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Abstract

Given a graph G and a positive integer k, the Graphlet Sampling problem asks
to sample a connected induced k-vertex subgraph of G uniformly at random.
Graphlet sampling enhances machine learning applications by transforming graph
structures into feature vectors for tasks such as graph classification and subgraph
identification, boosting neural network performance, and supporting clustered
federated learning by capturing local structures and relationships. A recent work
has shown that the problem admits an algorithm that preprocesses G in time
O(nk2 log k + m), and draws one sample in expected time kO(k) log n, where
n = |V (G)| and m = |E(G)|. Such an algorithm relies on the assumption that the
input graph fits into main memory and it does not seem to be straightforward to
adapt it to very large graphs. We consider Graphlet Sampling in the semi-streaming
setting, where we have a memory of M = Ω(n log n) words, and G can be only
read through sequential passes over the edge list. We develop a semi-streaming
algorithm that preprocesses G in p = O(log n) passes and samples Θ(Mk−O(k))
independent uniform k-graphlets in O(k) passes. For constant k, both phases run
in time O((n +m) log n). We also show that the tradeoff between memory and
number of passes of our algorithms is near-optimal. Our extensive evaluation on
very large graphs shows the effectiveness of our algorithms.

1 Introduction

Sampling and counting small subgraphs in large graphs is a central problem in graph mining and
machine learning. Let G = (V,E) be a simple graph (where n = |V | and m = |E|) and k > 2
an integer. A k-graphlet of G is a connected, induced subgraph of G on k vertices. It is well
known that the k-graphlet distribution (the relative frequency of k-cliques, k-paths, and so on)
reveals key information about the structure of a graph [MSOI+02] and can be transformed into the

∗Authors appear in alphabetical order.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



feature vector for graph classification and subgraph identification [TLT+19]. Graphlet information
also contributes to neural network in several ways. [PLG+20] converted the graph to a matrix by
sampling k-graphlets for a sequence of vertices so that convolutional neural networks can be applied.
[TLT+19] showed that using graphlet frequency as a node attribute improves the performance of
diffusion-convolutional neural networks for node classification and graph classification. It is also at
the heart of graph mining applications such as graph kernels [SVP+09]. Furthermore, in clustered
federated learning [GCYR22], graphlet sampling can be applied to improve model performance
by capturing the local structures and characteristics of the data distributed across various clients or
devices. Specifically, graphlet distributions can be used to model relationships between clients or
their data in a way that reflects the underlying graph structure, allowing for more informed clustering
decisions. As a consequence, sampling k-graphlets uniformly at random from G has become a
key primitive in graph mining and machine learning. This problem is called Graphlet Sampling,
and many algorithms have been proposed for it [ABH19, BRRAH12, BCK+17, BCK+18, BLP19,
BLP21, CLWL16, HS16, MG20, PSS19, SH15, WLR+14].

In this work we give efficient streaming algorithms for Graphlet Sampling. The computational model,
called streaming model, is as follows. First, the graph G can only be read by scanning its edges
sequentially, in an arbitrary order that is unknown to the algorithm. Each scan of the list is called a
pass. Second, the algorithm is only granted M = o(|G|) words of memory of Θ(log n) bits each,
where n = |V |. For the case M = o(n), the algorithm cannot even store the vertex set and is too
restrictive. In this work, we consider the semi-streaming model, in which the algorithm has memory
M = Ω(n) and the input graph is dense such that M = o(m). Hence, the algorithm can store the
degrees of G but not the entire graph. The goal is to find an algorithm that makes a small number
of passes, usually O(log n). This kind of algorithms is widely studied in graph mining, as they are
useful when the input data are stored remotely or are too large to fit in main memory.

Let us discuss the problem in more detail under the standard RAM model of computation. Sampling
a k-vertex subgraph of G that is not necessarily connected is straightforward: just sample a k-vertex
set S ⊆ V and return G[S]. The problem becomes nontrivial, though, when the subgraph must be
connected (i.e., a k-graphlet). In this case, one very general approach is rejection sampling: one
samples some connected subgraph G[S] from some distribution, and then accepts G[S] with some
appropriate probability, so that the resulting distribution is as close to uniform as possible. For
almost a decade, all known rejection sampling techniques had a worst-case running time of Θ(nk),
or sampled from a nonuniform distribution [BRRAH12, WLR+14, SH15, BLP19, BLP21]. It was
then shown that both issues can be avoided by using a simple two-phase algorithm, UGS (Uniform
Graphlet Sampler) [Bre21a, Bre23]. The key idea behind UGS is to sort G topologically by repeatedly
deleting a vertex of maximum degree; this takes time O(nk2 log k+m) where m = |E|. Afterwards,
one chooses a starting vertex v according to a certain distribution computed from the topological
order, creates a k-graphlet g by exploring the graph surrounding v with vertices topologically no
smaller than v in a randomized way, and accepts g with a certain probability (otherwise, the process
is repeated). It can be shown that the distribution of the accepted graphlets is uniform, and that the
expected time before accepting a graphlet is kO(k) log n.

It is therefore natural to apply UGS to the streaming setting. This is not so immediate, though. One
key obstacle is that the computation of the topological order of G seems inherently sequential: after
deleting a maximum-degree vertex from G, one needs to update the degrees of its neighbors, and in
the streaming model this would require one pass. We would thus make n passes in total, which is
unacceptable. In this work we show how to overcome these kind of obstacles. We obtain an algorithm
that in Õ(log n) passes computes an approximate topological order of G, and afterwards can sample
Θ(M/kO(k)) independent uniform random graphlets every O(k) passes, as long as the algorithm has
M = Ω(kn) words of memory. We make several other nontrivial improvements that has practical
impacts. For instance, while deciding if each vertex is contained in a sized-k graphlet takes k passes
in a straightforward implementation, we show how to do that in only 1 pass. In the sampling phase,
we show how to share computation between parallel trials such that the running time can be reduced
by a factor of M (and thus a factor of n), even though the distributions of the parallel instances are
still independent. Specifically, if there are Q parallel instances, instead of taking O(mQ) time per
pass on the edge list, we reduce the running time to O(m logQ). This requires a careful orchestration
of random number generation, sorting, and prefix sum computations. We also prove that any p-pass
streaming algorithm for Graphlet Sampling requires memory Ω

(
n
p

)
; therefore, our algorithm is
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nearly space-optimal. Finally, we conduct a series of experiments which verify the relation between
several metrics and the parameters of the algorithm.

1.1 Contributions

An efficient streaming algorithm for graphlet sampling. We present STREAM-UGS, a graphlet
sampling algorithm with the following formal guarantees:
Theorem 1.1. In the semi-streaming model with k = o(log n) and M words of memory satisfying
Ω(n log n) ≤ M = o(m), STREAM-UGS satisfies the following.2 The preprocessing phase makes
p = O(log n) passes with high probability,3 and has running time O(pm+ nk2 lg k). The sampling
phase makes 2k passes, returns Θ(Mk−O(k)) independent uniform k-graphlets from G with high
probability, and runs in time O(n 2k log n+mk log n).

It is useful to instantiate Theorem 1.1 with k = O(1). For example, k = 3, 4, 5 is common in the
literature. In this case STREAM-UGS makes O(log n) preprocessing passes; afterwards, every O(1)
passes it returns a batch of Ω(n log n) random uniform k-graphlets of G. Both preprocessing and
sampling take time O(m log n). Note that the sampling phase can be repeated arbitrarily many times;
every execution yields a new batch of independent uniform k-graphlets.

Tradeoff Between Memory and Number of Passes. We remark that Theorem 1.1 is a special case
of a more general tradeoff that we prove between the number of passes, the memory size, and the
number of graphlets returned. For example, if M = Ω(kn) then STREAM-UGS still works, but the
number of preprocessing passes becomes O(log n log log n), or the number of graphlets sampled
decreases by a factor O

(
logk(n)

)
. From a technical standpoint, STREAM-UGS relies on several

ingredients. The first one is a O(log n)-pass streaming algorithm for computing the said approximate
topological order. The second is a 1-pass routine for computing, simultaneously from each vertex, a
truncated breadth-first search to detect those vertices that do not lead to any graphlet. The third is a
scheme for running instances of the sampling phase in parallel without duplicating the stream across
all instances. All these results are detailed in Section 3.

