OmniCast: A Masked Latent Diffusion Model for
Weather Forecasting Across Time Scales
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Abstract

Accurate weather forecasting across time scales is critical for anticipating and
mitigating the impacts of climate change. Recent data-driven methods based on
deep learning have achieved significant success in the medium range, but struggle
at longer subseasonal-to-seasonal (S2S) horizons due to error accumulation in
their autoregressive approach. In this work, we propose OmniCast, a scalable
and skillful probabilistic model that unifies weather forecasting across timescales.
OmniCast consists of two components, a VAE model that encodes raw weather
data into a continuous, lower-dimensional latent space, and a diffusion-based
transformer model that generates a sequence of future latent tokens given the initial
conditioning tokens. During training, we mask random future tokens and train
the transformer to estimate their distribution given conditioning and visible tokens
using a per-token diffusion head. During inference, the transformer generates the
full sequence of future tokens by iteratively unmasking random subsets of tokens.
This joint sampling across space and time mitigates compounding errors from
autoregressive approaches. The low-dimensional latent space enables modeling
long sequences of future latent states, allowing the transformer to learn weather
dynamics beyond initial conditions. OmniCast performs competitively with leading
probabilistic methods at the medium-range timescale while being 10x to 20x
faster, and achieves state-of-the-art performance at the subseasonal-to-seasonal
scale across accuracy, physics-based, and probabilistic metrics. Furthermore, we
demonstrate that OmniCast can generate stable rollouts up to 100 years ahead.
Code and model checkpoints are available at https://github.com/tung-nd/omnicast.

1 Introduction

Accurate weather forecasting across time scales is essential for anticipating extreme events, managing
resources, and mitigating the impacts of climate change. While medium-range forecasting, which
encompasses predictions up to approximately two weeks, has seen remarkable progress with both
numerical and data-driven approaches, extending prediction skill beyond this horizon remains a
significant challenge. Subseasonal-to-seasonal (S2S) forecasting, which aims to predict atmospheric
conditions from two to six weeks ahead, represents this next frontier. This timescale bridges the gap
between short-term weather forecasts and longer-term climate projections, enabling more informed
decision-making for extreme weather events such as droughts, floods, and heatwaves [51} 36 52} [8]].
S2S prediction is particularly challenging due to the interplay between atmospheric initial conditions,
essential for short-term and medium-range forecasting, and boundary conditions dominating seasonal
and climate predictions [27, 28]]. Traditional numerical weather prediction (NWP) models, built
upon solving differential equations of fluid dynamics and thermodynamics, have been instrumental
in advancing S2S weather prediction [36, 47, 48]]. However, numerical methods incur substantial
computational costs due to the complexity of integrating large systems of differential equations,
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particularly at fine spatial and temporal resolutions. This computational bottleneck also constrains
the ensemble size of ensemble systems, which is crucial for achieving accurate S2S predictions.

To overcome the challenges of NWP systems, there has been a growing interest in data-driven
approaches based on deep learning for weather forecasting [[10,43,|50]]. These approaches involve
training deep neural networks on historical datasets, such as ERAS [14, [15} |39, 40], to learn the
underlying weather patterns. Once trained, they can produce forecasts in seconds compared to
the hours required by NWP models. Recent deep learning methods such as PanguWeather [2]],
Graphcast [22]], and Stormer [33] have also shown superior accuracy in medium-range weather
forecasting, surpassing operational IFS [49], the state-of-the-art NWP system. However, their
application to the S2S timescale has been limited [31]]. One possible explanation for this limitation is
the rapid error compounding in their autoregressive designs, in which a model learns to forecast the
future weather state at a small interval and iteratively feeds its prediction back as input to achieve
longer-horizon forecasts. Even though previous works have proposed multi-step finetuning to mitigate
this issue, back-propagation through a large number of forward passes required for S2S timescales
is computationally prohibitive. Moreover, training a neural network to forecast at a small interval
only allows the model to learn the initial conditions problem, ignoring boundary conditions that are
critical for prediction at S2S timescales.

