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Abstract

Accurate weather prediction on the subseasonal-to-seasonal (S2S) scale is critical1

for anticipating and mitigating the impacts of climate change. However, existing2

data-driven methods struggle beyond the medium-range timescale due to error ac-3

cumulation in their autoregressive approach. In this work, we propose SeasonCast,4

a scalable and skillful probabilistic model for S2S prediction. SeasonCast consists5

of two components, a VAE model that encodes raw weather data into a contin-6

uous, lower-dimensional latent space, and a diffusion-based transformer model7

that generates a sequence of future latent tokens given the initial conditioning8

tokens. During training, we mask random future tokens and train the transformer to9

estimate their distribution given conditioning and visible tokens using a per-token10

diffusion head. During inference, the transformer generates the full sequence11

of future tokens by iteratively unmasking random subsets of tokens. This joint12

sampling across space and time mitigates compounding errors from autoregressive13

approaches. The low-dimensional latent space enables modeling long sequences14

of future latent states, allowing the transformer to learn weather dynamics beyond15

initial conditions. SeasonCast performs competitively with leading probabilis-16

tic methods at the medium-range timescale while being 10× to 20× faster, and17

achieves state-of-the-art performance at the subseasonal-to-seasonal scale across18

accuracy, physics-based, and probabilistic metrics.19

1 Introduction20

Subseasonal-to-seasonal (S2S) weather prediction, which predicts atmospheric conditions on21

timescales ranging from two to six weeks, is critical for disaster preparedness, resource management,22

and long-term planning. This timescale bridges the gap between short-term weather forecasts and23

longer-term climate projections, enabling more informed decision-making for extreme weather events24

such as droughts, floods, and heatwaves [49, 34, 50, 7]. However, S2S prediction is particularly25

challenging due to the interplay between atmospheric initial conditions, essential for short-term26

and medium-range forecasting accuracy, and boundary conditions dominating seasonal and climate27

predictions [25, 26]. Traditional numerical weather prediction (NWP) models, built upon solving28

differential equations of fluid dynamics and thermodynamics, have been instrumental in advancing29

S2S weather prediction [34, 45, 46]. However, numerical methods incur substantial computational30

costs due to the complexity of integrating large systems of differential equations, particularly at fine31

spatial and temporal resolutions. This computational bottleneck also constrains the ensemble size of32

ensemble systems, which is crucial for achieving accurate S2S predictions.33

To overcome the challenges of NWP systems, there has been a growing interest in data-driven34

approaches based on deep learning for weather forecasting [9, 41, 48]. These approaches involve35

training deep neural networks on historical datasets, such as ERA5 [13, 14, 37, 38], to learn the36

underlying weather patterns. Once trained, they can produce forecasts in seconds compared to37
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the hours required by NWP models. Recent deep learning methods such as PanguWeather [1],38

Graphcast [20], and Stormer [31] have also shown superior accuracy in medium-range weather39

forecasting, surpassing operational IFS [47], the state-of-the-art NWP system. However, their40

application to the S2S timescale has been limited [29]. One possible explanation for this limitation is41

the rapid error compounding in their autoregressive designs, in which a model learns to forecast the42

future weather state at a small interval and iteratively feeds its prediction back as input to achieve43

longer-horizon forecasts. Even though previous works have proposed multi-step finetuning to mitigate44

this issue, back-propagation through a large number of forward passes required for S2S timescales45

is computationally prohibitive. Moreover, training a neural network to forecast at a small interval46

only allows the model to learn the initial conditions problem, ignoring boundary conditions that are47

critical for prediction at S2S timescales.48

We propose SeasonCast, a novel latent diffusion model for skillful probabilistic S2S prediction.49

SeasonCast follows a two-stage training process. First, a VAE model compresses raw weather data50

into a continuous, lower-dimensional latent space. Second, a transformer is trained to model the51

distribution of future latent tokens using a masked generative framework [2, 53]. Specifically, during52

training, we randomly mask a subset of future tokens, and task the transformer to unmask these53

tokens based on the conditioning tokens and the visible tokens. Since the latent tokens lie in a54

continuous space, we use a small diffusion network on top of the transformer model to estimate55

the per-token distribution of unmasked tokens. After training, SeasonCast generates forecasts for56

the full sequence of future tokens through an iterative process. At inference, SeasonCast iteratively57

generates forecasts for the full sequence of future tokens by unmasking a subset of tokens in each58

