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Abstract

Accurate weather prediction on the subseasonal-to-seasonal (S2S) scale is critical
for anticipating and mitigating the impacts of climate change. However, existing
data-driven methods struggle beyond the medium-range timescale due to error ac-
cumulation in their autoregressive approach. In this work, we propose SeasonCast,
a scalable and skillful probabilistic model for S2S prediction. SeasonCast consists
of two components, a VAE model that encodes raw weather data into a contin-
uous, lower-dimensional latent space, and a diffusion-based transformer model
that generates a sequence of future latent tokens given the initial conditioning
tokens. During training, we mask random future tokens and train the transformer to
estimate their distribution given conditioning and visible tokens using a per-token
diffusion head. During inference, the transformer generates the full sequence
of future tokens by iteratively unmasking random subsets of tokens. This joint
sampling across space and time mitigates compounding errors from autoregressive
approaches. The low-dimensional latent space enables modeling long sequences
of future latent states, allowing the transformer to learn weather dynamics beyond
initial conditions. SeasonCast performs competitively with leading probabilis-
tic methods at the medium-range timescale while being 10x to 20x faster, and
achieves state-of-the-art performance at the subseasonal-to-seasonal scale across
accuracy, physics-based, and probabilistic metrics.

1 Introduction

Subseasonal-to-seasonal (S2S) weather prediction, which predicts atmospheric conditions on
timescales ranging from two to six weeks, is critical for disaster preparedness, resource management,
and long-term planning. This timescale bridges the gap between short-term weather forecasts and
longer-term climate projections, enabling more informed decision-making for extreme weather events
such as droughts, floods, and heatwaves [49, 34, 50, [7]]. However, S2S prediction is particularly
challenging due to the interplay between atmospheric initial conditions, essential for short-term
and medium-range forecasting accuracy, and boundary conditions dominating seasonal and climate
predictions [25} 126]]. Traditional numerical weather prediction (NWP) models, built upon solving
differential equations of fluid dynamics and thermodynamics, have been instrumental in advancing
S2S weather prediction [34} 45/ 46]. However, numerical methods incur substantial computational
costs due to the complexity of integrating large systems of differential equations, particularly at fine
spatial and temporal resolutions. This computational bottleneck also constrains the ensemble size of
ensemble systems, which is crucial for achieving accurate S2S predictions.

To overcome the challenges of NWP systems, there has been a growing interest in data-driven
approaches based on deep learning for weather forecasting [9} 41 |48]]. These approaches involve
training deep neural networks on historical datasets, such as ERAS [13} 14} |37, 38]], to learn the
underlying weather patterns. Once trained, they can produce forecasts in seconds compared to
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the hours required by NWP models. Recent deep learning methods such as PanguWeather [1]],
Graphcast [20], and Stormer [31] have also shown superior accuracy in medium-range weather
forecasting, surpassing operational IFS [47], the state-of-the-art NWP system. However, their
application to the S2S timescale has been limited [29]]. One possible explanation for this limitation is
the rapid error compounding in their autoregressive designs, in which a model learns to forecast the
future weather state at a small interval and iteratively feeds its prediction back as input to achieve
longer-horizon forecasts. Even though previous works have proposed multi-step finetuning to mitigate
this issue, back-propagation through a large number of forward passes required for S2S timescales
is computationally prohibitive. Moreover, training a neural network to forecast at a small interval
only allows the model to learn the initial conditions problem, ignoring boundary conditions that are
critical for prediction at S2S timescales.

We propose SeasonCast, a novel latent diffusion model for skillful probabilistic S2S prediction.
SeasonCast follows a two-stage training process. First, a VAE model compresses raw weather data
into a continuous, lower-dimensional latent space. Second, a transformer is trained to model the
distribution of future latent tokens using a masked generative framework [2,153]]. Specifically, during
training, we randomly mask a subset of future tokens, and task the transformer to unmask these
tokens based on the conditioning tokens and the visible tokens. Since the latent tokens lie in a
continuous space, we use a small diffusion network on top of the transformer model to estimate
the per-token distribution of unmasked tokens. After training, SeasonCast generates forecasts for
the full sequence of future tokens through an iterative process. At inference, SeasonCast iteratively
generates forecasts for the full sequence of future tokens by unmasking a subset of tokens in each
step until all are generated. This joint generation of future tokens across time and space significantly
mitigates the compounding errors issue of an autoregressive approach. Furthermore, training on the
full sequence of future frames enables SeasonCast to address both initial condition problems and
boundary condition challenges, which are critical for S2S prediction.