In this work, we propose OmniCast, a novel latent diffusion model for skillful probabilistic weather
forecasting across time scales. OmniCast follows a two-stage training process. In the first stage,
we train a VAE model [[19] that compresses raw weather data into a continuous, lower-dimensional
latent space. In the second stage, we train a transformer to model the distribution of a sequence of
future latent tokens given the initial conditioning tokens using a masked generative framework [3}155].
Specifically, during training, we randomly mask a subset of future tokens, and task the transformer
to unmask these tokens based on the conditioning tokens and the visible tokens. Since the latent
tokens lie in a continuous space, we use a small diffusion network on top of the transformer model to
estimate the per-token distribution of unmasked tokens. In addition to the diffusion loss, we apply a
mean-squared error (MSE) objective to enforce the model to accurately predict the first few latent
frames deterministically. After training, OmniCast generates forecasts for the full sequence of future
tokens through an iterative process. In each iteration, the model selects a subset of future tokens
to unmask given the conditioning tokens and previously unmasked tokens, continuing this process
until all future tokens are generated. The unmasking operation involves sampling from the diffusion
model, with the number and positions of tokens selected to unmask in each iteration determined by a
predefined schedule and unmasking order. This joint generation of future tokens across time and space
significantly mitigates the compounding errors issue of an autoregressive approach. Furthermore,
training on the full sequence of future frames enables OmniCast to address both initial condition
problems and boundary condition challenges, which are critical for S2S prediction.

We evaluate OmniCast on ChaosBench [31]], a recent benchmark for subseasonal-to-seasonal predic-
tion. OmniCast achieves state-of-the-art performance on key atmospheric variables across various
accuracy, physics-based, and probabilistic metrics. Additionally, we carefully study the impact of
different design choices, including the auxiliary MSE loss, training sequence lengths, unmasking
order, and diffusion sampling temperature, on the forecasting performance of OmniCast.

2 Related Work

Data-driven weather forecasting Deep learning has become a promising approach in the field of
weather forecasting. Recent advancements with powerful architectures have achieved significant
successes, providing faster inference and superior forecasting accuracy compared to IFS, the gold-
standard numerical weather prediction system. Notable methods include FourCastNet [35], which
utilizes an adaptive neural operator architecture; Keisler [17]]’s, GraphCast [22], and AIFS [24]],
which leverage graph neural networks; and a series of transformer-based models such as Pan-
guWeather [2], Stormer [33]], and others [32, 16, 4, [7]]. Beyond deterministic predictions, the field has
increasingly focused on probabilistic forecasting to better account for forecast uncertainty. Common
approaches involve integrating existing architectures with generative frameworks, including diffusion
models [37}130], normalizing flows [[7], and latent variable models [34]]. Others explore ensemble
predictions through initial condition perturbations, exemplified by methods like AIFS-CRPS [24] and
Neural GCM [20].



Data-driven S2S prediction Recent benchmarks have emerged to evaluate data-driven methods at
S2S timescales. While many focus on regional forecasts such as the US [16}29], ChaosBench [31]]
offers a comprehensive framework for global S2S prediction, providing extensive numerical baselines
and physics-based metrics. A key finding from ChaosBench shows that state-of-the-art deep learning
methods struggle to extend to S2S timescales. These methods predominantly rely on autoregressive
approaches that generate predictions iteratively at short time intervals, leading to error accumulation
with increasing lead times. While multi-step finetuning helps mitigate this issue for medium-range
forecasts, it becomes computationally prohibitive for S2S predictions due to the extensive number
of required forward passes. Moreover, training models with short time intervals fails to capture
boundary conditions essential for long-term weather patterns. While Fuxi-S2S [5] was proposed for
S28S prediction, it focuses on forecasting daily averaged statistics, which fundamentally alters the
underlying weather dynamics and makes it inapplicable to forecasting at instantaneous time steps.

3 Background and Preliminaries

3.1 Weather forecasting

The goal of weather forecasting is to forecast future weather conditions X7 € RV >*#*W based on
initial conditions Xy € RV >*#*W where T represents the target lead time, V' denotes the number of
input and output physical variables (e.g., temperature and geopotential), and H x W corresponds
to the spatial resolution of the data, determined by the density of the global grid. In subseasonal-
to-seasonal (S2S) forecasting, we focus on lead times ranging from 2 to 6 weeks. Autoregressive
modeling is a dominant paradigm in data-driven weather forecasting, where a model iteratively
produces forecasts X; at a short interval §t to reach the target lead time 7'. In this work, we propose
an alternative approach: training a generative model to estimate the distribution of the entire sequence
of future weather states X;.7 given initial conditions X. This approach mitigates error accumulation
and enables the model to learn both initial and boundary condition dynamics by considering the
complete sequence of weather states.

