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Abstract

In this paper, we aim to develop a self-
supervised grounding of Covid-related medi-
cal text based on the actual spatial relation-
ships between the referred anatomical con-
cepts. More specifically, we learn to project
sentences into a physical space defined by a
three-dimensional anatomical atlas, allowing
for a visual approach to navigating Covid-
related literature. We design a straightforward
and empirically effective training objective to
reduce the curated data dependency issue. We
use BERT as the main building block of our
model and perform a comparison of two BERT
variants pre-trained on general-purpose text -
BERTBASE and BERTSMALL, with three domain-
specific pre-trained alternatives - BIOBERT,
SCIBERT and CLINICALBERT. We perform a
quantitative analysis that demonstrates that the
model learns a context-aware mapping while
being trained with self-supervision in the form
of medical term occurrences. We illustrate two
potential use-cases for our approach, one in in-
teractive, 3D data exploration, and the other
in document retrieval. To accelerate research
in this direction, we make public all trained
models, the data we use, and our codebase. Fi-
nally, we also release a web tool for document
retrieval and a visualization tool.

1 Introduction

The quantity of available COVID-19 articles on
the internet increases every day. Nonetheless, it
remains scarce compared to general domain data
sets. Annotating medical data requires the exper-
tise of physicians, and is therefore cost-prohibitive,
especially during a pandemic. As a consequence
of the lack of available structured data in the medi-
cal domain, the machine learning community has
mostly focused on developing general-purpose text
models.

∗equal contribution

Figure 1: Grounding of the sentence ”The total
number of AM in the lung at 48 hr was significantly
(p < 0.05) reduced as compared to PBS controls”

(Hartwig et al., 2014) with the CLINICALBERT model.
The dark blue represents the voxels of the left lung,

while the light blue area represents the outline of the
body. The star denotes the model prediction. See

Section 6 for details.

The development of BERT (Devlin et al., 2018),
and the increased popularity of transfer learning in
natural language processing (NLP), have prompted
notable works that aim to leverage publicly avail-
able medical and scientific articles to develop do-
main specific pre-trained language models (Lee
et al., 2019; Alsentzer et al., 2019; Beltagy et al.,
2019). These approaches train models that learn
universal sentence embeddings aimed at capturing
the semantics and structure of the text data.

In contrast, we focus on mapping text to loca-
tions in a 3D model of the human body (Figure 1),
where the physical proximity of objects reflects
their functional and semantic relatedness to a signif-
icant degree. Such an embedding is advantageous
for several reasons: (i) It allows us to visualize
medical text in physically meaningful space, find-
ing clusters of documents organized by anatomy
(Figure 5). (ii) It allows us to search for and re-



Figure 2: Cross-sections of the RGB volume (left) and
the grayscale volume representing segmentation labels

(right) (Pommert et al., 2001)

trieve text by navigating through a physical space.
(iii) There is a statistical advantage to modelling
medical text in the 3D space as anatomically related
substructures tend to be close to one another.

In the absence of semantic labels, we use term
occurrences as the indication of what the text de-
notes. For example, the sentence: ”The pancreas
contains tissue with an endocrine and exocrine role”
receives a target of mapping to the location of the
pancreas in the 3D space.

In order to achieve the goal of grounding medi-
cal text into the physical space, a reference location
for every medical term of interest is required. Such
references can be obtained from a combination of
a three-dimensional atlas of human anatomy and
contextual information. There are multiple digital
anatomical models available. The Virtual Popula-
tion (Christ et al., 2009; Gosselin et al., 2014) of
the IT’IS Foundation1 contains anatomical models
of 10 different persons obtained from MRI proce-
dures. The Segmented Inner Organs (SIO) from
the Voxel-Man project (Höhne et al., 2001; Pom-
mert et al., 2001; Schiemann et al., 1997) 2 is based
on the Visible Human Male (U.S. National Library
of Medicine 3) and contains 202 labeled anatomical
objects within the human torso. The model consists
of 774 slices obtained by CT and MRI imaging,
where each slice contains a cryosection image, a
CT image and a segmentation label image where
the grayscale level corresponds to a segmentation
label of the tissue (Figure 2). In this work, we build
on the atlas of Pommert et al. (2001), though the
approach is readily extended to other atlases.