Space lower bounds for Graphlet Sampling. We complement our guarantees by formal lower
bounds on the amount of memory M needed by any algorithm for Graphlet Sampling. We prove:
Theorem 1.2. For k ≥ 3, any p-pass streaming algorithm for Graphlet Sampling requires Ω (n/p)
bits of memory.

We also give a similar lower bound for the problem of computing the approximate topological order
mentioned above. These lower bounds are obtained by suitable space-preserving reductions from the
Set Disjointness, a well-known problem in communication complexity, and its multiparty variants.
The full results are given in Section 4.

Experimental evaluation. We conduct an experimental evaluation on real-world graphs containing
up to 1.8 billion edges. In particular, we study several metrics as a function of the main parameters of
our algorithms. Our evaluation shows that our algorithms are efficient in practice thereby providing a
valuable tool in graph mining.

1.2 Related Work

Most streaming algorithms for counting or sampling k-graphlets are specifically developed for
counting or sampling triangles, and do not give guarantees for k > 3 [BYKS02, BBCG08, PTTW13,
ADNK14, JSP15, SERU17, LJK18]. The only algorithms that count or sample k-graphlets for k > 3
with formal guarantees, [KMSS12] and [DSTU17], do not seem to guarantee uniform sampling.
Their main goal is indeed to estimate the total number of occurrences of a given graphlet H in the
graph G, and they use (biased) sampling as a subroutine. It is not clear that those algorithms can be
adapted to yield efficient and truly uniform k-graphlet sampling.

The only algorithm comparable to ours is MOTIVO [BLP19], which is based on the celebrated
color-coding technique of Alon, Yuster and Zwick. MOTIVO has a preprocessing phase and a

2We need k = o(logn), otherwise the bounds become vacuous. This is not a drawback of STREAM-UGS:
all known algorithms pay a factor kO(k) in their guarantees.

3In this work, “high probability” means probability 1− n−c where c > 0 is arbitrarily large but fixed.
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sampling phase, and they can be implemented in O(k) passes over G using memory M = Ω(ck n)
for some c > 0. Crucially, however, MOTIVO does not yield uniform samples: the only graphlets
that are sampled with nonzero probability are those made colorful by the color-coding step in the
preprocessing. Our algorithm, instead, returns truly uniform samples. We also note that, in practice,
MOTIVO uses memory that becomes quickly prohibitive with k [BLP19], while STREAM-UGS uses
memory independent of k.

Exploiting topological orders of G is common in subgraph mining. The most used order is arguably
the degeneracy order, or core order, that yields efficient subgraph-counting algorithms [MB83, CN85,
Bre21b, BGL+22], and for which efficient streaming algorithms exist [BKV12, SGJS+13]. However,
while a core order is obtained by repeatedly removing from G a vertex of minimum degree, our
topological order requires to remove a vertex of maximum degree. The two orders may look related
at a first glance; for instance, one may be the reversal of the other. It turns out that this resemblance is
only apparent, see Section 2. Thus, the algorithms of [BKV12, SGJS+13] seem not useful here, and
we need to develop a new one.

It should be noted that Graphlet Sampling is not the same problem as sampling from G the occurrences
of a prescribed k-vertex pattern graph H . This can be seen by letting H be a k-vertex clique: in
that case, sampling an occurrence of H in G solves the Clique problem, and this requires time
nΩ(k) unless the widely-accepted Exponential Time Hypothesis fails [CHKX06]. Graphlet Sampling
instead can be solved in FPT time, that is, time f(k) · nO(1), as [Bre21a, Bre23] and this work show.

Finally, we follow the typical technique of proving the streaming lower bound by considering the
communication complexity on the famous communication game [CKS03, BJKS04]. In such proof,
the game is reduced to a streaming algorithm executed by players so that a better tradeoff between
memory and number of passes implies a communication cost contradicted to its lower bound. An
elaboration in detail is presented in Section 4.

2 Preliminaries

Let G = (V,E) be a simple graph. We assume V = {1, . . . , n}. For a total order ≺ over V , we use
G(v) to denote the subgraph of G induced by {u : u ⪰ v}, i.e., the subset of vertices containing
v and all vertices after v in ≺. Given u ∈ V we let N (u|G(v)) = {w ⪰ v : {u,w} ∈ E} be the
neighborhood of u in G(v), and d(u|G(v)) = |N (u|G(v))| be the degree of u in G(v). We denote
by ∆ the maximum degree of G. The following notion will be crucial:

Definition 2.1 (ϑ-DD Order). Let ϑ ∈ (0, 1]. A total order ≺ over V is a ϑ-degree-dominating order
(ϑ-DD order) if, for all v ∈ V with d(v|G(v)) > 1 and all u ⪰ v, we have d(v|G(v)) ≥ ϑ·d(u|G(v)).

The topological order used by UGS [Bre23] is a 1-DD order. A ϑ-DD order is an approximation
of a 1-DD order. Using a ϑ-DD order yields the same guarantees of UGS, only with an acceptance
probability scaled by ϑk−1 (see Lemma C.1).

Computational model. The algorithm has a memory of M words of Θ(log n) bits each. We require
M = Ω(n) or M = Ω(n log n), depending on the case. The graph is stored as a list of edges in
arbitrary (i.e., adversarial) order. With one pass, the algorithm can read the list sequentially. This
is called semi-streaming model [FKM+05]. To avoid trivialities we assume m = Ω(M); otherwise,
in one pass one can store G and run the algorithm of [Bre23]. For computation we assume the
standard RAM model. We also assume that in time O(1) one can draw a random uniform integer in
{1, . . . , c} for any c = poly(n), or a Bernoulli random variable B(p) for p = Ω(n−k). When we run
multiple instances of a subroutine in parallel, the running time is understood to be the total number of
operations executed by all those instances.

Graphlet size. Our algorithms are designed primarily for k = O(1), but they yield nontrivial
guarantees also for k = ω(1); for instance, for k =

√
log n. Our full statements make the dependence

on k clear.

DD orders vs. core orders. It should be noted that 1-DD orders and core orders do not seem related
in any useful way. For example, let G be the disjoint union of a star with δ1 leaves and a δ2-clique. If
δ1 > δ2, then the center of the star comes first in a 1-DD order, but in a core order it sits after the
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star’s leaves and before the clique vertices. If δ2 > δ1, instead, then in a core order the vertices of
the star all come before the clique, while in a 1-DD ordering the center of the star sits after δ2 − δ1
vertices of the clique.

3 A Streaming-Based Graphlet Sampling Algorithm

This section describes our semi-streaming algorithm, STREAM-UGS. STREAM-UGS is based on the
approach of UGS [Bre23], and runs in two phases: preprocessing and sampling.

Preprocessing. This is done once, and involves two steps.

P1 Computing a ϑ-DD order ≺ of G. The order defines implicitly the subgraphs G(v), see
Section 2, as well as a certain distribution p⃗ over V that is needed by the sampling phase,
see below.

P2 Computing the said probability distribution p⃗ on V . Let G(v) be the set of all graphlets that
are subgraphs of G(v) and contain v. This is called the bucket of v. The distribution p⃗ can
be seen as a distribution over the buckets G(v). For every v ∈ V , the probability p(v) is
proportional to d(v|G(v))k−1 if G(v) ̸= ∅, and p(v) = 0 otherwise. The entry p(v) will be
the probability that v is picked in the first step of the subsequent sampling.

Sampling. This phase may report failure, but if it succeeds, it returns a uniformly random k-graphlet
of G. The expected number of trials to successfully return a graphlet is ϑ1−k · kO(k). However, with
enough memory, one can carry out independent trials in parallel. The phase consists of three steps.

S1 Choosing a bucket G(v) according to the probability distribution p⃗. One can show that, if
G(v) ̸= ∅, then |G(v)| equals d(v|G(v))k−1, up to factors kO(k). Thus, we are choosing
buckets with probability roughly proportional to the number of k-graphlets in them.