3.2 Masked generative modeling

Masked generative modeling is an efficient and powerful approach for image and video generation in
computer vision [3, 55, 25]]. In this framework, visual data X;.7 € RTXV>XHXW (T — 1 for images)
is first embedded by a VAE encoder into a sequence of tokens x € RV*P where N represents
the length of the flattened token sequence. During training, we apply a binary mask to randomly
select a subset of tokens to be predicted, creating a corrupted sequence. We then train a transformer
model to recover the original tokens at masked positions based on both the visible tokens and any
additional conditioning information such as initial frames. For generation, the framework employs an
iterative decoding process that starts with a fully masked sequence of future tokens. In each iteration,
the model predicts a random subset of masked tokens in parallel, where the number and positions
of the unmasked tokens follow a predefined schedule and order. This process continues until all
tokens are unmasked, at which point the generated tokens are decoded back to the original domain
through a VAE decoder. This framework offers key advantages for weather forecasting: it allows
the model to capture long-range dependencies across the entire sequence while avoiding the error
accumulation typical in autoregressive approaches, and the iterative refinement process enables the
model to maintain consistency across both spatial and temporal dimensions.

3.3 Modeling continuous tokens with diffusion models

In the masked generative modeling framework, a common practice is to embed the raw visual data into
a discrete latent space and train the transformer model using a cross-entropy objective. However, this
approach relies on vector-quantized VAE models [45]], which are sensitive to gradient approximation
strategies [41}, 138, 21] and typically achieve lower reconstruction quality than continuous-valued
VAEs. Recent works [44, 26] have demonstrated that discretization can be eliminated by directly
modeling the per-token probability distribution in a continuous latent space. In this work, we adopt
diffusion models for continuous distribution modeling.

Given data z € R? and its conditioning information z € RP, we model the conditional distribution
p(x | z) using a diffusion process that gradually transforms a Gaussian prior into the target distribution.
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The forward diffusion process progressively adds Gaussian noise to the data x following:

Ts = /asT + V1 — age, (1)
where s indicates the diffusion step, a; determines the noise schedule, and € ~ N(0, I) represents

Gaussian noise. The reverse process employs a denoising network €y (x5, s, z) parameterized by 6 to
predict the noise component from the noisy input zs and condition z:

Laite(0) = Be o [[lea (s, 5,2) — €l|*] . 2)

At inference time, conditional sampling begins with a random Gaussian noise x5 ~ N (0,I) and
iteratively applies the reverse diffusion process:

- L0 (0a,5,7) ) + 7000 3)

Te—1 = Ts — —ep(xs, 8, 2 TS0,
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where as = [[;_; o, 6 ~ N(0,1I) and o, controls the magnitude of noise added at each step. This

iterative process generates samples from the learned conditional distribution pg(z | z). Following [26]],

we additionally scale the noise 0,9 by the temperature 7 that controls the sample diversity from the

diffusion model.

4 Methodology

We present OmniCast, a novel method for subseasonal-to-seasonal prediction. Similar to previous
works in video generation, OmniCast consists of two components: a VAE model that compresses the
raw weather data into a lower-dimensional space, and a masked generative transformer model in this
latent space. We present the two components and their key design choices in this section.

4.1 VAE for weather data embedding

A VAE encoder embeds a weather state X € RV *H*W into a map of h x w latent tokens, where
h < H and w < W. In vector-quantized VAEs, each entry in the latent map is an integer index from a
fixed-size vocabulary, representing a discrete latent space. While this discretization is widely adopted
in computer vision due to its compatibility with cross-entropy training and straightforward sampling
from softmax distributions, it presents significant challenges for weather data. Unlike RGB images
with three channels, weather states can contain hundreds of physical variables, resulting in an extreme
compression requirement. For instance, consider compressing weather data with 100 variables (32 bits
per value) by a factor of 4 in each spatial dimension, using a vocabulary size of 2! = 8192 (13 bits
per latent token). This results in a compression ratio of (32x100x H x W) /(13 x (H/4) x (W/4)) =~
3938. Such aggressive compression leads to substantial reconstruction errors, ultimately degrading
the performance of the second-stage generative modeling.

Therefore, we adopt a continuous VAE model for OmniCast, where each token in the h x w latent map
is a continuous vector of D dimensions. With D = 16, for example, the compression ratio becomes
(32 x 100 x H x W)/(32 x 16 x (H/4) x (W/4)) = 100, substantially lower than the discrete
approach. While it is also possible to compress a sequence of weather states X ;.7 € RTXV*HxW ip
both temporal and spatial dimensions, our preliminary experiments showed no clear benefits from
temporal compression, leading us to adopt per-frame embedding.



4.2 Masked generative modeling for S2S prediction

After training the VAE, we embed the initial condition into a sequence of tokens ¢ =
(c1,¢2,...,Chxw). Similarly, each future weather state is embedded into a sequence of tokens,
which are concatenated to form the complete sequence of future tokens x = (z1, z2, ...,z ), Where
N =T x h x w represents the total number of future tokens. Each latent token is a continuous
vector of dimension D. Our generative modeling objective is to estimate the conditional distribution
p(x | ¢) from the training data.