step until all are generated. This joint generation of future tokens across time and space significantly59

mitigates the compounding errors issue of an autoregressive approach. Furthermore, training on the60

full sequence of future frames enables SeasonCast to address both initial condition problems and61

boundary condition challenges, which are critical for S2S prediction.62

We evaluate SeasonCast on ChaosBench [29], a recent benchmark for subseasonal-to-seasonal63

prediction. SeasonCast achieves state-of-the-art performance on key atmospheric variables across64

various accuracy, physics-based, and probabilistic metrics. Additionally, we carefully study the impact65

of different design choices, including the auxiliary MSE loss, training sequence lengths, unmasking66

order, and diffusion sampling temperature, on the forecasting performance of SeasonCast.67

2 Related Work68

Data-driven weather forecasting Deep learning has become a promising approach in the field of69

weather forecasting. Recent advancements with powerful architectures have achieved significant70

successes, providing faster inference and superior forecasting accuracy compared to IFS, the gold-71

standard numerical weather prediction system. Notable methods include FourCastNet [33], which72

utilizes an adaptive neural operator architecture; Keisler [16]’s, GraphCast [20], and AIFS [22], which73

leverage graph neural networks; and a series of transformer-based models such as PanguWeather [1],74

Stormer [31], and others [30, 5, 3, 6]. Beyond deterministic predictions, the field has increasingly75

focused on probabilistic forecasting to account for forecast uncertainty. Common approaches involve76

integrating existing architectures with generative frameworks, including diffusion models [35, 28],77

normalizing flows [6], and latent variable models [32]. Others explore ensemble predictions through78

initial condition perturbations, exemplified by methods like AIFS-CRPS [22] and NeuralGCM [18].79

Data-driven S2S prediction Recent benchmarks have emerged to evaluate data-driven methods at80

S2S timescales. While many focus on regional forecasts such as the US [15, 27], ChaosBench [29]81

offers a comprehensive framework for global S2S prediction, providing extensive numerical baselines82

and physics-based metrics. A key finding from ChaosBench shows that state-of-the-art deep learning83

methods struggle to extend to S2S timescales. These methods predominantly rely on autoregressive84

approaches that generate predictions iteratively at short time intervals, leading to error accumulation85

with increasing lead times. While multi-step finetuning helps mitigate this issue for medium-range86

forecasts, it becomes computationally prohibitive for S2S predictions due to the extensive number87

of required forward passes. Moreover, training models with short time intervals fails to capture88

boundary conditions essential for long-term weather patterns. While Fuxi-S2S [4] was proposed for89

S2S prediction, it focuses on forecasting daily averaged statistics, which fundamentally alters the90

underlying weather dynamics and makes it inapplicable to forecasting at instantaneous time steps.91
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3 Background and Preliminaries92

3.1 Weather forecasting93

The goal of weather forecasting is to forecast future weather conditions XT ∈ RV×H×W based on94

initial conditions X0 ∈ RV×H×W , where T represents the target lead time, V denotes the number of95

input and output physical variables (e.g., temperature and geopotential), and H ×W corresponds96

to the spatial resolution of the data, determined by the density of the global grid. In subseasonal-97

to-seasonal (S2S) forecasting, we focus on lead times ranging from 2 to 6 weeks. Autoregressive98

modeling is a dominant paradigm in data-driven weather forecasting, where a model iteratively99

produces forecasts Xδt at a short interval δt to reach the target lead time T . In this work, we propose100

an alternative approach: training a generative model to estimate the distribution of the entire sequence101

of future weather states X1:T given initial conditions X0. This approach mitigates error accumulation102

and enables the model to learn both initial and boundary condition dynamics by considering the103

complete sequence of weather states.104

3.2 Masked generative modeling105

Masked generative modeling is an efficient and powerful approach for image and video generation in106

computer vision [2, 53, 23]. In this framework, visual data X1:T ∈ RT×V×H×W (T = 1 for images)107

is first embedded by a VAE encoder into a sequence of tokens x ∈ RN×D, where N represents108

the length of the flattened token sequence. During training, we apply a binary mask to randomly109

select a subset of tokens to be predicted, creating a corrupted sequence. We then train a transformer110

model to recover the original tokens at masked positions based on both the visible tokens and any111

additional conditioning information such as initial frames. For generation, the framework employs an112

iterative decoding process that starts with a fully masked sequence of future tokens. In each iteration,113

the model predicts a random subset of masked tokens in parallel, where the number and positions114

