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Abstract—We study the generalization error of statistical
learning models in a Federated Learning (FL) setting. Specifically,
there are K devices or clients, each holding an independent own
dataset of size n. Individual models, learned locally via Stochastic
Gradient Descent, are aggregated (averaged) by a central server
into a global model and then sent back to the devices. We consider
multiple (say R ∈ N∗) rounds of model aggregation and study
the effect of R on the generalization error of the final aggregated
model. We establish an upper bound on the generalization error
that accounts explicitly for the effect of R (in addition to the
number of participating devices K and dataset size n). It is
observed that, for fixed (n,K), the bound increases with R,
suggesting that the generalization of such learning algorithms
is negatively affected by more frequent communication with the
parameter server. Combined with the fact that the empirical
risk, however, generally decreases for larger values of R, this
indicates that R might be a parameter to optimize to reduce the
population risk of FL algorithms. The results of this paper, which
extend straightforwardly to the heterogeneous data setting, are
also illustrated through numerical examples.

I. INTRODUCTION AND PROBLEM SETUP

Consider the network statistical learning model shown in
Figure 1. Also, let some input data Z be distributed according
to an unknown distribution µ over some data space Z . For
example, in supervised learning settings Z := (X,Y ) where
X stands for a data sample and Y stands for its associated
label. There are K devices or clients each equipped with an
individual dataset consisting of n independent and identically
distributed (i.i.d.) data points, drawn according to the unknown
distribution µ (the extension of the results that will follow to
the heterogeneous, i.e., non i.i.d. setting is straightforward).
For instance, every device k ∈ [K] := {1, . . . ,K}, has a
dataset Sk := {Z(1)

k , . . . , Z
(n)
k } ⊆ Zn. The devices collabora-

tively train a (global) model by performing both local compu-
tations and updates based on R-round, R ∈ N∗, interactions
with a parameter server. During each round r ∈ [R], local
computations at device k ∈ [K] are performed using the
popular Stochastic Gradient Descent (SGD) algorithm, which
applies τ = n/R updates1 of its local model, obtained each
by taking one gradient step with respect to a sample from
its local data Sk. Over all rounds, we assume for simplicity
that each client performs an epoch over its training dataset
i.e., n iterations. Specifically, let for r ∈ [R] and t ∈ [τ ],
W

(r,t)
k denote the individual model of client k as obtained

after iteration t of round r. Also, let W
(r)

denote the model

1For ease of exposition, we assume that R divides n.

obtained by the parameter server at the end of round r, by
averaging the individual models of the various devices as
obtained during that round, i.e.,

W
(r)

=
1

K

K∑
k=1

W
(r,τ)
k . (1)

This (intermediate) aggregated model is shared with all devices
and used by them to update their own local models in the
first iteration of the next round, as follows. Without loss of
generality, let us denote by Sk,r := {Z((r−1)τ+t)

k }τt=1 the data
points of dataset Sk used by device k to perform τ successive
one-step SGD updates of its individual model. It is clear that
{Sk,1, . . . , Sk,R} forms a partition of Sk, i.e., ∪R

r=1Sk,r =
Sk. Also, throughout we let S denote the set of all available
datasets, i.e., S = ∪K

k=1Sk ∈ ZnK .

Fig. 1. Multi-round Stochastic Gradient Descent for Federated Learning.

For notational convenience, let for every k and r ≥ 2,
W

(r,0)
k designate the previous round’s aggregated model as

shared back by the parameter server, i.e.,

W
(r,0)
k = W

(r−1)
. (2)

For t = 1, . . . , τ , the updates of the model of device k during
round r ∈ [R] are obtained by τ successive one gradient steps
as

W
(r,t)
k = W

(r,t−1)
k − ηr,t∇ℓ(Z

((r−1)τ+t)
k ,W

(r,t−1)
k ), (3)

where ℓ : Z × W → R+ is the used loss function (assumed
to be identical for all devices) and ηr,t > 0 is the learning
rate at iteration t of round r. For simplicity, learning rates are
assumed to be identical across all devices. Also, in the first
round, prior to performing any computation all models are set
to some data-independent values.