We achieve this using a masked generative framework, as illustrated in Figure[I} During training,
we sample a binary mask m = [m;]¥.; ~ py, and replace tokens x; with a learnable, continuous
[MASK] token where m; = 1, creating a corrupted sequence X = m(x). The generative objective is
to estimate the distribution of masked tokens conditioned on the visible and conditioning tokens:

£gen(6‘) = E Z - 10gp0 (xz | Cvi) . (4)
mebu is.t.my=1

The model processes the input by concatenating the conditioning tokens c with the corrupted future
tokens X, adding positional encodings to the embedded sequence, and passing it through a bi-
directional transformer backbone to obtain vectors z; for each masked position. Given these vectors,
the per-token objective log p(z; | ¢,X) in Equation {4f simplifies to log pg(z; | z;). To model this
continuous distribution, we employ a diffusion model where z; serves as conditional information
for a denoising network — implemented as a small MLP on top of the transformer (Figure [2). We
train the denoising network and the transformer backbone jointly using the diffusion loss specified in
Equation 2] Conceptually, this diffusion objective encourages the model to produce representations
z; that facilitate effective denoising.

Auxiliary deterministic objective To encourage accurate predictions of near-term future tokens,
we incorporate an auxiliary mean-squared error loss in the latent space. We implement this through
a separate MLP head that produces deterministic predictions %; from z;, training it jointly with the
transformer backbone. Since weather dynamics become increasingly chaotic beyond day 10, making
deterministic predictions progressively less meaningful, we apply this loss only to the first 10 future
frames. Furthermore, we employ an exponentially decreasing weighting scheme to emphasize the
importance of accurate predictions for earlier frames. The deterministic objective is thus:

> w(i)lwiiilg} : )

m;=1

Leter (0) = E

m~py

Appendix [A.2] presents the details of this objective. The complete training objective combines both
losses: L(0) = Lgen(8) + Laeter(0).

Sampling from OmniCast At inference time, we generate samples from p(x | ¢) through an iterative
decoding process, starting from a sequence of fully masked future tokens. Each iteration consists
of three steps: first, the transformer backbone processes the conditioning tokens and corrupted
future tokens to produce vectors z; for each masked position; second, a subset of masked positions
is randomly selected according to a predefined schedule for unmasking; third, for each selected
position, the diffusion model generates token x; by conditioning on z; and performing a fixed number
of diffusion steps. This process iterates until all future tokens are revealed, at which point the
VAE decoder maps the generated tokens back to the weather domain. To generate an ensemble of
forecasts, we simply replicate the initial tokens and perform independent sampling for each copy. Four
hyperparameters affect the sampling procedure: the number of unmasking iterations, the unmasking
order, the number of diffusion steps, and the diffusion temperature.

4.3 Implementation details

Architectural details For the transformer backbone, we adopt the encoder-decoder architecture
from Masked Autoencoder (MAE) [13l]. The model processes an input sequence in two stages:
first, the encoder processes the conditioning and visible tokens; second, the encoded sequence is
augmented with learnable [MASK] tokens at appropriate positions and passed through the decoder
to produce z; for each position ¢. Both the encoder and decoder are bidirectional, employing full
attention. Before feeding to either the encoder or decoder, we add the input sequences with positional



embeddings that combine two components: temporal embeddings to distinguish different frames, and
spatial embeddings to differentiate tokens within each frame. The encoder and decoder follow the
Transformer [46]] implementation in ViT [9]], each having 16 layers with 16 attention heads, a hidden
dimension of 1024, and a dropout rate of 0.1.

Mask sampling During training, we sample a masking ratio v ~ [0.5,1.0] and generate a
corresponding binary mask m, where v = 0.75 indicates that 75% of entries in m are 1. For
inference, we start with full masking (v = 1.0) and gradually reduce it to 0.0 following a cosine
schedule [3]]. We set the number of unmasking iterations to match the number of future weather states
T by default. We employ random masking orders across both spatial and temporal dimensions for
training and inference.

Diffusion loss details We use a linear noise schedule with 1000 steps at training time that are
resampled to 100 steps at inference. The denoising network ¢y is implemented as a small MLP
following Li et al. [26]. Specifically, the network consists of six residual blocks, each comprising a
LayerNorm (LN), a linear layer, a SiLU activation, and another linear layer, with a residual connection
around the block. Each block maintains a width of 2048 channels. The network takes the vector z;
from the transformer as conditioning information, which is combined with the time embedding of the
diffusion step s through adaptive layer normalization (AdaLLN) in each block’s LN layers.