S2 Sampling a random graphlet G[S] ∈ G(v). To this end let S1 = {v}. For i = 1, 2, . . . , k−1,
draw an edge uniformly at random from the cut between Si and G(v), and add the endpoint
to Si; this gives Si+1. The final set S = Sk defines the graphlet G[S]. Note that the
sampling here is not uniform. Uniformity is ensured by the next step.

S3 Accepting S with some probability p(S). If S is accepted then compute G[S] and return it;
otherwise, report failure.

Technical Challenges. In the semi-streaming setting, we cannot store all the edges of G in the
memory. Our contributions are how to implement each of the above steps with restricted memory
using a small number of passes on the edge list.

3.1 Computing a ϑ-DD order

We present an algorithm, APPROX-DD (Algorithm 1), that given a graph G and a parameter 0 < ϵ =
O(1), computes a ϑ-DD order of G, where ϑ = 1

1+ϵ . Our main result is:

Theorem 3.1. In the semi-streaming model, APPROX-DD can be implemented so that with proba-
bility at least 1− n−Θ(1), it makes q = O

(
logn
ϵ2 log logn

ϵ

)
passes if M = Ω(n), and q = O

(
logn
ϵ2

)
passes if M = Ω

(
n logn

ϵ

)
. In both cases the total running time is in O(q ·m).

The complete proof of Theorem 3.1 combines several technical lemmas and can be found in Ap-
pendix A. The rest of this section overviews APPROX-DD and sketches the proof. APPROX-DD
maintains a list L, initially empty, which will eventually contain the vertices of V sorted by ≺. The
algorithm proceeds in peeling rounds; every round deletes from G all vertices of degree at least ∆

1+α ,
for some appropriate α, and places them in L in the right order. This “right order” is not simply
any order; it is carefully computed by another procedure, called shaving, using random partitioning.
Algorithm 1 gives the pseudocode of APPROX-DD. It assumes that δG(·), and all other degrees,
are updated as soon as the graphs are modified; except for ∆, which is explicitly recomputed when
needed. In practice, updating the degrees amounts to running one pass over the edges of G. The
algorithm has a triply nested loop structure, and we use the subroutines PEEL and SHAVE for clearer
illustration.
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Algorithm 1 Approximate DD Order. The lines marked with a ▷ entail a recomputation of the
degrees and, thus, one streaming pass.

1: function APPROX-DD(G, ϵ)
2: L← empty list
3: while V (G) ̸= ∅ do
4: (G,L)← PEEL(G, ϵ, L)

5: return L

6: function PEEL(G, ϵ, L)
7: ∆← maxv∈V (G) d(v|G) ▷
8: α← ϵ

2

9: H ← {v ∈ V (G) : d(v|G) ≥ ∆
1+α}

10: while H ̸= ∅ do
11: (G,L,H)← SHAVE(G, ϵ,∆, L,H)

12: return (G,L)

13: function SHAVE(G, ϵ,∆, L,H)
14: β ← 2+2ϵ+ϵ2

ϵ , ℓ← ⌈2(1 + β)⌉
15: let H1, . . . ,Hℓ be a uniform random partition of H
16: let Ri ← {v ∈ Hi : d(v|G[Hi]) ≤ ∆

1+β } for i ∈ [ℓ] ▷

17: for i = 1, . . . , ℓ do
18: Si ← {v ∈ Ri : d(v|G) ≥ ∆

1+α}
19: append the vertices of Si to L in arbitrary order
20: G← G \ Si ▷

21: H ← H \ ∪i∈[ℓ]Ri

22: return (G,L,H)

Intuition for PEEL and SHAVE. Let H be the subset of vertices with degree at least ∆
1+α in G (line 9).

As a first attempt, we could remove all vertices in H from G in a single batch, which is appended to
L in arbitrary order. This works if every vertex v has all of its neighbors come after itself in L, since
in that case d(v|G(v)) ≥ 1

1+α∆ ≥
1

1+ϵd(u|G(v)) for all u ⪰ v. However, in general this does not
happen.

To this end, we attempt to remove vertices in H from G in phases through SHAVE. Specifically, we
assign each vertex in H to one of ℓ = ⌈2(1 + β)⌉ batches H1, . . . ,Hℓ independently and uniformly
at random. By Markov’s inequality, each vertex has at most ∆

1+β neighbors within Hi with good
probability; then, in phase i, every such vertex in Hi that has current degree at least ∆

1+α will be
removed together in one batch from G (and appended to L in an arbitrary order). The degrees of the
remaining vertices in G will then be updated. Each call to SHAVE has ℓ such phases.

The procedure performed by SHAVE does not yet remove H from G; it removes only the vertices
that have few neighbors in the same subset Hi. To completely remove H , we need to iterate the
procedure. This is what PEEL does at line 10. We shall see that there are two cases. When ∆ is large
enough, then one call to SHAVE in line 11 will be sufficient to make H empty with high probability.
When ∆ is small, we may instead need O(log n) calls to SHAVE in order for H to become empty.
This is, technically speaking, what makes the whole algorithm APPROX-DD efficient. Formally, we
prove the following (in Appendix A):

Lemma 3.2. Let p ∈ (0, 1). With probability at least 1 − p, one execution of PEEL (Algorithm 1)
calls SHAVE O

(
log n

p

)
times, and at most once if ∆ ≥ 12(1 + α)(1 + β) ln n

p .
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3.2 Finding the Non-Empty Buckets

Algorithm 2 gives the pseudocode of COMPUTEDISTRIB, which computes the distribution p⃗
and the normalization constant Γ needed by the sampling phase. As said above, the crux of
COMPUTEDISTRIB is checking if G(v) ̸= ∅ for each v ∈ V . To this end, it suffices to perform a BFS
on all vertices in parallel, so as to check whether the connected component of v in G(v) has size at
least k. A naive method would take k passes on the edge list, but with Ω(kn) words of memory, we
can achieve this in 1 passes, as Lemma 3.3 proves.

Algorithm 2 COMPUTEDISTRIB

1: function COMPUTEDISTRIB(≺)
2: for each v ∈ V do
3: compute d(v|G(v)) and 1v := 1G(v)̸=∅
4: set bv ← 1v · d(v|G(v))k−1

5: set Z ←
∑

v∈V bv
6: compute probability vector p⃗: for each v ∈ V , p(v)← bv

Z

7: set Γ← 1
(k−1)!Z (1+ϵ)k−1

8: return (p⃗,Γ)

Lemma 3.3. In the semi-streaming model with M = Ω(kn), the routine COMPUTEDISTRIB (Algo-
rithm 2) can be implemented so as to use 1 passes and time O(m+ n · k2 log k).

3.3 Sampling Graphlets in Parallel

Algorithm 3 gives the pseudocode of SAMPLE, the sampling phase of STREAM-UGS. The sam-
pling phase works after invoking APPROX-DD and COMPUTEDISTRIB in turn (see the subroutine
PREPROCESS in Algorithm 4, Appendix A). Note that Algorithm 3 gives only an abstract description
of the routines. The concrete implementation details are rather involved, though, and we give them
in the rest of the section. The reason for this complexity is that, since each sampling trial requires
memory O(k2), then with a memory of M words we can perform Θ(M/k2) independent sampling
trials in parallel. Doing so efficiently, though, is significantly less straightforward than one would
think. However, we prove:
Theorem 3.4. In the semi-streaming model with M = Ω(kn) words of memory, suppose the
preprocessing routine PREPROCESS has been run with ϵ = 1/2. Then, Q = Θ(M/k2) parallel
instances of SAMPLE can be run in a batch so that Q/kO(k) = Θ(M/kO(k)) independent uniform
random k-graphlets of G are returned successfully with high probability. Moreover each batch can
be implemented in two ways:

• The first one takes k passes and O(Mm) time.
• The second one takes 2k − 1 passes and O(M2k + km log n) time.