The algorithm described here is a multi-round distributed
SGD for Federated Learning (FL), which we denote hereafter
in short as FL-SGD and we use interchangeably the shorthand
notations A and FL-SGD to refer to it, i.e., A = FL-SGD.
Its output hypothesis is the final aggregated model once the
R rounds are completed, i.e., W = W

(R)
; and it can be

computed using the recursion equations (1), (2) and (3).
The empirical risk on dataset s = {s1, . . . , sK} ∈ ZnK

of a particular hypothesis w = A(s) is evaluated as the
average, over all devices, of its empirical risk for each of them,
computed for all used data samples during all rounds, i.e.,

L̂(s, w) = 1

nK

K∑
k=1

R∑
r=1

τ∑
t=1

ℓ(z
((r−1)τ+t)
k , w). (4)

Similarly, the population risk for hypothesis w is given as
L(w) = EZ∼µ[ℓ(Z,w)]; and the generalization error for
dataset s = {s1, . . . , sK} ∈ ZnK and hypothesis w = A(s)
is evaluated as

gen(s, w) = L(w)− L̂(s, w). (5)

The expected generalization error, over all possible datasets
S = {S1, . . . , SK} ∈ ZnK , is defined as

ES∼µ⊗nK [gen(S,A(S))] = ES∼µ⊗nK

[
L(A(S))−L̂(S,A(S))

]
.

(6)
where the expectation in (6) is defined also w.r.t. any other
possible stochasticity in the learning algorithm.

In this paper we are interested in studying the generalization
error of A = FL-SGD. In particular, we ask the question:

How does the expected generalization error as defined by (6)
evolve with the number of rounds R?

Such question received so far only partial answer. For
example, it was shown theoretically [1]–[3], and also observed
experimentally therein, that in FL-type algorithms the empiri-
cal risk decreases with the number of rounds. However, to the
best of our knowledge, no work has studied this behavior for
the generalization error. One central mathematical difficulty
in studying the behavior of the expected generalization error
as defined by (6) lies in that common tools that are generally
applied in similar settings, such as the Leave-one-out Expan-
sion Lemma of [4], do not apply easily when the empirical
risk is defined as in (4) (and, so, the generalization error as
in (6)). In particular, as it will become clearer throughout
when the empirical risk is evaluated as given by (4) the
initialization step (2) induces statistical correlations among the
devices models’ which become stronger with R and are not
easy to handle. For example, observe that in the analysis of
the contribution of a particular model W

(r,t)
k to the overall

expected generalization error of the global hypothesis W as
defined by (6), one has to account for the dependence of W (r,t)

k

on other devices’ samples Z
(r′τ+t)
k′ for every k′ ̸= k, r′ < r

and t ∈ [τ ]. (See Figure 2). Perhaps this explains why while
the behavior of (6) was studied in a few works [5]–[8] for the
particular case of R = 1 (sometimes referred to as “one-shot"
FL), much lesser is known in the case of multi-round FL –
see Section I-B Related Works for few recent works on this,

in some of which the mentioned correlations are sometimes
eluded by defining the empirical risk differently.

A. Main Contributions

As we already mentioned, in this paper we study the
expected generalization error as defined by (6). We focus on
the case in which the loss function ℓ(·, ·) can be expressed as
a Bregman divergence [9]. This encompasses a large family
of loss functions, including the squared Euclidean distance
commonly used in regression problems. We establish an
upper bound on the generalization error (6) that accounts
explicitly for the number of rounds R. Essentially, the proof
techniques involve bounding steps that account judiciously for
the statistical correlations induced by (2) and which build up
through the rounds. Furthermore, by studying its evolution
with the number of rounds R we observe that, for fixed (n,K),
the established bound can increase with R, suggesting that
the generalization of FL-SGD is negatively affected by more
frequent communication with the parameter server. Combined
with known results about that the empirical risk, however,
generally decreases for larger values of R, this indicates that
R might be a parameter to optimize in order to reduce the
population risk of FL-SGD algorithms. These results, which
for simplicity are established here for the i.i.d. data setting
and extend easily to the heterogeneous (non i.i.d.) setting, are
also illustrated through some numerical examples in which the
bound is compared to the true (measured) generalization error.

It is noteworthy that the results of this paper extend easily
to the case of aperiodic communication with the parameter
server and/or more general aggregated models W

(r)
, such

as any arbitrary deterministic function of the local models
{W (r,τ)

k }Kk=1 among which the arithmetic average (1) that we
consider here is a common choice [10]. Finally, the analysis
also carries over easily for settings in which local model
updates also account for additional stochasticity through added
noise in the gradient steps, i.e., when (3) is substituted by the
more general

W
(r,t)
k = W

(r,t−1)
k − ηr,t∇ℓ(Z

((r−1)τ+t)
k ,W

(r,t−1)
k ) + ξt,

where ξt stands for some added random noise.