5 Experiments

We compare OmniCast with state-of-the-art deep learning and numerical methods on both medium-
range and S2S time scales, using WeatherBench?2 [40] (WB2) and ChaosBench [31] as benchmarks,
respectively, and conduct extensive ablation studies to assess the contribution of each component in
OmniCast. We further test the stability of OmniCast up to 100 years ahead in Appendix [B.5]

Across both tasks, we train and evaluate OmniCast on 69 variables from the ERAS reanalysis
dataset [13]], including four surface-level variables — 2-meter temperature (T2m), 10-meter U and
V wind components (U10, V10), and mean sea-level pressure (MSLP), as well as five atmospheric
variables — geopotential (Z), temperature (T), U and V wind components, and specific humidity (Q),
each at 13 pressure levels {50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000} hPa.
For medium-range forecasting, we use native 0.25° resolution (721 x 1440 grids) and follow WB2
to train on years 19792018, validate on 2019, and test on 2020 using initial conditions at 00UTC
and 12UTC. For S2S prediction, we downsample the data to 1.40625° (128 x 256 grids) and follow
ChaosBench to train on 1979-2020, validate on 2021, and test on 2022 using 00UTC initializations.

5.1 OmniCast for S2S prediction

Training and inference details We train a VAE that embeds each weather state of shape 69 X
128 x 256 into a latent map of shape 1024 x 8 x 16, reducing spatial dimensions by a factor of
16. The architectural details and training process of the VAE are described in Appendix [A.T] We
train OmniCast to forecast a sequence of T' = 44 future weather states at 24hr intervals, covering
lead times from 1 to 44 days. Each training example consists of 45 x 8 x 16 = 5760 latent tokens,
including the initial condition. During inference, we generate the complete future sequence in 44
iterations (1 iteration per frame) using a diffusion temperature of 7 = 1.3. We produce an ensemble
of 50 forecast sequences for each initial condition.

Baselines We compare OmniCast with PanguWeather (PW) [2]] and GraphCast (GC) [22], two leading
open-sourced deep learning methods, and ensemble systems of four numerical models from different
national agencies: UKMO-ENS (UK) [53], NCEP-ENS (US) [42], CMA-ENS (China) [54], and
ECMWE-ENS (Europe) [L1]. We refer to ChaosBench for details about these baselines. Following
ChaosBench, we report results on T850, Z500, and Q700 at lead times from 1 to 44 days. We
additionally compare OmniCast with ClimaX [32] and Stormer [33] in Appendix[B.2] We do not
compare against Fuxi-S2S [5] as Fuxi-S2S forecasts daily average values from past daily averages,
making it incomparable with OmniCast and the rest of the methods, which perform point-in-time
weather forecasting based on an initial condition. We are also not able to run Gencast [37] and
Neural GCM [20Q] for S2S due to their significant computational demands.

Results Figure [ compares different methods on three deterministic metrics: Root Mean-Squared
Error (RMSE), Absolute Bias (ABS BIAS), and Multi-scale Structural Similarity (SSIM). At shorter
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Figure 4: Deterministic performance of different methods at lead times from 1 to 44 days across three
key variables. Solid curves are deep learning methods and dashed curves are numerical methods.
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Figure 5: Physics-based metrics of different methods at lead times from 1 to 44 days across three key
variables. Solid curves are deep learning methods and dashed curves are numerical methods.

lead times, OmniCast shows slightly worse performance on RMSE and SSIM than other baselines,
which is expected since we train OmniCast to model a full sequence of future weather states rather
than optimizing for short- and medium-range predictions. However, OmniCast’s relative performance
improves with increasing lead time, ultimately matching ECMWF-ENS as one of the top two
performing methods beyond day 10. Notably, OmniCast demonstrates the lowest bias among all
baselines, maintaining near-zero bias across all three target variables.

Physical consistency also plays a crucial role in S2S prediction, particularly for ensemble systems.
We evaluate this aspect using two physics-based metrics: Spectral Divergence (SDIV) and Spectral
Residual (SRES), which measure how closely the power spectra of predictions match those of
ground-truths. As shown in Figure[5}] OmniCast achieves substantially better physical consistency
than other deep learning methods, and often outperforms all baselines on these metrics. These results
demonstrate how OmniCast effectively preserves signals across the frequency spectrum.
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Figure 6: Probabilistic performance of different methods at lead times from 1 to 44 days across three
key variables. Solid curves are deep learning methods and dashed curves are numerical methods.

Finally, we compare OmniCast with the four numerical ensemble systems on two probabilistic metrics:
Continuous Ranked Probability Score (CRPS) and Spread/Skill Ratio (SSR) (closer to 1 is better).
Figure[6] shows that OmniCast and ECMWEF-ENS are the two leading methods across variables and
lead times. Similar to deterministic results, OmniCast performs worse than ECMWE-ENS at shorter
lead times but outperforms this baseline beyond day 15.