1www.itis.swiss/
2www.voxel-man.com/
3www.nlm.nih.gov/research/visible/

2 Related Work

There are many works that deal with sentence
grounding in a limited space, albeit not in the phys-
ical 3D space as we do. Most of the approaches ex-
ploit multimodal data and limit the projection space
to either images or videos (Akbari et al., 2019;
Kiela et al., 2017; Chen et al., 2019; Javed et al.,
2018; Xiao et al., 2017). These works overcome
expensive bounding box or pixel-level annotation,
but they cannot be extended to the unsupervised
setting where the data are not paired, but rather raw
unpaired sentences or images. Even though the
image-caption pairs without any region label are
commonly referred to as weakly-supervised data
in the literature, most of these works have training
procedures that are dependent on curated datasets
which are hard to obtain.

The works of Weyand et al. (2016); Ebrahimi
et al. (2018) are probably the most similar to ours.
In PlaNet, Weyand et al. (2016) attempt to classify
images to a distinct set of geolocations. To do so,
they train their model on a dataset of geotagged
images where each image belongs to a single class:
the index of the partitioned geolocation world cell.
In contrast to our approach, the task is formulated
as a classification problem where the physical dis-
tances and relationships between cells do not affect
the way the probability distribution over them is
learned. We frame our approach as a regression
problem, as the spatial closeness of anatomical con-
cepts implies a degree of semantic and functional
affinity. This helps us reason about our approach
in a way that in addition to knowing whether the
grounding is correct or not, we have insight into
how physically close we are to the target.

A similar approach, but more related to our work
as it also deals with text, is the work of Ebrahimi
et al. (2018), where the extracted text representa-
tions and metadata were used to classify tweets
by geographic region in a fully-supervised setting.
Ebrahimi et al. (2018) utilize machine learning to
ground sentences in the world atlas. Yet and again,
their approach is dependent on a carefully struc-
tured dataset and availability of explicit annotations.
In our work, we attempt to go one level further and
learn to ground sentences by only using unlabeled
raw text data, obtained from medical journal arti-
cles, while preserving the spatial structure of the
sentences. Our supervision comes in the form of
implicit organ voxel points in a human atlas space,
and words/phrases that make reference to those or-

www.itis.swiss/
www.voxel-man.com/
www.nlm.nih.gov/research/visible/


gans. To the best of our knowledge, so far, there
have not been works that attempt to ground sen-
tences in a 3D human atlas space, using strictly self-
supervision. Additionally, a number of works have
applied natural language processing techniques on
Covid-19 articles (Zhang et al., 2020; Wang et al.,
2020; Liang and Xie, 2020), however, none of them
aim to ground text in the 3D atlas space.

3 Methods

In this section, we describe the model we use which
is entirely based on BERT, the training objective
and the task that we address in this paper.

3.1 The model

Bidirectional Encoder Representations from
Transformers - BERT (Devlin et al., 2018) is a
pre-trained Transformer (Vaswani et al., 2017)
based language model. Before BERT, the only
way to train deep bidirectional language models
was to train a separate forward and backward
language model, and in the end, concatenate
their learned representations (Peters et al., 2018).
BERT alleviates that problem by introducing the
concept of Masked Language Modelling (MLM),
previously known as cloze task (Taylor, 1953). The
scalability of BERT, combined with MLM, led to
the increasing popularity of such language models
(Keskar et al., 2019; Liu et al., 2019; Lample and
Conneau, 2019).

Due to the train-test discrepancy that occurs by
including the [MASK] token in the MLM, other
approaches train transformers in an autoregressive
manner (Radford et al., 2019; Yang et al., 2019;
Dai et al., 2019). In our work, we use BERT as a
backbone in our model due to its simplicity and ap-
plicability in a wide range of domains. As we shall
see later when we describe the task of text-atlas
grounding, the existence of the [MASK] token in
the vocabulary can be seamlessly incorporated in
our pipeline to fit within the task we solve. In
our work, we perform an ablation study with five
different pre-trained BERT models. Following the
standard practice (Devlin et al., 2018), we take
the representation of the [CLS] token as a general
representation of the whole sequence. Finally, to
obtain the 3D atlas grounding for a piece of med-
ical text, we project BERT’S sentence embedding
with a linear layer, mapping from BERT’S hidden
space to the 3D space.