of the unmasked tokens follow a predefined schedule and order. This process continues until all115

tokens are unmasked, at which point the generated tokens are decoded back to the original domain116

through a VAE decoder. This framework offers key advantages for weather forecasting: it allows117

the model to capture long-range dependencies across the entire sequence while avoiding the error118

accumulation typical in autoregressive approaches, and the iterative refinement process enables the119

model to maintain consistency across both spatial and temporal dimensions.120

3.3 Modeling continuous tokens with diffusion models121

In the masked generative modeling framework, a common practice is to embed the raw visual data122

into a discrete latent space using vector-quantized VAE models [43]. However, discretization is123

sensitive to gradient approximation strategies [39, 36, 19] and has lower reconstruction quality than124

continuous VAEs. Recent works [42, 24] have demonstrated that discretization can be eliminated by125

directly modeling the per-token continuous probability distribution by using diffusion models. Given126

data x ∈ RD and its conditioning information z ∈ RD, we model the conditional distribution p(x | z)127

using a diffusion process that gradually transforms a Gaussian prior into the target distribution. The128

forward diffusion process progressively adds Gaussian noise to the data x following:129

xs =
√
αsx+

√
1− αsϵ, (1)

where s indicates the diffusion step, αs determines the noise schedule, and ϵ ∼ N (0, I) represents130

Gaussian noise. The reverse process employs a denoising network ϵθ(xs, s, z) parameterized by θ to131

predict the noise component from the noisy input xs and condition z:132

Ldiff(θ) = Eϵ,x

[
∥ϵθ(xs, s, z)− ϵ∥2

]
. (2)

At inference time, conditional sampling begins with a random Gaussian noise xS ∼ N (0, I) and133

iteratively applies the reverse diffusion process:134

xs−1 =
1

√
αs

(
xs −

1− αs√
1− ᾱs

ϵθ(xs, s, z)

)
+ τσsδ, (3)

where ᾱs =
∏s

k=1 αk, δ ∼ N (0, I) and σs controls the magnitude of noise added at each step. This135

iterative process generates samples from the learned conditional distribution pθ(x | z). Following [24],136

we additionally scale the noise σsδ by the temperature τ that controls the sample diversity from the137

diffusion model.138
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Transformer backbone

Figure 1: SeasonCast processes the latent tokens through a
transformer backbone that outputs a vector zi for each position
i in the sequence.

Figure 2: The denoising network
eθ predicts the noise ϵ from zi and
xs
i .

Figure 3: The deterministic net-
work predicts directly xi from zi.

4 Methodology139

We present SeasonCast, a novel method for subseasonal-to-seasonal prediction. Similar to previous140

works in video generation, SeasonCast consists of two components: a VAE model that compresses141

the raw weather data into a lower-dimensional space, and a masked generative transformer model in142

this latent space. We present the two components and their key design choices in this section.143

4.1 VAE for weather data embedding144

A VAE encoder embeds a weather state X ∈ RV×H×W into a map of h× w latent tokens, where145

h < H and w < W . In vector-quantized VAEs, each entry in the latent map is an integer index from a146

fixed-size vocabulary, representing a discrete latent space. While this discretization is widely adopted147

in computer vision due to its compatibility with cross-entropy training and straightforward sampling148

from softmax distributions, it presents significant challenges for weather data. Unlike RGB images149

with three channels, weather states can contain hundreds of physical variables, resulting in an extreme150

compression requirement. For instance, consider compressing weather data with 100 variables (32 bits151

per value) by a factor of 4 in each spatial dimension, using a vocabulary size of 213 = 8192 (13 bits152

per latent token). This results in a compression ratio of (32×100×H×W )/(13×(H/4)×(W/4)) ≈153

3938. Such aggressive compression leads to substantial reconstruction errors, ultimately degrading154

the performance of the second-stage generative modeling.155

Therefore, we adopt a continuous VAE model for SeasonCast, where each token in the h × w156

latent map is a continuous vector of D dimensions. With D = 16, for example, the compression157

ratio becomes (32 × 100 × H × W )/(32 × 16 × (H/4) × (W/4)) = 100, substantially lower158

than the discrete approach. While it is also possible to compress a sequence of weather states159

X1:T ∈ RT×V×H×W in both temporal and spatial dimensions, our preliminary experiments showed160

no clear benefits from temporal compression, leading us to adopt per-frame embedding.161

4.2 Masked generative modeling for S2S prediction162

After training the VAE, we embed the initial condition into a sequence of tokens c =163

