evaluation
protocol. All results are reported across 8 random seeds that were not used during the hyperparame-
ter tuning process, and each evaluation is done over 100 episodes. Except for OGBench pixel-based
tasks, where scores are computed using 50 episodes and 4 seeds, due to high computational cost,
following [Park et al.| (2025).

Minari MuJoCo reference scores. Since reference scores for the MuJoCo locomotion tasks are not
yet available in Minari [Younis et al.| (2024), we use the reference scores reported in its predecessor
D4RL [Fu et al.| (2020).

Parameter search methodology. Tab.4|summarizes the set of hyperparameter values shared across
environments and methods. For task and method specific hyperparameters, our search follows a
systematic approach. First, we conduct a logarithmic sweep over the BC coefficient o, which is the
main parameter for all methods. For ReBRAC, we sweep over the actor coefficient o; while keeping
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the critic coefficient as fixed at 0.01. Then, we sweep over «- after selecting the optimal «;. For
GFP, we fix n = 102 first and then sweep over 1 once « is chosen. Sec. studies how sensitive
GFP is to 17 and «, and justifies first searching a before adjusting 1. Hyperparameter search uses
four seeds, separate from the eight seeds used for final evaluation. On OGBench, hyperparameters
are shared across the five tasks within each environment.

Table 4: Summary of shared hyperparameters used across all methods and benchmark evalu-
ations. Environment-specific variations are indicated where applicable.

Hyperparameter Value

Learning rate 0.0003

Gradient steps 1,000,000 (OGBench, Minari), 500,000 (D4RL)

Minibatch size 256 (default), 1024 (Minari Gym-Mujoco), OGBench Tab.
Discount factor 0.99 (D4RL, Minari), OGBench Tab.

Euler integration steps 10 (default), 30 (humanoidmaze-large

Critic aggregation function mean (default), min (D4RL-antmaze, OGBench-antmaze)

Critic target network smoothing coefficient 0.005

Bellman target y=r+7Q(s",a’) (default), y¥*BC (cube, humanoidmaze-medium)

Table 5: Discount factor and minibatch size for OGBench environments. The asterisk * in some
discount factors indicates cases where we modified the discount factor used in prior work, which led
to significant performance improvements for the corresponding methods.

Task Category Discount factor ~ Minibatch size
antmaze-large-navigate-singletask (5 tasks) 0.995* 256
antmaze-large-stitch-singletask (5 tasks) 0.995 (except for FQL, 0.99) 256
antmaze-large-explore-singletask (5 tasks) 0.995 1024
antmaze-giant-navigate-singletask (5 tasks) 0.995 1024
humanoidmaze-medium-navigate-singletask (5 tasks) 0.995 256
humanoidmaze-medium-stitch-singletask (5 tasks) 0.999 256
humanoidmaze-large-navigate-singletask (5 tasks) 0.999%* 256 (except for GFP, 1024)
antsoccer-arena-navigate-singletask (5 tasks) 0.99 256
antsoccer-arena-stitch-singletask (5 tasks) 0.99 256
cube-single-play-singletask (5 tasks) 0.99 256
cube-single-noisy-singletask (5 tasks) 0.99 256
cube-double-play-singletask (5 tasks) 0.99 256
cube-double-noisy-singletask (5 tasks) 0.99 256
cube-triple-play-singletask (5 tasks) 0.99 1024
cube-triple-noisy-singletask (5 tasks) 0.99 1024
puzzle-3 x 3-play-singletask (5 tasks) 0.99 256
puzzle-4 x4-play-singletask (5 tasks) 0.99 256
puzzle-4 x4-noisy-singletask (5 tasks) 0.99 256
scene-play-singletask 0.99 256
scene-noisy-singletask 0.99 256
visual tasks 0.99 256

B ADDITIONAL EXPERIMENTS

B.1 MODIFIED BELLMAN TARGET

As described in Sec. [3| we propose a variant of the Bellman target, y¥*B¢ (Eq. , that leverages
the VaBC policy. Tab. [6] presents experimental results showing average scores over 8 seeds for the
selected hyperparameters, with “~” indicating configurations that were tested but not ultimately
chosen. These experiments show that this modified target provides improvements in the cube and
humanoidmaze-medium environments, and constant or slightly degraded results on other environ-
ments, hence "5 is used only for the former ones, as reported in Tab. [4}

B.2 ADVANTAGE WEIGHT SIMILAR TO AWR
As explained at the end of Sec.[3] our g, is a soft-max weight comparing a to a™, an action sampled

from the actor, but one could alternatively use an advantage weighted term similar to AWR [Peng
et al.|(2019), but using the actor to compute a baseline:

g?WR(S’ a) 1= exp (%(Q¢(S,CL) — Q¢(s, ug(s, Z)))) (12)
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Table 6: Comparison of the modified Bellman target for GFP.

Task Category Standard targety Modified y"*5€ Eq. E]
cube-double-play (5 tasks) ~ 28 472+ 16
cube-double-noisy (5 tasks) ~ 46 63.1 £3.3
humanoidmaze-medium-navigate (5 tasks) ~ 64 72.0 %28
humanoidmaze-medium-stitch (5 tasks) ~ 59 66.2 £ 5.7
puzzle-4x4-play (5 tasks) 26.1 £ 21 ~ 22
scene-play (5 tasks) 53.5 k2.9 ~ 50

Tab. eports results when using g?WR instead of g,,, over 65 tasks, with  and 7 tuned accordingly,

Tab. The modified Bellman target 4B has also been tested for this variant, as in Sec. and
was found to be beneficial for the cube, humanoidmaze, and puzzle environments.

gf]WR achieves slightly better performance on standard tasks, but our main g,, scales better on more

challenging ones, e.g., humanoid environments and cube-triple ones. Important note: GFP-AWR
only changes the weighting function, keeping the general structure presented in Fig [I] and Fig [5
In particular, it does not mean first using AWR to learn a weighted-BC policy (like FAWAC, see
Fig[5d) and then using it to regularize the actor. GFP-AWR preserves the bidirectional guidance,
a core contribution of GFP (see the arrows in Fig @ As an alternative, one could also learn a
value-function network V' (s) = Eg.qr,(.|s)(Q(s,a)) and use it instead of the stochastic baseline
Q(s, 1a(s, z)) in the weighting functions.

