Published as a workshop paper at NeurIPS 2022

FAST AND PRECISE: ADJUSTING PLANNING HORIZON
WITH ADAPTIVE SUBGOAL SEARCH

Michal Zawalski * Michat Tyrolski * Konrad Czechowski *
University of Warsaw University of Warsaw University of Warsaw
m.zawalski@uw.edu.pl michal.tyrolski@ k.czechowski@
gmail.com mimuw.edu.pl
Damian Stachura Piotr Piekos Tomasz Odrzygézdz
Jagiellonian University University of Warsaw IDEAS NCBR
damian.stachural(@ piotrpiekos@gmail.com tomaszolimpan.pl

gmail.com

Yuhuai Wu Fukasz Kucinski Piotr Milos

Google Research Polish Academy of Sciences Ideas NCBR,

& Stanford University lkucinski@impan.pl Polish Academy of Sciences,
yuhuai@google.com deepsense.ai

pmilos@impan.pl

ABSTRACT

Complex reasoning problems contain states that vary in the computational cost
required to determine a good action plan. Taking advantage of this property, we
propose Adaptive Subgoal Search (AdaSubS), a search method that adaptively
adjusts the planning horizon. To this end, AdaSubS generates diverse sets of sub-
goals at different distances. A verification mechanism is employed to filter out
unreachable subgoals swiftly, allowing to focus on feasible further subgoals. In
this way, AdaSubS benefits from the efficiency of planning with longer subgoals
and the fine control with the shorter ones, and thus scales well to difficult planning
problems. We show that AdaSubS significantly surpasses hierarchical planning
algorithms on three complex reasoning tasks: Sokoban, the Rubik’s Cube, and
inequality proving benchmark INT.

1 INTRODUCTION

When solving hard problems, people often try to decompose them into smaller parts that are typ-
ically easier to complete [Hollerman et al.| (2000). Similarly, subgoal search methods aim to solve
complex tasks by considering intermediate subgoals that advance towards the goal. Besides their
intuitive appeal, such approaches offer many practical advantages. Most notably, they allow for
deeper search within a smaller computational budget and reduce the negative impact of approxima-
tion errors. Subgoal search methods powered by deep learning have shown promising results for
continuous control tasks, such as robotic arm manipulation Nair & Finn| (2020); Jayaraman et al.
(2019); |[Nasiriany et al.| (2019); [Fang et al.| (2019); |[Pertsch et al.| (2020b)); [Liu et al.| (2020a); [Zhang
et al.| (2020) and navigation Kim et al.| (2019); [Stein et al.| (2018)); |Gao et al.| (2017); [Savinov et al.
(2018). Recently, Czechowski et al.|(2021) showed that the usage of a subgoal generator can signif-
icantly improve search efficiency on discrete domains with high combinatorial complexity.

This paper builds upon the following observation: many complex reasoning problems contain states
that vary in complexity, measured by the computational cost required to determine a good action
plan. To illustrate this, imagine driving a car. When traversing a narrow, winding street, it is crucial
to focus on the closest events: the next turn, the next car to avoid, etc. However, after entering

*equal contribution

Published as a workshop paper at NeurIPS 2022

a straight, empty street, it is enough to think about reaching its far end. This suggests that care-
ful balancing of the subgoal distance is desirable: choose longer subgoals, if possible, to advance
faster towards the goal, and choose shorter subgoals to power through the harder states. Hence, the
question arises whether it is possible and, if so, how to incorporate this adaptive subgoal generation
procedure into subgoal search methods. In this paper, we answer this question affirmatively.

We propose a novel planning al-

gorithm Adaptive Subgoal Search L &
(AdaSubS), which adaptively selects y QN < % P L=
amongst subgoals with different hori- (o) Q<) &

zons. Our method benefits both from — Q" o 0

the efficiency of planning with longer L o “ ‘ =
subgoals and from the reliability of < S am o 9

the shorter ones. AdaSubS priori- (%> V @

tizes further distances, retracting to
shorter ranges only when stuck. Ad-
ditionally, we introduce a verifier net-
work, which assesses whether the
proposed subgoal is valid and reach-
able. The verifier helps to efficiently discard faulty subgoals, which are common and more costly
to detect in longer horizons. AdaSubS is a data-driven algorithm whose key components are imple-
mented as learnable deep models. In most cases, we use general-purpose transformer architectures
to model subgoal generators and the verifier networks. We train those models on offline data.

An illustrative example of adaptive planning. The planner may
choose long-distance subgoals in the easier areas (e.g. the left most
part) and use short distances in the hard areas (e.g. middle part).

We show the effectiveness of AdaSubS in three challenging domains: Sokoban, Rubik’s Cube, and
the inequality theorem prover INT |Wu et al|(2020). AdaSubS significantly surpasses hierarchical
planning algorithms and sets new state-of-the-art on INT.

Our main contributions are:

1. We propose Adaptive Subgoal Search (AdaSubS), a new algorithm that adjusts the planning
horizon to take into account the varying complexity of the state space.

2. We present a comprehensive study of adaptive methods, showing that they typically outper-
form non-adaptive ones. Amongst these, AdaSubS is the best choice across environments and
planning budgets.

3. We also observe a strong indication of out-of-distribution generalization. AdaSubS trained on
the proof of length 15 in INT (longest considered in the literature so far) retains more than 50%
of its performance when the proof length is increased two-fold.

The code of our method is available at https://github.com/AdaptiveSubgoalSearch/adaptive_subs.

2 RELATED WORK

The combination of planning algorithms with deep learning is an active area of research. It provided
impressive results e.g. in automated theorem proving [Polu & Sutskever (2009), games of chess
and Go Silver et al.| (2017), Atari benchmark |Schrittwieser et al.| (2019) and video compression
Mandhane et al.| (2022)).

In the field of hierarchical planning, majority of deep-learning-based methods has focused on visual
domains [Kim et al.| (2019); [Nasiriany et al.| (2019); Pertsch et al.| (2020a)); [Nair & Finn| (2020);
Jayaraman et al.|(2019); Fang et al.|(2019)); Pertsch et al.| (2020b)) or on landmark-based navigation
methods Savinov et al.|(2018)); Liu et al.|(2020a)); |Gao et al.|(2017); Stein et al.| (2018));Zhang et al.
(2020). This body of work often relies on variational autoencoders for the compression of visual
observations and uses planning mechanisms suitable for continuous control settings.

There exist many approaches to hierarchical planning utilizing different temporal distances. |[Kim
et al.| (2019) and |Pertsch et al.| (2020b) use hierarchical variational models to learn the temporal
structure of tasks by reconstructing the visual state sequences. [Pertsch et al.| (2020a); [Parascandolo
et al.| (2020); Jurgenson et al.| (2020) recursively construct a plan by generating subgoals in the
middle between the existing ones. These works have been shown to work on domains with limited

https://github.com/AdaptiveSubgoalSearch/adaptive_subs

Published as a workshop paper at NeurIPS 2022

combinatorial complexity. They often assume being able to generate the middle state, and thus,
arguably, unlikely to cover harder scenarios.

Recently, Czechowski et al.[(2021)) has shown how combinatorially complex domains can be treated
with a hierarchical planning method. Their approach shares similarities with our Adaptive Subgoal
Search; however, it cannot address variable environment variable complexity. By using the mech-
anism of adaptive selection of the subgoal generation distance and verifier, we successfully tackle
this problem, confirmed by significant performance gains over (Czechowski et al.| (2021).

Our verifier is based on an idea similar to |Cobbe et al.| (2021). They propose a verifier network
that is used to assess the correctness of sequences sampled from the language model. |Kurutach
et al.| (2018) uses a verification mechanism to approximate distances between states and optimize
plans in latent space with gradient descent in continuous control domains. Functionally, our verifier
resembles an affordance function from|Ahn et al.|(2022)), which is used there to score the feasibility
of hypothetical robotic plans.

3 METHOD

In this work, we propose Adaptive Subgoal Search (AdaSubS), a subgoal-based search algorithm
designed to solve tasks that can be formulated as a search over a graph with a known transition
model. AdaSubS is the best choice stemming from a careful study of methods based on the principle
of mixing subgoal distances, see Section [d.4] for their definitions and empirical comparisons.

AdaSubsS (see Algorithm|[T)) utilizes the following key compo-

searchtree [D

nents: subgoal generators, verifier, conditional low-level pol- Initial

icy (CLLP), and value function. These components are im- state

plemented using trained neural networks (see Appendix B). e
To solve a task, AdaSubS iteratively builds a tree of subgoals Ll
reachable from the initial state until the target state is reached A28 i

or the search budget is depleted. In each iteration, it chooses a & 2 &
node in the tree that is expanded by one of the generators. The h : N
chosen generator creates a few subgoal candidates, i.e., states A
expected to be a few steps closer to the target than the current 4 68 7
node. For each of them, we use the verifier and CLLP to check { ,‘

whether they are valid and reachable within a few steps. For

the correct subgoals, we compute their value function, place XJ X v
them in the search tree, and the next iteration follows. o] |ar] |ee

subgoal candidates

AdaSubS follows the general structure of Best-First Search
BestFS (BestFS); thus the key design decision is how we pri-
oritize nodes to expand and choose generators to produce sub-
goals. We defer the answer to these questions after providing
details of the algorithm components (see also Appendix [G).

Figure 1: Anexample iteration of the
search performed by AdaSubS.