We evaluate SeasonCast on ChaosBench [29]], a recent benchmark for subseasonal-to-seasonal
prediction. SeasonCast achieves state-of-the-art performance on key atmospheric variables across
various accuracy, physics-based, and probabilistic metrics. Additionally, we carefully study the impact
of different design choices, including the auxiliary MSE loss, training sequence lengths, unmasking
order, and diffusion sampling temperature, on the forecasting performance of SeasonCast.

2 Related Work

Data-driven weather forecasting Deep learning has become a promising approach in the field of
weather forecasting. Recent advancements with powerful architectures have achieved significant
successes, providing faster inference and superior forecasting accuracy compared to IFS, the gold-
standard numerical weather prediction system. Notable methods include FourCastNet [33]], which
utilizes an adaptive neural operator architecture; Keisler [L6]’s, GraphCast [20], and AIFS [22], which
leverage graph neural networks; and a series of transformer-based models such as PanguWeather [[1]],
Stormer [31], and others [30, 15,13 16]. Beyond deterministic predictions, the field has increasingly
focused on probabilistic forecasting to account for forecast uncertainty. Common approaches involve
integrating existing architectures with generative frameworks, including diffusion models [35} 28],
normalizing flows [6]], and latent variable models [32]]. Others explore ensemble predictions through
initial condition perturbations, exemplified by methods like AIFS-CRPS [22] and NeuralGCM [18]].

Data-driven S2S prediction Recent benchmarks have emerged to evaluate data-driven methods at
S2S timescales. While many focus on regional forecasts such as the US [[15, 27]], ChaosBench [29]
offers a comprehensive framework for global S2S prediction, providing extensive numerical baselines
and physics-based metrics. A key finding from ChaosBench shows that state-of-the-art deep learning
methods struggle to extend to S2S timescales. These methods predominantly rely on autoregressive
approaches that generate predictions iteratively at short time intervals, leading to error accumulation
with increasing lead times. While multi-step finetuning helps mitigate this issue for medium-range
forecasts, it becomes computationally prohibitive for S2S predictions due to the extensive number
of required forward passes. Moreover, training models with short time intervals fails to capture
boundary conditions essential for long-term weather patterns. While Fuxi-S2S [4]] was proposed for
S28S prediction, it focuses on forecasting daily averaged statistics, which fundamentally alters the
underlying weather dynamics and makes it inapplicable to forecasting at instantaneous time steps.



93

94
95
96
97
98
99

101
102
103
104

105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121

122
123
124
125
126
127
128
129

130
131
132

133
134

135
136
137
138

3 Background and Preliminaries

3.1 Weather forecasting

The goal of weather forecasting is to forecast future weather conditions X7 € RYV*#*W based on
initial conditions Xy € RY>*H#*W '\where T represents the target lead time, V' denotes the number of
input and output physical variables (e.g., temperature and geopotential), and H x W corresponds
to the spatial resolution of the data, determined by the density of the global grid. In subseasonal-
to-seasonal (S2S) forecasting, we focus on lead times ranging from 2 to 6 weeks. Autoregressive
modeling is a dominant paradigm in data-driven weather forecasting, where a model iteratively
produces forecasts X; at a short interval ¢ to reach the target lead time 7. In this work, we propose
an alternative approach: training a generative model to estimate the distribution of the entire sequence
of future weather states X.7 given initial conditions X. This approach mitigates error accumulation
and enables the model to learn both initial and boundary condition dynamics by considering the
complete sequence of weather states.

3.2 Masked generative modeling

Masked generative modeling is an efficient and powerful approach for image and video generation in
computer vision [2,[53}23]]. In this framework, visual data X;.7 € RTXV*HXW (T — 1 for images)
is first embedded by a VAE encoder into a sequence of tokens x € RY*P where N represents
the length of the flattened token sequence. During training, we apply a binary mask to randomly
select a subset of tokens to be predicted, creating a corrupted sequence. We then train a transformer
model to recover the original tokens at masked positions based on both the visible tokens and any
additional conditioning information such as initial frames. For generation, the framework employs an
iterative decoding process that starts with a fully masked sequence of future tokens. In each iteration,
the model predicts a random subset of masked tokens in parallel, where the number and positions
of the unmasked tokens follow a predefined schedule and order. This process continues until all
tokens are unmasked, at which point the generated tokens are decoded back to the original domain
through a VAE decoder. This framework offers key advantages for weather forecasting: it allows
the model to capture long-range dependencies across the entire sequence while avoiding the error
accumulation typical in autoregressive approaches, and the iterative refinement process enables the
model to maintain consistency across both spatial and temporal dimensions.