Proof Intuition. Each instance of SAMPLE requires only O(k2) words of memory. Hence, with
memory M , we can run Q = Θ(M/k2) parallel instances of SAMPLE. By Lemma C.1, each instance
independently returns a uniform random k-graphlet with probability at least k−O(k)

(1+ϵ)k−1 = k−O(k). By
standard concentration bounds, then, with high probability the number of uniform random k-graphlets
returned overall is Θ(M/kO(k)). The details of the subtroutines and data structures to achieve
Theorem 3.4 are given in Appendix C.

4 Space Lower Bounds

We show that the tradeoff between memory and number of passes of our algorithms is near-optimal. To
this end, we use well known results from communication complexity. In the multi-party randomized
communication model [CKS03, BJKS04], there are t ≥ 2 players seeking to compute a function
f : X1×X2 · · · ×Xt → Y while exchanging messages according to a specified protocol Π. For each
i ∈ [t], the i-th player has an input xi ∈ Xi. Given x1, . . . , xt, the random variable Π(x1, . . . , xt)
denotes the message transcript (containing all messages) obtained when all players follow Π on
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Algorithm 3 SAMPLE (Abstract Description)

1: function SAMPLE(≺, p⃗,Γ) ▷ ≺ is used to define G(v).
2: Sample v from the distribution p⃗.
3: S ← RAND-GROW(v,≺)
4: qS ← PROB(v, S,≺)
5: With probability Γ

p(v)·qS , return S;
6: Otherwise, return “failure”

7: function RAND-GROW(v,≺)
8: S1 ← {v}
9: for i = 1, . . . , k − 1 do

10: let Ei be the subset of edges in G(v) with exactly one endpoint in Si.
11: sample an edge {u, u′} uniformly at random from Ei, where u ∈ Si and u′ /∈ Si.
12: Si+1 ← Si ∪ {u′}
13: return Sk

14: function PROB(v, S,≺)
15: for i = 1, . . . , k do
16: qi ← an empty map from

(
S
i

)
to R with default value 0

17: q1({v})← 1
18: for i = 2, . . . , k do
19: for each Si ∈

(
S
i

)
and each w ∈ Si do

20: ni ← number of neighbors of w in Si

21: ci ←
∑

z∈Si\{w} (d(z|G(v))− d(z|G[Si \ {w}]))
22: qi(Si)← qi(Si) + qi−1(Si \ {w}) · ni

ci

23: return qk(S)

inputs x1, . . . , xt, where the randomness is over the coins of the players. Π is a δ-error protocol for f
if there is a deterministic function Πout such that, for all inputs x1, . . . , xt,

Pr
(
Πout(Π(x1, . . . , xt)) = f(x1, . . . , xt)

)
≥ 1− δ (1)

The communication cost of Π, denoted by |Π|, is the maximum length of Π(x1, . . . , xt) over all
x1, . . . , xt and over all random choices of all players. The δ-error randomized communication
complexity of f is the cost of the best δ-error protocol for f . In the one-way variant of such a model,
the ith player sends exactly one message to the (i + 1)th player, throughout the protocol (we let
t+ 1 = 1).

In the classical disjointness problem, the ith player has an n-bit vector (xi1 , . . . , xin) ∈ {0, 1}n that
corresponds to a subset of a sized-n ground set. The goal is to determine whether there is a common
element among the subsets of all players, i.e. whether there is an index j such that xij = 1, for
all i ∈ [t]. It is known that this problem has Ω(n/t) communication complexity in the one-way
multi-party randomized communication model (Theorem 2.6 of [CKS03]). This holds even in the
case when either the bit vectors represent pairwise disjoint sets or they have a unique common
element but are otherwise pairwise disjoint.

We show that any q-pass streaming algorithm requires memory M = Ω(n/q) even for the problem
of computing a node with approximate maximum degree, that is, to compute a node with rank 1 in
an approximate DD-order. We believe such a result is well-known, however, we could not find a
reference for a general q-pass algorithm. For completeness, we provide the full proofs in Appendix D.
Lemma 4.1. Given a graph G = (V,E), α ∈ (0, 1), any q-pass streaming algorithm computing a

node v such that δG(v) ≥ αmaxw∈V δG(w) with probability at least 2
3 , requires memory Ω

(
α2|V |

q

)
.

Finally, we provide a lower bound on the memory requirement of any streaming algorithm for uniform
k-graphlet sampling, k ≥ 3.
Lemma 4.2. Given a graph G = (V,E), k ≥ 3, any q-pass streaming algorithm for the uniform

k-graphlet sampling problem on G requires memory Ω
(

|V |
q

)
.
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Dataset File Size (MB) #Vertices #Edges
Dense 1,858 20,000 159,993,472

NY Times [Kun13] 858 401,388 69,654,798
Twitter (WWW) [Kun13, KLPM10] 20,437 41,652,230 1,202,513,047

Twitter (MPI) [Kun13, CHBG10] 25,590 52,579,682 1,614,106,188
Friendster [Kun13] 32,300 68,349,466 1,811,849,343

Table 1: Dataset statistics. Dense is generated synthetically by drawing each edge with probability
0.8, and other four datasets are from KONECT.

5 Experiments

We implemented our algorithms in Python 3.9 and conducted experiments on a Ubuntu server with
CPU Intel Xeon Silver 4108 (1.80GHz) and 28GB RAM. The implementation can be found in the
online repository. 4

Datasets. We run our experiments on several real-world graphs from the KONECT website [Kun13]
5 and a synthetic random dense graph generated by drawing each edge with probability 0.8 (we name
it Dense). We removed edge directions, weights, self-loops, duplicate edges and any other irrelevant
data, so as to retain only a list of undirected edges. Table 1 reports all dataset statistics after such a
preprocessing phase.

Streaming model. The stream of edges comes from a CSV file stored in the disk representing the
edge list. Our algorithms make multiple sequential passes over the input data while never storing the
set of edges in main memory. Note that from Theorem 3.4 we have two approaches to do sampling in
parallel, among which we implemented the second one using 2k− 1 passes and O(M2k + km log n)
time.

Methodology. We constrain the memory M by restricting the maximum number of edges that we can
store during the computation of the DD order and sampling to be n

2 in all cases. In the sampling phase
it is required to sample at least 100 graphlets successfully in order to reduce the error of sampling
probability. We study several metrics as a function of ϵ and k, such as the number of passes, the
memory usage, as well as the number of sampling trials to obtain 100 graphlets.

A Heuristic Approach for PEEL. We develop a heuristic approach called APPROX-DD-HEURISTIC
in Appendix E to speed up the running time of Algorithm 1. We evaluate APPROX-DD-HEURISTIC
on large real-world graphs to show the scalability of our algorithms and then conduct a comparison
between APPROX-DD and APPROX-DD-HEURISTIC on smaller graphs.

APPROX-DD versus APPROX-DD-HEURISTIC. We conduct the comparison between APPROX-DD
and APPROX-DD-HEURISTIC on NY Times, the real-world sparse graph and Dense, the synthetic
dense graph. Figure 1 shows the number of passes and memory usage as a function of ϵ.

In Figure 1a and 1b we can see that APPROX-DD-HEURISTIC delivers significantly better re-
sults for sparse graphs but has no significant advantage for dense graphs. This is expected, as
PEEL-HEURISTIC can process at each step a relatively large chunk of the input graph, if such a graph
is sparse. Moreover, consistently with our theoretical analysis in Section 3, we can observe that the
number of passes for preprocessing decreases as a function of ϵ, while the number of passes for
sampling increases. Concerning APPROX-DD-HEURISTIC, both the number of passes and memory
usage are less sensitive to ϵ since in APPROX-DD-HEURISTIC the amount of available memory plays
a more important role.

As observed, APPROX-DD-HEURISTIC outperforms APPROX-DD on real-world sparse graphs.
Hence, we will focus our attention on APPROX-DD-HEURISTIC in the following experiment.

Running on Large Graphs. Figure 2 shows several metrics as a function of ϵ and k over real-world
large graphs. Figure 2a and 2b show that around 30 passes are sufficient to complete the whole
sampling task, while the memory usage is indeed less than the total size of the edge list. Figure
2c and 2d show the number of trials to obtain 100 graphlets as a function of ϵ and k, respectively.
Observe that the success probability is significantly higher than the worst-case bound provided by

4https://github.com/l2l7l9p/UGS-Streaming
5http://konect.cc/networks/
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Figure 1: The number of passes versus ϵ on NY Times (1a), on Dense (1b), and the memory
versus ϵ on two datasets (1c), fixing k = 4. ADD stands for APPROX-DD and ADD-H stands for
APPROX-DD-HEURISTIC.