Subgoal generators. Subgoal generator, or more precisely k-subgoal generator, takes a state as
input and returns a diverse set of new candidate states expected to be & step closer to the solution.
The key trade-off, which AdaSubS needs to address, is that further subgoals, i.e., those for higher
values of k, advance faster towards the target but are also increasingly harder to generate and verify.
We typically use a few (e.g., 3) generators.

Conditional low-level policy (CLLP). CLLP returns a path of low-level actions between two states
(see Algorithm [2)). CLLP calls iteratively a conditional low-level policy network (PN). PN takes as
input the current and target states and returns an action. It is possible that CLLP is not able to reach
the target, in which case an empty sequence is returned. The role of CLLP is two-fold: it serves
as a mechanism allowing AdaSubS to transition between subgoals, and together with the verifier
network, it is used in the subgoal verification algorithm (see Algorithm [3).

Verifier. The verifier network is used in the verification algorithm (see Algorithm 3), to answer the
following binary classification question: given a starting state and a goal state, is it possible to reach
the latter from the former using conditional low-level policy? Computationally, the evaluation of
the verifier network is faster than CLLP. However, since verifier is a binary classifier, we expect two

Published as a workshop paper at NeurIPS 2022

types of error to occur: accept invalid subgoals or reject valid subgoals. To control these error levels,
the verification algorithm accepts (resp. rejects) a subgoal if the verifier network values are above
(resp. below) a certain threshold. In the remaining case, the algorithm falls back on CLLP to decide
whether to keep or discard a given subgoal.

Value function. The value function is a neural network that estimates the negative distance between
the current state and the goal state. This information is later used by the planner when selecting the
next node to expand.

Adaptive Subgoal Search. The particular way in which AdaSubS chooses nodes to expand and a
generator to produce subgoals (see highlighted lines in Algorithm[I)) implements an adaptive mech-
anism adjusting the planning horizon. The key difficulty to tackle is that further subgoals, despite
being capable of advancing the search faster, are more likely to be faulty. Nevertheless, we assume
an optimistic approach prioritizing the longer distances (e.g., higher k). If the search using the long
steps is stuck, the planner retracts and expands the most promising, high-value nodes with closer,
more conservative subgoals. The verifier network helps in mitigating the risks of this strategy, as
it allows for the rejection of faulty subgoals efficiently. This way, by traversing easier parts using
fast long-distance subgoals and conservative ones in harder parts, AdaSubS adapts to the variable
complexity of the environment.

Algorithm [T] presents a simple implementation of this approach. The nodes in the search tree are
placed in a max-priority queue T" with keys, being the pairs (k, v) of the next subgoal distance and
its estimated value, sorted in the lexicographical order. In this way, Algorithm [I|uses the highest k&
possible, searching with the BestFS strategy over values. This might get stuck if for the given k£ all
generated subgoal are invalid (faulty or unreachable), in which case we expand for shorter distances.
If successful, we go back to generating with the highest value of k. After reaching the target states
AdaSubS reconstructs the path of subgoals and fills it with low-level actions, see function LL_PATH
in Algorithm

3.1 TRAINING OBJECTIVES

The components of AdaSubS are trained using a dataset of offline trajectories of subsequent states
and actions: (sg,aq),-- -, (Sn—1,an—1), Sn. We do not assume that they are perfect; for some of
our environments, even randomly generated trajectories turn out to be sufficient. Details on how the
data is collected for each domain can be found in Section d.T|and Appendix

Provided with such data, we train the k-generators to map s; onto s;4. The value function is trained
to map s; onto (i — n). CLLP is trained to map (s;, s;+q) onto a; for every d < kmax (Kmax is the
maximal distance of the subgoal generators used).

We note that AdaSubS still works, albeit much worse, if we disable verifier network (e.g. by setting
tns = 1 and t1, = 0 in Algorithm [3). However, it is a useful setup to gather a dataset of subgoals
and their reachability verified by CLLP. This dataset is used to train the verifier network. For details
see Appendix [D}]

For INT and Rubik’s Cube, we use transformer models for all the key components. For the Sokoban,
we utilize convolutional networks, for details see Appendix B}

4 EXPERIMENTS

We empirically demonstrate the efficiency of Adaptive Subgoal Search on three complex reasoning
domains: Sokoban, Rubik’s Cube, and the inequality proving benchmark INT Wu et al. (2020).
We demonstrate that AdaSubS is the best choice in a family of adaptive methods. Interestingly,
even weaker methods in this class also outperform non-adaptive baselines. Finally, we show that
AdaSubS has strong out-of-distribution generalization properties on INT.

As the performance metric, we use the success rate, defined as the fraction of solved problem in-
stances. The computational budget is defined as the graph size, i.e., the number of nodes visited
during the search and evaluated with a neural network (subgoal generator, value function, verifier,
or conditional low-level policy). In Appendix [C|we provide details concerning the number of neural
network calls and wall-time evaluations.

Published as a workshop paper at NeurIPS 2022

Algorithm 1 Adaptive Subgoal Search Algorithm 2 Conditional low-level policy
Requires: Ch max number of nodesRequires: C5 steps limit
\%4 value function network 7 conditional low-level
Pkos- -+ Pk, subgoal generators policy network
SOLVED predicate of solution M model of the environment
function SOLVE(sy) function GET_PATH(s¢, subgoal)
T« 0 step «+ 0
> priority queue with lexicographic order S < so
parents «+ {} action_path < ||
for kin kg, ..., k,, do while step < C5 do
T.PUSH(((k, V(s0)), S0)) action < 7.PREDICT(s, subgoal)
seen.ADD(so) > seen is a set action_path.APPEND(action)
while 0 < LEN(T) and LEN(seen) < C; do B M NEXT_STATE(s, action)
(k,_),s + T.EXTRACT_MAX() if s = subgoal then
subgoals < pi(s) return action_path
for s’ in subgoals do step < step+1
if s’ in seen then continue return ||
if not IS_VALID(s, s’) then
continue

Algorithm 3 Verification algorithm

seen.ADD(s')

parents[s’] « s Requires: v verifier network

for k in ko, ..., k,, do tni upper threshold
T.PUSH(((k,V (s)),8")) t1o lower threshold
if SOLVED(s’) then function 1s_VALID(s, s')
return LL_PATH(s', parents) if u(s, s') > ty; then return True
> get low-level path, see Alg. f] elseif v(s,s’) < t1, then return False
return False return GET_PATH(s, s’) # |]

4.1 EXPERIMENTAL DOMAINS AND DATASETS

Sokoban is a puzzle in which the goal is to push boxes on target locations. It is a popular testing
ground for classical planning methods [Lipovetzky & Geftner| (2012), and deep-learning approaches
Guez et al.| (2019); Mitos et al.| (2019). Sokoban is considered to be hard [Fern et al.| (2011) due to
its combinatorial complexity. Finding a solution for a given Sokoban board is an NP-hard problem.
In our experiments we used 12 x 12 Sokoban boards with four boxes.

Rubik’s Cube is a celebrated 3D puzzle with over 4.3 x 108 possible configurations. Recently
Agostinelli et al.| (2019); |Czechowski et al.| (2021)) have developed methods for solving Rubik’s
Cube using neural networks.

INT is a benchmark for automated theorem proving proposed by [Wu et al.| (2020). It consists of a
generator of mathematical inequalities and a tool for proof verification. An action (proof step) in
INT is a string containing an axiom and a specification of its input entities, making the action space
effectively infinite and thus challenging search algorithms.

To collect offline trajectories datasets for Rubik’s Cube, we generate random paths of length 20
starting from the solved cube and take them in reversed order. For INT we use the generator provided
by|Wu et al.|(2020). For Sokoban, we use the expert data generated by a reinforcement learning agent
Mitos et al.|(2019). Detailed information is contained in Appendix

4.2 PROTOCOL AND BASELINES

Our protocol consists of three stages. In the first one, an offline dataset is prepared, see Section
and Appendix [D| Secondly, we use this dataset to train the learnable components of AdaSubS: the
family of subgoal generators, verifier network, and value network, see Section[3.1} Evaluation is the
final step in which the algorithm’s performance, measured by the success rates, is calculated.

Published as a workshop paper at NeurIPS 2022

As baselines, we use BestFS and kSubS. The former is a well-known class of search algorithms
(including A*), which, among others, performs strongly on problems with high combinatorial com-
plexity |Pearl| (1984), achieves state-of-the-art results in theorem proving |[Polu & Sutskever] (2009)),
and strong results on Rubik’s Cube|Agostinelli et al.|(2019); Czechowski et al.| (2021).

kSubS is the first general learned hierarchical planning algorithm shown to work on complex reason-
ing domains |Czechowski et al.| (2021) (called BF-kSubS there), attaining strong results on Sokoban
and Rubik’s Cube, and INT. kSubS can be view as a non-adaptive version of AdaSubS realized by a
suitable hyperparameters choice: a single subgoal generator and inactive verifier (t1, = 0,tp; = 1).

For details on the hyperparameter choice for our method and the baselines see Appendix [F}

= AdaSubs (ours) kSubS = BestFS
Sokoban Rubik's Cube
1.0 1.0
0.8 0.8
[[
- -
Coe6 Coe6
wn wn
wn wn
[(o
Soa Soa
=} >
(%] (%]
0.2 0.2
0.0 0.0
10t 102 103 104 10t 102 103 104
Graph size Graph size
INT (proof length 15) INT (proof length 20)
1.0 1.0
0.8 0.8
[[
2 2
Co6 Co6
%] %]
wv wv
(] [
004 0 0.4
3 >
w (]
0.2 0.2
0.0 0.0
102 103 102 103
Graph size Graph size

Figure 2: The success rates of AdaSubS, kSubS, and BestFS expressed in terms of graph size. The figure in the
bottom right shows the out-of-distribution performance of methods evaluated on INT with the proof length 20
but trained on length 15. The remaining figures present the in-distribution performance. Shaded areas indicate
95% confidence intervals.