B. Related Works

A major focus of machine learning research over recent
years has been the study of statistical learning algorithms
when applied to data generated and processed in a distributed
(network or graph) manner [10]–[12]. Such setups are of
prime importance, especially when some degree of privacy is
required [13]–[16] and/or computational power is limited [16],
[17]. The study of the behavior of the generalization error,
a problem which is understood only very partially even in
centralized learning settings, is even more challenging in the
case of distributed and multi-round algorithms such as the
popular FL [10]. In particular, while a few works [1], [2]
have already demonstrated that multi-round communication
generally yields smaller empirical risk, only very little is
known about the effect of the number of communication



rounds on the generalization error. For the special case of one-
round communication, sometimes referred to as “distributed
learning" or “one-shot" FL, bounds on the generalization error
that improve upon the corresponding ones for the centralized
setting with, essentially a factor of 1/

√
K, are established

in [8] for linear and location models and losses that can be
expressed as Bregman divergence; and in [6] and [5] for a
broader class of loss functions, using information-theoretic and
rate-distortion theoretic approaches.

Compared with the multi-round setup that we study here, the
one-round setup suffers from the lack of a joint optimization
guarantee, i.e., it may not be possible to make the empirical
risk arbitrarily small. From a theoretical angle, however, the
study of the generalization error in this latter case is less
difficult comparatively, as there are no statistical couplings
among the devices’ models by the memoryless assumption on
the dataset. Most relevant to the problem that we study in
this paper is the recent work [8]. In [8], the authors study
a quantity, which they argue as being a proxy to the true
generalization error as defined by (6), given as

∆SGD(s) = (7)

1

R

R∑
r=1

(
L(w(r))− 1

τK

K∑
k=1

τ∑
t=1

ℓ(z
((r−1)τ+t)
k , w(r))

)
.

As the authors mention, this quantity is considered therein
mainly for simplicity and in order to avoid accounting for the
dependence of W (r,t)

k on other devices’ samples Z
(r′τ+t)
k′ for

every k′ ̸= k, r′ < r and t ∈ [τ ]. In a sense, this reduces
the problem to a virtual one-round setup; but at the expense
of analyzing the alternate quantity (7) in place of the true
generalization error (6) that we study in this paper.

C. Notations and Organization of the Paper

The rest of the paper is organized as follows. Some technical
complements are given in Section II-A. Then, Section II-B
presents an upper bound on the expected generalization error
of a model learned in the FL setup considered in this paper.
The effect of communication on the generalization error of
FL algorithms and what insights our bound give on that
effect are discussed in Section II-C. This is illustrated through
simulations, which are provided in Section III. Finally, our
result’s proof is given in section IV.

Random variables, their realizations, and their domains
are denoted respectively by upper-case, lower-case, and cal-
ligraphy fonts, e.g., X , x, and X . Their distributions and
expectations are denoted by PX and E[X]. For two random
variables X and Y , PX|Y denotes the conditional distribution
of X given Y . Z, W are subsets of Rd, d ≥ 1. ∥ · ∥ denotes
the standard Euclidean norm in Rd. For a, b ∈ N, [a; b] denotes
the set of integers between a and b. The set of integers from
1 to n ∈ N∗ is denoted by [n]. Other specific notations are
introduced throughout the paper, whenever they are used.

II. MAIN RESULTS

In this section we establish the main result of this paper,
which is an upper bound on the expected generalization error

of the studied FL-SGD as given by (6); and we study its
evolution with R.

A. Assumptions and Some Preliminaries

As already mentioned we focus on the case in which the
loss function ℓ(·, ·) is expressed as a Bregman divergence [9],
which includes a large family of losses such as the squared
error distance used extensively in regression problems (see
[18] for more examples of such loss functions). Recall that
for a continuously differentiable and strictly convex function
F : Rd → R, the associated Bregman divergence between two
vectors w, z ∈ Rd is defined as

DF (w, z) := F (w)− F (z)− ⟨∇F (z), w − z⟩.
where ⟨·, ·⟩ is the usual inner product.

In the results that will follow we will often make use of
one or both following assumptions.

Assumption 1: Let F : Rd → R be a continuously
differentiable and strictly convex function. The loss function
ℓ : Z ×W → R+ is the Bregman divergence associated to F
i.e., ∀ z, w ∈ Z ×W we have ℓ(z, w) = DF (w, z).

Assumption 2: The function F defining the Bregman diver-
gence DF is L-smooth for some L > 0 i.e., ∀w,w′ ∈ W we
have ∥∇F (w)−∇F (w′)∥ ≤ L∥w − w′∥.

In the proof of our upper bound on the expected general-
ization error (6) that will follow, we make extensive use of
the so-called Leave-one-out Lemma [4, Lemma 11], a result
which essentially relates the generalization error of a learning
algorithm B to its “average stability" to the replacement of a
sample in its training dataset D := {Z(1), . . . , Z(m)} ⊆ Zm

by an i.i.d. copy of it, i.e., the average difference between
losses obtained using a model trained using B on D and
one that is obtained using a model trained using B on an
i.i.d. dataset D̃ := {Z̃(1), . . . , Z̃(m)} ⊆ Zm, where for each
i ∈ [m], Z̃(i) is an i.i.d. copy of Z(i) ∼ µ.