0.5 1.0 1.5 2.0 2.5 3.0
ε

24

26

28

30

32

34

36

Nu
m
 o
f P

as
se

s

Twitter(WWW) Total
Twitter(WWW) Preprocessing
Twitter(MPI) Total
Twitter(MPI) Preprocessing
Friendster Total
Friendster Preprocessing

(a) #Pass vs ϵ

0.5 1.0 1.5 2.0 2.5 3.0
ε

0

2500

5000

7500

10000

12500

15000

17500

20000

M
em

or
y 
(M

B)

Twitter(WWW)
Twitter(MPI)
Friendster

(b) Memory Usage vs ϵ

0.5 1.0 1.5 2.0 2.5 3.0
ε

0

50000

100000

150000

200000

Nu
m
 o
f T
ria

ls

Twitter(WWW)
Twitter(MPI)
Friendster

(c) #Trials vs ϵ

3 4 5 6
k

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Nu
m
 o
f T
ria
ls

1e6
Twitter(WWW)
Twitter(MPI)
Friendster

(d) #Trials vs k

Figure 2: The number of passes versus ϵ (2a), the memory usage versus ϵ (2b), the number of
trials needed for 100 samples versus ϵ (2c) and versus k (2d) on Twitter(WWW), Twitter(MPI) and
Friendster, fixing k = 4 in 2a, 2c, 2b and ϵ = 1 in 2d.

Lemma C.1. For example, the actual success probability in Twitter(WWW) with ϵ = 1, k = 4 is
100/31230 ≈ 0.0032, which is significantly larger than 9.65× 10−5 provided by Lemma C.1.

6 Conclusion and Future Work

We develop efficient semi-streaming algorithms for uniform graphlet sampling, requiring sublinear
amount of memory and polylogarithmic number of passes in the size of the input data. We also
provide a space lower bound showing that the tradeoff between memory and number of passes of our
algorithms is near-optimal. Our theoretical results are complemented with an experimental evaluation
on large real-world graphs showing the effectiveness of our algorithms and that they can provide a
valuable tool in graph mining and data analysis. Our work paves the way for developing efficient
algorithms in other computational model for large-scale processing, such as the MapReduce model.
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A Proofs for Section 3.1

Lemma A.1. APPROX-DD(G, ϵ) computes a 1
1+ϵ -DD ordering of G.

Proof. First, consider SHAVE. We claim that, just after the execution of line 18, every vertex in Si

has at least ∆
1+α −

∆
1+β and at most ∆ neighbors in V (G) \ Si. Consider indeed any v ∈ Si just

after line 18 is executed. Note that v has by construction at least ∆
1+α neighbors in V (G), and since

Si ⊆ Ri, it has at most ∆
1+β neighbors in Si. The lower bound follows. For the upper bound just

note that v has degree at most ∆ in V (G) and, thus, in V (G) \ Si.

Now consider APPROX-DD(G, ϵ). Note that the final list L is obtained through the subroutine
SHAVE by repeatedly computing some Si ⊆ V (G), appending Si to L, and deleting Si from G
(lines 20 and 19). On the one hand this implies that the returned list L is a permutation of V (G) (i.e.,
every vertex of V (G) appears exactly once in L). On the other hand consider any vertex v ∈ V (G),
and let ∆ be as in the subroutine PEEL when v was appended to L. By the arguments above and by
the choice of α, β:

d(v|G(v)) ≥ ∆

1 + α
− ∆

1 + β
≥ ∆

1 + ϵ
(2)

where G(v) is the subgraph of G induced by v and all vertices appearing after v in L. Moreover note
that ∆ is an upper bound on d(u|G(v)) for every u ∈ G(v). It follows that d(v|G(v)) ≥ d(u|G(v))

1+ϵ
for all v and all u ≻ v where ≻ is the ordering defined by L.

Lemma A.2. Each call to SHAVE requires ℓ+ 1 = O(ϵ+ 1
ϵ ) invocations of COMPUTEALLDEG.

Proof. Line 16 requires, for each i ∈ ℓ, one call to COMPUTEALLDEG on G[Hi]. For each one of
the ℓ iterations of the loop at line 17, a call to COMPUTEALLDEG is needed after G is updated at
line 20. Noting that ℓ = O(ϵ+ 1

ϵ ) concludes the proof.

Lemma 3.2. Let p ∈ (0, 1). With probability at least 1 − p, one execution of PEEL (Algorithm 1)
calls SHAVE O

(
log n

p

)
times, and at most once if ∆ ≥ 12(1 + α)(1 + β) ln n

p .

Proof. Consider a generic iteration of the loop of line 10. Fix any v ∈ Hi and write dHi
(v) as:

d(v|Hi) =
∑

{u,v}∈E(Gi)

Xi(u) (3)

where Xi(u) is the indicator variable of the event u ∈ Hi. Note that E[Xi(u)] =
1
ℓ and therefore

E[d(v|Hi)] =
d(v|G)

ℓ
≤ ∆

ℓ
≤ ∆

2(1 + β)
(4)

By Markov’s inequality, then, Pr
(
d(v|Hi) >

∆
1+β

)
< 1

2 . It follows that

E[|Ri|] ≥
|Hi|
2

(5)

and therefore

E[| ∪ℓi=1 Ri|] ≥
|H|
2

(6)

By standard arguments this implies that, for all p > 0, with probability at least 1− p after O(log n
p )

iterations of the the loop of line 10 the set H becomes empty and thus the loop terminates.

For the second claim, note that ℓ ≤ 4(1 + β) and d(v|G) ≥ ∆
1+α imply

E[d(v|Hi)] ≥
∆

4(1 + α)(1 + β)
(7)

Now consider again (3), and note that the random variables

{Xi(u)}{u,v}∈E(G) (8)
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are independent by construction of Hi. By standard concentration bounds then:

Pr

(
d(v|Hi) >

∆

(1 + β)

)
≤ Pr (d(v|Hi) > 2 · E[d(v|Hi)]) (9)

≤ exp

(
−E[d(v|Hi)]

3

)
(10)

≤ exp

(
− ∆

12(1 + α)(1 + β)

)
(11)

Thus for ∆ ≥ 12(1 + α)(1 + β) ln n
p we have Pr

(
d(v|Hi) >

∆
(1+β)

)
≤ 1

n . By a union bound over
all v ∈ H this implies that, with probability at least 1− p, for all i ∈ [ℓ] we have Ri = Hi. If that is
the case then H becomes empty when line 21 is executed, proving the claim.

Lemma A.3. When the subroutine PEEL is called on a graph G with maximum degree ∆, it removes
vertices from G so that, upon termination, G has maximum degree smaller than ∆

1+α . Moreover, if
∆ < 1, then PEEL terminates after one iteration of the loop of line 10 and returns G = ∅.

Proof. Denote by G′ the value of G when the loop of line 10 ends. Suppose G′ contains a vertex v
such that dG′(v) ≥ ∆

1+α . Since G ⊇ G′ then dG(v) ≥ ∆
1+α , and thus v ∈ H by line 9; and since the

loop ends when H = ∅, then at some iteration v ∈ Ri for some i ∈ [ℓ]. Consider then that iteration
and let G be the current graph; obviously G ⊇ G′. If v ∈ Si then by line 20 v /∈ G and thus v /∈ G′.
If instead v /∈ Si then by line 18 dG′(v) ≤ dG(v) <

∆
1+α . Both cases give a contradiction.

For the second claim note that if ∆ < 1 then ∆ = 0. In that case Hi = Ri = Si for all i ∈ [ℓ], and
the claim follows by construction of the algorithm.

Lemma A.4. Consider one execution of APPROX-DD (G, ϵ) in Algorithm 1. For every p ∈ (0, 1),

with probability at least 1− p the subroutine SHAVE is called O

(
log((ϵ+ 1

ϵ ) log
n
p ) log

n
p

log(1+ϵ)

)
times.