4.3 MAIN RESULTS: IN- AND OUT- OF DISTRIBUTION PERFORMANCE

AdaSubS shows overall strong in- and out- of distribution performance. The results for the former
regime are presented in Figure 2] which shows that AdaSubS is able to make use of search capacity
in the most effective manner, practically dominating other methods across the graph size spectrum.
Taking a closer look at the low computational budgets, one can observe that AdaSubS achieves
significantly positive success rates while the competing methods struggle. Perhaps the most striking
difference is observed for INT, where at the budget of 50 nodes AdaSubS achieves around 60%
success rate, while kSubS has the success rate close to zero and BestFS does not exceed 10%. This
is particularly impressive since the budget of 50 nodes is only slightly larger than three times the
considered proof length. To summarize, AdaSubS performs well in low computational regimes,
which can be helpful in systems that need to solve search problems under compute or memory
constraints.

At the far end of the computational budget spectrum, AdaSubS still performs the best, achieving
above 90% performance in each environment (~ 95% for INT, 100% for Rubik’s Cube, and 93%
for Sokoban). Importantly, when success rates are high, and consequently the absolute differences
between methods’ results seem to be low, it is instructive to think about failure rates instead. For
instance, in the case of INT (the proof length 15) the failure rate of kSubS is 9%, almost twice
the failure rate of AdaSubS. For more results on low and high budgets, see Tables [I0}I2] in Ap-

pendix

Published as a workshop paper at NeurIPS 2022

ksubS [N
INT out-of-distribution generalization Adasubs (ours) =3

10- 93
08 0.88 0.875

0779 076

=1 =] o
~ @ @

Success rate

o
[N)

0.0
16 17 18 19 20 21 22 24 26 28

Proof length

Figure 3: Out-of-distribution performance of AdaSubS and kSubS for long proofs in INT with budget of 5000
nodes. Both methods were trained on proofs of length 15. Error bars correspond to 95% confidence intervals.

For the out-of-distribution analysis, we used INT, an environment designed to study this phe-
nomenon. Namely, we investigate how methods trained on the proofs of length 15 perform on
problems with longer proofs, see Figure[3] The length 15 is the longest considered in the literature
Czechowski et al.|(2021)), and we go much further, studying the proof lengths up to 28. AdaSubS
retains more than 50% of its performance, suffering a relatively slow decay of 3.5% (on average)
per one step of the proof. This stands in stark contrast to kSubS, which already loses half of its per-
formance at the proofs of length 21. AdaSubS not only outperforms kSubS at each difficulty level
but also achieves the most significant advantage on the hardest problems. As an additional study, we
provide a full profile of the success rate with respect to the graph size for the proof length 20; see
bottom right corner of Figure[2} Adaptive Subgoal Search performs much better than the baselines,
with the biggest advantage for large budgets.

The performance boost of AdaSubS over the baselines stems from two components: the verifier
and the adaptativeness of subgoal selection. The former allows to assign a bigger fraction of a
computational budget on search, by recovering a part of it from CLLP. This could in principle
already provide significant gain to the method. However, as shown in Table [T] and Tables [TO{I2]
in Appendix verifier helps, but only to a limited degree. Consequently, the majority of the
improvement stems from the algorithmic novelty offered by the adaptive procedure. The adaptivity
mechanism in AdaSubS creates this interesting dynamic that incentives the method to be optimistic
about choosing the subgoal distances while providing the safety net in case this optimism fails. How
it works in practice can be nicely seen in Sokoban, where AdaSubS uses 8-subgoals 91.8% of the
time, 4-subgoals 7.4% of the time, and 2-subgoals the remaining 0.8% of the timeﬂ

As a final note, Figure 2] can be used to infer the computational budget required for achieving a cer-
tain success rate. Additionally, the ratio of success rate to the graph size can measure the efficiency
of the chosen budget, while the derivative of the success rate with respect to graph size provides the
marginal utility of the increase in the budget.

4.4 DEVELOPING ADAPTIVE SEARCH METHODS

In this section, we present a comprehensive empirical study of four adaptive methods. This lets us
draw two main conclusions: adaptive search methods outperform non-adaptive ones, and Longest-
first (on which AdaSubS is based) is the most efficient adaptive procedure. We present full results
for INT, the hardest environment, and shortened results for Rubik and Sokoban, see Table[I] The
complete set of numerical results, along with an extended discussion, can be found in Appendix [H]

The four adaptive methods presented in this section are implemented using the search methocﬂ
Their adaptivity mechanism is defined by setting the way the subgoals are generated and the order

' Additionally, the 8-generator, the 4-generator, and the 2-generator generate subgoals that are on average
6.9, 3.9, and 2.0 steps away, respectively. For AdaSubS parameters see Tablein Appendixﬁ

2 Adaptivity may also be implemented using the subgoal generator. We considered various approaches in
this category, however, they did not perform better than the non-adaptive baseline kSubS, see Appendix @

Published as a workshop paper at NeurIPS 2022

in which the states are processed. This happens in two distinguished lines in Algorithm [I] and
changing them determines how the search prioritizes various distances.

INT Rubik (with verifier)
Small budget (50 nodes) Large budget (1000 nodes) 400 nodes 6000 nodes
with verifier without with verifier ~ without BestFS 0.0% 1.8%
kSubS 28.8% 98.6%
BestFS - L7% - 36.7% MixSub$ 19.1% 99.2%
k=4 2.2% 0.1% 82.4% 83.0% Iterative mixing 50.6% 99.1%
k=3 4.0% 0.2% 89.6% 90.7% Strongest-first ~ 33.4% 99.0%
kSubS k=2 21% 0.5% 89.8% 91.7% Longest-first 58.0% 99.2%
k=1 0.0% 0.0% 34.7% 46.0%
k=1[4,3,2] 0.0% 0.0% 94.6% 95.0% Sokoban (small budget, 100 nodes)
MixSubS k=(3,2,1] 0.0% 0.0% 92.2% 92.9% — :
k=(3,2] 17.0% 14.8% 92.2% 93.5% with verifier without
iterations = [1, 1, 1] 32.0% 30.1% 87.0% 88.6% BestFS - 45.9%
Iterative mixing iterations = [10,1,1] 43.0% 44.8% 95.1% 96.0% kSubS 26.0% 4.7%
iterations = [4, 2, 1] 54.0% 52.1% 93.6% 95.5% MixSubS 52.7% 37.7%
Iterative mixing 64.5% 52.6%
07
Strongest-first 39.5% 40.8% 88.5% 89.8% Strongest-first 54.6% 41.9%
Longest-first 59.0% 51.5% 95.7% 95.5% Longest-first 72.2% 63.4%

Table 1: (left) Results for the INT environment. For each case, except specified otherwise, the distances of
subgoal generators are k = [3, 2, 1]. (right) Shortened results for Rubik and Sokoban, for complete results see
Tableand Table The results were obtained on at least 1000 problems each, which yields +3% Bernoulli
95% confidence intervals.

Specifically, we designed and tested the following methods: MixSubS, Iterative mixing, Strongest-
fist, Longest-fist. Each method uses a set of n generators py,, ..., pi, trained to produce subgoals
on different distances k1 < ... < k, (recall Section for training details). A more detailed
description of the methods (and pseudocodes) can be found in Appendix [H]

* MixSubS is the simplest approach, in which for each processed state we generate one subgoal
from each generator py, (subgoals < UJ_;py; (s)). In each iteration, MixSubS chooses a
state with the highest value estimation V() to process.

e Iterative Mixing is similar to MixSubS and allows for advanced schedules of generators to
be used. In the consecutive iterations, the i-th generator is used to expand [; nodes before
switching to the next generator. This allows us to flexibly prioritize the better generators, but
at the cost of tuning tuning additional hyperparameters 1, .. .,[,. For these reasons, it is not
practical, but useful as a reference point.

* Strongest-first uses one generator at a time (subgoals < py,(s)), where k; is the longest
distance not previously used in s. In each iteration, Strongest-first chooses a state with the
highest value estimation V (s) to process.

* Longest-first prioritizes long subgoals over the whole search procedure. Only if the queue does
not contain any nodes with the highest k, it uses subgoals of lower distances. The nodes are
processed in the order of their value estimation V'(s).

The high-level conclusion, resulting from our empirical evaluation, is that the performance of meth-
ods is roughly ordered as follows: Longest-first > Iterative mixing > MixSubS > Strongest-first >
kSubS > BestFS.

In more detail, already the simple MixSubS works better than the non-adaptive baselines. In par-
ticular, it can outperform the maximum of performances of kSubS for each k. This is in line with
the intuition that our mixing mechanism can elicit benefits of various distances while avoiding their
drawbacks. We conjecture that whenever a single generator begins to struggle, the search advances
with the help of another generator, allowing for stable progress. Iterative mixing is able to exhibit
strong performance; however, it needs tedious schedule tuning for each domain.

Strongest-first and Longest-first implement bias towards longer distances. Even though they are
quite similar, they display a large performance difference. We speculate that when Strongest-first

We speculate that assessing the state difficulty is a hard learning problem; thus, it might be easier to handle it
by a search mechanism.

