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Abstract

Large language models (LLMs) have achieved state-of-the-art performance in
a variety of tasks, but remain largely opaque in terms of their internal mecha-
nisms. Understanding these mechanisms is crucial to improve their reasoning
abilities. Drawing inspiration from the interplay between neural processes and
human cognition, we propose a novel interpretability framework to systematically
analyze the roles and behaviors of attention heads, which are key components
of LLMs. We introduce CogQA, a dataset that decomposes complex questions
into step-by-step subquestions with a chain-of-thought design, each associated
with specific cognitive functions such as retrieval or logical reasoning. By apply-
ing a multi-class probing method, we identify the attention heads responsible for
these functions. Our analysis across multiple LLM families reveals that attention
heads exhibit functional specialization, characterized as cognitive heads. These
cognitive heads exhibit several key properties: they are universally sparse, and
vary in number and distribution across different cognitive functions, and they
display interactive and hierarchical structures. We further show that cognitive
heads play a vital role in reasoning tasks—removing them leads to performance
degradation, while augmenting them enhances reasoning accuracy. These insights
offer a deeper understanding of LLM reasoning and suggest important implications
for model design, training and fine-tuning strategies. The code is available at
https://github.com/sihuo-design/CognitiveMirrors.

1 Introduction

Large language models (LLMs) [1, 14, 30, 38], built on neural networks that mimic the structure
of the human brain, have demonstrated exceptional performance across various natural language
processing (NLP) tasks, often exceeding human capabilities. This has sparked growing interest in
exploring the potential similarities between the cognitive processes of LLMs and the human brain.
Prior studies have demonstrated that LLMs can predict brain responses to natural language [8, 28],
indicating a functional alignment between artificial models and biological systems. However, to the
best of our knowledge, systematic efforts to align reasoning processes between LLMs and human
cognitive agents remain scarce. When solving complex reasoning tasks (e.g., a mathematical multiple-
choice question; Figure 1), the human brain engages a network of specialized regions: the frontal
lobe recalls relevant knowledge [35], language areas (e.g., Wernicke’s and Broca’s) support semantic
processing [23, 20], and the parietal and prefrontal cortices carry out higher-order reasoning [5, 15].
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Question: What percent is 120 of 90?
Options:   (A) 133 1/3%  (B) 134 1/3 %  (C) 135 1/3 %  (D) 140 1/3 %  (E) 143 1/3 %

What is the formula to 
calculate the percentage 
of one number relative 
to another?

Knowledge Recall

The formula is (part/
whole) ×100%

What is the part and 
whole in the context of 
'What percent is 120 of 
90?

Semantic Understanding

The part is 120 and 
the whole is 90.

HIPPOCAMPUS HIPPOCAMPUS

Input

HIPPOCAMPUS

   Math Decision Making

HIPPOCAMPUS

Which option 
corresponds to 133 

1/3%?

Option (A)

Calculate 120 / 90 
*100%

133 1/3

Figure 1: To solve a complex question, the human brain engages multiple regions to perform distinct
cognitive functions necessary for generating a response. We explore whether there are specific
attention heads in LLM play functional roles in producing answers.

Analogously, recent research suggests that components within LLMs may also take on specialized
roles. For example, multi-head attention mechanisms in transformers [31] have been found to handle
distinct functions, such as information retrieval [36] or maintaining answer consistency [17], pointing
toward a form of architectural division of labor. However, most of these findings are based on
relatively simple tasks [40], leaving open how such specialization operates under complex, multi-step
reasoning scenarios. In parallel, prompting techniques like chain-of-thought (CoT) [34] have been
shown to improve LLM performance by decomposing complex problems into intermediate steps,
a strategy reminiscent of human problem-solving, like the example in Figure 1. We hypothesize
that such prompting may activate and coordinate specialized components within the model. Thus,
analyzing the behavior of attention heads under CoT reasoning could contribute insights for a deeper
understanding of the internal workings of LLMs and how they process complex tasks.

In this work, we present a novel interpretability framework to systematically analyze the cognitive
roles of attention heads during complex reasoning. To facilitate this, we introduce Cognitive Ques-
tion&Answering (CogQA), a benchmark dataset that decomposes natural language questions into
structured subquestions annotated with fine-grained cognitive functions, such as retrieval, logical
inference, and knowledge recall. Leveraging CogQA, we develop a multi-class probing method
to identify and characterize attention heads responsible for distinct cognitive operations within the
transformer architecture.

We conduct extensive experiments on three major LLM families, including LLaMA [30], Qwen
[38], and Yi [39]. Our results reveal the existence of cognitive heads that consistently exhibit
universality, sparsity, and layered functional organization across architectures. Further analysis of
the correlations among these cognitive heads reveals clear functional clustering, with heads grouping
based on cognitive roles, and uncovers a hierarchical structure in which lower-level heads modulate
higher-level ones—mirroring the modular and distributed processing observed in the human cortex
[5, 23].

Furthermore, we validate the functional importance of these heads by showing that their removal
degrades performance on complex tasks and leads to specific error patterns, while their enhancement
improves reasoning capabilities. Our findings shed light on the structured cognitive architecture
embedded in LLMs and open avenues for function-aware model design and analysis.
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2 CogQA

In this section, we present a detailed account of our benchmark dataset CogQA’s construction and key
characteristics. Although extensive existing benchmark collections span a wide array of NLP tasks, to
our knowledge no resource explicitly evaluates LLM reasoning across diverse cognitive functions. To
address this, we introduce CogQA, a dataset containing 570 main questions and 3,402 subquestions.
Each example comprises a question, its answer, and an annotation specifying the cognitive function
required for resolution.

2.1 Cognitive Function

To systematically capture the cognitive processes involved in complex reasoning tasks, we categorize
cognitive functions into two groups: low-level functions and high-order functions, inspired by estab-
lished frameworks in cognitive science [4, 12]. Low-level functions primarily involve information
retrieval and linguistic analysis, while high-order functions engage more abstract reasoning, problem-
solving, and decision-making. Detailed descriptions of these cognitive functions are provided in
Appendix A.4.

The low-level cognitive functions include:

• Retrieval: locating relevant information from an external source or prior context.
• Knowledge Recall: accessing stored factual or procedural knowledge from memory.
• Semantic Understanding: interpreting the meaning of words, phrases, or concepts.
• Syntactic Understanding: analyzing the grammatical structure of a sentence.