3.2 Text-to-atlas mapping objective

Our final objective is to ground medical texts to the
anatomic atlas space using only self-supervision
in the form of organ appearances in each sentence.
More concretely, we have a dataset of sentences,
where for each sentence, we can detect the appear-
ances of terms denoted in the human atlas. Then,
our desired scenario is that sentences that share the
same semantics are mapped in the same region in
the human atlas space regardless of whether they
make explicit reference to an organ. To achieve that,
we tokenize each of the training sentences (Loper
and Bird, 2002) and stochastically mask each of
the keywords. Each of the keywords (organs) is
masked with 0.5 probability. In other words, as-
suming that we have the sentence ”In addition, the
kidney mRNA transcript level and serum activity of
XOD in the infected group was significantly higher
than that of the control group at 8, 15 and 22 dpi
(p < 0.05)” (Lin et al., 2015) on average, 50% of
the time we will replace it with ”In addition, the
[MASK] mRNA transcript level and serum activ-
ity of XOD in the infected group was significantly
higher than that of the control group at 8, 15 and 22
dpi (p < 0.05)” in the current training batch. We
use the [MASK] token, as it is included in BERT’s
default vocabulary. Next, the sentence words are
joined again and tokenized using the WordPiece
(Wu et al., 2016) tokenization method as per Devlin
et al. (2018). By following the above-mentioned
procedure, we are able to obtain context-dependent
grounding, such that the model can ground sen-
tences purely based on their context in cases where
none of the organ references are present.

3.3 Minimum organ distance loss

Ideally, if we had exactly one organ occurrence
per sentence, and if we could associate each organ
with a single point in the 3D space, we could sim-
ply minimize the mean squared error between the
3D coordinates of the organ point y and the model
prediction ŷ. However, a sentence can contain mul-
tiple organ occurrences, while organs themselves
are distributed in nature, and are characterized by
a set of points in 3D space, which capture its posi-
tion, size and shape. Therefore, the loss function
needs to accommodate having more than one point
as target for regression.

We calculate the Euclidean distances between
the prediction and each organ point, and the soft-
min (soft-max across the inputs reversed in sign)



Figure 3: Loss isocurves around kidney and lung point
clouds projected into 2D using PCA for visualization

purposes.

across these squared distances as weights for the
contributions of individual points. The loss con-
tribution of an organ point (denoted as PC) is the
product of its squared distance from the predicted
point and its weight:

PC(yp) =
‖yp − ŷ‖22 exp(−γ1‖yp − ŷ‖22)∑P

i=1 exp(−γ1‖yi − ŷ‖22)
, (1)

where ŷ is the model prediction, yp is an organ
point, P is the total number of points that charac-
terize a single organ and γ1 is a temperature term.
We calculate the loss for one organ (denoted as
OL) as the sum of contributions of its points:

OL =

P∑
p=1

PC(yp) (2)

To avoid regressing to a point outside of the organ,
we shave off the surface of the organ by performing
a single binary morphological erosion (Serra, 1983)
prior to computing the loss.

In the case where more than one organ is present
in the sentence, we calculate the loss for each in-
dividual organ in the way described above. Then,
we compute the soft-min over the set of such loss
terms as contribution weights for each organ. The
final loss contribution of one organ (denoted as
OC) is the product between its individual loss and
its contribution weight:

OCo =
OLo exp(−γ2OLo)∑O

i=1 exp(−γ2OLi)
(3)

where O is the total number of distinct organs ap-
pearing in the sentence, OLi is the organ loss for
the ith organ, and γ2 is a temperature term. Finally,

the total loss for one sample is computed by sum-
ming up the loss contributions of organs appearing
in its sentence:

Loss =

O∑
o=1

OCo (4)