3.3 Modeling continuous tokens with diffusion models

In the masked generative modeling framework, a common practice is to embed the raw visual data
into a discrete latent space using vector-quantized VAE models [43]. However, discretization is
sensitive to gradient approximation strategies [39} 36, [19]] and has lower reconstruction quality than
continuous VAEs. Recent works [42, 24] have demonstrated that discretization can be eliminated by
directly modeling the per-token continuous probability distribution by using diffusion models. Given
data x € RP and its conditioning information z € R”, we model the conditional distribution p(z | z)
using a diffusion process that gradually transforms a Gaussian prior into the target distribution. The
forward diffusion process progressively adds Gaussian noise to the data x following:

Ts = \/OsT + v 1- Qg€ (1)
where s indicates the diffusion step, s determines the noise schedule, and € ~ A/(0, I) represents
Gaussian noise. The reverse process employs a denoising network ey(xs, s, z) parameterized by 6 to
predict the noise component from the noisy input s and condition z:

Lar(0) = Ec , [|lea(zs,5,2) — €] . 2)

At inference time, conditional sampling begins with a random Gaussian noise zg ~ N(0,I) and
iteratively applies the reverse diffusion process:

= T (2y,52) ) 7000 3)

Ts—1 = Ts — —¢€o(Ts, 5,2 TOs0,
! /Og V1—ag 0

where &, = [[;_; k., § ~ N(0,1I) and o, controls the magnitude of noise added at each step. This

iterative process generates samples from the learned conditional distribution pg (x | z). Following [24],

we additionally scale the noise 039 by the temperature 7 that controls the sample diversity from the

diffusion model.




139

140
141
142
143

144

145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161

162

163
164
165
166
167
168

169
170
171
172

7
21 23 ZN
S
Transformer backbone
Figure 2: The denoising network
C:j [:j E$ [:j Eij eg predicts the noise € from z; and
2.
o M] M]

Chxw
Figure 1: SeasonCast processes the latent tokens through a

transformer backbone that outputs a vector z; for each position Figure 3: The deterministic net-
1 in the sequence. work predicts directly x; from z;.

8

4 Methodology

We present SeasonCast, a novel method for subseasonal-to-seasonal prediction. Similar to previous
works in video generation, SeasonCast consists of two components: a VAE model that compresses
the raw weather data into a lower-dimensional space, and a masked generative transformer model in
this latent space. We present the two components and their key design choices in this section.

4.1 VAE for weather data embedding

A VAE encoder embeds a weather state X € RV *#>*W into a map of h x w latent tokens, where
h < H and w < W. In vector-quantized VAEs, each entry in the latent map is an integer index from a
fixed-size vocabulary, representing a discrete latent space. While this discretization is widely adopted
in computer vision due to its compatibility with cross-entropy training and straightforward sampling
from softmax distributions, it presents significant challenges for weather data. Unlike RGB images
with three channels, weather states can contain hundreds of physical variables, resulting in an extreme
compression requirement. For instance, consider compressing weather data with 100 variables (32 bits
per value) by a factor of 4 in each spatial dimension, using a vocabulary size of 2!3 = 8192 (13 bits
per latent token). This results in a compression ratio of (32x100x H x W) /(13 x (H/4) x (W/4)) ~
3938. Such aggressive compression leads to substantial reconstruction errors, ultimately degrading
the performance of the second-stage generative modeling.

Therefore, we adopt a continuous VAE model for SeasonCast, where each token in the h x w
latent map is a continuous vector of D dimensions. With D = 16, for example, the compression
ratio becomes (32 x 100 x H x W)/(32 x 16 x (H/4) x (W/4)) = 100, substantially lower
than the discrete approach. While it is also possible to compress a sequence of weather states
X1 € RTXV>HXW in both temporal and spatial dimensions, our preliminary experiments showed
no clear benefits from temporal compression, leading us to adopt per-frame embedding.

4.2 Masked generative modeling for S2S prediction

After training the VAE, we embed the initial condition into a sequence of tokens ¢ =

(c1,¢2,. .., Chxw). Similarly, each future weather state is embedded into a sequence of tokens,

which are concatenated to form the complete sequence of future tokens x = (1,2, ..., Zx), where

N =T x h x w represents the total number of future tokens. Each latent token is a continuous

vector of dimension D. Our generative modeling objective is to estimate the conditional distribution
p(x | ¢) from the training data.