(c1, c2, . . . , ch×w). Similarly, each future weather state is embedded into a sequence of tokens,164

which are concatenated to form the complete sequence of future tokens x = (x1, x2, . . . , xN ), where165

N = T × h × w represents the total number of future tokens. Each latent token is a continuous166

vector of dimension D. Our generative modeling objective is to estimate the conditional distribution167

p(x | c) from the training data.168

We achieve this using a masked generative framework, as illustrated in Figure 1. During training,169

we sample a binary mask m = [mi]
N
i=1 ∼ pU and replace tokens xi with a learnable, continuous170

[MASK] token where mi = 1, creating a corrupted sequence x = m(x). The generative objective is171

to estimate the distribution of masked tokens conditioned on the visible and conditioning tokens:172

Lgen(θ) = E
m∼pU

[ ∑
i s.t. mi=1

− log pθ(xi | c,x)

]
. (4)
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The model processes the input by concatenating the conditioning tokens c with the corrupted future173

tokens x, adding positional encodings to the embedded sequence, and passing it through a bi-174

directional transformer backbone to obtain vectors zi for each masked position. Given these vectors,175

the per-token objective log pθ(xi | c,x) in Equation 4 simplifies to log pθ(xi | zi). To model this176

continuous distribution, we employ a diffusion model where zi serves as conditional information177

for a denoising network – implemented as a small MLP on top of the transformer (Figure 2). We178

train the denoising network and the transformer backbone jointly using the diffusion loss specified in179

Equation 2. Conceptually, this diffusion objective encourages the model to produce representations180

zi that facilitate effective denoising.181

Auxiliary deterministic objective To encourage accurate predictions of near-term future tokens,182

we incorporate an auxiliary mean-squared error loss in the latent space. We implement this through183

a separate MLP head that produces deterministic predictions x̂i from zi, training it jointly with the184

transformer backbone. Since weather dynamics become increasingly chaotic beyond day 10, making185

deterministic predictions progressively less meaningful, we apply this loss only to the first 10 future186

frames. Furthermore, we employ an exponentially decreasing weighting scheme to emphasize the187

importance of accurate predictions for earlier frames. The deterministic objective is thus:188

Ldeter(θ) = E
m∼pU

[ ∑
mi=1

w(i)||xi − x̂i||22

]
. (5)

Appendix A.2 presents the details of this objective. The complete training objective combines both189

losses: L(θ) = Lgen(θ) + Ldeter(θ).190

Sampling from SeasonCast At inference time, we generate samples from p(x | c) through an191

iterative decoding process, starting from a sequence of fully masked future tokens. Each iteration192

consists of three steps: first, the transformer backbone processes the conditioning tokens and corrupted193

future tokens to produce vectors zi for each masked position; second, a subset of masked positions194

is randomly selected according to a predefined schedule for unmasking; third, for each selected195

position, the diffusion model generates token xi by conditioning on zi and performing a fixed number196

of diffusion steps. This process iterates until all future tokens are revealed, at which point the197

VAE decoder maps the generated tokens back to the weather domain. To generate an ensemble of198

forecasts, we simply replicate the initial tokens and perform independent sampling for each copy. Four199

hyperparameters affect the sampling procedure: the number of unmasking iterations, the unmasking200

order, the number of diffusion steps, and the diffusion temperature.201

4.3 Implementation details202

Architectural details For the transformer backbone, we adopt the encoder-decoder architecture203

from Masked Autoencoder (MAE) [12]. The model processes an input sequence in two stages:204

first, the encoder processes the conditioning and visible tokens; second, the encoded sequence is205

augmented with learnable [MASK] tokens at appropriate positions and passed through the decoder206

to produce zi for each position i. Both the encoder and decoder are bidirectional, employing full207

attention. Before feeding to either the encoder or decoder, we add the input sequences with positional208

embeddings that combine two components: temporal embeddings to distinguish different frames, and209

spatial embeddings to differentiate tokens within each frame. The encoder and decoder follow the210

Transformer [44] implementation in ViT [8], each having 16 layers with 16 attention heads, a hidden211

dimension of 1024, and a dropout rate of 0.1.212

Mask sampling During training, we sample a masking ratio γ ∼ U [0.5, 1.0] and generate a213

corresponding binary mask m, where γ = 0.75 indicates that 75% of entries in m are 1. For inference,214

we start with full masking (γ = 1.0) and gradually reduce it to 0.0 with a cosine schedule [2]. We215

set the number of unmasking iterations to match the number of future weather states T . We employ216

random masking orders across both spatial and temporal dimensions for training and inference.217