5.2 OmniCast for medium-range forecasting
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Figure 7: Probabilistic performance of different methods in medium-range forecasting. Solid curves
are deep learning methods and dashed curves are numerical methods.

In addition to its strong performance on the S2S task, we demonstrate that OmniCast also performs
competitively at the medium-range timescale. We train a VAE model with a spatial downsampling
ratio of 16, compressing each weather state of shape 69 x 721 x 1440 into a latent representation of
size 256 x 45 x 90. We then train OmniCast to predict two steps ahead at 12-hour intervals, following



the setup of Gencast [37]. During inference, we use autoregressive sampling, recursively feeding
the most recent predicted frame as the new initial condition until the target lead time is reached. We
generate forecasts using a single sampling iteration per frame with a diffusion temperature 7 = 1.0,
and produce an ensemble of 50 members.

We compare OmniCast against Gencast [37]], a leading deep learning method for probabilistic fore-
casting, and IFS-ENS [23]], the gold-standard numerical ensemble system. Following WeatherBench2,
we use ensemble RMSE, CRPS, and spread-skill ratio (SSR) as evaluation metrics. As shown in
Figure[7] OmniCast performs comparably with IFS-ENS across all variables and metrics, and is only
slightly behind Gencast. These results indicate that OmniCast achieves strong performance across
both medium-range and S2S timescales.

5.3 Efficiency of OmniCast
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Figure 8: Runtime vs resolution to produce a 15-day forecast.

At inference time, OmniCast is orders of magnitude faster than Gencast, NeuralGCM, and IFS-ENS.
Figure [ compares the runtime (in seconds) required to generate a 15-day forecast across different
resolutions. At 0.25° resolution, Gencast requires 480 seconds on TPUv5, whereas OmniCast
achieves the same forecast in just 29 seconds on an A100. At 1.0°, OmniCast completes inference in
only 11 seconds, compared to 224 seconds for Gencast on the same hardware. These results highlight
the scalability and practicality of OmniCast for operational forecasting.

The efficiency of OmniCast stems from two key architectural innovations. First, OmniCast operates in
a much lower-dimensional latent space (45 x 90 latent grid vs 721 x 1440 original grid), significantly
reducing the computational cost of training and inference. Second, OmniCast employs a highly
efficient sampling mechanism. Unlike Gencast, which performs 50 full forward passes through
the entire network for 50 diffusion steps, OmniCast requires only a single forward pass through
the transformer backbone. The subsequent diffusion steps involve only lightweight forward passes
through a compact MLP diffusion head, resulting in orders-of-magnitude lower inference time.
Together, these design choices enable OmniCast to deliver fast and scalable forecasts.

5.4 Ablation studies

We analyze four key factors that influence OmniCast’s performance: the auxiliary deterministic
objective, training sequence length 7', unmasking order during sampling, and diffusion sampling
temperature 7. We present results for T850 on RMSE, CRPS, and SSR. We additionally study the
impact of IC perturbations in Appendix

Impact of the deterministic objective Figure[9aldemonstrates the important role of the deterministic
loss in OmniCast’s performance. Removing the MSE objective (No-MSE) degrades both RMSE and
CRPS scores, with particularly noticeable impact at short lead times. However, naively applying
MSE to all future frames (MSE-All-Frames) also proves counterproductive, as it forces deterministic
predictions even for S2S timescales where weather systems become inherently chaotic. Our approach
of applying MSE only to the first 10 frames achieves the best RMSE and CRPS scores across
medium-range and S2S timescales.
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Figure 9: Ablation studies showing the impact of different components in OmniCast.

Impact of training sequence length In the main S2S experiment, we train OmniCast to generate
44 future weather states at 24 hour intervals. One could alternatively train the model on shorter
sequences and/or smaller intervals, then apply multiple roll-outs during inference to reach longer
horizons. Figure[0b]shows that models trained on shorter sequences or smaller intervals excel at short-
and medium-range forecasting but underperform at S2S timescales. This trade-off emerges because
shorter sequences allow models to specialize in near-term predictions, leading to better performance
at shorter lead times. However, these models suffer from error accumulation at longer horizons,
ultimately performing worse than the model trained on full sequences.

Impact of unmasking orders While our approach randomly masks tokens across both space and
time during training, one may try more structured masking strategies at inference. We evaluate two
such alternatives: an autoregressive strategy that unmasks entire frames sequentially, and a random
framewise approach that unmasks complete frames in random order. Figure [9c|shows that our fully
randomized strategy achieves the best SSR scores, while both alternatives produce under-dispersive
ensembles. The superior performance of the fully randomized approach stems from its introduction
of additional randomness through the unmasking order, generating more diverse ensemble forecasts.
This greater diversity consequently leads to better performance across other metrics.