Published as a workshop paper at NeurIPS 2022

encounters an area with falsely large value estimates, it wastes a lot of compute to examine it with
all subgoal distances. On the other hand, Longest-first first explores other areas before using shorter
subgoals and thus is able to avoid this problem. We stress that these effects are far from being
obvious; however, they occur robustly across our test scenarios.

4.5 QUALITY OF ADASUBS COMPONENTS

k-trade off

The effectiveness of AdaSubS depends on the quality of
its trainable components, below we present analysis for
generators and verifiers. 08

Generator: % trade-off. The quality of generators dete-
riorates when k is increased. In Sokoban, nearly 90%
of subgoals created with the 4-generator are valid (ac-
cording to CLLP), however at the same time for the 16- 0.2
generator, this statistic drops to 50%. On the other hand,

longer distances are beneficial for search as they allow to oL - ;}Me"e'aw'ma
build sparser search trees and achieve a solution faster. It Graph size

pays off to be optimistic (i.e., choose long distances) for

small budgets, while more prudent choices get the upper Figure 4. Comparison of success rates
hand when more compute is available. Crucially, Ada- for different subgoal generators for
SubS with multiple generators successfully resolves the Sokoban. AdaSubS-k describes using a
trade-off, outperforming every single generator, see Fig- single generator with distance .

ure 4l

Verifier: precision and recall For each subgoal, the verifier outputs a classification probability p,
which is used to accept the subgoal (if p > ¢;), reject the subgoal (if p < %;,) or to pass to the
further verification by CLLP (if p € [{;,, tns]). For the acceptance task, we require high precision,
as one false positive can lead to a failure of the whole search procedure (for Sokoban ¢;,; = 0.99
corresponds to the precision of 97%). For the rejection task, we do not want to reject true positives,
i.e., we aim for high recall (¢;, = 0.1 for Sokoban gives the recall of 99%). It turns out that for the
selected thresholds, the verifier is able to assess 70% states without the CLLP assistance.

Success rate

—— AdaSubs (ours)
16-generator
- 8-generator

5 LIMITATIONS AND FUTURE WORK

Determinism, access to model dynamics Our main focus is combinatorially complex domains.
There are many applications of interest in which we can assume access to underlying dynamics and
determinism (for example Automated Theorem Proving). Nevertheless, it is an interesting future
direction to adjust our method to stochastic domains and learned models.

Reliance on the offline data In our experiments, we need offline datasets of successful trajectories.
We leave for future work developing an algorithm based on the expert iteration paradigm.

Path optimization The goal of our algorithm is to find any path leading to the solution. In many
real-world problems, it is also important to find a short path or one with a high reward.

Combine with recursive search methods In some domains, one can generate useful subgoals for
long distances and recursively split the problem [Pertsch et al.| (2020a); [Parascandolo et al.[(2020);
Jurgenson et al.| (2020). It would be interesting to propose an algorithm that automatically detects
when such an approach is possible and combine two ways (our and recursive) of generating subgoals.

6 CONCLUSIONS

We study planning methods that adapt to the local complexity of a solved problem. We concentrate
on the adaptive selection of the subgoal distance realized by mixing various subgoal generators. We
show that methods based on this principle outperform non-adaptive counterparts They can tackle
complex reasoning tasks as demonstrated on Sokoban, the Rubik’s Cube, and INT. Our main algo-
rithm, AdaSubS, is the best of the tested choices across all the environments and search budgets.
Interestingly, AdaSubS exhibits strong out-of-distribution generalization capability, retaining much
of its performance for harder problem instances on INT than it was trained for.

Published as a workshop paper at NeurIPS 2022

REFERENCES

Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. Solving the rubik’s
cube with deep reinforcement learning and search. Nature Machine Intelligence, 1(8):356-363,
2019.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Ju-
lian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kan-
ishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan,
Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, and Mengyuan
Yan. Do as i can, not as i say: Grounding language in robotic affordances, 2022. URL
https://arxiv.org/abs/2204.01691.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Konrad Czechowski, Tomasz Odrzyg6zdz, Marek Zbysinski, Michatl Zawalski, Krzysztof Olejnik,
Yuhuai Wu, Lukasz Kucifiski, and Piotr Mitos. Subgoal search for complex reasoning tasks.
Advances in Neural Information Processing Systems, 34:624-638, 2021.

Kuan Fang, Yuke Zhu, Animesh Garg, Silvio Savarese, and Li Fei-Fei. Dynamics learning with
cascaded variational inference for multi-step manipulation. arXiv preprint arXiv:1910.13395,
2019.

Alan Fern, Roni Khardon, and Prasad Tadepalli. The first learning track of the international planning
competition. Machine Learning, 84(1-2):81-107, 2011.

Wei Gao, David Hsu, Wee Sun Lee, Shengmei Shen, and Karthikk Subramanian. Intention-net:
Integrating planning and deep learning for goal-directed autonomous navigation. In /st Annual
Conference on Robot Learning, CoRL 2017, Mountain View, California, USA, November 13-
15, 2017, Proceedings, volume 78 of Proceedings of Machine Learning Research, pp. 185-194.
PMLR, 2017. URL http://proceedings.mlr.press/v78/gaol7a.html.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racaniere, Théophane Weber,
David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, et al. An investigation of model-free
planning. In International Conference on Machine Learning, pp. 2464-2473. PMLR, 2019.

Jeffrey R Hollerman, Leon Tremblay, and Wolfram Schultz. Involvement of basal ganglia and
orbitofrontal cortex in goal-directed behavior. Progress in brain research, 126:193-215, 2000.

Dinesh Jayaraman, Frederik Ebert, Alexei A. Efros, and Sergey Levine. Time-agnostic predic-
tion: Predicting predictable video frames. In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=SyzVb3CcFX.

Tom Jurgenson, Or Avner, Edward Groshev, and Aviv Tamar. Sub-goal trees a framework for goal-
based reinforcement learning. In International Conference on Machine Learning, pp. 5020-5030.
PMLR, 2020.

Taesup Kim, Sungjin Ahn, and Yoshua Bengio. Variational temporal abstraction. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Ro-
man Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pp. 11566-11575, 2019. URL https://proceedings.neurips.cc/
paper/2019/hash/b5d3ad899f70013367f24e0blfa75944-Abstract.htmll

Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J. Russell, and Pieter Abbeel. Learn-
ing plannable representations with causal infogan. In Samy Bengio, Hanna M. Wallach,

10

https://arxiv.org/abs/2204.01691
http://proceedings.mlr.press/v78/gao17a.html
https://openreview.net/forum?id=SyzVb3CcFX
https://proceedings.neurips.cc/paper/2019/hash/b5d3ad899f70013367f24e0b1fa75944-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b5d3ad899f70013367f24e0b1fa75944-Abstract.html

Published as a workshop paper at NeurIPS 2022

Hugo Larochelle, Kristen Grauman, Nicold Cesa-Bianchi, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurlPS 2018, December 3-8, 2018, Montréal, Canada, pp.
8747-8758, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
08aacb6ac98e59e523995cl161e57875f5-Abstract.htmll

Nir Lipovetzky and Hector Geffner. Width and serialization of classical planning problems. In ECAI
2012, pp. 540-545. I0S Press, 2012.

Kara Liu, Thanard Kurutach, Christine Tung, Pieter Abbeel, and Aviv Tamar. Hallucinative
topological memory for zero-shot visual planning. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 6259—6270. PMLR, 2020a. URL http:
//proceedings.mlr.press/v119/1iu20h.html.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis,
and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation. CoRR,
abs/2001.08210, 2020b. URL https://arxiv.org/abs/2001.08210.

Amol Mandhane, Anton Zhernov, Maribeth Rauh, Chenjie Gu, Miaosen Wang, Flora Xue, Wendy
Shang, Derek Pang, Rene Claus, Ching-Han Chiang, et al. Muzero with self-competition for rate
control in vp9 video compression. arXiv preprint arXiv:2202.06626, 2022.

Piotr MitoS, Lukasz Kucinski, Konrad Czechowski, Piotr Kozakowski, and Maciek Klimek.
Uncertainty-sensitive learning and planning with ensembles. arXiv preprint arXiv:1912.09996,
2019.

Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks
via visual subgoal generation. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?i1d=H1gzR2VKDH.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-
conditioned policies. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information Processing Sys-
tems 2019, NeurlPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 14814—
14825, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
c8ccbe90ccbffd44c9cee23611711lcdcd4—-Abstract.htmll

Giambattista Parascandolo, Lars Buesing, Josh Merel, Leonard Hasenclever, John Aslanides, Jes-
sica B Hamrick, Nicolas Heess, Alexander Neitz, and Theophane Weber. Divide-and-conquer
monte carlo tree search for goal-directed planning. arXiv preprint arXiv:2004.11410, 2020.

Judea Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley
Longman Publishing Co., Inc., 1984.

Karl Pertsch, Oleh Rybkin, Frederik Ebert, Shenghao Zhou, Dinesh Jayaraman, Chelsea Finn,
and Sergey Levine. Long-horizon visual planning with goal-conditioned hierarchical pre-
dictors. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020a. URL https://proceedings.neurips.cc/paper/2020/
hash/c8d3a760ebab631565£8509d84b3b3fl1-Abstract.htmll

Karl Pertsch, Oleh Rybkin, Jingyun Yang, Shenghao Zhou, Konstantinos G. Derpanis, Kostas Dani-
ilidis, Joseph J. Lim, and Andrew Jaegle. Keyframing the future: Keyframe discovery for visual
prediction and planning. In Alexandre M. Bayen, Ali Jadbabaie, George J. Pappas, Pablo A.
Parrilo, Benjamin Recht, Claire J. Tomlin, and Melanie N. Zeilinger (eds.), Proceedings of the
2nd Annual Conference on Learning for Dynamics and Control, L4DC 2020, Online Event,
Berkeley, CA, USA, 11-12 June 2020, volume 120 of Proceedings of Machine Learning Re-
search, pp. 969-979. PMLR, 2020b. URL http://proceedings.mlr.press/v120/
pertsch20a.html.