The high-order cognitive functions include:

• Mathematical Calculation: performing arithmetic or numerical operations.
• Logical Reasoning: drawing conclusions based on formal logical relationships.
• Inference: deriving implicit information that is not directly stated.
• Decision-Making: selecting the best outcome among alternatives based on reasoning.

This categorization reflects a natural progression from basic information processing to complex
cognitive integration. Both the human brain and LLMs encompass a wide range of functional modules.
Our focus in this work is specifically on reasoning-related cognitive functions. By identifying and
organizing these eight core reasoning functions, we can more clearly examine how LLMs handle
different types of thinking steps, in a way that is both systematic and easy to interpret.

2.2 Data Collections

Based on our categorization of cognitive functions, we sampled 750 diverse questions from NLP
reasoning benchmarks, selecting 150 examples from each of AQuA [18], CREAK [24], ECQA [2],
e-SNLI [7], and GSM8K [11]. These datasets cover a range of reasoning types, including logical,
mathematical, and commonsense reasoning. Using the CoT paradigm, we prompted GPT-4o [16] to
decompose each question into subquestions, each targeting a single cognitive function. The prompt
encourages structured, step-by-step reasoning, with each subquestion being clear, answerable, and
sequentially dependent. This yields a set of subquestion-answer-cognitive function (subQAC) triples
for each QA pair: subQACs = {(qi, ai, ci)}ki=1, where each contains a subquestion qi, its concise
answer ai, and the corresponding cognitive function label ci. The prompt for generating subquestions
and examples are list in Appendix A.4 and Appendix A.6, respectively.

2.3 Data Filtering and Annotation

Recent advances have made it increasingly feasible to use LLMs for dataset construction, owing to
their strong reasoning abilities and capacity to generate high-quality annotations at scale [33]. Al-
though our dataset is constructed automatically using an LLM to reduce manual effort, we implement
a strict two-stage human verification pipeline to ensure data quality and mitigate hallucinations. In
the first stage, three expert annotators independently assess whether the subquestions are logically
structured and align with natural human reasoning. QA pairs with inconsistent or incoherent decom-
positions are filtered out. In the second stage, annotators verify and, if necessary, relabel the cognitive
function associated with each subquestion to ensure alignment with the intended mental process.
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Finally, we validate the subanswers by cross-checking them using the GPT-o4-mini model [25],
followed by human adjudication where discrepancies arise. Details of the annotation process and
rubric can be found in Appendix A.5. This multi-step filtering ensures that each retained subQAC
triple reflects a coherent, interpretable reasoning step grounded in core cognitive functions. After this
refinement, our final dataset contains 570 main QA and 3,402 validated subQAC triplets.

3 Cognitive function detections

Given the CogQA dataset, we aim to identify which attention heads in LLMs are associated with
specific cognitive functions. We adopt a probing-based framework, a widely used interpretability
technique in which an auxiliary classifier is trained to predict properties from intermediate model
representations [3, 6, 29]. We frame this as a multi-class classification task: for each cognitively
annotated subquestion, we extract head activations (see Section 3.1), train classifiers and compute
importance scores to identify contributing heads (see Section 3.2). Unlike prior work focusing on a
single-class, our method captures many-to-many relationships between heads and functions, enabling
a more detailed analysis of functional specialization and overlap compared to prior single-class
approaches.

3.1 Head Feature Extraction

Given a large language modelM, we generate an answer aMi for each subquestion qi derived from a
main question Qi. To support coherent multi-step reasoning, we include preceding subquestions and
their answers as contextual input, emulating the incremental reasoning process observed in human
cognition.

During inference, input tokens are embedded and processed through successive transformer layers.
At each layer, attention and feedforward operations update the residual stream, which is ultimately
decoded into token predictions. For each generated token i, we extract attention head outputs
Xi = {xm

l (i) | l = 1, . . . , L, m = 1, . . . ,M} across all layers, where xm
l denotes the value vector

from the m-th head in layer l projected into the residual stream, with M the number of heads per
layer and L the total number of layers.

Let Nt denote the number of tokens in the generated answer aMi . To isolate semantically informative
content relevant to reasoning, we select the top-k most important tokens, 2 determined by prompting
GPT-o4-mini [25] (skilled in reasoning), yielding an index set Ik with |Ik| = k (Top-k (k = 5)
token examples are in Appendix A.10). For each index j ∈ Ik, we extract the corresponding
attention head activations Xj , and compute the averaged activation feature for the m-th head in
layer l as x̄m

l = 1
k

∑
j∈Ik

xm
l (j). This results in a full set of head-level features X̄ = {x̄m

l | l =
1, . . . , L, m = 1, . . . ,M}.
Given prior findings suggesting that cognitive functions may vary by layer depth [40], we incorporate
layer-wise information by computing the average activation x̄l =

1
M

∑M
m=1 x̄

m
l for each layer. We

then augment each head-level vector with its corresponding layer summary, resulting in enriched
features x̄m′

l = [x̄m
l ; x̄l]. For each subQA triplet (qi, ai, ci), the final input to the probing classifier

is given by (x̄m′

l | l = 1, . . . , L, m = 1, . . . ,M).

3.2 Heads Importance

For the CogQA dataset with N subQA pairs, we collect all activations to construct the probing
dataset:

Dprobe =
{
(x̄m′

l , c)i

}N

i=1
, l ∈ {1, . . . , L}, m ∈ {1, . . . ,M} (1)

We split the dataset into training and validation sets with a 4:1 ratio. Each attention head feature
is first passed through a trainable linear projection for dimensionality reduction, followed by a
two-layer MLP that performs multi-class classification over cognitive functions (training details are

2We include an ablation study in Appendix A.9 to analyze the impact of using alternative token positions.
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Figure 2: The existence of cognitive heads in Llama3.1-8B-instruct responsible for eight distinct
functions in complex reasoning tasks. The x-axis represents the head index, while the y-axis indicates
the layer index.

provided in Appendix A.3). To interpret the contribution of individual heads to each function, we
use a gradient-based attribution method. Specifically, for each function class c, we compute the
contribution of each head feature via the gradient×activation technique:

I
(c)
j = E(x̄,c)∼Dprobe

[
∂ŷc
∂x̄j
· x̄j

]
, (2)

where x̄j is the j-th head input feature, and ŷc is the classifier’s predicted logit for class c. This yields
an importance score for each attention head with respect to each cognitive function. We aggregate the
scores into a matrix I ∈ RC×(L·M), where each row corresponds to a function class and each column
to a specific head in a specific layer.