Impact of diffusion sampling temperature Higher values of the temperature 7 produce more
diverse forecasts. Figure[9ddemonstrates this empirically. Setting 7 < 1 produces under-dispersive
ensembles, degrading performance across other metrics. Increasing 7 boosts sample diversity,
improving SSR scores and overall better performance. However, pushing 7 too high (e.g., 7 = 1.5)
causes samples to deviate from the mean prediction, compromising RMSE and CRPS performance.
We identify 7 = 1.3 as the optimal value, providing the best balance between ensemble diversity and
forecast quality, which we adopt for our main experiments.

6 Conclusion

We present OmniCast, a novel latent diffusion model for S2S prediction. By combining the masked
generative framework with a diffusion objective, our approach enables direct modeling of long
sequences of future weather states while avoiding error accumulation inherent in autoregressive meth-
ods. OmniCast achieves state-of-the-art performance in deterministic and probabilistic metrics while
maintaining exceptional physical consistency. In medium-range forecasting, OmniCast performs
competitively with existing methods while being significantly more efficient. Future work could study
the fundamental trade-off between VAE reconstruction quality and transformer modeling capacity,
and explore more sophisticated generative frameworks to enhance the diffusion objective.
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A Implementation details

A.1 VAE details

Our VAE model follows the UNet implementation from PDEArena [[12]. We use the following
hyperparameters for UNet in our experiments.

Table 1: Default hyperparameters of UNet

Hyperparameter Meaning Value
Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1
Input channels The number of channels of the input 69
Input channels The number of channels of the output 69
Base channels The base hidden dimension of the UNet 256
Channel multiplications E)itggieaglgagrglf:;g f output channels [1,2,4,4,8]
Dimension of z The dimension of the latent space 1024
Blocks Number of blocks 2
Use attention If use attention in Down and Up blocks False
Dropout Dropout rate 0.0

The VAE encoder embeds each weather state of shape 69 x 128 x 256 to a latent map of shape
1024 x 8 x 16, reducing the spatial dimensions by 16. We use a KL weight of 5e — 5 and optimize
the VAE model with Adam [[18] for 200 epochs with a batch size of 32, a base learning rate of 2e — 4,
parameters (51 = 0.9, 52 = 0.95), and weight decay of le — 5. The learning rate follows a linear
warmup for the first 20 epochs, followed by a cosine decay schedule for the remaining 180 epochs.

A.2 Weighted deterministic objective

In OmniCast, we employ a weighted MSE objective to encourage accurate deterministic predictions
for near-term frames. The objective is formulated as:

> w(i)fa —ii|§:| ) (6)

mi=1

Edeter(e) = E

mn~py

where w(i) is an exponentially decreasing weighting function. We compute this weight in three
steps. First, for each token i, we determine its corresponding frame index k = | 7~ |, where h x w

represents the spatial dimensions of each frame’s latent map. Second, we assign weights to tokens

based on their frame index: w(i) = e ¥ = e~ SR ensuring all tokens from the same frame receive

equal weight. Third, we set w(i) = 0 for tokens beyond frame 10 and normalize the remaining
weights to sum to one.

A.3 Optimization details

We optimize OmniCast with AdamW [18]] for 100 epochs with a batch size of 32, a base learning rate
of 2e — 4, parameters (8; = 0.9, 82 = 0.95), and weight decay of le — 5. The learning rate follows
a linear warmup for the first 10 epochs, followed by a cosine decay schedule for the remaining 90
epochs.

B Additional experiments

B.1 VAE reconstruction quality

The VAE model is a critical component in OmniCast, since it imposes an upper bound on the
forecasting performance. We dedicated substantial efforts to designing the VAE model that balances
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reconstruction quality and compression. Our primary goal was to achieve a high compression ratio
along the spatial dimensions, as this directly reduces the number of training tokens required for the
subsequent transformer model. We employed 16 x spatial reduction for both the medium-range setting
with 0.25° data and the S2S setting with the 1.40625° data. We then incrementally increased the
latent dimension until we obtained an acceptable reconstruction error. Table 2] shows that increasing
the latent dimension consistently improves the reconstruction errors across different variables. We
did not increase the latent dimension beyond 1024 since it would create difficulties for training with
the diffusion objective. It is also noticeable that the VAE model trained on 0.25° data performs
much better than the one trained on 1.40625° with the same spatial compression ratio and latent
dimension. This is expected since higher-resolution data has more spatial redundancy, leading to
easier compression for the VAE model. Figures[I0|and[T1]visualize the VAE reconstructions for 6
surface and pressure-level variables. The VAE was able to retain important details and structures of
the input, albeit slightly smoothing out the data.