11

https://proceedings.neurips.cc/paper/2018/hash/08aac6ac98e59e523995c161e57875f5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/08aac6ac98e59e523995c161e57875f5-Abstract.html
http://proceedings.mlr.press/v119/liu20h.html
http://proceedings.mlr.press/v119/liu20h.html
https://arxiv.org/abs/2001.08210
https://openreview.net/forum?id=H1gzR2VKDH
https://openreview.net/forum?id=H1gzR2VKDH
https://proceedings.neurips.cc/paper/2019/hash/c8cc6e90ccbff44c9cee23611711cdc4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c8cc6e90ccbff44c9cee23611711cdc4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html
http://proceedings.mlr.press/v120/pertsch20a.html
http://proceedings.mlr.press/v120/pertsch20a.html

Published as a workshop paper at NeurIPS 2022

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
corr abs/2009.03393 (2020), 2009.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory for
navigation. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
URL https://openreview.net/forum?id=SygwwGbRW.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. ArXiv,
abs/1911.08265, 2019.

David Silver, Thomas Hubert, Julian Schrittwieser, [oannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen
Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. ArXiv, abs/1712.01815, 2017.

Gregory J. Stein, Christopher Bradley, and Nicholas Roy. Learning over subgoals for efficient
navigation of structured, unknown environments. In 2nd Annual Conference on Robot Learning,
CoRL 2018, Ziirich, Switzerland, 29-31 October 2018, Proceedings, volume 87 of Proceedings
of Machine Learning Research, pp. 213-222. PMLR, 2018. URL http://proceedings.
mlr.press/v87/steinl8a.html.

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Grosse. Int: An inequality benchmark for evaluating
generalization in theorem proving. arXiv preprint arXiv:2007.02924, 2020.

Lunjun Zhang, Ge Yang, and Bradly C. Stadie. World model as a graph: Learning latent land-
marks for planning. CoRR, abs/2011.12491, 2020. URL https://arxiv.org/abs/2011.
12491,

12

https://openreview.net/forum?id=SygwwGbRW
http://proceedings.mlr.press/v87/stein18a.html
http://proceedings.mlr.press/v87/stein18a.html
https://arxiv.org/abs/2011.12491
https://arxiv.org/abs/2011.12491

Published as a workshop paper at NeurIPS 2022

A LOW-LEVEL PATH FUNCTION

The low-level path function (see LL_PATH, Algorithm |4) computes a path from the starting state
to the goal state in the environment using low-level actions. However, it is responsible not only
for returning the path but also for checking false positive errors of the verifier. Specifically, the
verifier can accept an unreachable state in Algorithm [3|and then wrongly include it in the solution
path. Thus, LL_PATH has to construct a low-level path and confirm that every step on the way is
achievable.

Algorithm 4 Low-level path

function LL_PATH(s, parents)
> parents is the dictionary of parent nodes in the subgoal tree. (S,C) € parents means that
C is a subgoal for state S

path « [|

while s in parents.KEYS() do
subgoal_path + GET_PATH(parents|s], s) > see Algorithm 2]
if subgoal_path = [| then return False > mistake of the verifier

path < concatenate(subgoal_path, path)
S + parents|s]

return path

13

Published as a workshop paper at NeurIPS 2022

B TRAINING DETAILS

B.1 ARCHITECTURES

INT and Rubik’s cube. All components of AdaSubS utilize the same architecture. Specifically, we
used mBart, a transformer from the HuggingFace library (see Liu et al.| (2020b))). To make training
of the model and the inference faster we reduced the number of parameters: we used 45M learned
parameters instead of 680M in the original implementation. We used 6 layers of encoder and 6 layers
of decoder. The dimension of the model was set to 512 and the number of attention heads to 8. We
adjusted the size of the inner layer of position-wise fully connected to 2048. During the inference,
we used beam search with width 16 for INT and width 32 for Rubik’s Cube. Our implementation of
the model follows (Czechowski et al.,|2021, Appendix B.1)

Sokoban. We used four convolutional neural networks: the subgoal generator, conditional low-
level policy, value, and the verifier. They all share the same architecture with a different last layer,
depending on the type of output. Each model had 7 convolutional layers with kernel size (3,3)
and 64 channels. Conditional low-level policy and verifier need two Sokoban boards as an input,
so for these networks we concatenate them (across the last, depth dimension) and we treat two
boards as one tensor. For the value function on top of a stack of convolutional layers there is a fully
connected layer with 150 outputs representing 150 distances to the goal or. CLLP has analogous
final layers with the one exception that there are only two classes: determining if a subgoal is
possible to reach by CLLP or not. Network used for generation of subgoals returns two outputs:
distribution over possible modifications of a given state, and prediction whether a modified state is
a good subgoal. First output is obtained with a fully connected layer, second with global average
pooling followed by fully connected layer. Generation of a single subgoal is realised as a sequence
of calls to this network. We start from a given state and iteratively apply modifications with high
probability assigned by the first head of the network, until the second head predict that no more
iterations are needed. (see also Appendix |[G.I)

B.2 TRAINING PIPELINE

To ensure fair comparison with |Czechowski et al.| (2021) we followed their settings of training
pipeline.

INT and Rubik’s Cube. To train the models we used the training pipeline from the HuggingFace
library [Liu et al.|(2020b). We trained our models from scratch without using any pretrained check-
points. The size of the training batch was 32, the dropout was set to 0.1, and there was no label
smoothing. We used the Adam optimizer with the following parameters: 5; = 0.9, 83 = 0.999,
€ = 10~%. We applied warm-up learning schedule with 4000 warm-up steps and a peak learning rate
of 3 - 10~%. For inference in INT, we used temperature 1 and for Rubik’s Cube to 0.5 (the optimal
value was chosen experimentally).

Sokoban. For the training of all networks we used a supervised setting with the learning rate 10~*
and trained for 200 epochs. We used Adam optimizer with 8; = 0.9, 82 = 0.999 and e = 107,

B.3 DATASETS

For dataset used to train all the network see Appendix

14

Published as a workshop paper at NeurIPS 2022

C COMPUTATIONAL BUDGET ANALYSIS

The default metric of the graph size that we use for comparisons counts all the states visited during
the search, both high-level subgoals and intermediate states passed by the CLLP. It is a good estimate
of the number of steps the algorithm takes to solve the given problem. For completeness, in this
section, we analyze the total number of calls to every learned component of the pipeline for AdaSubS
and the baseline kSubS.

Since all of the main components are deep neural networks, their evaluation time dominates the
computational budget. Tables and [present the number of calls to each component per 1000
episodes. That indicates which component consumes the largest part of the computational budget.
The results are presented for different numbers of beams (see Appendix [G.T) used for sampling
predictions from the subgoal generators — the only component that outputs a set of predictions. The
default number of beams was 16 for Sokoban and INT, and 32 for the Rubik’s Cube (see Appendix
[F| for the complete list of the parameters).

As the tables show, AdaSubS not only solves more problems within smaller search graphs but also
calls each component fewer times, which results in faster inference.

In the Rubik’s Cube, the calls to the generators dominate the computations. However, when using
smaller beams, this number can be significantly reduced while preserving the high success rate. In
all the environments, AdaSubS is less sensitive to reducing the number of beams than kSubS in
terms of performance. This is the case since in AdaSubS every single generator creates less subgoal
candidates (see Tables[7}9), thus it does not require wide beam search. Therefore, by reducing the
number of beams, AdaSubS can provide strong results within a much shorter time.

In the Rubik’s Cube and Sokoban, using the verifier in AdaSubS significantly reduces the number of
calls to the low-level policy. However, in INT it is not the case. In most cases when kSubS fails to
find a solution, at some point it cannot create any valid subgoal, thus the search ends early. AdaSubS
does not suffer from this issue, since it uses more generators. Thus, it counts the calls even from
hard instances that require much larger graphs.

As shown in Table[3] if we count the calls only for the tasks solved by both methods, AdaSubS offers
an advantage. Therefore, AdaSubS indeed provides better results within a smaller computational
budget compared to kSubS.

Environment | Rubik’s Cube
Variant kSubS kSubS AdaSubS AdaSubS AdaSubS AdaSubS
(32 beams) (4 beams) | (32 beams) (8 beams) (4 beams) (2 beams)
Success rate 98.8 97.1 99.2 99.2 99 98.5
Generator calls | 6 085 504 852424 | 8872512 2205296 1244344 680702
Verifier calls 0 0 277266 275662 311086 340 351
Policy calls 1330328 1526116| 352883 350877 395804 446 320
Value calls 259381 285899 | 163566 162859 181828 197 567
Total calls 7675213 26644399 666227 2994694 2133062 1664 940
Wall-time 24h 13h38m | 26h39m 13h43m 13h9m 10h 9m

Table 2: Comparison of the number of calls to generator, verifier, policy, and value networks for different
number of beams (width of beam search in subgoal generation)) for Rubik’s Cube environment.