We hypothesize that attention heads with higher importance scores contribute more significantly to
each cognitive function. By ranking heads according to their importance, we can identify which
heads and layers are specialized for specific functions. Subsequent targeted interventions on these
heads validate the effectiveness of this approach.

4 Experiments

We conduct a series of experiments on three LLM families across various model scales, including
LLaMA [30] (Llama3.1-8B-instruct and Llama3.2-3B-instruct), Qwen [38] (Qwen3-8B and Qwen3-
4B), and Yi [39] (Yi1.5-9B and Yi1.5-6B). Our goal is to identify cognitive attention heads associated
with specific reasoning functions and evaluate their roles via targeted interventions. By selectively
masking these heads, we assess their functional significance in supporting downstream performance.
We evaluate our method in terms of functional alignment, consistency across models, and causal
impact on reasoning tasks. Results confirm the existence of sparse, function-specific heads and
highlight their critical contribution to structured cognitive processing within LLMs.

4.1 Properties of Cognitive Heads

Our analysis reveals that cognitive head importance in large language models exhibits three key
properties: sparsity and universality, and layered functional organization. To illustrate these
characteristics, we present the heatmap of attention head importance scores across eight cognitive
functions in Llama3.1-8B-instruct (Figure 2).
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Table 1: Intervention results (%) of cognitive heads vs. random heads across 8 cognitive functions:
Retrieval, Knowledge Recall, Semantic Understanding, Syntax Understanding, Math Calculation,
Inference, Logic Reasoning, and Decision Making. Lower values indicate more effective intervention
outcomes, suggesting that the corresponding heads play a greater role in the cognitive function.

Model Inter_Head
Information Extraction and Analysis Functions Higher-Order Processing Functions

Retrieval Recall Semantic Syntactic Math Inference Logic Decision

comet acc comet acc comet acc comet acc comet acc comet acc comet acc comet acc

Llama3.1-8B random 90.83 84.71 87.85 83.84 91.44 97.50 87.81 66.17 94.25 83.08 91.90 70.18 91.39 54.69 97.64 90.91
cognitive 44.96 8.24 56.93 38.38 81.98 75.00 69.20 40.00 87.81 66.17 76.65 52.63 52.07 4.69 56.02 4.55

Llama3.2-3B random 87.89 86.47 76.35 68.69 90.54 90.00 75.82 40.00 94.98 69.65 95.66 85.96 92.75 76.56 93.30 81.82
cognitive 49.47 17.06 49.69 13.13 52.29 10.00 43.62 0.00 92.01 80.10 53.60 7.02 46.69 0.00 49.25 0.00

Qwen3-8B random 92.81 75.29 89.90 53.54 92.73 42.50 88.60 80.00 92.69 60.20 94.45 24.56 94.15 20.31 96.52 31.82
cognitive 59.19 38.24 64.81 30.30 85.95 47.50 46.26 0.00 89.29 53.23 72.77 35.09 87.61 21.88 83.17 54.55

Qwen3-4B random 94.17 84.71 84.61 77.78 86.91 77.50 98.15 80.00 87.15 44.78 96.89 87.72 92.00 75.00 94.79 72.73
cognitive 80.13 64.71 63.10 35.35 65.95 60.00 46.25 0.00 82.40 46.27 84.88 64.91 82.79 39.06 45.49 13.64

Yi-1.5-9B random 86.83 79.41 82.02 54.55 77.40 35.00 81.53 60.00 76.04 36.32 89.83 36.84 87.53 42.19 86.27 63.64
cognitive 52.76 21.76 45.99 9.09 47.25 2.50 48.10 40.00 54.22 16.92 52.41 15.79 82.75 26.56 62.85 18.18

Yi-1.5-6B random 80.64 69.41 68.82 38.38 77.83 55.00 69.61 60.00 73.33 43.78 77.71 22.81 81.65 29.69 88.54 72.73
cognitive 49.90 15.29 68.23 41.41 49.54 2.50 42.92 0.00 76.64 43.78 68.53 14.04 44.94 0.00 86.28 50.00
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Figure 3: The performance of Llama3.1-8B-instruct by masking out top K cognitive heads vs K
random heads on retrieval, knowledge recall, math calculation, and inference.

Sparsity and Universality: As shown in Figure 2, each cognitive function activates only a small
number of high-importance attention heads, revealing a strikingly sparse pattern. In Llama3.1-8B-
instruct, fewer than 7% of all heads have importance scores above 0.001 across the eight functions,
suggesting that only a compact subset of heads meaningfully contribute to task performance. This
sparsity is not uniform: Retrieval contains the highest proportion of salient heads (6.45% exceeding
0.01), while Inference has the fewest (3.42%). These results highlight that LLMs rely on highly
specialized, localized components for different cognitive abilities. Importantly, we observe that this
sparse functional organization is consistent across different model architectures and sizes. Additional
heatmaps for five other models are provided in Appendix A.1, supporting the universality of this
phenomenon.

Layered Functional Organization: In addition to sparsity, attention heads show a structured
distribution across model layers. Retrieval-related heads cluster primarily in the middle layers,
while math-related heads appear more frequently in higher layers. This structured, task-dependent
localization points to an emergent modular organization, where different layers support distinct
cognitive operations. Further, we identify cognitive heads by selecting those before the elbow point
of each function’s descending importance curve (Appendix A.2), and find notable variation in head
counts across functions (Appendix A.8). For example, in the LLaMA family, mathematical calculation
requires fewer heads (59 in Llama3.1-8B-Instruct, 35 in Llama3.2-3B-Instruct), while inference
draws on substantially more (139 and 98, respectively), reflecting differences in representational and
computational complexity.

4.2 Functional Contributions of Cognitive Heads

After identifying the cognitive heads associated with each function, we examine their functional roles
by evaluating the model’s behavior on the CogQA test set under targeted interventions. We perform
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Table 2: Intervention results (%) of different cognitive heads and random heads across Retrieval and
Knowledge Recall functions.