Table 2: Reconstruction error of VAE models for different physical variables and latent dimen-
sions (D). Results are shown for datasets at two spatial resolutions: 1.40625° (left) and 0.25° (right).
Lower values indicate better reconstruction.

1.40625° resolution 0.25° resolution
T2m U0 VIO Z500 T850 T2m U0 VIO Z500 T850
D = 256 096 0.65 0.62 4872 0.77 0.55 0.25 0.23 18.77 0.37

D =512 080 051 048 3542 0.64 — —_- - — —
D =1024 071 043 040 2734 0.57 — — = — —

2m_temperature

Input Data Reconstruction

10m_u_component_of_wind

Input Data Reconstruction

10m_v_component_of_wind

Reconstruction

Input Data

Figure 10: Reconstructions of the VAE model for T2m, U10, and V10.
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Figure 11: Reconstructions of the VAE model for MSLP, Z500, and T850.

Before selecting the specific VAE model presented in our paper, we also tried two alternative VAE
architectures: VQ-VAE [45]], which compresses data into a discrete latent space, and Video VAE [1]],
which compresses data across both spatial and temporal dimensions. Our early experiments with
VQ-VAE did not achieve satisfactory reconstruction qualities, as the errors were consistently 2 to
3 times higher than those obtained with a continuous VAE using the same spatial downsampling
factor. We also found that for an equivalent effective compression ratio, a per-frame VAE consistently
outperformed a video VAE. These results led us to opt for the per-frame continuous VAE model.

B.2 Comparison with more deep learning baselines

In addition to PanguWeather and GraphCast, we compare OmniCast with two advanced transformer-
based methods: ClimaX [32] and Stormer [33]]. Figure [I2] shows that Stormer achieves superior
accuracy in short-to-medium timescales, consistent with its reported results. However, as an autore-
gressive method, its performance degrades more rapidly than OmniCast, eventually falling below
Climatology, albeit at a slower rate than PanguWeather and GraphCast. ClimaX takes a different
approach as a direct forecasting method, where a model trained on large-scale climate data is finetuned
specifically for individual lead times. This approach avoids error accumulation and achieves com-
parable performance with OmniCast at S2S scales. However, ClimaX requires fine-tuning separate
models for each target lead time, while a single OmniCast model can simultaneously generate the
complete sequence of future weather states.

B.3 Impact of IC perturbations

Initial condition (IC) perturbations—adding random noise to initial conditions X — are a standard
technique in numerical methods for generating ensemble forecasts. This approach complements our
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Figure 12: Comparison of deterministic performance of OmniCast with more deep learning methods.
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Figure 13: Performance of OmniCast with different levels of IC noise.

generative framework. Figure [I3]evaluates OmniCast’s performance across different noise levels,
varying the standard deviation of the Gaussian distribution used for generating perturbations. The
results demonstrate OmniCast’s robustness to input noise, maintaining consistent RMSE and CRPS
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scores across noise levels from 0.0 to 0.2, with only minor variations in SSR scores at short lead
times.

B.4 Scaling inference compute

Finally, we examine how increasing inference compute affects OmniCast’s performance through two
hyperparameters: the number of ensemble forecasts and the average number of unmasking iterations
per frame, i.e., 1-iter means a total of 44 iterations for 44 frames. Figure[I4]shows that generating
more ensemble forecasts improves both system diversity (higher SSR) and mean prediction accuracy
(lower RMSE). Interestingly, while increasing the number of unmasking iterations shows minimal
impact on RMSE, it yields slight improvements in SSR. This improvement likely stems from the
increased randomness in unmasking order with more iterations, leading to greater ensemble diversity.
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Figure 14: Performance of OmniCast as we vary the number of ensemble forecasts (left) and the
number of unmasking iterations.

B.5 Testing OmniCast stability

We tested the stability of OmniCast by rolling out the model to 100 years into the future. We found
that OmniCast consistently produces stable and physically feasible forecasts, even at 100 years ahead.
Please see below for visualizations of OmniCast’s rollouts for various weather variables with 4
samples each.
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Figure 15: Rollouts for 2-meter temperature up to 100 years ahead.
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Figure 16: Rollouts for 10-meter u component of wind up to 100 years ahead.
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Figure 17: Rollouts for 10-meter v component of wind up to 100 years ahead.
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Figure 18: Rollouts for mean sea level pressure up to 100 years ahead.
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Figure 19: Rollouts for 500hPa geopotential up to 100 years ahead.
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