Proof. Let T = 24(1 + α)(1 + β) ln n
p and consider the number of calls to PEEL such that ∆ ≥ T .

Since 24 ln n
p = 12 ln n2

p2 > 12 ln n
2p for all n ≥ 2, by Lemma 3.2 each such call with probability at

least 1− p
2n invokes SHAVE at most once. Moreover, by Lemma A.3 the number of those calls is at

most

min

(
n,

log n

log(1 + α)

)
= min

(
n,

log n

log(1 + ϵ/2)

)
(12)

By a union bound over the at most n calls, thus, with probability at least 1− p
2 the overall number of

calls to SHAVE performed while ∆ ≥ T is at most logn
log(1+ϵ/2) .

Now suppose ∆ < T . By Lemma A.3 PEEL is called O
(

log T
log(1+ϵ/2)

)
times before G = ∅, and by

Lemma 3.2 each such call invokes SHAVE O(log n
p ) times with probability at least 1− p

n . Again by
the union bound, with probability 1− p

2 the overall number of calls to SHAVE for ∆ < T is in

O

(
log T

log(1 + ϵ)
· log n

p

)
= O

 log
((

ϵ+ 1
ϵ

)
log n

p

)
log n

p

log(1 + ϵ)

 (13)

where we used T = O
((

ϵ+ 1
ϵ

)
log n

p

)
. By one final union bound over the two cases ∆ ≥ T and

∆ < T , with probability 1− p the expression in (13) bounds the total number of calls to SHAVE.

A.1 Proof of Theorem 3.1

The number of passes is dominated by the number of calls to the subroutine COMPUTEALLDEG.
Indeed, since V = {1, . . . , n}, we can keep a global array of O(n) words that for every v ∈ V
stores the following information: whether v is still in G, the index i of the subset Hi or Ri or Si

15



containing v, as well as the degree of v in any of those subgraphs. After each pass, the whole
array can be updated in linear time so to be ready for the next iteration. It is then easy to see that
COMPUTEALLDEG can be ran on any graph G, Hi, etc. using one pass and linear time: scan the
edge list, and for each edge e = {u, v} increase the degree counters of both u and v iff they both
belong to the target vertex set (which can be checked in time O(1) using the array). This also shows
that the total running time per pass of APPROX-DD is in O(m).

It remains to bound the total number of calls to COMPUTEALLDEG. First, assume M = Ω(n).
In this case we simply run APPROX-DD until it terminates when V = ∅. By Lemma A.4, using
p = n−Θ(1), the total number of calls fo SHAVE is in

O

(
log
((
ϵ+ 1

ϵ

)
log n

)
log n

log(1 + ϵ)

)
= O

(
log n

ϵ
log

log n

ϵ

)
(14)

As by Lemma A.2 each call to SHAVE makes O(1/ϵ) invocation of COMPUTEALLDEG, the bound
follows.

Now assume M = Ω(n log n). Let again p = n−Θ(1). In this case we let APPROX-DD stop as soon
as ∆ < T , where

T = 12(1 + α)(1 + β) ln
n

p
= O

(
log n

ϵ

)
(15)

as defined in Lemma 3.2. At that point we use one additional pass to store G, and use the linear-time
bucketing algorithm of [Bre23]. By Lemma 3.2, w.h.p. every call of PEEL makes only one call to
SHAVE. Moreover, by Lemma A.3 APPROX-DD makes O(log1+ϵ n) = O

(
logn
ϵ

)
calls to PEEL.

Hence the total number of calls to SHAVE is in O
(

logn
ϵ

)
. As by Lemma A.2 each call to SHAVE

makes O(1/ϵ) invocation of COMPUTEALLDEG, the bound follows.

A.2 Pseudocode of PREPROCESS

Algorithm 4 PREPROCESS

1: function PREPROCESS( )
2: compute ordering ≺ ← APPROX-DD(G, ϵ) ▷ see Algorithm 1
3: (p⃗,Γ)← COMPUTEDISTRIB(≺) ▷ see Algorithm 2
4: return (≺, p⃗,Γ)

B Proofs for Section 3.2

Lemma 3.3. In the semi-streaming model with M = Ω(kn), the routine COMPUTEDISTRIB (Algo-
rithm 2) can be implemented so as to use 1 passes and time O(m+ n · k2 log k).

Proof. Computing Z, p⃗, and Γ clearly takes time O(n), hence we focus on computing d(v|G(v))

and 1v for all v ∈ V . Consider the oriented graph G⃗ = (V,A) constructed from G as follows. For
every v ∈ V say that v is light if d(v|G(v)) < k − 1 and heavy otherwise. For every light vertex v,
add the arc (v, x) to A for every x ∈ N (v|G(v)) (let us call such arc a light arc). Moreover, if v is
light and has heavy neighbors in G, then add to A the arc (v, y) where y is largest heavy neighbor
of v in ≺ (let us call such arc a heavy arc). For every v assign a weight w(v) = 1 if v is light and
w(v) = k if v is heavy. Moreover, for every v let G⃗(v) be the subset of vertices reachable from v in
G(v) by following the arcs in G⃗. Finally, define w⃗(v) =

∑
u∈G⃗(v) w(u).

We claim that w⃗(v) ≥ k if and only if |G(v)| ≠ ∅. To see this, note that both conditions are equivalent
to the following one: in G⃗, starting from v and following forward arcs to vertices in G(v), one can
reach at least k light vertices or at least one heavy vertex. Thus we need only to construct G⃗ and, from
each v ∈ V , run a truncated BFS to check if w⃗(v) ≥ k. Assuming G⃗ is represented by adjacency
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lists, each BFS requires O(k2 log k) operations, since it stops before seeing k2 arcs. The total time
for the BFS is thus n · k2 log k.

To construct G, we use a single pass to compute d(v|G(v)) for each vertex v as well as determine
heavy vertices and light vertices. We initially mark all vertices as light vertices. As we process the
edges, for each edge (v, x) from v to x ∈ N (v|G(v)) where v is light, we add it to A as a light arc.
If v is heavy, we update the heavy arc of x if x is light. Once we detect any light vertex v having at
least k− 1 light arcs, we mark v as a heavy vertex, update the heavy arc of the other endpoint of each
of these light arcs and remove them. This can clearly be implemented in time O(m).

C Proofs for Section 3.3

C.1 Proof of Theorem 3.4

Each instance of SAMPLE requires only O(k2) words of memory. Hence, with memory M , we can
run Q = Θ(M/k2) parallel instances of SAMPLE. By Lemma C.1, each instance independently
returns a uniform random k-graphlet with probability at least k−O(k)

(1+ϵ)k−1 = k−O(k). By standard
concentration bounds, then, with high probability the number of uniform random k-graphlets returned
overall is Θ(M/kO(k)).

We prove the two bounds on the number of passes and running time by describing two implementations
of SAMPLE. Both implementations use the same approach for PROB, which is ran in parallel for
all Q instances and takes only one pass. First, PROB computes G[S] (i.e., it retrieves the edges)
as well as d(u|G(v)) for all u ∈ S. To this end each instance creates pairs (u, v), (v, u) for each
{u, v} ∈

(
S
2

)
and appends them to a global list L, where |L| ≤ O(Qk2) = O(M). Then, we invoke

CHECKEDGES(L); afterwards, every instance finds each one of its edges in the sorted output list.
The same is for SUBDEGREES. By Lemma C.2 and Lemma C.3 we can carry out all of this in one
pass and total time O((|L|+m) log |L|). Since |L| ≤ M = O(m), the time to compute G[S] and
d(u|G(v)) for all u ∈ S over all Q instances is in O(m log n).

Each instance of PROB can then conclude its execution by running the loop of line 18. This loop
iterates over all subsets of S, which are at most 2k, and performs O(k2) operations for each of them.
Summed over the Q = O(M/k2) instances, this yields a time in O(2kM). Adding the bound above
for computing G[S] and the degrees, we obtain a total running time of O(M2k +m log n) for all
instances of PROB.

It remains to discuss the implementations of RAND-GROW.