Table 7: Comparison with an AWR guiding function

Task Category GFP-g, (default) GFP-AWR
antmaze-large-stitch (5 tasks) 68.9 £ 0.8 69.8 £ 1.9
antmaze-giant-navigate (5 tasks) 27.9 +85 29.1 £84
humanoidmaze-medium-navigate (5 tasks) 72.0 238 60.9 £3.4
humanoidmaze-medium-stitch (5 tasks) 66.2 £ 5.7 64.3 £ 8.5
humanoidmaze-large-navigate (5 tasks) 17.0 £t 96 14.3£35
antsoccer-arena-stitch (5 tasks) 30.5 £ 2.2 29.5 £ 2.6
cube-double-play (5 tasks) 47.2+ 1.6 50.4 £35
cube-double-noisy (5 tasks) 63.1 +33 55.7+ 3.4
cube-triple-play(5 tasks) 15.9 £ 20 9.9 %29
cube-triple-noisy (5 tasks) 24.5 £ 28 112+ 14
puzzle-3x3-play (5 tasks) 23.1%22 28.3 1.0
puzzle-4x4-play (5 tasks) 18.8 £ 1.7 16.5 £ 1.7
puzzle-4x4-noisy (5 tasks) 26.1+21 271 +17
Average (65 tasks) 38.6 359

B.3 MODIFIED GUIDING FUNCTION TO INTEGRATE a™~

Our guiding function g,,, defined in Eq. compares a dataset action a to a”™, an action sampled
from the actor. Since we also sample actions using the VaBC flow policy (Algo. [I] Line [I0), we
can alternatively use a™ for a more conservative guiding function, leading to a modified guided
function:

exp (%Q¢(s,a))
exp (%Q¢(S, a)) + exp (% min (Qy(s,a™), Qu(s, a”w)))

This modified guiding function is more conservative because it only filters out action a when both
policies produce more valuable alternatives. Initially, we employed g,’;””(s, a) for evaluation on
OGBench antmaze, humanoidmaze, and antsoccer environments. However, we found no significant

performance difference, so all remaining tasks use the standard g,, defined in Eq.[T0}

gn"(s,a) = (13)

B.4 TEMPERATURE ANALYSIS

To complete the analysis presented in Sec. [d.2] we conducted experiments on two additional tasks
beyond those shown in Fig. 4] We tested humanoidmaze-medium-stitch as a locomotion task and
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cube-triple-play as a non-noisy manipulation task. The results of this extended temperature analysis
are reported in Fig.[6] illustrating how temperature controls the sharpness of value-guided filtering.
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Figure 6: Temperature analysis on two additional very challenging tasks. Plots (a) and (c), performance
scores across temperature values 7 for our GFP method (Actor 7y and VaBC 7,) compared to baselines (FQL,
ReBRAC) on humanoidmaze-medium-stitch-task1 and cube-triple-play-taskl. Plots (b) and (d), probability
that the guidance term g,, is above different thresholds § as a function of temperature, illustrating how temper-
ature controls the sharpness of value-guided filtering.

B.5 SENSITIVITY ANALYSIS TO 1) AND «

To study how sensitive GFP is to the temperature 7 and the BC coefficient o, we evaluated 8§ varia-
tions around task-specific hyperparameters («*, n*) on 12 tasks, with comparison to FQL sensitivity
to a. These experiments reveal that « is the most important hyperparameter of GFP, as it is for most
offline RL methods|Tarasov et al.|(2023)); Park et al.[(2024b), and that GFP is less sensitive to precise
7 tuning. It justifies our methodology for hyperparameter search, by first fixing 7 = 102, and then
sweeping over 1 only once « is chosen. From the results averaged on 12 tasks, it can be observed
that o« and 7 are partially correlated: when increasing « (i.e. stronger regularization), it is better to
decrease 7 (stronger filtering).

1172 ntr 31 . 2:56 ’)tr...

1o .. o 111 ]1-52 loxn‘r-. Eg’ o * . *
‘ r a a3 o 3xa’ /3 a 3xa’ o3 o 3xa’

(a) GFP Antmaze large (C) GFP Cube double (e) GFP Scene ( g) GFP Over 12 tasks
a'/3 a 3xa’ a/3 o 3xa" a’/3 o 3xa* a'/3 a 3xa’

(b) FQL Antmaze large (d) FQL Cube double (f) FQL Scene (h) FQL Over 12 tasks

Figure 7: Sensitivity analysis to the BC coefficient «, and to the temperature 7, in log-scale. Evaluates
the sensitivity by testing variations around task-specific hyperparameters (a*,n") reported Tab. using 8
seeds. Plots (a), (c) and (e), report GFP’s sensitivity to o™ and n*, on antmaze-large-navigate-task1, cube-
double-play-task2, and scene-play-task2, respectively. These three tasks were chosen following FQL
ablation study on a (FQL page 15). Plots (b), (d) and (f), report the sensitivity of FQL with respect
to « (reevaluated as FQL’s authors did not share exact numbers). Plots (g) and (h) aggregate the analysis
over 12 tasks (cube single and double, play and noisy; scene play and noisy; antmaze navigate large and
giant; humanoidmaze medium navigate and stitch, where for each environment we use the default task). These
experiments reveal that « is the most important hyperparameter of GFP, as it is for most offline RL methods
[Tarasov et al| (2023); [Park et al| (2024b), and that GFP is less sensitive to precise 7 tuning.

C COMPLETE RESULTS OVER 144 TASKS

This section presents the comprehensive experimental results across all 144 tasks from OGBench
(Tabs. [8] and 0), D4RL (Tab. [T1)), and Minari (Tab. [I2) benchmarks. Tab. [I0] covers comparison
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Table 8: Offline RL full results on OGBench, part 1/2. Models were trained with 8 random seeds
and evaluated over 100 episodes, following the setup of prior work [Park et al.|(2024a;[2025). Scores
are averaged across seeds; values within 95% of the best performance are shown in bold, while
italics indicate scores reported from prior work Park et al.| (2025). GFP actor g is our primary
policy, while GFP VaBC 7, is reported as a byproduct of training. The + symbol denotes the
standard deviation over seeds. See Tab |§| for the other tasks.