Diffusion loss details We use a linear noise schedule with 1000 steps at training time that are218

resampled to 100 steps at inference. The denoising network ϵθ is implemented as a small MLP219

following Li et al. [24]. Specifically, the network consists of six residual blocks, each comprising a220

LayerNorm (LN), a linear layer, a SiLU activation, and another linear layer, with a residual connection221

around the block. Each block maintains a width of 2048 channels. The network takes the vector zi222

from the transformer as conditioning information, which is combined with the time embedding of the223

diffusion step s through adaptive layer normalization (AdaLN) in each block’s LN layers.224
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5 Experiments225

We compare SeasonCast with state-of-the-art deep learning and numerical methods on medium-range226

weather forecasting and S2S prediction, using WeatherBench2 [38] (WB2) and ChaosBench [29] as227

benchmarks, respectively. We also conduct extensive ablation studies to assess the contribution of228

each component in SeasonCast, and evaluate its scalability under varying inference compute budgets.229

Across both tasks, we train and evaluate SeasonCast on 69 variables from the ERA5 reanalysis230

dataset [14], including four surface-level variables – 2-meter temperature (T2m), 10-meter U and231

V wind components (U10, V10), and mean sea-level pressure (MSLP), as well as five atmospheric232

variables – geopotential (Z), temperature (T), U and V wind components, and specific humidity (Q),233

each at 13 pressure levels {50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000} hPa.234

For medium-range forecasting, we use native 0.25◦ resolution (721× 1440 grids) and follow WB2235

to train on years 1979–2018, validate on 2019, and test on 2020 using initial conditions at 00UTC236

and 12UTC. For S2S prediction, we downsample the data to 1.40625◦ (128× 256 grids) and follow237

ChaosBench to train on 1979–2020, validate on 2021, and test on 2022 using 00UTC initializations.238

5.1 SeasonCast for S2S prediction239

Training and inference details We train a VAE that embeds each weather state of shape 69 ×240

128 × 256 into a latent map of shape 1024 × 8 × 16, reducing spatial dimensions by a factor of241

16. The architectural details and training process of the VAE are described in Appendix A.1. We242

train SeasonCast to forecast a sequence of T = 44 future weather states at 24hr intervals, covering243

lead times from 1 to 44 days. Each training example consists of 45× 8× 16 = 5760 latent tokens,244

including the initial condition. During inference, we generate the complete future sequence in 44245

iterations (1 iteration per frame) using a diffusion temperature of τ = 1.3. We produce an ensemble246

of 50 forecast sequences for each initial condition.247

Baselines We compare SeasonCast with PanguWeather (PW) [1] and GraphCast (GC) [20], two248

leading open-sourced deep learning methods, and ensemble systems of four numerical models from249

different national agencies: UKMO-ENS (UK) [51], NCEP-ENS (US) [40], CMA-ENS (China) [52],250

and ECMWF-ENS (Europe) [10]. We refer to ChaosBench for details about these baselines. Follow-251

ing ChaosBench, we report results on T850, Z500, and Q700 at lead times from 1 to 44 days. We252

additionally compare SeasonCast with ClimaX [30] and Stormer [31] in Appendix B.2. We do not253

compare against Fuxi-S2S [4] as Fuxi-S2S forecasts daily average values from past daily averages,254

making it incomparable with SeasonCast and the rest of the methods, which perform point-in-time255

weather forecasting based on an initial condition. We are also not able to run Gencast [35] and256

NeuralGCM [18] for S2S due to their significant computational demands.257

Results Figure 4 compares different methods on three deterministic metrics: Root Mean-Squared258

Error (RMSE), Absolute Bias (ABS BIAS), and Multi-scale Structural Similarity (SSIM). At shorter259

lead times, SeasonCast shows slightly worse performance on RMSE and SSIM than other baselines,260

which is expected since we train SeasonCast to model a full sequence of future weather states261

rather than optimizing for short- and medium-range predictions. However, SeasonCast’s relative262

performance improves with increasing lead time, ultimately matching ECMWF-ENS as one of the top263

two performing methods beyond day 10. Notably, SeasonCast demonstrates the lowest bias among264

all baselines, maintaining near-zero bias across all three target variables.265

Physical consistency also plays a crucial role in S2S prediction, particularly for ensemble systems.266