4 Data Collection

4.1 Text Corpus
The text corpus consists of Covid-19 related arti-
cles from the Open Research Dataset Challenge
(CORD-19) 4. The version from 20.03.2020., con-
sisting of a csv file with metadata for 29500 papers
and 13202 json files with full texts of scientific
articles pertaining to Covid-19 was used for train-
ing the model. The abstracts and text bodies of
full text articles were included in the corpus and
split into sentences, which constitute the samples
in the dataset. Both the full text json files and
the metadata csv contain paper abstracts, and in
case when there is a mismatch between the two,
we include the abstract version that contains more
characters. The sentence length was analyzed and
it was found that 99.89% sentences contain fewer
than 128 words. In order to avoid unnecessary
memory consumption during training, sentences
longer than 128 words were discarded.

4.2 Human Body Atlas
We utilize the Segmented Inner Organs (SIO) at-
las (Pommert et al., 2001). We base the 3D atlas
on the segmentation labels of the tissues in the
human body, which come in the form of image
slices that form a 3D voxel model of the male
torso when stacked on top of one another. The
stacked images from the torso represent a volume
of 573× 330× 774 voxels, with 1-millimeter res-
olution along each axis. The value of each voxel
represents the segmentation label of its correspond-
ing organ or tissue. The SIO includes the model of
the human head as well, that we do not use.

SIO contains a glossary of medical terms and
their associated segmentation labels. A list of syn-
onyms and closely related wordforms for each glos-
sary term were retrieved. The ScispaCy UmlsEn-
tityLinker (Neumann et al., 2019) was used for
searching the UMLS Metathesaurus (The Unified
Medical Language System) (Bodenreider, 2004) for

4https://www.kaggle.com/
allen-institute-for-ai/
CORD-19-research-challenge

https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge


all word forms of the SIO glossary 5. The parame-
ters of the UmlsEntityLinker were kept at default
values.

SIO includes 202 anatomical objects with their
distinct segmentation labels. Tissues such as skin,
gray matter, white matter, and unclassified tissues
were removed from the set of labeled terms, as they
denote general medical concepts not characterized
by specific compact locations in the human body.
The vertebrae, bones, and muscles of the arms and
legs were discarded as well. In the case of cate-
gories for bilateral organs located symmetrically on
both the left and the right side of the body, which
are seldom mentioned explicitly in the texts, only
the atlas voxels pertaining to the left organ were
kept for every bilateral pair. Atlas labels that appear
infrequently in medical literature, but are function-
ally related to other, more frequently occurring or-
gans, or are colloquially referred to under a single,
umbrella term, were merged. The aforementioned
steps reduced the list of distinct anatomical objects
of interest to 67. The full list of organ removals,
mergers and renamings can be found at https:

//github.com/gorjanradevski/macchina/.

4.3 Dataset Creation

Sentences were chosen as the main units of text that
are mapped to three-dimensional locations in the
atlas, i.e. the samples consist of sentences and their
targets in the human atlas. The voxels of one organ
can be characterized by a point cloud in the atlas
space, where each point represents the coordinate
indices of one voxel (Figure 1).

The training set consists of sentences from 70%
randomly chosen documents, while the remaining
30% of the documents were evenly distributed be-
tween the validation and the test set. Consequently,
the sentences from the same document are always
assigned to the same dataset split. As can be seen
on Figure 4, the frequency of the words and phrases
referring to the lung, liver, bronchi, stomach, and
kidney is significantly higher than that of other or-
gans. Therefore, to balance out the numbers of
organ occurrences in the dataset, we include up
to 8000 randomly selected sentences that contain
these frequently occurring organs and discard the
rest, while keeping all the sentences containing
less frequently occurring organs. Some sentences
contain multiple occurrences of one or different
organs, meaning that an organ can still have more

5ScispaCy version 0.2.3 and en core sci lg pipeline

Figure 4: Number of occurrences of the 13 most fre-
quent organs

than 8000 occurrences in the dataset. Regardless
of this, the number of sentences that contain the
most frequently occurring organs is significantly
reduced, whereas the sentences containing less fre-
quently occurring organs are preserved. The organs
with fewer than 100 occurrences are removed. This
included 38 organs, leaving a total of 29 anatomical
categories as target locations for text mapping. The
sentences that do not contain words and phrases
that can be associated with the SIO glossary terms
are discarded.