Task Offline RL algorithms
QL ReBRAC FQL | GFP actor mp | GFP VaBC 7,

antmaze-large-navigate-singletask-task1-v0 48 £9 97. 7+ o5 92.6 £ 1.8 95.4 o8 92.0 £ 2.3
antmaze-large-navigate-singletask-task2-v0 42+ 92.2+16 80.0+ 104 92.2 £ 3.0 88.5+ 1.6
antmaze-large-navigate-singletask-task3-v0 72 +7 98.5 £ 1.8 93.5+ 16 95.6 £+ 2.7 94.4 + 3.0
antmaze-large-navigate-singletask-task4-v0 51 £9 94.4+09 823%1s55 90.6 £ 2.6 85.6 £ 3.7
antmaze-large-navigate-singletask-task5-v0 54 k22 96.5+09 92.3+15 95.0£13 89.8 £ 1.7
antmaze-large-stitch-singletask-task1-v0 282+78 88.4+162 T1.8+284 90.3 £ 2.1 85.0 £ 9.7
antmaze-large-stitch-singletask-task2-v0 5.5 £ 4.1 85.2+£59 2544253 82.9+23 69.5 £ 7.2
antmaze-large-stitch-singletask-task3-v0 83.4+25 98.0+o0s 88.4 35 93.2 £ 34 90.2 £ 1.5
antmaze-large-stitch-singletask-task4-v0 8.8+29 79.4+20.9 23.7+246 0.2+06 12431
antmaze-large-stitch-singletask-task5-v0 26.2+149 95.1+17 81.5 £ 7.2 779 +71 422+ 8.7
antmaze-large-explore-singletask-task1-v0 04+10 91.8+61 91.0% 109 92.8 £41 92.3 %10
antmaze-large-explore-singletask-task2-v0 0.0+ 0.0 86.4+ 5.2 90.8 £3.4 88.5 £ 3.6 84.1+3.1
antmaze-large-explore-singletask-task3-v0 54.8+77 99.1+to06 97.5+09 98.0 £ 0.5 92.8 £ 1.1
antmaze-large-explore-singletask-task4-v0 9.2+ 41 54.4+305 89.0+29 87.1 %23 87.0+ 28
antmaze-large-explore-singletask-task5-v0 0.0 £ 0.1 81.8 237 71.1£320 93.1 £ 2.1 90.2 £ 9.7
antmaze-giant-navigate-singletask-task 1-v0 0+o 17.5 + 38 0.8 £2.1 12.6 + 151 0.1+o0.1
antmaze-giant-navigate-singletask-task2-v0 1+ 449+ 6.7 23.2%153 52.2 +26.5 1.2+ 07
antmaze-giant-navigate-singletask-task3-v0 0=*o 25%13 0.9+11 13.7 £ 102 02402
antmaze-giant-navigate-singletask-task4-v0 0=+o 20.0£200 9.9+108 17.8 £19.9 04+o03
antmaze-giant-navigate-singletask-task5-v0 19+7 81l.4+61 46.9+E255 43.2+35.7 20%07
humanoidmaze-medium-navigate-singletask-task 1-v0 3247 34.1 £ 16.4 19 £12 83.5 £3.7 28.8 £6.5
humanoidmaze-medium-navigate-singletask-task2-v0 41+9 75.8 £ 29. 94 +3 91.2+6.3 60.2 £ 9.4
humanoidmaze-medium-navigate-singletask-task3-v0 25+s 69.5 £ 25.7 74 +18 86.3 £ 10.7 28.9 £ 4.1
humanoidmaze-medium-navigate-singletask-task4-v0 0+1 19.5 + 175 3+ta 3.0L66 1.3 %20
humanoidmaze-medium-navigate-singletask-task5-v0 66 £4 97.0 £ 0.9 97 +2 95.8+1.3 60.1 £6.1
humanoidmaze-medium-stitch-singletask-task1-v0 264+30 291+183 48.0%254 77.9+92 28.7+ 6.5
humanoidmaze-medium-stitch-singletask-task2-v0 279+99 94.4+19 87.5 £ 3.7 95.2+ 1.8 49.2+6.3
humanoidmaze-medium-stitch-singletask-task3-v0 30.0£44 56.6+245 85.4+178 55.2 £ 33.9 44.3 £ 3.2
humanoidmaze-medium-stitch-singletask-task4-v0 3.7+16 33.1+284 0.8 fo0.38 3.6 t95 149+ 9.0
humanoidmaze-medium-stitch-singletask-task5-v0 485+46  92.5+31 94.1 £25 98.9 f 05 60.2 7.4
humanoidmaze-large-navigate-singletask-task1-v0 g+ 27.8 £134 198+ 131 57.2 £ 237 45+ 29
humanoidmaze-large-navigate-singletask-task2-v0 0=*o 0.5+0.7 0.0%01 0.1%o02 0.0+ 0.0
humanoidmaze-large-navigate-singletask-task3-v0 T+s 25.9£385 8.8+ 4.0 14.6 £ 16.2 55+ 28
humanoidmaze-large-navigate-singletask-task4-v0 1+o 8.3+ 144 1.6+1s8 3.7+41 0.7+ 05
humanoidmaze-large-navigate-singletask-task5-v0 1+1 19+15 2.2+39 13.1+155 1.5+009
antsoccer-arena-navigate-singletask-task 1-v0 14 £5 62.1 + 3.6 77+ 4 T7.0+1.7 170+ 2.8
antsoccer-arena-navigate-singletask-task2-v0 17+7 785t 28 88 +3 91.2 £ 22 16.8 £ 2.6
antsoccer-arena-navigate-singletask-task3-v0 64 55.5 £ 1.7 61 t¢6 519449 7.8 £29
antsoccer-arena-navigate-singletask-task4-v0 3 +2 348+ 5.0 39 +6 40.2 & 42 52+21
antsoccer-arena-navigate-singletask-task5-v0 2+2 48.5 £ 6.1 36 £9 29.1%s9 4.6+21
antsoccer-arena-stitch-singletask-task 1-v0 5.3 £33 44.6 £ 5.0 53.4+35 51.8+35 3.0f1.2
antsoccer-arena-stitch-singletask-task2-v0 5.6 1.9 30.0 £ 6.0 49.1 8.1 53.0t 76 3.0f14
antsoccer-arena-stitch-singletask-task3-v0 1.3+17 159+ 2.4 19.3 + 2.7 18.7+ 1.4 0.4+03
antsoccer-arena-stitch-singletask-task4-v0 0.4+05 14.8 + 4.2 20.0 £ 6.4 26.1 + 4.7 0.1 %02
antsoccer-arena-stitch-singletask-task5-v0 1.3+18 4.8+ 16 1.2+ 04 2.9+29 0.6 £0.4
cube-single-play-singletask-task1-v0 88 £33 89 £5 97 £2 99.1 £o04 42.1+59
cube-single-play-singletask-task2-v0 85 +s 92 +4 97 +2 99.4 +o0.7 38.8 £6.4
cube-single-play-singletask-task3-v0 91 5 93 +3 98 +2 99.4 + 0.5 48.5 £ 9.1
cube-single-play-singletask-task4-v0 73 +6 92 +3 94 +3 99.1 +o0.7 32.8 £9.3
cube-single-play-singletask-task5-v0 78 9 87+s 93 +3 97.0+ 1.6 36.3£5.5
cube-single-noisy-singletask-task1-v0 523+£72 99.2+11 100.0+0.0 100.0 + 0.0 99.9 to0.2
cube-single-noisy-singletask-task2-v0 55.3+s0 96.0+s35 100.0+o0.1 100.0 0.1 99.9 £ o2
cube-single-noisy-singletask-task3-v0 343+s1 97.4+16 100.0=+0.0 100.0 £ 0.0 100.0 + 0.0
cube-single-noisy-singletask-task4-v0 63.2+75 99.7+05 100.0+0.1 100.0 + 0.0 99.9 £+ 0.1
cube-single-noisy-singletask-task5-v0 60.9£11.7 99.8+02 100.0=+0.1 99.9 £o0.2 99.8 £ 0.3