First implementation. This is the straightforward approach in which the Q instances do not share
any computation. The running time of RAND-GROW is dominated by the iteration of the loop at
line 9. Every edge in the stream is sent to each of Q instances. The instance selects only the edges
that belong to Ei, which requires time O(k) per edge; and it uses reservoir sampling to sample from
those edges uniformly at random. Hence, over the Q instances, the time for each pass is O(Qkm),
and the time for making the k − 1 passes is O(Qk2m) = O(Mm).

Since we consider k = o(log n) and M = Ω(nk), the time for PROB is O(M2k + m log n) =
O(Mm). Hence, the total running time to execute the batch is O(Mm).

Second implementation. For a given instance of RAND-GROW (v,≺) consider a generic iteration
of the loop at line 9. As in the original implementation of [Bre23], we first sample a node u ∈ Si

with probability proportional to the number of edges it has in Ei, and then sample one of its edges
{u, u′} in Ei uniformly at random. to sample u, first we compute d(u|G(v)) for every u ∈ S, as
well as G[S]. By using again SUBDEGREES and CHECKEDGES, this requires one pass and time
O(m log n). Then, we can sample u with probability proportional to d(u|G(v))− d(u|G[S]). This
takes time O(k2), as computing d(u|G[S]) for every u entails checking the edges of G[S]. Next,
to draw an edge {u, v′} uniformly at random in Ei, we draw a random uniform subset of i edges
e1, . . . , ei incident with u in Ei. Since at most i− 1 of them can be incident with Si, it follows that
at least one of them is not, and is therefore a random uniform edge incident with u in the cut of Ei.

To draw e1, . . . , ei we use SAMPLEEDGES (Algorithm 7). First, we draw a random uni-
form subset of i distinct integers j1, . . . , ji from {1, . . . , d(u|G(v))}. We then create i triplets
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(u, v, j1), . . . , (u, v, ji). For each h = 1, . . . , i we then create a global list Th consisting of the
triplets (u, v, jh). Finally, we execute SAMPLEEDGES(Th) for all h = 1, . . . , i in parallel. Let Fh

be the dictionary returned by SAMPLEEDGES(Th). By Lemma C.4, and by the choices of j1, . . . , ji,
each eh = Fh[(u, v)] is a random uniform edge between u and N (u|G(v)), for h = 1, . . . , i. More-
over, and crucially, Lemma C.4 guarantees that e1, . . . , ei are all distinct, since the instances of
SAMPLEEDGES receive the same pairs (x, y); only the indices j differ. Thus e1, . . . , ei is a random
uniform subset of i edges incident with u in Ei, as desired. Again by Lemma C.4, as

∑i
h=1 |Th| is

again bounded by M = O(m), the total time is in O(m log n).

Therefore we have 2 passes for each one of the k − 1 iterations of RAND-GROW, plus one pass for
PROB, for a total of 2k − 1 passes. The total running time is O(M2k + km log n).

C.2 Obtaining Degrees and Edges, in Parallel

In this subsection, we elaborate the details for subroutines that are used in the proof of Theorem 3.4.
First, we prove that SAMPLE returns independent uniform graphlets, and with a probability that is in
(k(1 + ϵ))−O(k).
Lemma C.1. After running PREPROCESS once, every invocation of SAMPLE returns a size-k set S
with probability at least 1

(1+ϵ)k−1((k−1)!)4
. Moreover, if SAMPLE succeeds, then the graphlet returned

is drawn uniformly at random from the set of all k-graphlets of G.

Proof. We adapt the claims and proofs of Section 6 of [Bre23] as follows. Suppose the vertices of
G is sorted according to a 1

1+ϵ -DD ordering ≺, and suppose the subset S forms a k-graphlet of G,
where v ∈ S is the earliest vertex among S in the ordering. First, one can verify that [Bre23, Lemma
24] can be generalized to yield the result that for v ∈ Si ⊆ S such that i = |Si|,

d(v|G(v))

i
≤ |Cut(Si, G(v) \ Si)| ≤ i(1 + ϵ)d(v|G(v)). (16)

Given v and≺, suppose qS is the probability that RAND-GROW(v,≺) returns S. Using the inequality
in (16), one can verify that [Bre23, Lemma 25] can be generalized to yield

1

(k − 1)!

(
1

(1 + ϵ)d(v|G(v))

)k−1

≤ qS ≤ (k − 1)!3
(

1

d(v|G(v))

)k−1

. (17)

One can also check that PROB(v, S,≺) computes precisely qS . Now consider the probability that S
is accepted in line 5 of Algorithm 3, pacc(S) = Γ

p(v) qS
. The same arguments of [Bre23] show that

pacc(S) ≥
1

(1 + ϵ)k−1((k − 1)!)4
. (18)

Moreover, the probability that S is sampled and returned by SAMPLE is p(v) · qS · pacc(S) = Γ,
which is independent of S. This implies that given that SAMPLE successfully returns some subset S,
S is drawn uniformly at random from the set of all k-graphlets of G.

Next, we give a simple routine for checking efficiently for a set of edges, in parallel. This routine, and
other ones below, operate on list of pairs of vertices (u, v). When we speak of an order over those
pairs, we mean the lexicographic order induced by the approximate DD order ≺: (u, v) ≺ (u′, v′) iff
u ≺ u′, or u = u′ and v ≺ v′.
Lemma C.2. Let L = (u1, v1), . . . , (ut, vt) where u, v ∈ V for each (u, v) ∈ L. Then,
CHECKEDGES(L) makes one pass, runs in time O((|L|+m) ln |L|), and returns the list all edges
of G that are in L.

Proof. The sorting of L takes O(|L| log |L|) time. For each of the m edges in the list, searching in
the sorted list takes O(log |L|) time. Finally, removing unmarked edges takes O(|L|) time.
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Algorithm 5 CHECKEDGES

1: function CHECKEDGES(L = (u1, v1), . . . , (ut, vt))
2: Sort L and remove duplicates.
3: for each orientation (u, v) of every edge in the stream do
4: Search (u, v) ∈ L and, if present, mark it.
5: Delete all unmarked elements from L.
6: return L

We give two routines, SUBDEGREES and SAMPLEEDGES, that respectively compute a set of degrees
d(u|G(v)) and sample a set of uniform random edges from subgraphs G(v). The routines make use
of sorted lists L of tuples, where in each tuple the first two elements are vertices u, v. The segment
L(u, v) is the sublist formed by all elements whose first two entries are u, v, in this order, and L(u)
is the sublist formed by all sublists L(u, v). The maps returned by the algorithms are assumed to
support lookup in time O(log |L|).

Algorithm 6 SUBDEGREES

1: function SUBDEGREES(≺, L = (u1, v1), . . . , (ut, vt))
2: Sort L by ≺ and remove duplicates.
3: Initialize cu,v ← 0 for every (u, v) ∈ L.
4: for each orientation (u, v̂) of every edge in the stream do
5: if ∃(u, v) ∈ L, (u, v) ⪯ (u, v̂) then
6: Let (u, v) be the largest such pair.
7: Update cu,v ← cu,v + 1.
8: Init dictionary D : V 2 → [n].
9: for every segment L(u) and every (u, v) ∈ L(u) do

10: Set D(u, v)←
∑
{cu,w : (u,w) ∈ L(u) ∧ (u,w) ⪰ (u, v)}

11: return dictionary D

Lemma C.3. Let L = (u1, v1), . . . , (ut, vt) where u, v ∈ V for each (u, v) ∈ L. Then
SUBDEGREES(≺, L) makes one pass, runs in time O((|L|+m) log |L|), and returns a dictionary
D such that D(u, v) = d(u|G(v)) for all (u, v) ∈ L.

Proof. The algorithm makes one pass by construction. For the running time, note that the loop of
line 9 requires time O(|L|) by scanning each L(u) in reverse order. It is easy to see that the rest of
the algorithm requires time O((|L|+m) log |L|). Now consider any pair (u, v) ∈ L. Every edge in
the stream between u and a vertex w in G(v) is considered as (u,w) by the loop of line 4. It then
contributes 1 to precisely one counter cu,w′ for some w′ ⪰ v. Therefore (u,w) also contributes 1 to
D(u, v), by the loop of line 9. It follows that D(u, v) = d(u|G(v)).