We achieve this using a masked generatlve framework, as illustrated in Figure[I] During training,
we sample a binary mask m = [m;]2¥.; ~ py; and replace tokens x; with a learnable, continuous
[MASK] token where m; = 1, creating a cormpted sequence X = m(x). The generative objective is
to estimate the distribution of masked tokens conditioned on the visible and conditioning tokens:

£gen(9) = mDNEpM Z —logpo(z; | ¢,X)| . )
is.t. m;=1
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The model processes the input by concatenating the conditioning tokens ¢ with the corrupted future
tokens X, adding positional encodings to the embedded sequence, and passing it through a bi-
directional transformer backbone to obtain vectors z; for each masked position. Given these vectors,
the per-token objective log py(z; | ¢,X) in Equation {4f simplifies to log pg(z; | 2;). To model this
continuous distribution, we employ a diffusion model where z; serves as conditional information
for a denoising network — implemented as a small MLP on top of the transformer (Figure [2). We
train the denoising network and the transformer backbone jointly using the diffusion loss specified in
Equation[2] Conceptually, this diffusion objective encourages the model to produce representations
z; that facilitate effective denoising.

Auxiliary deterministic objective To encourage accurate predictions of near-term future tokens,
we incorporate an auxiliary mean-squared error loss in the latent space. We implement this through
a separate MLP head that produces deterministic predictions Z; from z;, training it jointly with the
transformer backbone. Since weather dynamics become increasingly chaotic beyond day 10, making
deterministic predictions progressively less meaningful, we apply this loss only to the first 10 future
frames. Furthermore, we employ an exponentially decreasing weighting scheme to emphasize the
importance of accurate predictions for earlier frames. The deterministic objective is thus:

> w(i)fe xl%} : 5)

m;=1

Leter (0) = E

m~pyy

Appendix [A.2] presents the details of this objective. The complete training objective combines both
losses: L(0) = Lgen(6) + Laeter(0)-

Sampling from SeasonCast At inference time, we generate samples from p(x | ¢) through an
iterative decoding process, starting from a sequence of fully masked future tokens. Each iteration
consists of three steps: first, the transformer backbone processes the conditioning tokens and corrupted
future tokens to produce vectors z; for each masked position; second, a subset of masked positions
is randomly selected according to a predefined schedule for unmasking; third, for each selected
position, the diffusion model generates token x; by conditioning on z; and performing a fixed number
of diffusion steps. This process iterates until all future tokens are revealed, at which point the
VAE decoder maps the generated tokens back to the weather domain. To generate an ensemble of
forecasts, we simply replicate the initial tokens and perform independent sampling for each copy. Four
hyperparameters affect the sampling procedure: the number of unmasking iterations, the unmasking
order, the number of diffusion steps, and the diffusion temperature.

4.3 Implementation details

Architectural details For the transformer backbone, we adopt the encoder-decoder architecture
from Masked Autoencoder (MAE) [12]]. The model processes an input sequence in two stages:
first, the encoder processes the conditioning and visible tokens; second, the encoded sequence is
augmented with learnable [MASK] tokens at appropriate positions and passed through the decoder
to produce z; for each position ¢. Both the encoder and decoder are bidirectional, employing full
attention. Before feeding to either the encoder or decoder, we add the input sequences with positional
embeddings that combine two components: temporal embeddings to distinguish different frames, and
spatial embeddings to differentiate tokens within each frame. The encoder and decoder follow the
Transformer [44]] implementation in ViT [8]], each having 16 layers with 16 attention heads, a hidden
dimension of 1024, and a dropout rate of 0.1.

Mask sampling During training, we sample a masking ratio v ~ [0.5,1.0] and generate a
corresponding binary mask m, where v = 0.75 indicates that 75% of entries in m are 1. For inference,
we start with full masking (y = 1.0) and gradually reduce it to 0.0 with a cosine schedule [2]. We
set the number of unmasking iterations to match the number of future weather states 7. We employ
random masking orders across both spatial and temporal dimensions for training and inference.