5 Experimental setup

For the development of our models and pipelines
we used the PyTorch library (Paszke et al., 2019)
together with the HuggingFace transformers (Wolf
et al., 2019) package. For each of the experiments,
we start with a pre-trained model and we fine-tune
the whole architecture. We keep a fixed learning
rate of 2 × 10−5 and train the larger models for
20 epochs, and we increase the learning rate to
5× 10−5 for the BERTSMALL model and train it for
50 epochs. During training we clip the gradients
when the global norm exceeds 2.0. For all experi-
ments, our optimizer of choice is Adam (Kingma
and Ba, 2014) and the temperature term γ1 is fixed
to 0.33. We fix the second temperature term γ2 to
1
N where N is the number of distinct organs ap-
pearing within an single training instance. During
the fine-tuning we keep the model that reported the
lowest distance to the nearest ground truth voxel
point on the validation set as early stopping. Aside
from early stopping and the dropout (Srivastava
et al., 2014) layers present in BERT, we do not
perform any other regularization.

https://github.com/gorjanradevski/macchina/
https://github.com/gorjanradevski/macchina/


5.1 Metrics and evaluation

We perform all evaluations in two different set-
tings, namely Regular and Masked. In the former,
we perform atlas grounding on a holdout set of
sentences obtained from documents not seen by
the model during training. In the latter, we use the
same model while masking all the SIO glossary
terms and their synonyms, i.e. substituting them
with the special token [MASK]. In the Masked
setting, we ensure that the model relies on the sen-
tence context instead of making a one-to-one cor-
respondence between the organ that appears in the
sentence and the location in the atlas.

Each of the models is evaluated on three met-
rics: (i) Distance to the nearest voxel of the nearest
correct organ (NVD)6. (ii) Distance to the nearest
correct organ voxel calculated only on the samples
for which the projection is outside the organ vol-
ume (NVD-O)6. (iii) Rate at which the sentences
are grounded within the volume of the correct or-
gan, which we denote as Inside Organ Ratio (IOR).

We consider the predicted 3D point to be in-
side the organ volume (hit) when its coordinates,
rounded to the nearest integer to represent voxel
indices, are within the set of voxels that make up
the corresponding organ. In cases where the sen-
tence has more than one organ reference, due to
the implicit labeling, we measure a hit when the
predicted coordinates correspond to any one of the
given organs.

When the projection is inside the volume of the
organ, the NVD is zero, and otherwise, it is mea-
sured as the distance to the surface of the nearest
organ in the sentence. The NVD-O metric comple-
ments the NVD metric, such that it gives insight
into how far off the prediction is when it misses the
correct organ.

We justify the evaluation metrics according to
the type of data we use, and the use-cases. Firstly,
since we leverage unlabeled data exclusively, we
assume that a single sentence needs to be grounded
inside/near the organ of reference in the sentence.
Secondly, we want similar sentences (sentences
making reference to a certain body part), to be
grounded in similar parts of the human atlas. As
a result, we use the distance to the nearest organ
voxel as the primary evaluation metric. Therefore,
we can expect that the models with high evalua-
tion scores to be useful for data-exploration and
document retrieval through the human atlas.

6Calculated in centimeters

6 Quantitative results

In this section we report the results of our trained
models. Four of the models share the same ar-
chitecture, with the only difference being the pre-
training corpus of BERT. Namely, the BERTBASE

(Devlin et al., 2018) model has been pre-trained on
the BooksCorpus (Zhu et al., 2015) and English
Wikipedia. The BIOBERT (Lee et al., 2019) model
is obtained by fine-tuning BERTBASE on PubMed
abstracts and PMC full-text articles as per Lee et al.
(2019) while CLINICALBERT is obtained by initial-
izing with the BIOBERT’S weights and fine-tuning
on clinical notes. The SCIBERT model is obtained
by fine-tuning BERTBASE on 1.14M papers from
Semantic Scholar (Ammar et al., 2018). Finally,
BERTSMALL, is obtained by pre-trained distillation
(Turc et al., 2019) from BERTBASE.