We evaluate this aspect using two physics-based metrics: Spectral Divergence (SDIV) and Spectral267

Residual (SRES), which measure how closely the power spectra of predictions match those of ground-268

truths. As shown in Figure 5, SeasonCast achieves substantially better physical consistency than269

other deep learning methods, and often outperforms all baselines on these metrics. These results270

demonstrate how SeasonCast effectively preserves signals across the frequency spectrum.271

Finally, we compare SeasonCast with the four numerical ensemble systems on two probabilistic272

metrics: Continuous Ranked Probability Score (CRPS) and Spread/Skill Ratio (SSR) (closer to 1273

is better). Figure 6 shows that SeasonCast and ECMWF-ENS are the two leading methods across274

variables and lead times. Similar to deterministic results, SeasonCast performs worse than ECMWF-275

ENS at shorter lead times but outperforms this baseline beyond day 15.276

6



200

400

600

800

1000

1200

RM
SE

 (
)

Z500 (m2/s2)

1

2

3

4

5
T850 (K)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Q700 (g/kg)

0

50

100

150

200

250

300

350

AB
S 

BI
AS

 (
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 10 20 30 40

0.70

0.75

0.80

0.85

0.90

0.95

1.00

SS
IM

 (
)

0 10 20 30 40
Lead Time (Days)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

SeasonCast GC PW ECMWF-ENS CMA-ENS UKMO-ENS NCEP-ENS Climatology-ENS

Figure 4: Deterministic performance of different methods at lead times from 1 to 44 days across three
key variables. Solid curves are deep learning methods and dashed curves are numerical methods.
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Figure 5: Physics-based metrics of different methods at lead times from 1 to 44 days across three key
variables. Solid curves are deep learning methods and dashed curves are numerical methods.

5.2 SeasonCast for medium-range forecasting277

In addition to its strong performance on the S2S task, we demonstrate that SeasonCast also performs278

competitively at the medium-range timescale. We train a VAE model with a spatial downsampling279

ratio of 16, compressing each weather state of shape 69× 721× 1440 into a latent representation of280

size 256×45×90. We then train SeasonCast to predict two steps ahead at 12-hour intervals, following281

the setup of Gencast [35]. During inference, we use autoregressive sampling, recursively feeding282

the most recent predicted frame as the new initial condition until the target lead time is reached. We283

generate forecasts using a single sampling iteration per frame with a diffusion temperature τ = 1.0,284

and produce an ensemble of 50 members.285

We compare SeasonCast against Gencast [35], a leading deep learning method for probabilistic fore-286

casting, and IFS-ENS [21], the gold-standard numerical ensemble system. Following WeatherBench2,287

we use ensemble RMSE, CRPS, and spread-skill ratio (SSR) as evaluation metrics. Figure 7 shows288

that SeasonCast performs comparably with IFS-ENS across all variables and metrics, and is only289
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Figure 7: Probabilistic performance of different methods in medium-range forecasting. Solid curves
are deep learning methods and dashed curves are numerical methods.

slightly behind Gencast. Moreover, our analysis in Appendix B.1 further shows that SeasonCast290

is 10× to 20× faster than all baselines. These results indicate strong performance across both291

medium-range and S2S timescales of SeasonCast.292

6 Conclusion293

We present SeasonCast, a novel latent diffusion model for S2S prediction. By combining the masked294

generative framework with a diffusion objective, our approach enables direct modeling of long295

sequences of future weather states while avoiding error accumulation inherent in autoregressive296

methods. SeasonCast achieves state-of-the-art performance in deterministic and probabilistic metrics297

while maintaining exceptional physical consistency. In medium-range forecasting, SeasonCast298

performs competitively with existing methods while being significantly more efficient. Future work299

could study the fundamental trade-off between VAE reconstruction quality and transformer modeling300

capacity, and explore more sophisticated generative frameworks to enhance the diffusion objective.301
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A Implementation details480

A.1 VAE details481

Our VAE model follows the UNet implementation from PDEArena [11]. We use the following482

hyperparameters for UNet in our experiments.