Diffusion loss details We use a linear noise schedule with 1000 steps at training time that are
resampled to 100 steps at inference. The denoising network €y is implemented as a small MLP
following Li et al. [24]. Specifically, the network consists of six residual blocks, each comprising a
LayerNorm (LN), a linear layer, a SiLU activation, and another linear layer, with a residual connection
around the block. Each block maintains a width of 2048 channels. The network takes the vector z;
from the transformer as conditioning information, which is combined with the time embedding of the
diffusion step s through adaptive layer normalization (AdalLLN) in each block’s LN layers.



225

226
227
228
229

230
231
232

234
235
236
237
238

239

240
241
242
243
244
245
246
247

248
249
250
251
252

254
255
256
257

258
259
260
261
262

264
265

266
267
268
269
270
271

272
273
274
275
276

5 Experiments

We compare SeasonCast with state-of-the-art deep learning and numerical methods on medium-range
weather forecasting and S2S prediction, using WeatherBench?2 [38] (WB2) and ChaosBench [29] as
benchmarks, respectively. We also conduct extensive ablation studies to assess the contribution of
each component in SeasonCast, and evaluate its scalability under varying inference compute budgets.

Across both tasks, we train and evaluate SeasonCast on 69 variables from the ERAS reanalysis
dataset [14]], including four surface-level variables — 2-meter temperature (T2m), 10-meter U and
V wind components (U10, V10), and mean sea-level pressure (MSLP), as well as five atmospheric
variables — geopotential (Z), temperature (T), U and V wind components, and specific humidity (Q),
each at 13 pressure levels {50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000} hPa.
For medium-range forecasting, we use native 0.25° resolution (721 x 1440 grids) and follow WB2
to train on years 1979-2018, validate on 2019, and test on 2020 using initial conditions at 00UTC
and 12UTC. For S2S prediction, we downsample the data to 1.40625° (128 x 256 grids) and follow
ChaosBench to train on 1979-2020, validate on 2021, and test on 2022 using 00UTC initializations.

5.1 SeasonCast for S2S prediction

Training and inference details We train a VAE that embeds each weather state of shape 69 x
128 x 256 into a latent map of shape 1024 x 8 x 16, reducing spatial dimensions by a factor of
16. The architectural details and training process of the VAE are described in Appendix [A.T] We
train SeasonCast to forecast a sequence of T = 44 future weather states at 24hr intervals, covering
lead times from 1 to 44 days. Each training example consists of 45 x 8 x 16 = 5760 latent tokens,
including the initial condition. During inference, we generate the complete future sequence in 44
iterations (1 iteration per frame) using a diffusion temperature of 7 = 1.3. We produce an ensemble
of 50 forecast sequences for each initial condition.

Baselines We compare SeasonCast with PanguWeather (PW) [1] and GraphCast (GC) [20], two
leading open-sourced deep learning methods, and ensemble systems of four numerical models from
different national agencies: UKMO-ENS (UK) [51]], NCEP-ENS (US) [40], CMA-ENS (China) [52],
and ECMWF-ENS (Europe) [10]. We refer to ChaosBench for details about these baselines. Follow-
ing ChaosBench, we report results on T850, Z500, and Q700 at lead times from 1 to 44 days. We
additionally compare SeasonCast with ClimaX [30] and Stormer [31] in Appendix We do not
compare against Fuxi-S2S [4] as Fuxi-S2S forecasts daily average values from past daily averages,
making it incomparable with SeasonCast and the rest of the methods, which perform point-in-time
weather forecasting based on an initial condition. We are also not able to run Gencast [35]] and
Neural GCM [[18]] for S2S due to their significant computational demands.

Results Figure [ compares different methods on three deterministic metrics: Root Mean-Squared
Error (RMSE), Absolute Bias (ABS BIAS), and Multi-scale Structural Similarity (SSIM). At shorter
lead times, SeasonCast shows slightly worse performance on RMSE and SSIM than other baselines,
which is expected since we train SeasonCast to model a full sequence of future weather states
rather than optimizing for short- and medium-range predictions. However, SeasonCast’s relative
performance improves with increasing lead time, ultimately matching ECMWF-ENS as one of the top
two performing methods beyond day 10. Notably, SeasonCast demonstrates the lowest bias among
all baselines, maintaining near-zero bias across all three target variables.

Physical consistency also plays a crucial role in S2S prediction, particularly for ensemble systems.
We evaluate this aspect using two physics-based metrics: Spectral Divergence (SDIV) and Spectral
Residual (SRES), which measure how closely the power spectra of predictions match those of ground-
truths. As shown in Figure 5] SeasonCast achieves substantially better physical consistency than
other deep learning methods, and often outperforms all baselines on these metrics. These results
demonstrate how SeasonCast effectively preserves signals across the frequency spectrum.