Model Inter_Head Retrieval (comet) Retrieval (acc) Recall (comet) Recall (acc)
Llama3.1-8B random 90.83 84.71 87.85 83.84
Llama3.1-8B retrieval 44.96 8.24 72.05 33.33
Llama3.1-8B recall 86.79 75.29 56.93 38.38
Qwen3-8B random 92.81 75.29 89.90 53.54
Qwen3-8B retrieval 59.19 38.24 79.26 57.58
Qwen3-8B recall 83.31 71.18 64.81 30.30

head ablation by scaling the output of a specific attention head with a small factor ϵ (e.g., 0.001),
effectively suppressing its contribution:

xmask
i = Softmax

(
W i

qW
iT
k√

dk/n

)
· ϵW i

v (3)

Specifically, we compare model performance when masking identified cognitive heads versus masking
an equal number of randomly selected heads. To quantify the impact of masking, we use several
standard evaluation metrics including COMET [27], BLEU [26], ROUGE [9], and semantic similarity
to compare the model’s outputs before and after intervention. We define an output as unaffected if
the BLEU score exceeds 0.8, or either the ROUGE or semantic similarity scores surpass 0.6, and
compute accuracy accordingly.

As shown in Table 1, masking cognitive heads leads to a significant decline in performance, whereas
masking an equal number of random heads results in only marginal degradation across all LLMs. In
some cases, masking the identified cognitive heads causes the accuracy to drop to zero, indicating that
the model cannot execute the corresponding function without them. This sharp contrast highlights
the essential role cognitive heads play in enabling specific reasoning capabilities. To further validate
the functional specialization, we conduct experiments where we mask the retrieval heads during the
evaluation of knowledge recall (Recall), and conversely, mask knowledge recall heads during the
evaluation of retrieval performance. The results in Table 2 show that masking the corresponding
cognitive heads causes a significantly larger performance drop than masking others.

We further investigate the performance of model under different numbers of masked attention heads.
As shown in Figure 3, increasing the number of randomly masked heads has minimal impact on
overall performance of Llama3.1-8B-instruct. In contrast, masking cognitive heads results in a
significant drop in performance across various functions. Notably, masking heads associated with
Retrieval and Knowledge Recall causes a pronounced degradation in their respective functions,
whereas functions such as Math Calculation and Inference exhibit more resilience. This suggests that
certain cognitive functions depend more heavily on specific, distinguishable attention heads, while
others are distributed more broadly across the model.

4.3 Relationship Among Cognitive Heads

While cognitive heads are specialized for distinct functions, understanding their relationships is
crucial for revealing how complex reasoning emerges from their cooperation.

Functional Clustering: Inspired by neuroscience findings that related cognitive functions localize
in overlapping brain regions (e.g., prefrontal cortex for reasoning and inference [5]), we investigate
whether LLM attention heads show similar patterns. We rank each head’s importance across eight
cognitive functions, form ranking vectors, and apply principal component analysis (PCA) to visualize
their organization (Figure 4). The results reveal clear clustering: heads linked to reasoning, inference,
and decision-making group closely, while those related to mathematical computation form a distinct
cluster in Llama and Qwen, and lie adjacent to reasoning heads in Yi. Lower-level functions also
show moderate clustering. These patterns suggest a modular functional architecture in LLMs akin to
that in the human brain.

Hierarchical structure: Human problem solving often involves hierarchical reasoning, where lower-
level functions such as retrieval and comprehension support higher-level inference and decision-
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Figure 4: PCA visualization of the 8 function heads’ clustering in three models.

Table 3: Study on the influence of low-level cognitive heads for high-order function on Llama3.1-8B-
instruct. Accuracy is measured based on BLEU, ROUGE, and semantic similarity scores.

Retrieval Knowledge Semantic Syntactic Math Inference Logical Decision

✗ ✓ ✓ ✓ 0.00 ↓ 100 0.00 ↓ 100 0.00 ↓ 100 0.00 ↓ 100

✓ ✗ ✓ ✓ 0.00 ↓ 100 0.00 ↓ 100 0.00 ↓ 100 0.00 ↓ 100

✓ ✓ ✗ ✓ 66.67 ↓ 33.33 88.24 ↓ 11.76 93.10 ↓ 8.90 57.14 ↓ 42.86

✓ ✓ ✓ ✗ - 76.92 ↓ 23.08 100 0.00 100 0.00

making. The CogQA dataset captures this structure through subquestions progressing from simple
information extraction to complex reasoning. We test if LLMs reflect this hierarchy by masking
attention heads tied to early-stage functions and measuring the effect on later tasks. For instance, to
assess how Retrieval affects Math Calculation, we suppress Retrieval-related heads throughout the
subquestions. Answers from earlier Retrieval are used as priors for later math reasoning, allowing
us to observe how disrupting low-level functions can propagate and impair higher-level reasoning
along the chain. As Table 3 shows, masking retrieval or knowledge recall heads causes significant
performance drops in subsequent decision-making steps, whereas masking syntactic understanding
heads has minimal impact. This provides evidence for an emergent hierarchical organization in
LLMs, where foundational cognitive functions underpin advanced reasoning.

4.4 Influence of Cognitive Heads on Downstream Tasks

In this section, we investigate how cognitive heads influence downstream tasks through both negative
interventions (masking out cognitive function heads) and positive interventions (shifting heads
toward specific functions). We conduct experiments on two tasks: a math task using 100 GSM8K
samples (GSM8K_100) and a retrieval task with 49 samples from an extractive_QA dataset. The
Extractive_QA pairs are generated by GPT-4o, with answers extracted directly from the source
paragraph.

Negative Intervention: We perform negative intervention by masking corresponding cognitive
heads (Math Calculation heads for GSM8K_100 and Retrieval heads for Extractive_QA), effectively
suppressing their activations. As shown in Table 4, this causes significant performance drops across
models, confirming these heads’ functional roles. Notably, after masking, performance converges
to a similarly low level across different LLMs, regardless of model size or original accuracy. This
is expected, as the crucial cognitive heads responsible for specific functions are disabled, making it
difficult for the model to arrive at correct answers.