Lemma 1 (Leave-one-out (Expansion) Lemma [4,
Lemma 11]): Let D(i) := {Z(1), . . . , Z̃(i), . . . , Z(m)}
be a version of D = {Z(1), . . . , Z(i), . . . , Z(m)} in which the
element Z(i) is replaced by an i.i.d. copy of it Z̃(i). Also,
denote D̃ = {Z̃(1), . . . , Z̃(m)}. Then, it holds that
ED∼µ⊗m [gen(D,B(D))]

=
1

m

m∑
i=1

ED,D̃

[
ℓ(Z̃(i),B(D))− ℓ(Z̃(i),B(D(i)))

]
. (8)

B. Upper Bound on the Expected Generalization Error

Let for every k ∈ [K] and i ∈ [n], S(i)
k designate a copy of

the dataset Sk of device k in which Z
(i)
k is replaced with an

i.i.d. copy of it Z̃(i)
k . That is, S(i)

k := (Sk \ {Z(i)
k }) ∪ {Z̃(i)

k }.
Also, recall the notation Sk,r = {Z((r−1)τ+t)

k }τt=1; and let
Ir := [(r − 1)τ + 1 : rτ ] designate the indices of data points
from Sk,r. Similarly, for every i ∈ Ir define S

(i)
k,r := (Sk,r \

Z
(i)
k ) ∪ Z̃

(i)
k . Also, we use the shorthand notation S1:K,r :=

∪K
k=1Sk,r.

Now, recall the FL-SGD algorithm studied in this paper and
described in Section I, whose output hypothesis is W = W

(R)



as can be computed using (1), (2) and (3). The analysis of
the associated expected generalization error as defined by (6),
however, is not easy. One important difficulty is as follows:
for every k′ ̸= k, r′ < r and t ∈ [τ ], a change of one sample
in Sk′,r′ implies a change of the model W (r′,t)

k′ of device k′;

and, in turn, of the (intermediate) aggregated model W
(r′)

and
all subsequent ones W

(r̃)
for r′ < r̃ ≤ R. In particular, this

changes W
(r,t)
k for all t ∈ [τ ]. (See Figure 2 for an example

with K = 2 and R = 2). These induced statistical correlations
then arise naturally when one applies Lemma 1, which thus
becomes less amenable to easy computations.

Fig. 2. Illustration of models’ coupling for a two-round FL-SGD with K = 2.

The next theorem states the main result of this paper, which
is an upper bound on the expected generalization error (6) of
W .

Theorem 1: Under Assumptions 1 and 2, it holds that

ES

[
gen(S,W )

]
≤ 1

RK2

R∑
r=1

K∑
k=1

ESk,r
[gen(Sk,r,A′(r − 1, Sk,r))] (9)

+

R−1∑
r=1

Lbr+1

nK2

∑
i∈Ir

K∑
k=1

E
[
∥∇F (Z̃

(i)
k )∥ ∥W (r,τ)

k\i −W
(r,τ)
k ∥

]
where:

(i) A′(r − 1, Sk,r) := E[SGD(r − 1, Sk,r)] where: the
expectation is over the distribution of ∪r−1

q=1S1:K,q and
for r ≥ 2, SGD(r − 1, Sk,r) denotes the output of
the (centralized) SGD algorithm when initialized with
W

(r−1)
and applied on samples of Sk,r – for r = 1,

SGD(0, Sk,1) := W
(1,0)
k .

(ii) W
(r,τ)
k\i is the model obtained by client k at the end of

the last iteration τ of round r when gradient steps are
applied on data points of dataset S(i)

k,r.
(iii) br+1 :=

∑R
q=r+1

∑τ
t=1 ηq,t(

∏t−1
h=1 1 + Lηq,h), satisfying∏0

h=1 1+Lηr,h = 1, where L is the smoothness constant
of Assumption 2.

(iv) The expectation in the second term of the RHS of (9) is
over the joint distribution of (Sk,r, S

′
k,r).

Proof: The proof of Theorem 1 is given in Section IV.