Table 1: Default hyperparameters of UNet
Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1
Input channels The number of channels of the input 69
Input channels The number of channels of the output 69
Base channels The base hidden dimension of the UNet 256

Channel multiplications Determine the number of output channels
for Down and Up blocks [1, 2, 4, 4, 8]

Dimension of z The dimension of the latent space 1024
Blocks Number of blocks 2
Use attention If use attention in Down and Up blocks False
Dropout Dropout rate 0.0

483

The VAE encoder embeds each weather state of shape 69 × 128 × 256 to a latent map of shape484

1024× 8× 16, reducing the spatial dimensions by 16. We use a KL weight of 5e− 5 and optimize485

the VAE model with Adam [17] for 200 epochs with a batch size of 32, a base learning rate of 2e− 4,486

parameters (β1 = 0.9, β2 = 0.95), and weight decay of 1e− 5. The learning rate follows a linear487

warmup for the first 20 epochs, followed by a cosine decay schedule for the remaining 180 epochs.488

A.2 Weighted deterministic objective489

In SeasonCast, we employ a weighted MSE objective to encourage accurate deterministic predictions490

for near-term frames. The objective is formulated as:491

Ldeter(θ) = E
m∼pU

[ ∑
mi=1

w(i)||xi − x̂i||22

]
, (6)

where w(i) is an exponentially decreasing weighting function. We compute this weight in three492

steps. First, for each token i, we determine its corresponding frame index k = ⌊ i
h×w ⌋, where h× w493

represents the spatial dimensions of each frame’s latent map. Second, we assign weights to tokens494

based on their frame index: w(i) = e−k = e−⌊ i
h×w ⌋, ensuring all tokens from the same frame receive495

equal weight. Third, we set w(i) = 0 for tokens beyond frame 10 and normalize the remaining496

weights to sum to one.497

A.3 Optimization details498

We optimize SeasonCast with AdamW [17] for 100 epochs with a batch size of 32, a base learning499

rate of 2e − 4, parameters (β1 = 0.9, β2 = 0.95), and weight decay of 1e − 5. The learning rate500

follows a linear warmup for the first 10 epochs, followed by a cosine decay schedule for the remaining501

90 epochs.502

B Additional experiments503

B.1 Efficiency of SeasonCast504

Beyond its empirical performance, SeasonCast offers substantial efficiency gains over existing505

methods. We train SeasonCast for 4 days using 32 NVIDIA A100 GPUs. In comparison, Gencast506
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requires 5 days of training on 32 TPUv5e devices – hardware significantly more powerful than A100s,507

and NeuralGCM [18] requires 10 days on 128 TPUv5e devices. Additionally, Gencast employs a508

two-stage training pipeline, first pretraining on 1.0◦ resolution and then finetuning on 0.25◦, while509

SeasonCast is trained in a single stage.510
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Figure 8: Runtime vs resolution of different methods to produce one forecast at 15-day lead time.

At inference time, SeasonCast is orders of magnitude faster than Gencast, NeuralGCM, and IFS-ENS.511

Figure 8 compares the runtime (in seconds) required to generate a 15-day forecast across different512

resolutions. At 0.25◦ resolution, Gencast requires 480 seconds on TPUv5, whereas SeasonCast513

achieves the same forecast in just 29 seconds on an A100. At 1.0◦, SeasonCast completes inference in514

only 11 seconds, compared to 224 seconds for Gencast on the same hardware. These results highlight515

the scalability and practicality of SeasonCast for operational forecasting.516

The efficiency of SeasonCast stems from two key architectural innovations. First, SeasonCast517

operates in a much lower-dimensional latent space (45× 90 latent grid vs 721× 1440 original grid),518

significantly reducing the computational cost of training and inference. Second, SeasonCast employs519

a highly efficient sampling mechanism. Unlike Gencast, which performs 50 full forward passes520

through the entire network for 50 diffusion steps, SeasonCast requires only a single forward pass521

through the transformer backbone. The subsequent diffusion steps involve only lightweight forward522

passes through a compact MLP diffusion head, resulting in orders-of-magnitude lower inference time.523

Together, these design choices enable SeasonCast to deliver fast and scalable forecasts.524