against 10 prior works over 50 tasks. All results are averaged over 8 seeds, except for pixel-based
tasks. The evaluation encompasses approximately 15,000 individual training runs, providing de-
tailed performance comparisons across diverse offline RL scenarios, including navigation, manipu-
lation, and locomotion tasks. The hyperparameters used are stated in Tabs. [T4] and [T3]
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Table 9: Offline RL full results on OGBench, part 2/2. Models were trained with 8 random seeds
and evaluated over 100 episodes, following the setup of prior work |Park et al.|(2024a;[2025)). Scores
are averaged across seeds; values within 95% of the best performance are shown in bold, while
italics indicate scores reported from prior work Park et al.| (2025). GFP actor 7 is our primary
policy, while GFP VaBC 7, is reported as a byproduct of training. The £ symbol denotes the
standard deviation over seeds. See Tab |§| for the other tasks.

Task Offline RL algorithms

IQL ReBRAC FQL || GFP actor 7, | GFP VaBC mg
cube-double-play-singletask-task1-v0 27+ 43.0 £89 61 £9 76.1 + 46 28.5 5.0
cube-double-play-singletask-task2-v0 1+ 16.2 5.0 36 £6 53.3 £89 1.8+ 10
cube-double-play-singletask-task3-v0 0*o 1.3 %04 22 £5 43.3 £8.9 0.4=+o04
cube-double-play-singletask-task4-v0 0+o 04+03 5t 7.1 %31 0.8 0.6
cube-double-play-singletask-task5-v0 4 £3 2.0+ 10 19 + 10 56.3 £ 11.3 0.7+ 06
cube-double-noisy-singletask-task 1-v0 20.8+34 51.3+9s5 77.1+80 89.5 45 32.2+ 309
cube-double-noisy-singletask-task2-v0 00+01 21.1+43 43.1F%105 75.7+t 7.6 58+ 13
cube-double-noisy-singletask-task3-v0 0.8+ 1.0 8.0t 34 26.3 £5.8 75.0 4.4 32+1.2
cube-double-noisy-singletask-task4-v0 0.2+02 6.5+ 1.8 155+ 3.9 41.8 + 4.6 1.6 t09
cube-double-noisy-singletask-task5-v0 05+05 11.2+33 29.0 £ 7.9 33.4+76 39+15
cube-triple-play-singletask-task1-v0 04+03 14.0+£58 172473 54.8 6.2 324 +84
cube-triple-play-singletask-task2-v0 0.0 £ 0.0 0.1+01 0.8 0.2 6.6 6.3 0.6 £ 0.7
cube-triple-play-singletask-task3-v0 1.3+0s6 0.3+£0.3 1.3+ 06 14.9 £9.9 3.2+21
cube-triple-play-ingletask-task4-v0 0.0+£0.0 0.0+ 0.0 0.3+04 2.5+ 1.7 0.8+0.2
cube-triple-play-singletask-task5-v0 0.1+02 0.3+05 0.1+0.2 0.6 05 1.0+ 0.9
cube-triple-noisy-singletask-task1-v0 240+6.0 253+139 17.5%s0 90.7 £ 5.2 41.0L6.6
cube-triple-noisy-singletask-task2-v0 0.0+01 04+04 0.1+0.2 8.9+ 34 0.3£0.2
cube-triple-noisy-singletask-task3-v0 0.0 £ 0.0 0.1+0.2 0.0 0.0 11.8+75 0.8+0.7
cube-triple-noisy-ingletask-task4-v0 0.0+£0.0 0.0+ 0.0 0.0£0.1 10.8 £6.2 0.8+05
cube-triple-noisy-singletask-task5-v0 0.0 £ 0.0 0.0+ 0.1 0.0 0.0 0.1 +o0.2 0.0 £ 0.0
puzzle-3 x 3-play-singletask-task 1-v0 33 +6 97 t4 90 + 4 94.8 4.4 54.6 £7.4
puzzle-3 x 3-play-singletask-task2-v0 4 +£3 1+1 16 +5 0.3+03 11.2+24
puzzle-3 x 3-play-singletask-task3-v0 3 +2 3+1 10 £33 0.9+0.6 9.7+15
puzzle-3 x 3-play-singletask-task4-v0 2+1 2+1 16 5 54+21 94 +31
puzzle-3 x 3-play-singletask-task5-v0 3+£2 5+3 16 £+3 14.1 £8.4 10.9 £ 48
puzzle-4 x4-play-singletask-task1-v0 12 +2 45.4 £+ 3.7 34 £8 50.0 8.1 16.2 + 3.3
puzzle-4 x4-play-singletask-task2-v0 7+ 2.7+ 1.0 16 £5 9.9+ 25 70+£18
puzzle-4 x 4-play-singletask-task3-v0 9+s3 27.8 £ 4.0 18+5 46.2 + 3.8 10.2 £ 209
puzzle-4 x4-play-singletask-task4-v0 5E2 9.1+21 11 £3 17.2 £25 T4+£19
puzzle-4 x4-play-singletask-task5-v0 4 +1 0.8+ 0.7 7+3 7.3 +£36 6.6 + 1.8