We now pause to discuss the result of the theorem. The
RHS of (9) may appear as somewhat not amenable to an easy

interpretation at first glance. A closer investigation, however,
reveals that it is not. In particular, one utility of the result
is that it somewhat decouples the aforementioned statistical
correlations. Indeed, the first sum term of the RHS of (9)
is an average over all devices and rounds of the expected
generalization error of a (centralized) modified SGD applied
at round r by device k on the part Sk,r of its local dataset
Sk. The modification is in that while the gradient steps are all
computed only w.r.t. to samples of Sk,r the model learned by
this modified SGD is an average (over all parts Sk′,r′ of all
devices and all rounds prior to round r), i.e., the term inside
the first sum of the RHS of (9) is

ESk,r

[
gen
(
Sk,r,ES1:K ,r′<r

[
SGD(W

(r−1)
, Sk,r)

])]
. (10)

Equivalently, recalling that SGD iterates essentially consist of
an initialization term added to an innovation term obtained
by application of the gradient of the loss function on a new
sample, for every pair (k, r) ∈ [K] × [R], (10) captures the
statistical correlations caused by the local models’ innovation
parts till round r. Similarly, for every (k, r) ∈ [K]× [R − 1]
the second sum term of the RHS of (9) captures the statistical
correlations caused by the local models’ innovation parts from
round (r + 1) to R. It is noteworthy that these correlations
are eluded if instead of the true generalization error (6) one
considers the proxy (7) of [8], a setting for which the second
term of the RHS of (9) vanishes.

The following corollary is an easy consequence of Theo-
rem 1.

Corollary 1: For “one-shot" FL-SGD, i.e., R = 1, if the
loss ℓ(·, ·) satisfies the condition of Assumption 1, then

ES

[
gen(S,W

(1)
)
]
=

1

K2

K∑
k=1

ESk

[
gen(Sk,W

(1,τ)
k )

]
. (11)

Proof: Observe that in the proof of Theorem 1 in Sec-
tion IV, in this case (R = 1) the second term of (19) is
zero. The rest of the proof follows by substituting τ = n
and applying Lemma 3.

It is interesting to observe that in (11) the expected gen-
eralization error decays with the number of clients K faster
than the average (over clients) of their individual expected
generalization errors defined w.r.t. to only their own datasets.
The convergence boost is of the order of 1/K.

C. Effect of Communication Rounds R

For simplicity we assume identical learning rates, i.e.,
ηr,t = η, ∀(r, t) ∈ [R] × [τ ]. Previous works [19]–[21] have
shown that SGD with n iterations on mini-batches of size
b, and with learning rate η, has an expected generalization
error that (roughly) evolves as O(f(b/η)/

√
n), where f(b/η)

is a function that captures the dependency on the mini-batch
size and learning rate. Moreover, several works [22], [23] have
reported that the function f(·) increases with increasing values
of the ratio b/η. Hereafter, in particular, we investigate two
extreme cases, R = 1 and R = n – see the next section for
results with other, intermediate, values of R.



For R = 1, the setup reduces to one-shot FL [17] in which
the local models are all trained in n iterations and aggregated
once. In this case, by application of Corollary 1 (see also [8]),
we get

E[gen(S,W (1)
)] = O

(
1

K
E[gen(S1,W

(1,n)
1 )]

)
= O(f(1/η)/

√
nK2).

For the case R = n, the models are aggregated after
each local iteration. Thus, the expected generalization error
coincides with that of SGD with mini-batch of size b = K
and learning rate η. A bound on the generalization error in
this case then behaves, roughly, as O(f(K/η)/

√
nK). Since

f(·) is an increasing function as observed, e.g., in [22], [23],
in particular, this means that for the FL-SGD that we study
in this paper the expected generalization error (6) increases
with the number of rounds R. This is in line with the findings
of [8] and [5] (see also [6]) which have established bounds
on the generalization error of a distributed setting that are
smaller than the corresponding one of the centralized learning.
This, combined with the intuition that more communication
generally induces further “homogeneity" among the individual
devices’ models, which then account better for variations in
each local dataset, is in accordance with our observation here
that (6) increases with R.

The result of Theorem 1 also reflects this evolution with R.
Indeed, the first term of (9) computed for R = n seems to
be larger than the corresponding one for R = 1. Moreover,
it is easily seen that for R = 1 the second term of (9)
equals zero whereas it is positive for R = n. The observation
that (6) increases with R is also illustrated numerically through
experiments in the next section.

III. EXPERIMENTAL RESULTS

We consider the ordinary least squares (OLS) regression
problem. Precisely, the loss function is the squared Euclidean
distance i.e., ∀z := (x, y) ∈ Rd × R,∀w ∈ Rd : ℓ(z, w) =
(wtx− y)2, which is a Bregman divergence DF for F : y 7→
y2. In our experiments, for a dataset S of size nK, we measure
the expected generalization error (6) experimentally, compare
it to the result of our upper bound of Theorem 1, and depict
the evolution of both of them as functions of the number of
rounds R.