Finally, we compare SeasonCast with the four numerical ensemble systems on two probabilistic
metrics: Continuous Ranked Probability Score (CRPS) and Spread/Skill Ratio (SSR) (closer to 1
is better). Figure[6]shows that SeasonCast and ECMWEF-ENS are the two leading methods across
variables and lead times. Similar to deterministic results, SeasonCast performs worse than ECMWF-
ENS at shorter lead times but outperforms this baseline beyond day 15.
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5.2 SeasonCast for medium-range forecasting

In addition to its strong performance on the S2S task, we demonstrate that SeasonCast also performs
competitively at the medium-range timescale. We train a VAE model with a spatial downsampling
ratio of 16, compressing each weather state of shape 69 x 721 x 1440 into a latent representation of
size 256 x 45 x 90. We then train SeasonCast to predict two steps ahead at 12-hour intervals, following
the setup of Gencast [33]]. During inference, we use autoregressive sampling, recursively feeding
the most recent predicted frame as the new initial condition until the target lead time is reached. We
generate forecasts using a single sampling iteration per frame with a diffusion temperature 7 = 1.0,
and produce an ensemble of 50 members.

We compare SeasonCast against Gencast [33], a leading deep learning method for probabilistic fore-
casting, and IFS-ENS [21]], the gold-standard numerical ensemble system. Following WeatherBench2,
we use ensemble RMSE, CRPS, and spread-skill ratio (SSR) as evaluation metrics. Figure |Z] shows
that SeasonCast performs comparably with IFS-ENS across all variables and metrics, and is only



290
291
292

293

294
295
296
297
298

300
301

Z500 (m?/s?) T850 (K) Q700 (g/kg)

0 10 20 30 40 ) 10 40 o 10 20 30 40

20 30
Lead Time (Days)

—— SeasonCast ECMWF-ENS —=- CMA-ENS —=—- UKMO-ENS —=- NCEP-ENS

Figure 6: Probabilistic performance of different methods at lead times from 1 to 44 days across three
key variables. Solid curves are deep learning methods and dashed curves are numerical methods.

7500 (m?/s?) 7850 (K) Q700 (g/kg)

16
3.0
14
25
1.2
2.0
1.0
15
0.8
1.0
T
1
1
A
il

0.8

0.7

0.6

0.5

CRPS ()

0.4

0.3

1.150

4
11251\ g
VAL

)
1.05 1104y 1.100 \’\,\,*‘,‘,“/
. v
"\, 1.075 WA e
v YRR
o 1.00 1.05 v WAL
& : (VN 1.050
a ARATENE S |
0.95 TET Lo
1.00
1.000
0.90
0.95 0.975
0.85 0.950
2 a4 6 8 10 12 14 2 a4 6 8 10 12 14 2 a4 6 8 10 12 14
Lead Time (Days)
—— SeasonCast Gencast —-—- IFS-ENS

Figure 7: Probabilistic performance of different methods in medium-range forecasting. Solid curves
are deep learning methods and dashed curves are numerical methods.

slightly behind Gencast. Moreover, our analysis in Appendix [B-I| further shows that SeasonCast
is 10x to 20x faster than all baselines. These results indicate strong performance across both
medium-range and S2S timescales of SeasonCast.

6 Conclusion

We present SeasonCast, a novel latent diffusion model for S2S prediction. By combining the masked
generative framework with a diffusion objective, our approach enables direct modeling of long
sequences of future weather states while avoiding error accumulation inherent in autoregressive
methods. SeasonCast achieves state-of-the-art performance in deterministic and probabilistic metrics
while maintaining exceptional physical consistency. In medium-range forecasting, SeasonCast
performs competitively with existing methods while being significantly more efficient. Future work
could study the fundamental trade-off between VAE reconstruction quality and transformer modeling
capacity, and explore more sophisticated generative frameworks to enhance the diffusion objective.
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A Implementation details

A.1 VAE details

Our VAE model follows the UNet implementation from PDEArena [[11]. We use the following
hyperparameters for UNet in our experiments.