B.2 Comparison with more deep learning baselines525

In addition to PanguWeather and GraphCast, we compare SeasonCast with two advanced transformer-526

based methods: ClimaX [30] and Stormer [31]. Figure 9 shows that Stormer achieves superior527

accuracy in short-to-medium timescales, consistent with its reported results. However, as an au-528

toregressive method, its performance degrades more rapidly than SeasonCast, eventually falling529

below Climatology, albeit at a slower rate than PanguWeather and GraphCast. ClimaX takes a530

different approach as a direct forecasting method, where a model trained on large-scale climate data is531

finetuned specifically for individual lead times. This approach avoids error accumulation and achieves532

comparable performance with SeasonCast at S2S scales. However, ClimaX requires fine-tuning533

separate models for each target lead time, while a single SeasonCast model can simultaneously534

generate the complete sequence of future weather states.535

B.3 Impact of IC perturbations536

Initial condition (IC) perturbations—adding random noise to initial conditions X0 – are a standard537

technique in numerical methods for generating ensemble forecasts. This approach complements our538

generative framework. Figure 10 evaluates SeasonCast’s performance across different noise levels,539

varying the standard deviation of the Gaussian distribution used for generating perturbations. The540

results demonstrate SeasonCast’s robustness to input noise, maintaining consistent RMSE and CRPS541

scores across noise levels from 0.0 to 0.2, with only minor variations in SSR scores at short lead542

times.543
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B.4 Ablation studies544

We analyze four key factors that influence SeasonCast’s performance: the auxiliary deterministic545

objective, training sequence length T , unmasking order during sampling, and diffusion sampling546
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temperature τ . We present results for T850 on RMSE, CRPS, and SSR. We additionally study the547

impact of IC perturbations in Appendix B.3.548
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Figure 11: Ablation studies showing the impact of different components in SeasonCast.

Impact of the deterministic objective Figure 11a demonstrates the important role of the deter-549

ministic loss in SeasonCast’s performance. Removing the MSE objective (No-MSE) degrades both550

RMSE and CRPS scores, with particularly noticeable impact at short lead times. However, naively551

applying MSE to all future frames (MSE-All-Frames) also proves counterproductive, as it forces552

deterministic predictions even for S2S timescales where weather systems become inherently chaotic.553

Our approach of applying MSE only to the first 10 frames achieves the best RMSE and CRPS scores554

across medium-range and S2S timescales.555

Impact of training sequence length In our main experiments, we train SeasonCast to generate556

44 future weather states at 24 hour intervals. One could alternatively train the model on shorter557

sequences and/or smaller intervals, then apply multiple roll-outs during inference to reach longer558

horizons, similar to autoregressive approaches. Figure 11b shows that models trained on shorter559

sequences or smaller intervals excel at short- and medium-range forecasting but underperform at S2S560

timescales. This trade-off emerges because shorter sequences allow models to specialize in near-term561

predictions, leading to better performance at shorter lead times. However, these models suffer from562

error accumulation at longer horizons, ultimately performing worse than the model trained on full563

sequences.564

Impact of unmasking orders While our approach randomly masks tokens across both space and565

time during training, one may try more structured masking strategies at inference. We evaluate two566

such alternatives: an autoregressive strategy that unmasks entire frames sequentially, and a random567

framewise approach that unmasks complete frames in random order. Figure 11c shows that our fully568

randomized strategy achieves the best SSR scores, while both alternatives produce under-dispersive569

ensemble predictions. The superior performance of the fully randomized approach stems from its570

introduction of additional randomness through the fully random unmasking order, generating more571

diverse ensemble forecasts. This greater diversity consequently leads to better performance across572

other metrics.573

Impact of diffusion sampling temperature The temperature τ controls the generation diversity,574

with higher values producing more diverse forecasts. Figure 11d demonstrates this relationship575

empirically. Setting τ < 1 produces under-dispersive ensembles, degrading performance across other576

metrics. Increasing τ boosts sample diversity, improving SSR scores and overall better performance.577

However, pushing τ too high (e.g., τ = 1.5) causes samples to deviate from the mean prediction,578

compromising RMSE and CRPS performance. We identify τ = 1.3 as the optimal value, providing579

the best balance between ensemble diversity and forecast quality, which we adopt for our main580

experiments.581
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B.5 Scaling inference compute582

Finally, we examine how increasing inference compute affects SeasonCast’s performance through two583

hyperparameters: the number of ensemble forecasts and the average number of unmasking iterations584

per frame, i.e., 1-iter means a total of 44 iterations for 44 frames. Figure 12 shows that generating585

more ensemble forecasts improves both system diversity (higher SSR) and mean prediction accuracy586

(lower RMSE). Interestingly, while increasing the number of unmasking iterations shows minimal587

impact on RMSE, it yields slight improvements in SSR. This improvement likely stems from the588

increased randomness in unmasking order with more iterations, leading to greater ensemble diversity.589
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Figure 12: Performance of SeasonCast as we vary the number of ensemble forecasts (left) and the
number of unmasking iterations.
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