Each of the K clients is equipped with a subset of S of
size n. We implement FL-SGD on a single machine. We train
models w(R) in that setup for various values of the number of
communication rounds R. The population risk EZ [ℓ(Z,w

(R))]
is estimated by the risk calculated over a test dataset of size
Ntest = 103. The expectations that are involved in Theorem 1
are approximated by Monte-Carlo simulations for M = 103.
For more details on the experiments, the reader may refer to
Appendix B.

The results shown in Figure 3 are obtained with the
following numerical values: d = 10 (number of features),
n = 500 and K = 10. As visible from the figure, the bound
of Theorem 1 captures the increasing behavior of the true

Fig. 3. Evolution of the expected generalization error (6) of FL-SGD and the
upper bound in Theorem 1 with the number of communication rounds R.

(measured) generalization error with R. Combined with the
known observation that the empirical risk, however, generally
decreases for larger values of R (a fact that is also observed in
our experiments), this indicates that R might be a parameter
to optimize in order to reduce the population risk of FL-SGD.
The observed gap between the bound (which is tight for large
n) and the true values of the generalization error is an indicator
that the latter decays faster than 1/n for small values of n.

IV. PROOF OF THEOREM 1

Let the following shorthand notations and substitutions, be
used throughout. Define for every pair (j, k) ∈ [K]2, r ∈ [R]
and i ∈ [n]:

(i) S(k,i) := (S\{Z(i)
k })∪{Z̃(i)

k } and S
(i)
k := (Sk\{Z(i)

k })∪
{Z̃(i)

k }.
(ii) ∀t ∈ [n], Z(t)

k\i denotes Z̃
(i)
k if t = i, and Z

(t)
k otherwise.

Similarly, Z(t)
j\k,i = Z

(t)
j if j ̸= k, and Z

(t)
j\k,i = Z

(t)
k\i if

j = k. Also, g(i)k := ∇F (Z̃
(i)
k ).

(iii) W
(r)

\k,i := 1
K

∑K
j=1 W

(r,τ)
j\k,i , where W

(r,τ)
j\k,i is the j-th

client’s model at of iteration τ of round r and iteration
τ when the k-th client’s model W (r,τ)

k\i is obtained using

the dataset S(i)
k .

(iv) For every u, let the following denotes the SGD “innova-
tions" during round q ≥ 2

V (q)
u :=

∑τ

t=1
ηq,t∇ℓ(Z((q−1)τ+t)

u ,W (q,t−1)
u ).

Finally, throughout we let S′ := {Z̃(i)
k : k ∈ [K], i ∈ [n]}.

In what follows, for convenience we first provide the proof
for the specific case of R = 2; and then extend it to general
R. The proofs of some lemmas, used hereafter, are deferred
to Appendix A.

A. Case R = 2

First, we state the following lemma which allows to decom-
pose the expected generalization error into two terms that we
analyze separately.

Lemma 2: Under Assumption 1, it holds that



ES [gen(S,W
(2)

)] = (12)

1

nK

∑
k

τ∑
i=1

ES,S′

[〈
g
(i)
k ,W

(1)

\k,i −W
(1)
〉]

+
1

nK2

∑
i,k,j

τ∑
t=1

η2,tES,S′

[〈
g
(i)
k ,∇ℓ(Z

(τ+t)
j ,W

(2,t−1)
j )

−∇ℓ(Z
(τ+t)
j\k,i ,W

(2,t−1)
j\k,i )

〉]
.

Let A and B denote respectively the first and second sum
term of the RHS of (12). A accounts for the iterations of the
first round, while B accounts for those of the second round;
and, so, the devices’ models coupling during that round. Recall
that for k ∈ [K], the dataset Sk is partitioned (in this case) into
two subsets of equal size τ = n/2: Sk,1 and Sk,2, respectively
used during the first round and second round. Then, we have
the following lemma, derived using the Leave-one-out Lemma.

Lemma 3: For every k ∈ [K], it holds that

1

τ

τ∑
i=1

ES,S′

[〈
g
(i)
k ,W

(1)

\k,i −W
(1)
〉]

= (13)

ESk,1
[gen(Sk,1,W

(1,τ)
k )].

Using Lemma 3 it is easy to see that the first sum term of
the RHS of (12) is

A =
1

nK

K∑
k=1

ESk,1
[gen(Sk,1,W

(1,τ)
k )]. (14)

We now analyze the second sum term (B) of the RHS
of (12). First recall that at the end of the first round, the local
models are aggregated as W

(1)
= (
∑K

k=1 W
(1,τ)
k )/K. Also,

W
(2,0)
k = W

(1)
. Then, the term B can be re-written as

B :=
1

nK2

∑
i,k,j

τ∑
t=1

η2,tES,S′

[〈
g
(i)
k ,∇ℓ(Z

(τ+t)
j ,W

(2,t−1)
j )

−∇ℓ(Z
(τ+t)
j\k,i ,W

(2,t−1)
j\k,i )

〉]
=

1

nK2

∑
k,j

τ∑
i=1

ES,S′

[〈
g
(i)
k , V

(2)
j − V

(2)
j\k,i

〉]

+
1

nK2

∑
k

n∑
i=τ+1

ES,S′

[〈
g
(i)
k , V

(2)
k − V

(2)
k\i

〉]
, (15)

where in the second equality we used that:

(i) Z
(τ+t)
j\k,i = Z

(τ+t)
j , for i ∈ [τ ], j ∈ [K].