For math, the remaining 30% accuracy likely stems from two factors: (1) memorized answers in
the base model, and (2) simple questions not requiring actual computation. For retrieval, masking
Retrieval heads almost completely abolishes the model’s retrieval ability across all scales. This
indicates that cognitive functions are indeed localized in a subset of heads, and masking them leads to
a systematic degradation, irrespective of model capacity. The negative intervention example further
shows that, masking the Math Calculation heads leads to errors in arithmetic tasks, while retrieval
and language functions remain largely unaffected. This confirms that these cognitive heads are crucial
for specific functions and highlights the robustness and generalizability of our method.
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Positive Intervention: We calculate the activation directions of different cognitive functions using
the CogQA dataset. For each function, the activation direction of a head at layer l and index h is
computed as:

dirhl = Ei∈Dcorrect

[
xh
l (i)

]
− Ei∈Dincorrect

[
xh
l (i)

]
(4)

where xh
l (i) denotes the activation of head at layer l and index h, and Dcorrect and Dincorrect represent

the sets of samples answered correctly and incorrectly, respectively. Then we estimate the standard
deviation of activations [17] along the cognitive function direction to be σh

l , and shift original head
activation as xh

l (i)← xh
l (i) + ασh

l dirhl , where α is a parameter.

The experimental results in Table 4 show that enhancing the activation of retrieval heads along their
corresponding functional directions leads to improved performance on the retrieval task. For the math
task, questions often engage multiple cognitive functions. We observe cases where computations are
correct but semantic understanding fails. By positively intervening on either Math Calculation or
Semantic Understanding heads, performance consistently improves, highlighting the collaborative
nature of cognitive functions in complex reasoning and the need for joint interventions—a direction
we leave for future work.

The example below illustrates a positive intervention on Math Calculation heads in Qwen3-4B:
the model initially produces an incorrect answer (red) but generates the correct one (blue) after
intervention. This demonstrates that adjusting cognitive head activations along their functional
directions reliably enhances performance on complex reasoning tasks.

Negative Intervention Case

Query: Question: Solve -42*r + 27*c = -1167 and 130*r + 4*c = 372 for r.
Original Output: Okay, so I need to solve this system of equations: -42r + 27c = -1167 and
130r + 4c = 372 ... First equation: -42*4 + 27*(-37) = -168 - 999 = -1167. Correct. Second
equation: 130*4 + 4*(-37) = 520 - 148 = 372. Correct. Yes, that’s right. So everything
checks out. So I think that’s the correct answer. Therefore, r is 4. Negative Intervention
(Math) Output: ... To eliminate c, I need the coefficients of c in both equations to be the
same (or negatives). The coefficients are 27 and 4. The least common multiple of 27 and 4
is 100? Wait, 27 is 33, and 4 is 22, so LCM is 22 ∗ 33 = 4 ∗ 27 = 100. So if I can make the
coefficients of c to be 100 and 100, or 27 and 4. Wait, but 27 and 4. So if I multiply the first
equation by 4 and the second equation by 27, then the coefficients of c would be 27*4 = 100
and 4*27 = 100. Then, if I subtract the equations, the c terms would be 100 and 100, but
since they are both positive, subtracting the equations would eliminate c. ...

Positive Intervention Case

Query: On a school trip to the seashore, Alan and his friends collected shells. Alan collected
four times as many shells as Ben did. Ben got a late start and only collected a third of what
Laurie did. If Laurie collected 36 shells how many did Alan collect?
Original Output: Alan collected four times as many shells as Ben did, and Ben collected a
third of what Laurie did. Since Laurie collected 36 shells, Ben collected 36 / 3 = 12 shells.
Therefore, Alan collected 4 * 12 = 48 shells. However, the question asks for the number of
shells Alan collected, and it is given that Alan collected four times as many shells as Ben did.
Therefore, the correct answer is 4 * 12 = 48 * 4 / 3 = 72.
Positive Intervention (Math) Output : ...Since Ben collected a third of what Laurie did,
he collected 36 / 3 = 12 shells. Alan collected four times as many shells as Ben did, so he
collected 4 * 12 = 48 shells...The correct answer is 48

5 Related Works

Neural Networks and the Brain Neural networks have long been studied as computational models
of the brain, with early work linking artificial neurons to the biological mechanisms of perception
and learning [19]. Convolutional neural networks (CNNs), in particular, have been shown to capture
representations similar to those in the visual cortex [37], and more recent studies suggest that the
functional modularity observed in deep networks gives rise to brain-like specialization [13] in vision
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Table 4: The LLM performance on GSM8k_100 and Extractive_QA by Negative and Positive
Intervention (Inter.). Math accuracy (%) is measured by exact answer match; Extractive_QA accuracy
checks if the original paragraph answer appears in the response.

Dataset Method Head Llama3.1-8B Llama3.2-3B Qwen3-8B Qwen3-4B

Extractive_QA
Base - 57.14 36.73 57.14 51.02

Negative Inter. Retrieval 0 0 14.29 12.24
Positive Inter. Retrieval 63.26 44.90 61.22 69.38

GSM8K_100

Base - 82 64 94 91
Negative Inter. Math 38 34 34 37
Positive Inter. Math 84 66 94 92
Positive Inter. Semantic 84 65 94 93

task. More recently, LLMs have exhibited striking parallels with human brain activity during language
processing. In particular, transformer-based models, such as GPT-2, produce internal representations
that align with neural responses in language-selective brain regions [8, 28]. However, prior work
mostly focuses on perception and language representations, with limited study on higher-level
cognitive functions like reasoning. We instead analyze LLMs’ behavior in complex reasoning tasks
to explore their alignment with human cognitive functions and functional specialization.

Functional Specialization of Attention Heads Recent years have witnessed growing interest in
understanding the functional roles of attention heads in Transformer-based models, forming a core
component of mechanistic interpretability research. Early work by [10] demonstrated that individual
heads in BERT capture specific linguistic phenomena such as syntactic dependencies and coreference,
indicating a degree of functional specialization. Building on this, [32] proposed a pruning-based
approach to identify important heads by measuring their contribution to downstream performance,
showing that many heads are redundant. Subsequent studies extended this analysis to decoder-only
large language models (LLMs). [21] explored functional decomposition in such models, leading
to the identification of distinct attention heads responsible for tasks such as pattern induction [22],
truthfulness [17], information retrieval [36], and safety alignment [41]. For a broader survey, see [40].
Despite these advances, most prior work focuses on isolated heads and evaluates them in relatively
simple or synthetic tasks. In contrast, we investigate functionally specialized heads under more
complex reasoning settings by aligning attention head behavior with human cognitive functions.