puzzle-4 x4-noisy-singletask-task 1-v0 0.1%01 3.9+1.2 41.0 £ 38 38.5 3.6 39.6 48
puzzle-4 x4-noisy-singletask-task2-v0 0.0+01 04+04 5.9+17 0.7+05 3.5+11
puzzle-4 x4-noisy-singletask-task3-v0 0.1+0.2 0.9+05 20.8 £ 2.7 51.1%65 44.0 £ 47
puzzle-4 x4-noisy-singletask-task4-v0 0.0 £ 0.0 04+04 6.5+ 1.6 3.0+ 16 6.3 22
puzzle-4 x4-noisy-singletask-task5-v0 0.0+£0.0 0.0£0.1 3.7+17 0.7+0.7 3.1 %20
scene-play-singletask-task1-v0 94 £3 95 £2 100 £o 99.8 £ 0.4 99.8 0.2
scene-play-singletask-task2-v0 12 £3 50 £13 76 £ 9 89.0 4.1 93.0 5.1
scene-play-singletask-task3-v0 32 7 55 £16 98 +1 78.0 £ 13.2 93.5 +5.1
scene-play-singletask-task4-v0 0+o 3+3 5+1 0.6 £ 0.6 1.8+13
scene-play-singletask-task5-v0 0+o 0+o 0+o 0.0£0.0 0.0 £ 0.0
scene-noisy-singletask-task1-v0 742+54 948+37 100.0+0.0 99.9 + 0.2 99.9 + 0.2
scene-noisy-singletask-task2-v0 0.1+02 18.1=%59 87.4 + 3.7 94.2 + 20 97.4+ 19
scene-noisy-singletask-task3-v0 57+11 8l.1+s5 94.4+37 93.3 £43 95.2 + 3.2
scene-noisy-singletask-task4-v0 0.0+£01 5.6 £34 14.8 £ 4.6 0.0£0.0 0.1=+0.2
scene-noisy-singletask-task5-v0 0.0+0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0 £ 0.0
visual-cube-single-play-singletask-task 1-v0! 70 £ 12 83 L6 81 +12 82.3 4.2 -
visual-cube-double-play-singletask-task 1-v0' 34 £23 4 4 21 £11 19.7 £ 8.7 -
visual-scene-play-singletask-task 1-v0! 97 +2 98 £4 98 £3 99.3 05 -
visual-puzzle-3x3-play-singletask-task1-v0! 7+15 88 £4 94 £1 92.8 £ 20 -
visual-puzzle-4x4-play-singletask-task 1-v0! 0+o 26 £6 33 +6 19.7+ 1.7 -

! Following |Park et al.| (2025) to reduce the computational cost of pixel-based tasks, for these tasks we use 4
seeds and 50 episodes per seed; moreover, we chose not to evaluate the VaBC policy, as it is only a byproduct.
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Table 10: Offline RL Results on OGBench Tasks (only task evaluated in FQL): Performance
comparison across different offline RL algorithms. All prior work results are taken from Park et al.
(2025)) to compare a wide range of previous methods against GFP.

Task BC IQL ReBRAC  IDQL SRPO CAC FAWAC FBRAC IFQL FQL || GFP actor 7,
antmaze-large-navigate-singletask

task1-v0 0Ofo 4849 91+ 10 0xo 0Oxo 4247 1+1 70+£20 244+17 80+£s 95.4+ 038
task2-v0 6+3 42+¢ 88+4 14+3 444 1+1 (=51 35+ 12 8+3 57+ 10 92.2 + 3.0
task3-v0 29+s5 7247 51 + 18 26 =8 J+2 49+ 10 124+4 83415 52+17 93 =+3 95.6 + 2.7
task4-v0 8+3 Hlto 84+7 62425 45+19 1746 10£3 37+18 18+s 80+ 4 90.6 + 2.6
task5-v0 10+3 bH4+£2 90 + 2 242 1+1 55 +6 9+s 76+s8 38+f18 83+4 95.0 +1.3

antmaze-giant-navigate-singletask-task1

task1-v0 0+o 0+o 27 + 22 0+o 0+o 0+o 0+o 0£1 0+o 4+5 12.6 £ 15.1
task2-v0 0+o 141 16 + 17 0+o 0+o 0+o 0+o 447 0+o 9+7 52.2 +26.5
task3-v0 0O+o 0+o 34 +22 0+o 0+o 0+o 0O+o 0O+o 0+o 0£1 13.7+ 10.2

task4-v0 0O+o 0+o 5+12 0+o 0+o 0+o (=) 9+4 0+o 14 423 17.8 £ 199
task5-v0 1+1 19+7 49 £ 22 0+1 0+o 0+o 0+o 6+ 10 13409 16 £ 28 43.2 £ 35.7

humanoidmaze-medium-navigate-singletask

task1-v0 1+o0 32+7 16 £t9 1+ 0O+o 38+ 19 6+2 254+8 69*19 19+12 83.5 £ 3.7
task2-v0 1+o 4149 18 £ 16 1+1 1+1 47 £ 35 40 £ 2 76+10 85+ 11 94 +3 91.2+6.3
task3-v0 6+2 25+ 36 £13 0+1 241 83 £ 18 19+£2 27+11 49449 T4+ 18 86.3 + 10.7
task4-v0 0+o 0£1 15+ 16 1+1 141 5+4 1+1 1+2 1+1 3+4 3.0+6.6
task5-v0 2+1 66 £ 4 24 £ 20 1+1 3£3 91=£5 3147 63 +09 98 +2 97 +2 95.8+1.3