(ii) the sum over j vanishes because ∇ℓ(Z
(τ+t)
j ,W

(2,t−1)
j )−

∇ℓ(Z
(τ+t)
j\k,i ,W

(2,t−1)
j\k,i ) = 0 for i > τ, j ̸= k.

The second sum term of the RHS of (15) can be computed
using the following lemma.

Lemma 4: For every k ∈ [K], it holds that

1

τ

n∑
i=τ+1

ES,S′

[〈
g
(i)
k , V

(2)
k − V

(2)
k\i

〉]
= ESk,2

[gen(Sk,2,A′(1, Sk,2))].(16)

The first sum term of the RHS of (15), as for it, is upper-
bounded using the following lemma.

Lemma 5: Under Assumption 2, ∀ k ∈ [K],∀ i ∈ [τ ], we
have∑

j
ES,S′

[〈
g
(i)
k , V

(2)
j − V

(2)
j\k,i

〉]
≤ Lb2ESk,1,S′

k,1

[
∥g(i)k ∥ ∥W (1,τ)

k\i −W
(1,τ)
k ∥

]
(17)

where b2 :=
∑τ

t=1 η2,t(
∏t−1

h=1 1 + Lη2,h).
Continuing from (12) using Lemma 4 and 5 we get

B ≤ Lb2
nK2

∑
k

∑τ

i=1
ESk,1,S′

k,1

[
∥g(i)k ∥ ∥W (1,τ)

k\i −W
(1,τ)
k ∥

]
+

1

2K2

∑
k
ESk,2

[gen(Sk,2,A′(1, Sk,2))]. (18)

Summarizing: substituting the terms in (12) using (14)
and (18) completes the proof of the theorem for R = 2.

B. Extension to Arbitrary R

First note that Lemma 2 and its proof can be generalized
easily to arbitrary R ≥ 2. That is, under Assumption 1,

ES [gen(S,W
(R)

)]

=
1

nK2

∑
i,k

ES,S′ [⟨g(i)k ,W
(1,τ)
k\i −W

(1,τ)
k ⟩]

+
1

nK2

∑
i,k,j

R∑
q=2

ES,S′

[〈
g
(i)
k , V

(q)
j − V

(q)
j\k,i

〉]
(19)

Recalling that for r ∈ [R] we have Ir = [(r − 1)τ + 1 : rτ ],
the second sum term of (19) can be written equivalently as

1

nK2

∑
k∈[K]
j∈[K]

∑
r∈[R]
i∈Ir

∑
q∈[2;R]

ES,S′

[〈
⟨g(i)k , V

(q)
j − V

(q)
j\k,i

〉]
. (20)

For fixed (k, j) ∈ [K]2 and r ∈ [R], denote for q ∈ [2;R],
i ∈ Ir, Cq,i := ES,S′ [⟨g(i)k , V

(q)
j − V

(q)
j\k,i⟩] (notational depen-

dence on (j, k, r) is omitted for simplicity). Also, we have:

(i) For q < r, Cq,i = 0 since E[V (q)
j ] = E[V (q)

j\k,i].
(ii) For q = r,

∑
i∈Ir

Cq,i = ESk,r
[gen(Sk,r,A′(r −

1, Sk,r))]. The proof of this equality uses an easy ex-
tension of Lemma 4 to any R and is omitted for brevity.

(iii) The term
∑R

q=r+1

∑
i∈Ir

Cq,i is bounded by

Lbr+1ESk,r,S′
k,r

[∥∇F (Z̃
(i)
k )∥ ∥W (r,τ)

k\i −W
(r,τ)
k ∥],

where br+1 :=
∑R

q=r+1

∑τ
t=1 ηq,t(

∏t−1
h=1 1 + Lηq,h) and∏0

h=1 1+Lηq,h = 1. This uses an extension of Lemma 5.

Finally, using (19) and substituting using (20) and the above
completes the proof of Theorem 1.
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APPENDIX A
MISSING PROOFS IN MAIN TEXT

In this Appendix, we provide proofs for the technical
lemmas used in the main proof i.e., the one of Theorem 1.