6 Limitations and Future works

While our study provides an initial framework for analyzing the cognitive functions of attention
heads, several limitations remain. First, we focus on eight predefined cognitive functions, which,
though representative, may not capture the full spectrum of LLM capabilities; future work could
extend this taxonomy with finer-grained or emergent functions. Second, each subquestion is assigned
to a single cognitive function, whereas in reality, it may engage multiple functions. Excluding
subquestions with incorrect subanswers could improve multi-class probing, and further investigation
is needed to understand heads serving multiple functions. Finally, our work emphasizes analysis
over application, but identifying cognitively relevant heads could inform model design, including
dynamic head activation, improved chain-of-thought prompting, targeted fine-tuning, or modular
architectures—directions we leave for future exploration.

7 Conclusions

We propose an interpretability framework that connects attention heads in large language models
(LLMs) to human cognitive functions involved in reasoning. To support this, we introduce CogQA, a
cognitively grounded dataset, along with a multi-class classification approach to identify specialized
heads associated with specific reasoning tasks. Our analysis across multiple LLM families and
scales demonstrates that attention heads exhibit universality, sparsity, intrinsic roles, and dynamic,
hierarchical organization. These findings indicate that LLMs internally organize reasoning processes
in a manner akin to human cognition, laying the groundwork for more interpretable and cognitively
informed language models.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: Yes, the main claims in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: We discussed our limitation in discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We don’t have theoretical result
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes. The paper provides sufficient information to reproduce the main exper-
imental results. We release the dataset and describe the experimental setup, intervention
methods, model training procedures, and evaluation metrics in detail in the main paper,
ensuring transparency and reproducibility of the core findings.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released the complete GitHub repository with dataset and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we give a details about how we select data, and how we constructed our
dataset. Also the training configuration.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We believe that our experiment does not require this.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We are working with inference only, compute resources is not the factor of any
of our experiments.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We don’t have any code of ethics issues in this paper
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We believe this is not related to our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: All data we used are published public dataset.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited all models, and dataset we used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new annotated dataset to support cognitive function analysis,
which is submitted in the supplementary materials. We also provide detailed documentation
describing its construction process, structure, and usage guidelines in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not realted
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not related
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We used LLMs as an integral part of our dataset construction process. Specif-
ically, LLMs were used to generate intermediate reasoning steps and candidate answers
under controlled prompting. All prompts, generation procedures, and filtering steps are
clearly documented in the main paper and supplementary materials to ensure transparency
and reproducibility.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 The cognitive function distribution of other models

We present the heatmaps for the remaining five models in this section. The results reveal a notable
universality in the sparsity patterns of attention heads across different architectures. Moreover, models
within the same family tend to exhibit similar sparsity distributions. For instance, Llama3.2-3B
(Figure 5) and Llama3.1-8B (Figure 2) share comparable patterns, as do Qwen3-4B (Figure 7) and
Qwen3-8B (Figure 6), as well as Yi-1.5-6B (Figure 9) and Yi-1.5-9B (Figure 8). This consistency is
likely due to the shared architectural design and similar pretraining data within each model family.

0 6 12 18

0
6

12
18

24

Knowledge Recall

0 6 12 18

0
6

12
18

24

Retrieval

0 6 12 18

0
6

12
18

24

Logical Reasoning

0 6 12 18

0
6

12
18

24

Decision-making

0 6 12 18

0
6

12
18

24

Semantic Understanding

0 6 12 18

0
6

12
18

24

Syntactic Understanding

0 6 12 18

0
6

12
18

24

Inference

0 6 12 18

0
6

12
18

24

Math Calculation

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050+

He
ad

s I
m

po
rta

nc
e

Head

La
ye

r

Figure 5: The existence of cognitive heads in Llama3.2-3B-instruct responsible for eight distinct
functions in complex reasoning tasks. The x-axis represents the head index, while the y-axis indicates
the layer index.
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Figure 6: The existence of cognitive heads in Qwen3-8B responsible for eight distinct functions in
complex reasoning tasks. The x-axis represents the head index, while the y-axis indicates the layer
index.
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Figure 7: The existence of cognitive heads in Qwen3-4B responsible for eight distinct functions in
complex reasoning tasks. The x-axis represents the head index, while the y-axis indicates the layer
index.
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Figure 8: The existence of cognitive heads in Yi-1.5-9B responsible for eight distinct functions in
complex reasoning tasks. The x-axis represents the head index, while the y-axis indicates the layer
index.

A.2 Importance curve

We ranked the importance scores and identified the elbow point, as illustrated in Figure 10.
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Figure 9: The existence of cognitive heads in Yi-1.5-6B responsible for eight distinct functions in
complex reasoning tasks. The x-axis represents the head index, while the y-axis indicates the layer
index.

Table 5: The test accuracy (%) of probing method on different LLMs.
Dataset Llama3.1-8B-instruct Llama3.2-3B-instruct Qwen3-8B Qwen3-4B Yi-1.5-9B Yi-1.5-6B
CogQA 83.73 79.80 84.71 80.79 77.56 75.18
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Figure 10: Importance curve for eight functions, Llama3.1-8B-instruct.

A.3 MLP

We train a two-layer multi-class MLP for cognitive function classification. The first layer applies a
shared linear projection to each multi-head representation vector, reducing each to a 64-dimensional
embedding. These embeddings are then flattened and concatenated into a single vector of size
64× numberofheads. This vector is fed into a hidden layer with 512 units, followed by a ReLU
activation and a dropout with a rate of 0.3. The final output layer maps the 512-dimensional hidden
representation to the set of cognitive function labels.

The model is trained using the Adam optimizer with a learning rate of 10−4 and a cross-entropy loss.
Training proceeds for 100 epochs. The test accuracy of our classification method across all LLM
models is summarized in the Table 5.
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A.4 Prompt for Generating CogQA