Additionally, we perform an analysis of the ef-
fectiveness of framing the task as classification.
Here, we feed the [CLS] representation to an out-
put layer to perform the classification as per Devlin
et al. (2018). The model is trained to predict an
organ index for every sentence, and the center of
the predicted organ is subsequently used as the
model prediction and evaluated in the same way
as the regression models. We denote this model as
CLASSCENTER in the result tables.

Finally, we report the results on two naive base-
lines that aim to exploit the information on the
general locations of the organs and the informa-
tion on the disbalance in the frequency of organ
occurrences that exist in the datasets. In the first
baseline (FREQUENCY), we measure the frequency
of the organ terms in the training set samples, and
always predict the point within the most frequent
organ on the test set samples. In the second base-
line (CENTER), we use the center of the 3D atlas
as the prediction and measure the distance to the
closest correct organ for every test sample (the IOR
is not relevant).

7 Use-cases

By grounding medical sentences in a 3D atlas
space, we produce low dimensional sentence em-
beddings. We discuss two use-cases of our model,
which, either implicitly or explicitly, leverage such
embeddings: (i) atlas based point-cloud corpus vi-
sualization and (ii) atlas based document retrieval.

We built a tool for each of the use cases, one
for visualizing and retrieving articles in the text
corpus by specifying 3D coordinates, and one for



Method Regular Masked

BERT 0.33 ± 0.02 3.31 ± 0.08
BIOBERT 0.21 ± 0.02 2.92 ± 0.08
SCIBERT 0.22 ± 0.02 3.33 ± 0.09

BERTSMALL 0.51 ± 0.03 3.44 ± 0.08
CLINICALBERT 0.25 ± 0.02 3.11 ± 0.08

CLASSCENTER 0.03 ± 0.01 1.66 ± 0.07

CENTER 10.77 ± 0.10 10.77 ± 0.10
FREQUENCY 9.49 ± 0.15 9.49 ± 0.15

Table 1: NVD on the Cord-19 dataset - we can infer
that all models where the backbone is BERTBASE per-
form comparable to each other. BERTSMALL performs
worse compared to the other models, and the smaller
capacity makes the model unable to sufficiently fit the
data. The CLASSCENTER model outperforms the rest
of the models since it solves an easier task i.e. predict-
ing a discrete value corresponding to the organ.

retrieving relevant articles based on a textual query.
The data was obtained from the Covid-19 Open Re-
search Dataset Challenge (CORD-19) 7 hosted on
Kaggle. The version from 10.04.2020., consisting
of 59311 json files of scientific articles pertaining
to Covid-19 and metadata for 51078 papers was
the latest at the time of writing. The dataset was
processed by using paper indexes for matching ti-
tles, abstracts and main texts in the json files with
the information required for retrieving the article
in the metadata. This included the source of the
publication, authors, date, digital object identifier
(DOI) and the URL for each paper - all the rele-
vant information for article retrieval. In the case
of both tools, each document abstract was embed-
ded into the 3D space as a point cloud, where each
point is the output of the model for each of its sen-
tences. Tools and code can be accessed at https:
//github.com/gorjanradevski/macchina/.

7.1 Atlas based point-cloud corpus
visualization

One advantage of text retrieval in the physical 3D
space is that we do not need to use textual queries,
but are also able to retrieve information by directly
specifying an observable desired location in the
human atlas space. Another advantage is being
able to directly observe the relationship between

7https://www.kaggle.com/
allen-institute-for-ai/
CORD-19-research-challenge/

Method Regular Masked

BERT 4.6 ± 0.26 7.26 ± 0.16
BIOBERT 0.99 ± 0.08 5.99 ± 0.15
SCIBERT 2.27 ± 0.18 7.7 ± 0.17

BERTSMALL 2.11 ± 0.1 6.05 ± 0.14
CLINICALBERT 2.69 ± 0.21 7.5 ± 0.18

CLASSCENTER 24.94 ± 6.26 12.75 ± 0.34

CENTER 10.77 ± 0.10 10.77 ± 0.10
FREQUENCY 11.63 ± 0.17 11.63 ± 0.17

Table 2: NVD-O on the Cord-19 dataset - compared
to NVD, here we can observe the main shortcoming of
the CLASSCENTER model. Namely, when the model
fails to predict the correct organ, the error is not miti-
gated by predicting a point in the vicinity of the correct
organ, as is the case with models that ground sentences
by projecting them to the 3D atlas.