Table 1: Default hyperparameters of UNet

Hyperparameter Meaning Value
Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1
Input channels The number of channels of the input 69
Input channels The number of channels of the output 69
Base channels The base hidden dimension of the UNet 256
Channel multiplications E)itggieaglgagrglf:;g f output channels [1,2,4,4,8]
Dimension of z The dimension of the latent space 1024
Blocks Number of blocks 2
Use attention If use attention in Down and Up blocks False
Dropout Dropout rate 0.0

The VAE encoder embeds each weather state of shape 69 x 128 x 256 to a latent map of shape
1024 x 8 x 16, reducing the spatial dimensions by 16. We use a KL weight of 5e — 5 and optimize
the VAE model with Adam [[17] for 200 epochs with a batch size of 32, a base learning rate of 2e — 4,
parameters (51 = 0.9, 52 = 0.95), and weight decay of le — 5. The learning rate follows a linear
warmup for the first 20 epochs, followed by a cosine decay schedule for the remaining 180 epochs.

A.2 Weighted deterministic objective

In SeasonCast, we employ a weighted MSE objective to encourage accurate deterministic predictions
for near-term frames. The objective is formulated as:

> w(i)fa —ii|§:| ) (6)

mi=1

Edeter(e) = E

mn~py

where w(i) is an exponentially decreasing weighting function. We compute this weight in three
steps. First, for each token i, we determine its corresponding frame index k = | 7~ |, where h x w

represents the spatial dimensions of each frame’s latent map. Second, we assign weights to tokens

based on their frame index: w(i) = e ¥ = e~ SR ensuring all tokens from the same frame receive

equal weight. Third, we set w(i) = 0 for tokens beyond frame 10 and normalize the remaining
weights to sum to one.

A.3 Optimization details

We optimize SeasonCast with AdamW [[17] for 100 epochs with a batch size of 32, a base learning
rate of 2e — 4, parameters (81 = 0.9, 82 = 0.95), and weight decay of 1e — 5. The learning rate
follows a linear warmup for the first 10 epochs, followed by a cosine decay schedule for the remaining
90 epochs.

B Additional experiments

B.1 Efficiency of SeasonCast

Beyond its empirical performance, SeasonCast offers substantial efficiency gains over existing
methods. We train SeasonCast for 4 days using 32 NVIDIA A100 GPUs. In comparison, Gencast
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requires 5 days of training on 32 TPUv5e devices — hardware significantly more powerful than A100s,
and Neural GCM [18]] requires 10 days on 128 TPUv5e devices. Additionally, Gencast employs a
two-stage training pipeline, first pretraining on 1.0° resolution and then finetuning on 0.25°, while
SeasonCast is trained in a single stage.

Runtime vs Resolution for Different Methods

. —e— SeasonCast (A100)
Gencast (A100)
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Figure 8: Runtime vs resolution of different methods to produce one forecast at 15-day lead time.

At inference time, SeasonCast is orders of magnitude faster than Gencast, NeuralGCM, and IFS-ENS.
Figure 8| compares the runtime (in seconds) required to generate a 15-day forecast across different
resolutions. At 0.25° resolution, Gencast requires 480 seconds on TPUvS, whereas SeasonCast
achieves the same forecast in just 29 seconds on an A100. At 1.0°, SeasonCast completes inference in
only 11 seconds, compared to 224 seconds for Gencast on the same hardware. These results highlight
the scalability and practicality of SeasonCast for operational forecasting.

The efficiency of SeasonCast stems from two key architectural innovations. First, SeasonCast
operates in a much lower-dimensional latent space (45 x 90 latent grid vs 721 x 1440 original grid),
significantly reducing the computational cost of training and inference. Second, SeasonCast employs
a highly efficient sampling mechanism. Unlike Gencast, which performs 50 full forward passes
through the entire network for 50 diffusion steps, SeasonCast requires only a single forward pass
through the transformer backbone. The subsequent diffusion steps involve only lightweight forward
passes through a compact MLP diffusion head, resulting in orders-of-magnitude lower inference time.
Together, these design choices enable SeasonCast to deliver fast and scalable forecasts.

B.2 Comparison with more deep learning baselines

In addition to PanguWeather and GraphCast, we compare SeasonCast with two advanced transformer-
based methods: ClimaX [30] and Stormer [31]. Figure E] shows that Stormer achieves superior
accuracy in short-to-medium timescales, consistent with its reported results. However, as an au-
toregressive method, its performance degrades more rapidly than SeasonCast, eventually falling
below Climatology, albeit at a slower rate than PanguWeather and GraphCast. ClimaX takes a
different approach as a direct forecasting method, where a model trained on large-scale climate data is
finetuned specifically for individual lead times. This approach avoids error accumulation and achieves
comparable performance with SeasonCast at S2S scales. However, ClimaX requires fine-tuning
separate models for each target lead time, while a single SeasonCast model can simultaneously
generate the complete sequence of future weather states.