humanoidmaze-large-navigate-singletask
task1-v0 (U==30] 31 241 0Oxo (U==30) 1+1 0*o (=51 6+2 T*6 57.2 +23.7

task2-v0 (U==30] (U==30) 0xo 0xo (U==30) 0O+o 0*o (VU==30] (U==30) 0O+o 0.1+0.2
task3-v0 1+1 ==K 8+4 3+1 1+1 2+3 1+1 10+2 48+10 11+£7 14.6 £+ 16.2
task4-v0 1+o0 1+o 1+1 (V==3) 0+o 0+1 0*o 0*o 1+1 2+3 3.7+41

task5-v0 0£1 1+1 2+2 0+o 0+o 0+o 0+o 1+1 0=+o 1+3 13.1+ 155
antsoccer-arena-navigate-singletask

task1-v0 2+1 14+5 0+o 44 412 2+1 1+3 22 £2 17+3 61+25 7744 T7.0+ 1.7
task2-v0 2+2 17+7 0+1 15+ 12 3+1 0+o 8+1 8+2 75+3 88 +3 91.2 +2.2
task3-v0 0O+o 6+4 0+o 0+o 0+o 8+ 19 11+5 16+3 14+22 61+s 51.9 £ 4.9
task4-v0 1+o 3+2 0+o 0+1 0+o 0+o 12+3 24+4 16+09 39+¢ 40.2 £4.2
task5-v0 0O+o 2+2 0Oxo 0xo 0Oxo 0+o 9+2 15+4 0£1 36 +9 29.1 £38.9

cube-single-play-singletask

task1-v0 105 88+£3 89+5 95 +2 89+7 T7+28 8l+9 73£33 T9+4 97 £+ 2 99.1 04
task2-v0 3+1 85+ 92+ 4 96+2 82+16 80=*30 8l+9 83£13 T3+£3 97 £+ 2 99.4 + 0.7
task3-v0 9+£3 91=+5 93 +3 99 +1 96 +2 98+ 87T+4 82+12 88+4 98 +2 99.4+05
task4-v0 2+1 73+6 92+3 93+4 T0+18 9142 9+t6 T79+20 T9+s6 94+3 99.1 +o0.7
task5-v0 3+£3 78+o9 87 %8 90+6 61412 80420 78+10 T6+£33 TTE7 93 +3 97.0+ 1.6

cube-double-play-singletask
task1-v0 8+3 2745 45+6 39+ 19 ==X 21 +% 21+7 47+11  35+9 61+9 76.1 46

task2-v0 0O+o 1+1 T+3 16 £ 10 (V==30) 242 241 22+ 12 9+s5 36+ 53.3 £ 8.9
task3-v0 0+o (V==30) 441 17+£s8 0+1 3+ 1+1 4+2 8+5 22+ 43.3 £89
task4-v0 0+o 0+o 1+1 0+1 0+o 0+1 0+to 0+1 141 5+2 7.1+31
task5-v0 0+o 443 442 1+ 0xo 3+2 241 242 17+6 19+ 10 56.3 +11.3

scene-play-singletask
task1-v0 19+6 94+£3 95 +2 1000 944+4 100+1 87+ 96+s 98+3 100+o0 99.8 £ 04
task2-v0 1+1 12+3 50 £ 13 33+ 14 242 50 £ 40 18+s8 46+10 0+o 76+09 89.0 £ 4.1
task3-v0 1+1 32+7 55 16 94 +4 444 49 + 16 38+9 T8+1a Hd+19 98+ 78.0 £13.2
task4-v0 2+2 0£1 3+3 4+3 0Oxo 0+o 6+L1 444 0+o 5+1 0.6 +t0.6
task5-v0 (U==30] (U==30) 0xo0 0xo (U==30) (U==30] 0*o (V==30] (U==30) (U==X0) 0.0+ 0.0

puzzle-3x3-play-singletask
task1-v0 5+2 33+s 97 +4 52+12 89+%s 97 +2 25+9 63+19 94+3 90 £ 4 94.8 £ 4.4

task2-v0 1+1 4+3 141 0+1 0£1 0+o 4+2 2+2 142 16 +5 0.3+03
task3-v0 1+1 3£2 3+1 0+o 0+o 0+o 1+o0 1+1 0=+o 10+3 0.9+06
task4-v0 1+1 2+1 2+1 0+o 0+o 0£o 1+1 2+2 0+o 16 +5 54 +21

task5-v0 1+o0 3£2 5+3 0+o 0+o 0£o 1+1 2+2 0+o 16 +3 141+ 84

puzzle-4x4-play-singletask
task1-v0 1+1 12+2 26 t4 48 +5 24+9 44410 1+2 32+9 49 +9 34+s8 50.0 £ 8.1

task2-v0 (U==31] TE4 1244 14+£5 0+1 0+o 0+1 5+3 4+4 16 £5 9.9+ 25
task3-v0 0to 9+3 15+3 34+s5 214+10 29412 1+1 2010 50+14 18+5s 46.2 £ 3.8
task4-v0 (U==41] 5+2 10£3 26+ T+4 1+1 0*o 541 21+ 11 11+3 172+ 25
task5-v0 0+o 441 T+3 24 £+ 11 1+1 0O+o 0+1 443 2+2 T+3 7.3+36
Average 2.8 234 30.9 22.8 14.2 24.7 16.1 28.0 30.0 43.5 51.8
(50 tasks)
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Table 11: Offline RL full results on D4RL. For each task, models were trained with 8 random seeds
and evaluated at the end of training. Reported values are the average normalized scores over the final
100 evaluation episodes, with & denoting the standard deviation across seeds. Ifalics indicate scores
from prior work [Fu et al.| (2020); [Fujimoto & Gu| (2021); Tarasov et al.| (2023); |Park et al.| (2025)),
and bold denotes values within 95% of the best performance. GFP actor 7y is our primary policy,
while GFP VaBC 7, is reported as a byproduct of training.