15

Published as a workshop paper at NeurIPS 2022

Environment | Sokoban
Variant kSubS kSubS kSubS AdaSubS AdaSubS AdaSubS
(16 beams) (8 beams) (4 beams) | (16 beams) (8 beams) (4 beams)
Success rate 84.4 84.6 82.3 94 94 94.1
Generator calls | 2 500 192 1281368 746812 |3389456 1692096 848 764
Verifier calls 0 0 0 211841 211512 212191
Policy calls 4576 807 4693216 5554468 | 248 120 247785 247 993
Value calls 183056 187337 216409 81 829 81716 81929
Total calls 7260055 6161921 6301280|3931246 2233109 1390877
Wall-time 13h33m 10h 50m 9h 20m 15Sh6m 10h56m 8h31m

Table 3: Comparison of the number of calls to generator, verifier, policy, and value networks for different
number of beams (width of beam search in subgoal generation) for Sokoban environment.

Environment | INT
Variant kSubS kSubS AdaSubS AdaSubS AdaSubS
(16 beams) (4 beams) | (16 beams) (8 beams) (4 beams)
Success rate 90.7 89.7 96 96 95.3
Generator calls | 107472 26008 | 362560 166032 76356
Verifier calls 0 0 67 980 62262 57267
Policy calls 378 125 366 805 | 801345 738000 659 545
Value calls 6906 6 682 14 053 13012 11928
Total calls 492 503 399495 | 1245938 979 306 805 096
Wall-time 4h 15m 3h22m | 12h 10m 8h5Im 86 38m

Table 4: Comparison of the number of calls to generator, verifier, policy, and value networks for different
number of beams (width of beam search in subgoal generation) for INT environment.

Environment | INT
Variant | kSubS ~AdaSubS
Generator calls| 93472 102112
Verifier calls 0 19 146
Policy calls 328 485 300 120
Value calls 6206 5597

Total calls | 428 163 426975

Table 5: Comparison of the number of calls to generator, verifier, policy, and value networks for problems
solved by both methods for INT environment.

16

Published as a workshop paper at NeurIPS 2022

D DATASETS AND DATA PROCESSING

Sokoban. To collect offline data for Sokoban we used an MCTS-based RL agent from Mitos et al.
(2019). Namely, the dataset consisted of all successful trajectories obtained by the agent: 154000
trajectories for 12x12 boards with four boxes. We use 15% of states from each trajectory to create
the training dataset D. We performed the split of dataset D into two parts of equal size: D7 and
Ds. The former was used to train the subgoal generators and conditional low-level policy, while
the latter was used to train the verifier network. This split mitigates the possibility of the verifier’s
over-optimism concerning the probability of achieving subgoals by CLLP.

INT. We represent both states and actions as strings. For states, we used an internal INT tool for such
representation. For actions, we concatenate one token representing the axiom and the arguments for
this axiom (tokenized mathematical expressions) following (Czechowski et al.|(2021)).

To generate the dataset of successful trajectories we used the configurable generator of inequalities
from the INT benchmark (see Wu et al.[(2020)). We adjusted it to construct trajectories of length 15
with all available axioms. The dataset used for our experiments consisted of 2 - 10° trajectories.

Rubik’s Cube. To construct a single successful trajectory we performed 20 random permutations
on an initially solved Rubik’s Cube and took the reverse of this sequence. Using this procedure we
collected 107 trajectories.

D.1 DATASET FOR VERIFIER

The verifier answers the question of whether a given subgoal is reachable by the CLLP. Thus, the
dataset for training this component cannot be simply extracted from the offline trajectories.

To get the training samples for the Rubik’s Cube and INT, we run AdaSubS without the verifier.
That is, we set t,; = 1 and t1, = 0, which essentially means that the reachability of all the
subgoal candidates is checked solely by CLLP. During the searching, the generators create subgoal
candidates, which are then verified by CLLP. Therefore, after working on some problem instances,
we obtain a reach dataset of valid and not valid subgoals, marked by CLLP.

For the experiments in Sokoban, the limitation of the size of the offline dataset is an important factor
for the final performance. Therefore, to ensure a fair comparison of AdaSubS with baselines, we do
not generate additional solutions. Instead, we split the dataset as described above into Dy and D,
and used only D, to generate data for the verifier. From every trajectory in Dy, we sample some
root states. For every such state, we use the subgoal generators to predict subgoal candidates. Then,
CLLP checks the validity of each of them and we include them in the verifier training dataset.

After collection, it is essential to balance the dataset. Easy instances with short solutions provide
fewer datapoints than hard tasks that require a deep search. Thus, it may happen that a substantial
fraction of data collected this way comes from a single instance, reducing the diversity of the dataset.
We observed such issues, particularly in the INT environment. To prevent this, during the collection
of the data for INT, we limit the datapoints that can be collected from a single problem instance to
at most 100. This way, we collected about 5 - 10® training samples for the verifier for each domain.

17

Published as a workshop paper at NeurIPS 2022

E BASELINES

As baselines, we use BestFS and BF-kSubS.

BestFS is a well-known class of search algorithms (including A*), which, among others, performs
strongly on problems with high combinatorial complexity [Pearl (1984)), achieves state-of-the-art
results in theorem proving |Polu & Sutskever| (2009), and strong results on Rubik’s Cube |Agostinelli
et al.| (2019); |Czechowski et al.[(2021)).

Similarly to AdaSubS, BestFS iteratively expands the graph of visited states by choosing nodes with
the highest value and adding its children to the priority queue. However, instead of using children
from the subgoal tree, it uses direct neighbors in the environment space. In other words, we use a
single policy network to generate neighbor subgoals in the distance of 1 action from a given node
and treat it as a new subgoal. One can implement BestFS by replacing the call to a subgoal generator
pr. in Algorithm [T|with ppps.

pprs works in the following way. First, it uses a trained policy network to generate actions to
investigate. Specifically, for INT we use beam search to generate high probability actions (it is
necessary as for INT we represent actions as sequences, following |Czechowski et al.|(2021))). Then,
it uses these actions to get a state that follows a given action (note that all our environments are
deterministic). Finally, we treat returned states as our new subgoals, which are easily found in one
step by the low-level policy.

BF-kSubS is the first general learned hierarchical planning algorithm shown to work on complex
reasoning domains |Czechowski et al.|(2021), attaining strong results on Sokoban and Rubik’s Cube
and state-of-the-art results on INT. BF-kSubS is a special case of AdaSubS with the following hy-
perparameters choice: a single subgoal generator and inactive verifier (with t;, = 0 and ty; = 1)
in Algorithm 3)).

18

Published as a workshop paper at NeurIPS 2022

F HYPERPARAMETERS

Environment | Sokoban | Rubik’s Cube | INT
learning rate 1074 3-107% 3-1074
learning rate warmup steps - 4000 4000
batch size 32 32 32
kernel size (3, 3] - -
weight decay 10~* - -
dropout - 0.1 0.1

Table 6: Hyperparameters used for training.

Environment \ Sokoban

Method ‘ kSubS MixSubS AdaSubS (ours)
number of subgoals 4 1 1
number of beams 16 16 16
beam search temperature 1 1 1
k-generators 8 [8, 4, 2] [8, 4, 2]
number of steps to check (C5) 10 [10, 6, 4] [10, 6, 4]
max steps in solution check - 18 18
max nodes in search tree (C) 5000 5000 5000
acceptance threshold of verifier (¢3;) - 0.99 0.99
rejection threshold of verifier (¢;,) - 0.1 0.1

Table 7: Hyperparameters used for evaluation in the Sokoban environment.

Environment \ the Rubik’s Cube
Method ‘ kSubS MixSubS AdaSubsS (ours)
number of subgoals 3 1 1
number of beams 32 32 32
beam search temperature 0.5 0.5 0.5
k-generators 4 [4, 3] [4, 3, 2]
number of steps to check (C5) 4 [4, 3] [4, 3, 2]
max steps in solution check - 4 4
max nodes in search tree (C1) 5000 5000 5000
acceptance threshold of verifier (¢5;) - 0.995 0.995
rejection threshold of verifier (¢;,) - 0.0005 0.0005

Table 8: Hyperparameters used for evaluation in the Rubik’s Cube environment.

Most of the hyperparameters, both for training and evaluation, follow from|Czechowski et al.|(2021).

The most important parameter of AdaSubS is the set of k-generators to use and the number of
subgoals each of them generate. Based on experimental results, we have chosen generators of 8, 4,
and 2 steps for Sokoban, 4, 3, and 2 steps for the Rubik’s Cube, and 4, 3, 2, and 1 step for INT. In
the first two domains, the longest generator match the one used for kSubS. In INT, AdaSubS allows
using even longer subgoals than kSubS.

For kSubS, we used k equal to 8, 4, and 4 for Sokoban, Rubik’s Cube, and INT, respectively. The
last two were chosen from [Czechowski et al.[(2021)), as they performed the best. For Sokoban, our

experiments showed that 8-generator performs better than the 4-generator proposed in |(Czechowski
et al.[|(2021)).

19

Published as a workshop paper at NeurIPS 2022

Environment \ INT

Method | kSubS MixSubS AdaSub$ (ours)
number of subgoals 4 2 3
number of beams 16 16 16
beam search temperature 1 1 1
k-generators 3 [3,2,1] [3,2,1]
number of steps to check (C5) 3 [3,2,1] [3,2,1]
max steps in solution check - 5 5
max nodes in search tree (C1) 400 400 400
acceptance threshold of verifier (¢,;) - 1 1
rejection threshold of verifier (¢;,) - 0.1 0.1

Table 9: Hyperparameters used for evaluation in the INT environment.