B.3 Impact of IC perturbations

Initial condition (IC) perturbations—adding random noise to initial conditions X — are a standard
technique in numerical methods for generating ensemble forecasts. This approach complements our
generative framework. Figure|l0|evaluates SeasonCast’s performance across different noise levels,
varying the standard deviation of the Gaussian distribution used for generating perturbations. The
results demonstrate SeasonCast’s robustness to input noise, maintaining consistent RMSE and CRPS
scores across noise levels from 0.0 to 0.2, with only minor variations in SSR scores at short lead
times.
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Figure 9: Comparison of deterministic performance of SeasonCast with more deep learning methods.
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Figure 10: Performance of SeasonCast with different levels of IC noise.

s44 B.4 Ablation studies

s45 We analyze four key factors that influence SeasonCast’s performance: the auxiliary deterministic
s46 objective, training sequence length 7', unmasking order during sampling, and diffusion sampling
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temperature 7. We present results for T850 on RMSE, CRPS, and SSR. We additionally study the
impact of IC perturbations in Appendix
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Figure 11: Ablation studies showing the impact of different components in SeasonCast.

Impact of the deterministic objective Figure [ITaldemonstrates the important role of the deter-
ministic loss in SeasonCast’s performance. Removing the MSE objective (No-MSE) degrades both
RMSE and CRPS scores, with particularly noticeable impact at short lead times. However, naively
applying MSE to all future frames (MSE-All-Frames) also proves counterproductive, as it forces
deterministic predictions even for S2S timescales where weather systems become inherently chaotic.
Our approach of applying MSE only to the first 10 frames achieves the best RMSE and CRPS scores
across medium-range and S2S timescales.

Impact of training sequence length In our main experiments, we train SeasonCast to generate
44 future weather states at 24 hour intervals. One could alternatively train the model on shorter
sequences and/or smaller intervals, then apply multiple roll-outs during inference to reach longer
horizons, similar to autoregressive approaches. Figure [TTb|shows that models trained on shorter
sequences or smaller intervals excel at short- and medium-range forecasting but underperform at S2S
timescales. This trade-off emerges because shorter sequences allow models to specialize in near-term
predictions, leading to better performance at shorter lead times. However, these models suffer from
error accumulation at longer horizons, ultimately performing worse than the model trained on full
sequences.

Impact of unmasking orders While our approach randomly masks tokens across both space and
time during training, one may try more structured masking strategies at inference. We evaluate two
such alternatives: an autoregressive strategy that unmasks entire frames sequentially, and a random
framewise approach that unmasks complete frames in random order. Figure shows that our fully
randomized strategy achieves the best SSR scores, while both alternatives produce under-dispersive
ensemble predictions. The superior performance of the fully randomized approach stems from its
introduction of additional randomness through the fully random unmasking order, generating more
diverse ensemble forecasts. This greater diversity consequently leads to better performance across
other metrics.

Impact of diffusion sampling temperature The temperature 7 controls the generation diversity,
with higher values producing more diverse forecasts. Figure [TTd] demonstrates this relationship
empirically. Setting 7 < 1 produces under-dispersive ensembles, degrading performance across other
metrics. Increasing 7 boosts sample diversity, improving SSR scores and overall better performance.
However, pushing 7 too high (e.g., 7 = 1.5) causes samples to deviate from the mean prediction,
compromising RMSE and CRPS performance. We identify 7 = 1.3 as the optimal value, providing
the best balance between ensemble diversity and forecast quality, which we adopt for our main
experiments.
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B.5 Scaling inference compute

Finally, we examine how increasing inference compute affects SeasonCast’s performance through two
hyperparameters: the number of ensemble forecasts and the average number of unmasking iterations
per frame, i.e., I-iter means a total of 44 iterations for 44 frames. Figure[I2]shows that generating
more ensemble forecasts improves both system diversity (higher SSR) and mean prediction accuracy
(lower RMSE). Interestingly, while increasing the number of unmasking iterations shows minimal
impact on RMSE, it yields slight improvements in SSR. This improvement likely stems from the
increased randomness in unmasking order with more iterations, leading to greater ensemble diversity.
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Figure 12: Performance of SeasonCast as we vary the number of ensemble forecasts (left) and the
number of unmasking iterations.
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