Task Offline RL algorithms
BC CcQL QL TD3 + BC ReBRAC FQL || GFPactorm,, | GFP VaBC 7y

D4RL antmaze-umaze 55 74.0 87.5 78.6 97.8 10 96 £2 96.8 £ 1.9 94.9 £ 20
D4RL antmaze-umaze-diverse 47 84.0 62.2 71.4 88.3 130 89=*s 91.9 %27 90.1 £ 38
D4RL antmaze-medium-play 0 61.2 71.2 3.0 84.0+t42 T8+£7 81.9 £5.2 574 %091
D4RL antmaze-medium-diverse 1 53.7 70.0 10.6 76.3 135 71413 61.6 % 20.9 45.6 £ 9.5
D4RL antmaze-large-play 0 15.8 39.6 0.0 60.4 £261 84 £7 82.6 5.4 62.6 £ 8.8
D4RL antmaze-large-diverse 0 14.9 47.5 0.2 54.4 £251 83 £4 84.1+5.4 70.6 4.7
D4RL pen-human-v1 71 37.5 71.5 81.8 103.5 53 64.6 £ 5.4 67.4+6.9
DARL pen-cloned-v1 52 39.2 37.3 61.4 91.8 T4 77.1+104 70.5 £ 4.2
D4RL pen-expert-v1 110 107.0 133.6 146 154.1 142 140.4 £+ 4.7 123.2+5.4
DA4RL door-human-v1 2 9.9 4.3 —0.1 0.0 0.0 0.3+03 4.1+ 24
D4RL door-cloned-v1 —0 0.4 1.6 0.1 1.1 2 1.6 +1.9 0.6+ 0.6
D4RL door-expert-v1 105 101.5 105.3 84.6 104.6 104 104.1 £ 0.6 103.1 + 0.9
DARL hammer-human-v1 3 44 1.4 0.4 0.2 1 4.4+49 25+1.1
D4RL hammer-cloned-v1 1 2.1 2.1 0.8 6.7 11 124+ 5.4 2.5+09
DARL hammer-expert-v1 127 86.7 129.6 117.0 133.8 125 123.6 £ 2.0 116.6 £ 4.1
D4RL relocate-human-v1 0 0.20 0.1 —0.2 0.0 0 0.5 03 0.0+ 0.0
D4RL relocate-cloned-v1 —0 —0.1 —-0.2 —0.1 1.9 -0 1.6+0.7 0.1+01
D4RL relocate-expert-v1 108 95.0 106.5 107.3 106.6 107 103.2 £3.7 104.0 £+ 3.1

Table 12: Offline RL full results on Minari. For each task, models were trained using 8 different
random seeds, and evaluation was performed at the end of training. The reported values represent
the average normalized score, computed over the final 100 evaluation episodes and averaged across
the 8 seeds. GFP actor my represents our primary policy, while GFP VaBC 7, is reported as a

byproduct of our training procedure.

T Offline RL algorithms
ask

FQL || GFP actor mg | GFP VaBC m,
Minari pen-human-v2 11.5 £ 4.9 50.1 £6.3 54.4 + 6.7
Minari pen-cloned-v2 41.8 £ 3.7 60.4 L 42 54.0 £ 5.5
Minari pen-expert-v2 92.7 6.2 1159+ 45 108.7 £ 2.8
Minari door-human-v2 1.1+05 0.4+01 2.7+19
Minari door-cloned-v2 0.4+02 0.3+03 0.1+01
Minari door-expert-v2 102.0 £ 0.9 94.1 £ 20.9 99.0 £ 10.3
Minari hammer-human-v2 1.0+ 06 2.7+0s 3.1%0s
Minari hammer-cloned-v2 1.0+ 06 22,9+ 195 5.9 +41
Minari hammer-expert-v2 121.2 £4.2 130.2 £5.4 119.0 £ 6.7
Minari relocate-human-v2 —0.0=% 0.0 0.1 %02 —0.0% 01
Minari relocate-cloned-v2 0.0 £ 0.0 0.3 £02 0.0+£0.0
Minari relocate-expert-v2 103.7 £ 1.2 102.1 £53 105.9+1.2
Minari halfcheetah-simple-v0 59.2+0.3 72.5+05 64.4 £ 0.4
Minari halfcheetah-medium-vO0 ~ 100.2 + 6.7 121.3 £58 108.6 £ 5.3
Minari halfcheetah-expert-v0 134.1 23 133.4+13 136.4 0.8
Minari hopper-simple-v0 57.2£5.9 91.6 £43 87.4+6s6
Minari hopper-medium-v0 81.9 £ 239 79.6 £ 145 78.2 £ 242
Minari hopper-expert-v0 99.6 £ 10.9 103.9 + 106 108.8 £ 13.1
Minari walker2d-simple-v0 89.4+07 90.0 £ 0.9 89.7 L 0.9
Minari walker2d-medium-v0 127.6 £ 3.0 133.7 £ 11 126.1 £ 3.5
Minari walker2d-expert-v0 148.0 £ 1.8 149.9 £ 20 150.8 £ 0.4
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Table 13: Task-specific hyperparameters for offline RL on OGBench.

Offline RL algorithms
Task Category N
QL ReBRAC FQL GFP (ours) GFP-AWR Sec.[B3]
o (a1, a2) a (a; m) (a, m)