The hyperparameters for training the verifier network remain the same as for other components. The
thresholds t5; and ¢;, were chosen with a grid-search for every domain. Though some of the chosen
values may seem tight, they efficiently reduce the amount of required computations (see Appendix
@. For instance, the rejection threshold for the Rubik’s Cube of t1, = 0.0005 seems to be very low,

but it is enough to reject more than 85% of non-valid subgoals.

The parameter C (see Algorithm [I)) controls the number of high-level nodes in the search tree. It is
lower than the actual graph size that we use for comparisons since it counts neither the intermediate
out to be invalid. That hyperparameter was cho-
sen so that it allows all the evaluated algorithms to reach the graph size values used for comparison

states visited by CLLP nor the subgoals that turned

in Figure [2]and others in Section 4]

20

Published as a workshop paper at NeurIPS 2022

G COMPONENTS OF THE ADASUBS

G.1 SUBGOAL GENERATORS

The main purpose of the subgoal generator is to propose subgoal candidates in every iteration of the
planner loop. That is, given the current state s of the environment it should output other states that
are a few steps closer to the goal g.

We train a k-generator by extracting training data from successful trajectories. Let sg, s1, . .., S, be
a trajectory that leads to the goal s,,. For every state s; we train the k-generator network to output
the state s;, 1, exactly k steps ahead. Provided with a dataset of trajectories, this is a supervised
objective. Clearly, a state that is k steps ahead does not need to be exactly k steps closer to the
solution, especially if the trajectories include noise or exploration. However, it is guaranteed to be
at most k steps closer, which allows setting reliable limits for the reachability checking.

In a simple approach, k is a hyperparameter that needs to be fixed, as proposed by |Czechowski et al.
(2021). However, this is a strong limitation if the environment exhibits the variable complexity prob-
lem. Therefore, AdaSubS instead uses a set of generators, trained for different values of k. This way,
the planner can adjust the expansion to match the local complexity of the problem. Additionally,
training a set of generators can be easily parallelized.

For our generators, we use the transformer architecture. The input state is encoded as a sequence
of tokens, as described in (Czechowski et al.| 2021, Appendix C). The network produces another
sequence of tokens on the output, which is then decoded to a subgoal state. The output sequence is
optimized for the highest joint probability with beam search — the consecutive tokens are sampled
iteratively and a fixed number of locally best sequences passes to the next iteration. This way, the
generator allows sampling of a diverse set of subgoals by adjusting the beam width and sampling
temperature. The exact number of the subgoals that the generators output are given in Appendix [F}

As noted in Section for the Sokoban environment instead of transformers we use simple con-
volutional networks. In this domain, the subgoal is created by a sequence of changes to the input
state. The generator network is trained to predict the probability of changing for every pixel. Then,
the subgoals are obtained as a sequence of modifications that maximize the joint probability. For
simplicity, in AdaSubS we use beam search for all the domains, including Sokoban.

G.2 CONDITIONAL LOW-LEVEL POLICY (CLLP)

When we want to add a subgoal candidate to our search tree, we need to check whether it is reachable
from the current state. This can be done using CLLP — a mapping that given a state and a subgoal
produces a sequence of actions that connects those configurations, or claim there is no. Specifically,
the policy network, given the state and subgoal, iteratively selects the best action and executes it
until the subgoal is reached or a threshold number of steps is exceeded, as shown in Algorithm 2]

CLLP is trained to imitate the policy that collected the training data. For every pair of states s;, s;
that are located at most d steps from each other, it is trained to predict the action a;, taken in the
state s;. Such action may not be optimal but usually it leads closer to s;. The threshold d controls
the range of the policy, as it is trained to connect states that are at most d steps away. Thus, it is
essential to set the hyperparameter d to a value that is greater than the distances of all the generators
used.

G.3 VERIFIER

To check whether a k-subgoal is reachable with the conditional policy, we need to call it up to k
times. If we decide to use generators with long horizons, it becomes a significant computational
cost. To mitigate this issue, we use the verifier that estimates the validity of a subgoal candidate
in a single call. During the search, the generated subgoal candidates are evaluated by the verifier.
For each of them, it estimates whether they are valid and outputs its confidence. If the returned
confidence exceeds a fixed threshold, we do not run the costly check with the conditional policy. We
perform such a check only in case the verifier is uncertain (see Algorithm [3).

21

Published as a workshop paper at NeurIPS 2022

At the end of the search, when a solving trajectory is found, we need to find the paths between all
the pairs of consecutive subgoals that were omitted due to the verifier (see Algorithm). Since the
length of the final trajectory is usually much smaller than the search tree, that final check requires
much less computations.

It should be noted that the verifier estimates validity with respect to the conditional policy that is
used. In case a valid subgoal is generated but the policy cannot reach it for some reason, it cannot be
used to build the search tree anyway, for no solution that uses it can be generated in the final phase.
Thus, the verifier should be trained to predict whether the CLLP that is used can reach the subgoal,
rather than whether it is reachable by an optimal policy.

To train the verifier, we run our pipeline on some problem instances. All the subgoals created by
the generators are validated with CLLP. This way, eventually we obtain a dataset of reachable and
unreachable subgoal candidates. We train the verifier network to fit that data. Unlike for the other
components, training the verifier does not require access to any trajectories, only to a number of
problem instances.

G.4 VALUE FUNCTION.

The value function V' : & — R estimates the negative distance between the current state s and
the goal state g. During the search, this information is used to select the most promising nodes to
expand. For every trajectory sy, . .., S, in the dataset it is trained to output : — n given s;. We opted
for a simple training objective but any value function can be used in the algorithm.

22

Published as a workshop paper at NeurIPS 2022

H DEVELOPING ADAPTIVE SEARCH METHODS

There are many natural ways to incorporate adaptivity to the subgoal search pipeline. We experi-
mented with several designs to find one that gives strong results in any domain. Here we provide
detailed description of all the tested variants and the numerical results of their evaluation in our
environments. Their implementations can be found in Section [H.2}

An adaptive algorithm should adjust the complexity of the proposed subgoals to the local complexity
of the environment in the neighbourhood of the processed state. This can be realized with the
following two approaches:

» Use adaptive planner that provided a list of k-generators, in every step selects the most
promising node and a generator to expand it.

» Use adaptive subgoal generator that instead of proposing fixed-distance subgoals learns to
automatically adjust the distance.

H.1 ADAPTIVE PLANNERS

When implementing the adaptivity with the planner, we need to specify a list of k-generators
Pkos- - -5 Pk,,- 1IN every iteration, the algorithm will select a node to expand and generators from
the list that will create the new subgoals. This way, it can directly control the complexity of the
subgoals and adapt to the current state and progress of the search.

MixSubS. Given a list of trained k-generators, a simple approach is to call all of them each time a
node is expanded. In every iteration, we choose the node with the highest value in the tree and add
subgoals proposed by each generator py, to py,, . See Algorithm [5|for the implementation.

Observe that in the easy areas of the environment the search will progress fast, since the furthest
subgoal will most likely have the highest value, so it will be chosen as the next node to expand.
On the other hand, in the hard parts the shortest generators are more likely to provide subgoals that
advance towards the target at least a step.

This method already achieve superior results compared to single generators, both on small and large
budget. In the Rubik environment, it even reaches 100% solved cubes. MixSubS offer the advantage
of planning with different horizons, but at the same time, it produces many unnecessary nodes in the
easy areas, where taking only long steps suffices to solve the task. Additionally, one may want to
prioritize the generators that perform better, which cannot be done with this method.

Iterative mixing. In this approach, we specify a number of iterations /; for each generator py,. We
use py, to expand the highest-valued nodes in the first [y iterations. Then, we use pj, to expand
the best nodes in the following /; iterations and the procedure follows for the consecutive genera-
tors. After finishing with the last one, we start again from the beginning. See Algorithm [6] for the
implementation.

This algorithm offers the flexibility of specifying the exact number of iterations for each genera-
tor, which forms an explicit prioritization. It can resemble some of the listed algorithms for care-
fully chosen ;. However, tuning the number of iterations requires much more effort than the other
parameter-free algorithms do. Therefore, we experimented with another two mixing approaches that
in every iteration select the generator automatically.

Strongest-first. Another natural implementation of the planner is to choose the node with the high-
est value and expand it with the longest generator that was not used there yet. See Algorithm [7)for
the implementation. While this greedy approach maintain clear advantage over single generators, it
is outperformed by most of the mixing methods, even the simple mixes. We hypothesize that this
method is more sensitive to the errors of the value function — if the search enters an area that the
value function estimates too optimistically, it spends too much time trying to exploit it.

Longest-first (used by AdaSubS). This method in every iteration selects the longest generator that
has at least one node to expand and highest-valued node for that generator in the queue. This way,
it explicitly prioritizes using the longest generators and turns to the shorter only when the search
is stuck. See Algorithm B] for the implementation. As shown in the tables below, this method
outperforms all other designs, in all the environments and within all budget constraints. It prioritizes

23

Published as a workshop paper at NeurIPS 2022

the better generators, but does not require specifying any additional hyperparameters. Therefore, we
consider it the best mixing algorithm and use in AdaSubS as the default planner.

H.2 ADAPTIVE PLANNERS IMPLEMENTATIONS

In this section we provide the implementations of the planners. The lines highlighted in blue indicate
the differences with the AdaSubS code. All the methods require specifying the list of generators
Pkos - - - » Pk, - The Iterative mixing planner additionally requires a list of iterations lg, . . ., .