A. Proof of Lemma 2

ES

[
gen(S,W

(2)
)
]

(a)
=

1

nK

K∑
k=1

n∑
i=1

ES,S′ [ℓ(Z̃
(i)
k ,W

(2)
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(i)
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(2)

\k,i)]

(b)
=

1

nK

∑
k,i

ES,S′
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(i)
k ),W
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(i)
k ⟩

−F (W
(2)

\k,i) + F (Z̃
(i)
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(i)
k ),W
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\k,i − Z̃
(i)
k ⟩
]

(c)
=

1

nK

∑
i,k
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⟨∇F (Z̃

(i)
k ),W

(2)

\k,i −W
(2)⟩
]

(d)
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nK

∑
i,k

ES,S′

[
⟨g(i)k ,W

(1)

\k,i −W
(1)⟩
]

+
1

nK2

∑
i,k,j

τ∑
t=1

η2,tES,S′

[
⟨g(i)k ,∇ℓ(Z
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j ,W

(2,t−1)
j )

−∇ℓ(Z
(τ+t)
j\k,i ,W

(2,t−1)
j\k,i )⟩

]
where

• (a) uses the leave-one-out lemma (Lemma 1), applied to
S and W

(2)
.

• (b) comes from the definition of the loss function.
• (c) uses that F (W

(2)
) and F (W

(2)

\k,i) have the same
expected value.

• (d) uses:

W
(2)

= W
(1) − 1

K

K∑
j=1

T∑
t=τ+1

ηt∇ℓ(Z
(τ+t)
j ,W

(2,t−1)
j ).

Z
(τ+t)
j\k,i := Z

(τ+t)
k\i if j = k, where Z

(τ+t)
k\i is the t-th

sample of S(i)
k . Moreover W (2,t−1)

j\k,i is the model of client

j given that client k trains its model W (2,t−1)
k\i with the

dataset S(i)
k .

B. Proof of Lemma 3

∀k ∈ [K] :

1

τ

τ∑
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]
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τ
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k ,W

(1,τ)
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]
= ESk,1

[gen(Sk,1,W
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• Before the first communication round, local models
W

(1,t)
j and W

(1,t)
j\k,i are the same (because trained on the

same datapoints) excepted for client k which yields the
first equation.

• Second inequality follows by adding the appropriate
cancelled out terms in the loss function ℓ.

• Last equality comes from an application of Lemma 1 to
Sk,1 and W

(1,τ)
k . Moreover, |Sk,1| = τ = n/2.

C. Proof of Lemma 4

∀k ∈ [K] :
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τ

n∑
i=τ+1
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[
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(2)
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(2)
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i=τ+1

ES1:K,2,S′
1:K,2

[
ℓ(Z̃

(i)
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(i)
k ,A′(1, S

(i)
k,2))

]
= ESk,2
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where
• S = S1:K,1 ∪ S1:K,2, S′ = S′

1:K,1 ∪ S′
1:K,2 which are

all independent and V
(2)
k\i independent of S′

1:K,1 for i ∈
[τ + 1, n]. Using Fubini-Lebesgue’s theorem gives (a).

• A′(1, Sk,2) = ES1:K,1
[V

(2)
k ] denotes the output of A′,

which is initialized with W
(1)

and uses Sk,2. This yields
(b).

• Applying Lemma 1 to Sk,2 and A′
k(1, Sk,2) gives the last

equality.

D. Proof of Lemma 5
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]



where
• (c) is due to ∀z, w :

∇ℓ(z, w) = ∇w(F (w)− F (z)− ⟨∇F (z), w − z⟩)
= ∇F (w)−∇F (z).

• (d) uses Cauchy-Schwarz inequality and Assumption 2.
• (e) uses the following inequality, obtained by recursion:
∀j ∈ [K], ∀t ∈ [τ ],∀i ∈ [τ ] :
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k ∥.

APPENDIX B
DETAILS OF THE EXPERIMENTS

a) Datasets: We conducted the simulations on datasets
implemented in the open source Machine Learning library
Scikit-Learn [24], which are “california_housing" and
“friedman1". The results of our numerical experiments were
consistent with both datasets; Figure 3 presents simulations
using “friedman1" dataset.

b) Model & algorithm implementation: OLS and
LocalSGD are implemented using SGDRegressor from
Scikit-Learn and custom Python classes.

c) Training and hyperparameters: The models were
trained for one epoch, to coincide with the theoretical setup
of this paper. The learning rate was set to η = 0.01.

d) Hardware and other resources: We performed our
experiments on a machine equipped with 56 CPUs Intel Xeon
E5-2690v4 2.60GHz. The experiments are conducted using
Python language.