antmaze-large-navigate-singletask-task { 1,2,3,4,5}-v0 le+1 (le—2, le—2) le+1 (3e—1, le—4) -
antmaze-large-stitch-singletask-task { 1,2,3,4,5}-v0 le+1 (le—2, 1le—2) 3e+40 (3e—2, 1le—6) (le—1, 3e—1)
antmaze-large-explore-singletask-task{ 1,2,3,4,5}-v0 le+0 (le—3, le—1) le+0 (le—2, le—6) -
antmaze-large-giant-singletask-task{1,2,3,4,5}-v0 - (le—2, le—2) 3e+1 (le—1, le—1) (le—1, 3e—1)
humanoidmaze-medium-navigate-singletask-task { 1,2,3,4,5}-v0 - (le—2, le—2) 3e+1 (3e—1, le—3) (3e—1, 3e—1)
humanoidmaze-medium-stitch-singletask-task { 1,2,3,4,5}-v0 le+1 (le—2, le—2) le+2 (3e—1, le—3) (3e—1, le—1)
humanoidmaze-large-navigate-singletask-task { 1,2,3,4,5}-v0 - (le—2, 0e+0) le+2 (3e—1, le—4) (3e—1, le—1)
antsoccer-arena-navigate-singletask-task { 1,2,3,4,5}-v0 - (le—2, 0e+0) - (le—1, le—2) -
antsoccer-arena-stitch-singletask-task{ 1,2,3,4,5 } -v0 le+0 (le—2, 1le—3) le+1 (le—1, le—2) (le—1, le—1)
cube-single-play-singletask-task{1,2,3,4,5}-v0 1 - - (le+1, le—1) -
cube-single-noisy-singletask-task{ 1,2,3,4,5}-v0 3e+0 (le—1, le—1) 3e+1 (le+1, 1le—3) -
cube-double-play-singletask-task { 1,2,3,4,5}-v0 - (le—1, 3e—1) - (le+0, 1le—2) (le40, le—1)
cube-double-noisy-singletask-task{ 1,2,3,4,5}-v0 3e—1 (le—2, le—2) le+1 (le—1, le—4) (le—1, le—1)
cube-triple-play-singletask-task{ 1,2,3,4,5}-v0 le+0 (le—1, le—3) 3e+2 (le+0, le—5) (1e40, 3e+40)
cube-triple-noisy-singletask-task { 1,2,3,4,5}-v0 3e+0 (le—2, 0e+0) le+1 (le—1, le—5) (3e—2, 1le+0)
scene-play-singletask-task { 1,2,3,4,5}-v0 - (le—1, 1le—3) - (le+1, le—3) -
scene-noisy-singletask-task { 1,2,3,4,5}-v0 le+1 (3e—3, 0e+0) 3e+1 (1le4+0, 1le—4) -
puzzle-3 X 3-play-singletask-task{ 1,2,3,4,5}-v0 - - - (3e+0, 1e—3) (3e40, 1e+0)
puzzle-4 X 4-play-singletask-task{1,2,3,4,5}-v0 - (le—1, 0e+0) - (3e+0, le—5) (le+0, 3e—1)
puzzle-4 X 4-noisy-singletask-task{ 1,2,3,4,5}-v0 le+0 (3e—2, 1le—2) 3e+2 (3e40, le—3) (3e—1, le—1)
visual-cube-single-play-singletask-task 1-v0 - - - (le+1, le—1) -
visual-cube-double-play-singletask-task 1-v0 - - - (3e—1, le—2) -
visual-scene-play-singletask-task1-vO - - - (le+1, 1e—3) -
visual-puzzle-3x3-play-singletask-task 1-v0 - - - (3e+0, le—2) -
visual-puzzle-4x4-play-singletask-task 1-v0 - - - (le+0, le—4) -

Table 14: Task-specific hyperparameters for offline RL on D4RL and Minari.

Task GFP (ours)
(o, n)

D4RL antmaze-umaze (le—1,1e—-3)
D4RL antmaze-umaze-diverse (le—1,1e—-3)
D4RL antmaze-medium-play (3e—2,1e—3)
D4RL antmaze-medium-diverse  (3e—2, le—3)
D4RL antmaze-large-play (3e—2,1e—5)
D4RL antmaze-large-diverse (3e—2,1e—5)
D4RL pen-human-v1 (3e+0, le—4)
D4RL pen-cloned-v1 (3e+0,1e—5)
D4RL pen-expert-v1 (le+0, 1e—3)
D4RL door-human-v1 (le+1,1e—2)
DA4RL door-cloned-v1 (le+1,1e—2)
D4RL door-expert-v1 (le+1,1e—2)
D4RL hammer-human-v1 (le+1, 1e—5)
D4RL hammer-cloned-v1 (le+1,1e—5)
D4RL hammer-expert-v1 (le+1,1e—2)
D4RL relocate-human-v1 (le+1,1e—4)
D4RL relocate-cloned-v1 (le+1,1le—4)
DA4RL relocate-expert-v1 (le+1,1e—4)

(a) D4RL

Task FQL GFP (ours)
a (a, m)
Minari pen-human-v2 le+4 (3e+0,1e—6)
Minari pen-cloned-v2 3e+3  (le+0,1le—4)
Minari pen-expert-v2 le+3 (3e—1,1e—6)
Minari door-human-v2 3e+4  (le—2,1e—2)
Minari door-cloned-v2 3e+4  (3e—2,1e—6)
Minari door-expert-v2 3e+4  (3e+0,1le—3)
Minari hammer-human-v2 3e+4  (le40,1le—2)
Minari hammer-cloned-v2 3e+4  (3e+0,1le—5)
Minari hammer-expert-v2 le+4 (le+0,1le—5)
Minari relocate-human-v2 3e+3  (3e+0,1le—5)
Minari relocate-cloned-v2 3e+4  (3e+0,1le—4)
Minari relocate-expert-v2 3e+4  (3e+0,1e—3)
Minari halfcheetah-simple-v0 ~ le+2 (3e—2,1e—6)
Minari halfcheetah-medium-v0  le+2 (le—1,1e—3)
Minari halfcheetah-expert-v0 le+3 (3e+0 le—2)
Minari hopper-simple-v0 3e+2  (3e+0,1e—3)
Minari hopper-medium-v0 3e+2  (3e+0,1le—3)
Minari hopper-expert-v0 le+3  (3e+0,1e—2)
Minari walker2d-simple-v0 le+3  (3e40,1e—1)
Minari walker2d-medium-v0 3e+2  (3e—1,1le—2)
Minari walker2d-expert-v0 3e+2 (30+0 le—3)

23

(b) Minari



	Introduction
	Background
	Guided Flow Policy
	Experiments
	Main results: extensive offline RL benchmarks
	Analysis of the temperature parameter 
	Re-evaluation of prior works on OGBench

	Related Work
	Discussion and Conclusion
	Implementation details
	Additional experiments
	Modified Bellman target
	Advantage weight similar to AWR
	Modified guiding function to integrate a
	Temperature analysis
	Sensitivity analysis to  and 

	Complete results over 144 tasks