Algorithm 5 MixSubS

Algorithm 6 Iterative mixing

function SOLVE(s)

T« 0 > priority queue

parents « {}
T.PUSH((‘/(So)7 So))
seen.ADD(so)
while 0 < LEN(T) and LEN(seen) < C do
_,s < T.EXTRACT_MAX()
Subgoals <« {pi, (5);. - i, (5)}
for s’ in subgoals do
if s’ in seen then continue
if not 1S_VALID(s, s’) then
continue
seen.ADD(s')
parents(s’] < s
T.pUsH((V (s'),s"))
if SOLVED(s’) then
return LL_PATH(s', parents)

return False

function SOLVE(s)

Ty, < 0 >m + 1 priority queues
parents « {}
for k in ko, ...,k do
Tk.PUSH((V(SO), So))
seen.ADD(so)
cnt <0 > Iterations counter
id« 0 > Current generator id
while 0 < LEN(T) and LEN(seen) < C do
if cnt = l34 or LEN(T%,,) = O then
id < (id+ 1)%(m + 1), cnt < 0
cnt <—cnt 41
_,8 ¢ Tk, .EXTRACT_MAX()
subgoals < pg,,(s)
for s’ in subgoals do
if s’ in seen then continue
if not 1IS_VALID(s, s’) then
continue
seen.ADD(s')
parents[s’] < s
for k in ko, ..., km do
Tx.PUSH((V (8'),8"))
if SOLVED(s’) then
return LL_PATH(s', parents)

return False

Algorithm 7 Strongest-first Algorithm 8 Longest-first

function SOLVE(s) function SOLVE(s)

T+« (0 b priority queue with lexicographic order
parents « {}
for kin ko, ..., ky, do
T.PUSH(((V (s0), k), s0))
seen.ADD(so)
while 0 < LEN(T) and LEN(seen) < C; do
(_,k),s < T.EXTRACT_MAX()
subgoals <+ px(s)
for s’ in subgoals do
if s’ in seen then continue
if not 1IS_VALID(s, s") then
continue
seen.ADD(s’)
parents(s’] < s
for kin ko, ..., km do
TrusH(((V ('), k),)
if SOLVED(s’) then
return LL_PATH(s', parents)

return False

T+« (0 b priority queue with lexicographic order
parents « {}
for kin ko, ..., km do
T.PUSH(((k, V (s0)), 80))
seen.ADD(so)
while 0 < LEN(T) and LEN(seen) < C; do
(k,_),s < T.EXTRACT_MAX()
subgoals < pi(s)
for s’ in subgoals do
if s’ in seen then continue
if not 1S_VALID(s, s") then
continue
seen.ADD(s’)
parents(s’] < s
for kin ko, ..., km do
Tpusi(((k, V(')),)
if SOLVED(s’) then
return LL_PATH(s', parents)

return False

24

Published as a workshop paper at NeurIPS 2022

H.3 ADAPTIVE GENERATORS

A k-generator is trained to propose subgoals that should be exactly k steps ahead. However, instead
of matching a fixed distance, it can opt for long subgoals when the next steps are clear and short
when difficulties appear, or both if it is not certain.

Implementing this idea requires changing the training of the generator. Given a training trajectory,
for each state s; we need to select the target state s,(;) that should be the output of the generator. We
tested a few methods that select this target.

Longest-reachable We use the low-level conditional policy to estimate the local complexity around
si. Specifically, we choose s,(;) to be the furthest state on the trajectory such that it is reachable from
s; with the CLLP and so do all its predecessors. In other words, we check whether CLLP starting
in s; can reach s;11, s;42, etc. When we find the first state s; that is not reachable, we set t(i) to be
j—1

Intuitively, this approach makes the generator learn to output subgoals as distant as possible, but
still reachable for CLLP. However, this way the targets are selected on the borderline of reachability,
which may lead to too hard subgoals in some cases.

Sampling-reachable To make the target state selection more robust, we modify the reachability
verification. Instead of greedily following the best action determined by CLLP probabilities, in
every step we sample the action. This way, we are more likely to take suboptimal actions, so the
selected target should be reachable with higher confidence.

Secondary-reachable Another method of making more robust selection is to follow the action with
the lowest probability that exceeds a fixed threshold, e.g. 25%. Intuitively, we follow the action that
CLLP consider as good, but is less certain than in case of the highest-ranked. Therefore, a subgoal
reached in this way should be reachable with even higher confidence when following the greedy
actions.

Our experiments show that the adaptive generators trained according to those designs perform well
in the environments we consider. For instance, all the methods reach nearly 90% solve rate on
Sokoban. However, none of them provide better results than the kSubS baseline. Therefore in this
work we focus on planner-based adaptivity and leave tuning the adaptive generators pipeline for
future work.

H.4 BENCHMARKING RESULTS

Tables show the numerical results achived by the adaptive planners described in section [H.T]
compared to baselines: BestFS and kSubS. For some of the methods a few variants are provided.
In each table, the longest-first, strongest-first and iterative mixing methods use the same set of
generators: [3,2,1] for INT, [4,3,2] for Rubik, and [8,4, 2] for Sokoban. Our main algorithm,
Adaptive Subgoal Search, uses the longest-first planner and the verifier network.

25

Published as a workshop paper at NeurIPS 2022

INT
Small budget (50 nodes) Large budget (1000 nodes)

with verifier without with verifier without

BestFS - 1.7% - 36.7%
=4 2.2% 0.1% 82.4% 83.0%

KSubS k=3 4.0% 0.2% 89.6% 90.7%
=2 2.1% 0.5% 89.8% 91.7%

=1 0.0% 0.0% 34.7% 46.0%

k=[4,3,2] 0.0% 0.0% 94.6% 95.0%

MixSubS k=[3,2,1] 0.0% 0.0% 92.2% 92.9%
k=[3,2] 17.0% 14.8% 92.2% 93.5%
iterations=[1,1,1] 32.0% 30.1% 87.0% 88.6%

Iterative mixing iterations=[10,1,1] 43.0% 44.8% 95.1% 96.0%
iterations=[4,2,1] 54.0% 52.1% 93.6% 95.5%

Strongest-first 39.5% 40.8% 88.5% 89.8%
Longest-first 59.0% 51.5% 95.7% 95.5%

Table 10: INT benchmark

Rubik

Small budget (400 nodes) Large budget (6000 nodes)

with verifier without with verifier without
BestFS - 0.0% - 1.8%

k=4 28.8% 24.5% 98.6% 98.8%
KSubS k=3 19.3% 18.6% 95.6% 95.4%
b k=2 8.2% 4.5% 99.0% 95.8%
k=1 0.5% 0.5% 76.5% 76.5%
MixSubS k=[4,3,2] 29.1% 20.9% 99.1% 100.0%
ot k=[4,3] 49.1% 45.1% 99.2% 100.0%
iterations=[1,1,1] 33.5% 23.0% 99.2% 100.0%
Iterative mixing iterations=[10,1,1] 50.6% 43.6% 99.1% 99.9%
iterations=[4,2,1] 48.4% 41.2% 99.2% 100.0%
Strongest-first 33.4% 27.1% 99.0% 99.9%
Longest-first 58.0% 52.4% 99.2% 100.0%

Table 11: Rubik benchmark

26

Published as a workshop paper at NeurIPS 2022

Sokoban

Small budget (100 nodes) Large budget (5000 nodes)
with verifier without with verifier without
BestFS - 45.9% - 82.6%
k=16 13.7% 5.1% 60.5% 63.5%
KSubS k=8 26.0% 4.7% 85.6% 84.4%
u k=4 8.2% 2.6% 68.1% 65.5%
k=2 1.4% 0.7% 40.0% 38.3%
MixSubS k=[8,4,2] 52.7% 37.7% 91.7% 90.2%
k=[16,8,4] 55.6% 44.9% 89.1% 89.0%
iterations=[1,1,1] 52.7% 37.7% 91.7% 90.2%
Iterative mixing iterations=[10,1,1] 68.3% 58.6% 92.5% 92.1%
iterations=[4,2,1] 64.5% 52.6% 93.5% 93.2%
Strongest-first 54.6% 41.9% 92.0% 90.8%
Longest-first 72.2% 63.4% 93.4% 93.6%

Table 12: Sokoban benchmark

27

Published as a workshop paper at NeurIPS 2022

I INFRASTRUCTURE USED

We performed experiments using two types of hardware: with and without access to GPUs. In
the former, we used nodes equipped with a single Nvidia V100 32GB card or Nvidia RTX 2080Ti
11GB. Each such node had 4 CPU cores and 168GB of RAM. In the latter, we used nodes equipped
with Intel Xeon E5-2697 2.60GHz CPU with 28 cores and 128GB RAM.

Each transformer model was trained on a single GPU node for 3 days. Sokoban models were trained
on CPU nodes (due to the small size of the models).

28

	Introduction
	Related work
	Method
	Training objectives

	Experiments
	Experimental domains and datasets
	Protocol and baselines
	Main results: in- and out- of distribution performance
	Developing adaptive search methods
	Quality of AdaSubS components

	Limitations and future work
	Conclusions
	Low-level path function
	Training details
	Architectures
	Training pipeline
	Datasets

	Computational budget analysis
	Datasets and data processing
	Dataset for verifier

	Baselines
	Hyperparameters
	Components of the AdaSubS
	Subgoal generators
	Conditional low-level policy (CLLP)
	Verifier
	Value function.

	Developing adaptive search methods
	Adaptive planners
	Adaptive planners implementations
	Adaptive generators
	Benchmarking results

	Infrastructure used