Figure 5: Point-cloud corpus visualization tool.

embedded texts in an intuitively meaningful setting.
The point based tool (Figure 5) accepts a query

in the form of 3D coordinates and matches articles
based on the proximity of their embeddings in 3D
space. The 3D point is queried by selecting a 2D
point on two out of three orthogonal cross-sections.
The distance between the queried point and the
embedded articles is calculated as the distance be-
tween the query point and the centroids of article
point clouds. The nearest 50 articles are shown
as the centroids of their sentence point clouds in
the 3D view on the left, allowing the user to navi-
gate between the closest suggestions. The user may
zoom in and click on nearby points, after which
the information on the corresponding article is dis-
played.

https://github.com/gorjanradevski/macchina/
https://github.com/gorjanradevski/macchina/
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/


Method Regular Masked

BERT 92.76 ± 0.29 54.44 ± 0.56
BIOBERT 78.21 ± 0.47 51.31 ± 0.57
SCIBERT 90.24 ± 0.34 56.76 ± 0.56

BERTSMALL 75.75 ± 0.48 43.21 ± 0.56
CLINICALBERT 90.89 ± 0.33 58.56 ± 0.56

CLASSCENTER 99.88 ± 0.04 86.96 ± 0.38

CENTER 0.00 ± 0.00 0.00 ± 0.00
FREQUENCY 18.41 ± 0.44 18.41 ± 0.44

Table 3: IOR on the Cord-19 dataset - When eval-
uated on the Inside Organ Ratio, the CLASSCENTER
model, since it directly optimizes the IOR metric, sig-
nificantly outperforms all others. Even though the
grounding models approximate this metric during the
training process, we can observe that for most of the
models, the IOR exceeds 90% in the Regular setting
and 50% in the Masked setting.

Figure 6: Text based document retrieval tool.

7.2 Atlas based document retrieval

The text query based tool (Figure 6) accepts a text
query, tokenizes it into sentences and embeds each
into a point in the 3D space, creating a point cloud.
The embedded point cloud is compared with the
point clouds of embedded abstract sentences of
each article. The articles are ranked in terms of the
distances between the point cloud centroids. The
information on the 200 closest articles is retrieved,
and it consists of the title, abstract and the link to
the publication.

8 Discussion and Conclusions

There are several shortcomings in the current study.
First, we only utilized a single male atlas to com-
pute embeddings. Future work should explore mul-
tiple embeddings based on different age, gender,
and body type (Christ et al., 2009; Gosselin et al.,
2014). Additionally, the choice of labels for the
atlas was determined separately from the specific
task of Covid-19 article embeddings, and may have
suboptimal levels of granularity in labeling organ
substructures for this specific task. Second, for ex-
pedience we only explored training on individual
sentences, as opposed to larger bodies of text with
label propagation from nearby sentences. Third, we
have formulated sentence embeddings in an atlas
as a prediction of a single point, but we could also
have considered predicting a (multi-modal) distri-
bution over the atlas space per sentence. Finally,
the query tools would ideally be validated with a
user study. In the current crisis, the medical experts
who would form the user group are in high demand,
and we therefore postpone this step pending their
availability.

In this paper, we have presented a self-
supervised approach to ground medical texts in
a 3D human atlas space. We have relaxed the la-
beled data constraint and provided an objective
that learns semantically aware groundings of sen-
tences. We did an ablation study of the perfor-
mance on the sentence grounding task with 5 differ-
ent BERT backbone models, namely the standard
BERT as per Devlin et al. (2018), BIOBERT (Lee
et al., 2019), SCIBERT (Beltagy et al., 2019), CLIN-
ICALBERT (Alsentzer et al., 2019) and BERTSMALL

(Turc et al., 2019). Finally, we described two use-
cases that leverage this embedding. Prototype tools
for these applications can be obtained at https:
//github.com/gorjanradevski/macchina/.
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