Prompt

Prompt: You are an expert in analytical logical reasoning. You will be given a question along
with its chain-of-thought process. Your task is to break the question down into subquestions
based on the chain-of-thought process, ensuring that all necessary steps for solving the
problem and constructing the logical chain are included to simulate critical thinking.
Decompose the Question: Identify and formulate the key subquestions required to solve the
main question logically. Fill in Missing Steps: Ensure that all essential reasoning steps are
explicitly stated.
NOTE: The information of chain-of-thought cannot be used directly if it doesn’t exist
in main query. Each subquestion should be derived solely from the main query and the
preceding subquestion. Answer the Subquestions: Provide clear, step-by-step solutions for
each subquestion. Annotate Cognitive Skills: Identify and label the specific cognitive abilities
required to answer each subquestion. If you believe other cognitive skills are relevant, you
may also consider incorporating them. You will be given predefined labels along with their
descriptions. Your goal is to enhance the logical reasoning process by making it explicit and
structured.
<cognitive_skills> **Retrieval**: Refers to the process of fetching relevant information
from input text, typically involving the extraction of specific words, phrases, or sentences
directly from the original text. **Knowledge Recall**: Involves the storage and recall of
domain-specific knowledge, such as concepts from math, physics, biology, etc. This is
typically the internal knowledge base of a language model. (Corresponding to the memory
head) **Semantic Understanding**: Refers to the ability to comprehend and extract meaning
from text or symbols by recognizing relationships between words, phrases, and concepts. It
goes beyond syntactic understanding by grasping context, intent, and underlying knowledge.
**Syntactic Understanding*: Involves the ability to analyze and interpret the grammatical
structure of sentences, including the roles and relationships of words, phrases, and clauses
within the language. **Math Calculation**: Refers to the process of performing arithmetic or
mathematical operations to obtain a result. It involves applying mathematical concepts, such
as addition, subtraction, multiplication, division, and more complex operations (e.g., algebra,
calculus), to solve problems or derive values from given inputs. **Inference**: Involves
drawing conclusions based on existing evidence or information. It follows logical rules to
deduce new statements or decisions from given information. **Logical Reasoning**: The
process of drawing conclusions based on a set of premises, following established rules of
logic, used to ensure that decisions of people are coherent, consistent, and based on sound
principles. **Decision-making**: The process of making a choice in a selection task based
on previous information or analysis. <cognitive_skills>
Here is the question: <question> question <question>
Here is the chain-of-thought: <chain-of-thought> cot <chain-of-thought>
Note
- Your task is to break the question down into detailed subquestions, ensuring each subquestion
can be answered using only one specific cognitive skill. - You need to create a structured
and explicit reasoning process that simulates critical thinking while maintaining clarity and
precision. - The subquestion needs to be easy to answer and the answer needs to be concise
- The information of chain-of-thought cannot be used directly if it doesn’t exist in main
query. - Each subquestion should be derived solely from the main query and the preceding
subquestion. - You CAN NOT retrieval information from chain-of-thought, but you can
retrieval from question. - Your output should be formatted as a list of JSON objects, where
each object represents a subquestion, its answer, and the required cognitive skill. - You should
use the most efficient logic to analyze the problem and minimize the number of subquestions.
Output format [ "subquestion": "<Subquestion text>", "answer": "<Concise answer>",
"cognitive_skill": "<Assigned cognitive skill>" , "subquestion": "<Subquestion text>",
"answer": "<Concise answer>", "cognitive_skill": "<Assigned cognitive skill>" ]
Your answer:
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A.5 Annotations

To ensure the quality and reliability of the decomposed subQAC triplets in the CogQA dataset,
we design a rigorous multi-stage annotation pipeline, combining expert review and model-based
verification. The goal is to verify the logical validity of subquestions, the correctness of their
associated cognitive function labels, and the accuracy of the answers.

Stage 1: Validating Subquestion Decomposition In the first stage, we evaluate whether the
generated subquestions are logically sound and align with natural human reasoning. For each QA
pair, three expert annotators (with backgrounds in linguistics or cognitive science) independently
assess the validity of each subquestion. A subquestion is marked true if it meaningfully contributes
to answering the main question and follows a logical reasoning trajectory. Otherwise, it is marked
false.

If a subquestion depends on prior information—such as the question text or the answer—from another
subquestion, the subquestion order must reflect this dependency. While some subquestions can be
answered in parallel and are order-independent, others have prerequisite relationships that require
a specific sequence. As the overall reasoning structure often forms a graph, where both sequential
and parallel dependencies coexist. During LLM inference, we include the previous subquestions
and their corresponding subanswers in the prompt as prior information. Thus, the critical factor is
not the ordering alone, but whether the prompt provides the necessary context to answer the current
subquestion accurately.

We apply the following filtering criteria:

• AI-Human Agreement: If any annotator considers fewer than 60% of the subquestions
valid, the entire QA decomposition is discarded.

• Inter-Annotator Agreement: A subquestion is deemed invalid if at least two annotators
mark it as false. If over 40% of the subquestions in a QA pair are invalid under this rule,
the whole QA pair is removed.

This filtering ensures that the retained QA decompositions follow coherent, cognitively plausible
reasoning chains.

Stage 2: Verifying Cognitive Function Labels In the second stage, annotators evaluate the
correctness of the cognitive function label ci assigned to each subQAC triplet (qi, ai, ci). Three
annotators independently mark each label as true or false. When discrepancies occur, annotators
collaboratively reassign the correct cognitive label to ensure alignment with the underlying mental
operation.

This step ensures that the categorization of subquestions accurately reflects established distinc-
tions between information retrieval, semantic understanding, logical reasoning, and other cognitive
processes.

Stage 3: Answer Verification via Model and Human Review In the final stage, we verify the
correctness of each answer ai using both automated and manual procedures. We employ the o4-mini
model [25], known for its logical reasoning capabilities, to re-evaluate GPT-4o-generated answers. If
o4-mini disagrees with GPT-4o, it provides an alternative answer. A human annotator then compares
both answers and resolves discrepancies by supplying the correct one when necessary. Given the
generally objective nature of answers, only one annotator is required for this task.

Annotation Outcome Following this multi-stage process, we retain 570 validated QA pairs,
yielding a total of 3,402 high-quality subQAC triplets. Notably, we augment certain cognitive
functions to ensure balance across categories. As a result, the original 570 QA pairs were expanded
to 720 (including some duplicates), with each duplicated pair potentially associated with distinct
subquestions and cognitive functions.

A.6 CogQA Example

Table 6 presents illustrative examples from the CogQA dataset. The main question and its correspond-
ing answer are taken from the original dataset. Based on an analysis of the main question, a sequence
of sub-questions, their answers, and associated cognitive function labels are generated in order.
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Table 6: Two examples from the CogQA dataset showing a main question, its final answer, and a
breakdown into subquestions with answers and their corresponding cognitive function labels.

Example 1:

Main Question A one-year subscription to a newspaper is offered with a 45% discount. How much
does the discounted subscription cost if a subscription normally costs $80?

Answer We calculate first the discount: 80 × 45 / 100 = $36. So, the discounted subscription
amounts to 80 – 36 = $44.

Subquestion Answer Cognitive Label

1. What is the normal cost of a one-year subscription to the news-
paper?

$80 Retrieval

2. What is the discount percentage offered on the subscription? 45% Retrieval

3. How much is the discount amount in dollars for the subscription? $36 Math Calculation

4. What is the cost of the subscription after applying the discount? $44 Math Calculation

Example 2:

Main Question What does every person talk out of? Options: - name - hide - mother and father -
mouth - heart

Answer By mouth, talking is done. Every person talk out of mouth.

Subquestion Answer Cognitive Label

1. What is the primary function of talking? To communi-
cate verbally.

Knowledge Recall

2. Which part of the human body is primarily used for verbal
communication?

Mouth Knowledge Recall

3. Based on the options provided, which option corresponds to the
part used for verbal communication?

Mouth Decision-making

A.7 Prompt for Question Asking

Prompt

Prompt: You are an expert in analytical and logical reasoning. You will be given a main
question and prior knowledge in chain-of-thought (CoT) format. Your task is to answer a
follow-up subquestion using the information provided.
Here is the main question:
<main_question> question </main_question>
Here is the prior knowledge in chain-of-thought (CoT) format:
<prior_knowledge> cot </prior_knowledge>
Here is the subquestion:
<subquestion> subquestion </subquestion>
Instructions:
- Answer the subquestion carefully.
- You can use the information in the prior_knowledge to help you answer the subquestion.
- Your response should be clear and concise.
- Stick to factual reasoning based on provided CoT.
- Do not include any explanation, commentary, or code.
- Do not output anything after the closing square bracket ‘]‘.
Only output your final answer using this format: [ "answer": "<Your answer here>" ]
Your answer:
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Table 7: Count (C) and percentage (%) of attention heads exceeding elbow thresholds for each
cognitive function across six models.

Model Recall Retrieval Logical Decision Semantic Syntactic Inference Math

C % C % C % C % C % C % C % C %

Llama3.1-8B-instruct 105 10.3 118 11.5 142 13.9 124 12.1 60 5.9 81 7.9 139 13.6 59 5.8
Llama3.2-3B-instruct 95 14.1 62 9.2 95 14.1 87 12.9 90 13.4 63 9.4 98 14.6 35 5.2
Qwen3-8B 119 10.3 115 10.0 114 9.9 87 7.6 68 5.9 108 9.4 178 15.5 61 5.3
Qwen3-4B 115 10.0 94 8.2 120 10.4 170 14.8 143 12.4 106 9.2 109 9.5 99 8.6
Yi-1.5-9B 200 13.0 134 8.7 134 8.7 174 11.3 218 14.2 140 9.1 173 11.3 167 10.9
Yi-1.5-6B 118 11.5 90 8.8 200 19.5 93 9.1 99 9.7 142 13.9 146 14.3 67 6.5

A.8 The number of cognitive heads for different LLMs

The number of cognitive heads for each model is shown in Table 7.

A.9 Ablation study - Different position of head activation

In the main experiments, we use the top-k generated tokens and average their multi-head attention
vectors. We also explore alternative strategies for extracting representations, including using the first
generated token, the last generated token, the first meaningful token, and the average of all generated
tokens. The corresponding results are shown in Table 8.

Here, first is the first token, last is the last token, meaning_first is the first meaning token (excluding
formatting), top-k is the top-k most semantically important tokens, full is all tokens in the answer.We
observe that top-k token masking leads to the most significant performance drop when masking the top-
30 identified heads, indicating higher precision in identifying retrieval-relevant heads. Interestingly,
last, meaning_first, full, and top-k show similar performance trends. This is because different tokens
in the output contribute to answering the question, and as the number of masked cognitive heads
increases, the influence of token using decreases. Additionally, for Retrieval, the full answer is usually
meaningful, whereas others like Math Calculation require semantically meaningful tokens. Based on
these results, we choose top-k as our final setting.

Table 8: Attention heads associated with cognitive functions are selected based on different token
positions. Accuracy and COMET scores are evaluated after intervention; lower values indicate better
outcomes.

Model Head_num Token_use Retrieval(comet) Retrieval(acc) Math(comet) Math(acc)
Llama3.1-8B 30 first 90.51 83.53 91.13 73.13
Llama3.1-8B 30 last 86.86 81.76 90.04 68.66
Llama3.1-8B 30 meaning_first 88.13 79.41 89.72 68.66
Llama3.1-8B 30 full 73.93 47.06 89.92 69.15
Llama3.1-8B 30 top-k 70.05 46.47 89.32 67.16
Llama3.1-8B 50 first 93.28 89.41 94.46 89.57
Llama3.1-8B 50 last 64.39 41.18 92.05 70.15
Llama3.1-8B 50 meaning_first 62.90 34.12 84.60 60.69
Llama3.1-8B 50 full 46.20 11.76 89.01 78.11
Llama3.1-8B 50 top-k 65.64 47.76 89.65 70.15

A.10 Examples of top-k tokens

The selected tokens are intended to semantically represent the generated answer. Below are examples
for different cognitive functions for Llama3.1-8B-instruct:
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Table 9: Examples of question decomposition with cognitive functions and token selection.
Main Question Subquestion Cognitive Func-

tion
Answer Selected To-

kens
Given the sentence "A
surfboarder catches the
waves." can we conclude
that "A surfboarder in the
water."? (Options: yes /
it is not possible to tell /
no)

What is typically
required for a surf-
boarder to catch
waves?

Knowledge Re-
call

The surf-
boarder needs
to be in the
water.

[’surfboarder’,
’needs’,
’be’, ’in’,
’water’]

Is the following a fac-
tual statement? "Due to
its high density, countries
around the world use Pal-
ladium to mint coins."
(Options: yes / no)

What is the state-
ment in question?

Retrieval The statement
in question
is: Due to its
high density,
countries
around the
world use
Palladium to
mint coins.

[’high’,
’density’,
’Palladium’,
’mint’,
’coins’]

A one-year subscription
to a newspaper is of-
fered with a 45% dis-
count. How much does
the discounted subscrip-
tion cost if a subscription
normally costs $80?

How much is the
discount amount
in dollars for the
subscription?

Math Calculation 36 [’36’]

We can see that the selected tokens semantically represent the answer. Note that we use all tokens
when the number of tokens is fewer than 5.
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