Lemma C.4. Let T = {(u1, v1, j1), . . . , (ut, vt, jt)} be such that, for every (u, v, j) ∈ T , we have
u, v ∈ V with v ⪯ u, and j ∈ {1, . . . , d(u|G(v))}. Then, SAMPLEEDGES(≺, T ) makes one pass
over the edges of G, and runs in time O((|T |+m) log |T |).
Moreover, for every (u, v, j) ∈ T , the map F (u, v, j) returns the j-th edge incident to u in G(v),
where the ordering of u’s incident edges depends only on (i) the pairs (ui, vi) appearing in T (i.e.,
the first two components of each triple in T ) and (ii) the order of the edges in the stream.

Proof. The algorithm makes one pass by construction. For the running time, it can be checked that
several steps involve sorting a data structure of size O(|T |), and hence, they take O(|T | log |T |) time.
For the loop at line 20, there are O(m) iterations, where each iteration involves search an indexed data
structure of size O(|T |), which takes O(log |T |) time. Hence, the total time is O((|T |+m) log |T |).
We next prove correctness. For every (u, v) ∈ L, let E(u,G(v)) be the set of incident edges of u in
G(v). We next specify an ordering on E(u,G(v)) that depends only on the (other) pairs in L and
the order of the edges in the stream. Let L⪰(u) = {(u, v1), . . . , (u, vh)} be the sorted list of pairs
(u, vi) in L such that vi ⪰ v, where v = v1.
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Algorithm 7 SAMPLEEDGES

1: function SAMPLEEDGES(≺, T = (u1, v1, j1), . . . , (ut, vt, jt))
2: Compute the list L of distinct pairs (u, v) s.t. ∃(u, v, j) ∈ T , and sort L by ≺
3: for each (u, v) ∈ L do
4: Compute the increasingly sorted list

J(u, v) := {j : (u, v, j) ∈ T}.

5: Use SUBDEGREES(≺, L) to compute d(u|G(v)), ∀(u, v) ∈ L.

6: Init empty list L∗.
7: Init dictionary J∗ mapping each (u, v) ∈ L to an empty list.
8: Init dictionary D∗ : V 2 × [n]→ V 2 × [n]
9: for every (u, v) ∈ L and every j ∈ J(u, v) do

10: Find the largest (u, v′) in L(u, v) such that

d(u|G(v′))− d(u|G(v)) + j ≥ 1.

11: j′ ← d(u|G(v′))− d(u|G(v)) + j
12: Append (u, v′) to L∗

13: Append j′ to J∗(u, v′)
14: D∗(u, v, j)← (u, v′, j′)

15: Sort L∗ by ≺ and remove duplicaes
16: For each (u, v) ∈ L∗, sort J∗(u, v) in increasing order and remove duplicates

17: Init dictionary D : V 2 × [n]→ E(G)
18: for each (u, v) ∈ L∗ do
19: init a counter cu,v = 0

20: for each orientation (u, v̂) of every edge in the stream do
21: if ∃(u, v) ∈ L∗ with (u, v) ⪯ (u, v̂) then
22: Let (u, v) be the largest such pair
23: cu,v ← cu,v + 1

24: if the first element j of J∗(u, v) is j = cu,v then
25: Set D(u, v, j)← {u, v̂}
26: Delete j from the head of J∗(u, v)

Define dictionary F : V 2 × [n]→ E(G) s.t. F (u, v, j) := D(D∗(u, v, j)).
27: return dictionary F

For each i = 1, . . . , h, let Ei(u,G(v)) be the subset of E(u,G(v)) formed by all edges (u,w) where
vi ⪯ w ≺ vi+1 (for i = h just consider vi ⪯ w). Clearly, the sets Ei(u,G(v)) form a partition of
E(u,G(v)); in fact,

Ei(u,G(v)) = E(u,G(vi)) \ E(u,G(vi+1))

with again the exception Eh(u,G(v)) = E(u,G(vh)).

The order on E(u,G(v) is given as follows. Start with the elements of E1(u,G(v)) in the order they
appear in the stream. Then, add the elements of E2(u,G(v)) in the order they appear in the stream,
and so on until Eh(u,G(v)). Note that this order depends only on the pairs (u, v) ∈ L, and on the
order of the edges in the stream.

Note that if j is uniform at random in {1, . . . , d(u|G(v))}, and independent from both L and the
stream, then the j-th edge ej in that order is uniform at random in E(u,G(v)).

Now let us look at the set Eij (u,G(v)) that contains ej . By standard computations,

ij = max{i : d(u|G(vi))− d(u|G(v)) + j ≥ 1}

Note that ij depends only on j, and on the sizes of the sets Ei(u,G(v)), and not on the order of the
elements in the stream. The vertex vij is precisely the vertex v′ computed by the algorithm at line 9.
Moreover, the index j′ computed at the same line is precisely:

j′ = j − d(u|G(v)) + d(u|G(vj))
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It follows that, if we map (u, v) to the j′-th edge of Eij (u,G(v)) that appears in the stream, which
is ej , then the algorithm is correct. This is precisely what the algorithm does in the loop of line 20.
The counter cuv keeps track, for every i = 1, . . . , h as above, of the number of edges of Ei(u,G(v))
seen so far; when cuv matches some j, it maps (u, v) to ej , as desired.

D Proofs for Section 4

Lemma 4.1. Given a graph G = (V,E), α ∈ (0, 1), any q-pass streaming algorithm computing a

node v such that δG(v) ≥ αmaxw∈V δG(w) with probability at least 2
3 , requires memory Ω

(
α2|V |

q

)
.

Proof. Let A be a q-pass s-space streaming algorithm for computing a vertex with degree being at
least a fraction of α of the maximum degree. Without loss of generality, we assume that A computes
its degree as well (as one additional pass and O(log n) memory suffices to compute the degree of a
given node). We will use A to obtain a multi-agent protocol for the disjointness problem.

Let t = ⌈ 1α⌉+ 1 be the number of agents in a one-way multi-party communication protocol. Recall
that in the disjointness problem, we may assume that either the supports of the bit vectors are pairwise
disjoint (NO instance) or they share one common element but are otherwise disjoint (YES instance).
From the n-bit vectors from the t agents, we obtain a data stream of a bipartite graph G = (U, V,E)
as follows.

• V = {v1, . . . , vn} corresponding to the n bits

• For each agent i, we introduce a set of vertices and edges associated with i as follows.
For every xi, for every j ∈ [n] s.t. xij = 1, there is a node uij ∈ U as well as an edge
(uij , vj) ∈ E.

• The edges are arranged in the stream so that the edges associated with a same agent i appear
next to each other in the stream while preceding the edges associated with agent i+ 1. In
other words, (uij , vj) precedes (uℓh , vh) in the stream if i < ℓ, with all other edges being
arranged in an arbitrary order.

The protocol for the disjointness problem simulates A as follows. The first player executes A on
the set of edges associated with her, i.e. {(u1j , vj) : j ∈ [n], (u1j , vj) ∈ E}. Then, she sends her
memory snapshot (with size O(s)) to the second player that continues the execution of A on the set
of edges {(u2j , vj) : j ∈ [n], (u2j , vj) ∈ E}. The second player in turn sends her memory snapshot
to the third player and so forth until reaching the t-th player, which sends her memory snapshot back
to the the 1st player. This procedure is iterated q times at the end of which the t-th player outputs
"YES" if the degree of the node computed by A is ≥ 2, and "NO" otherwise.

Such a protocol is a correct protocol for the disjointness problem, in that, by construction, the
maximum degree of any node in G is either t ( in the YES instance ) or 1 ( in the NO instance ).
Hence, with probability at least 2

3 , in a YES instance A finds a node with degree at least α · t > 1,
while in a NO instance such a node has degree 1.

Observe that the number of vertices in the bipartite graph is at least n = |V | while it holds that
|U | + |V | = O(t + n) = O(n). Moreover, the communication cost |Π| of the protocol satisfies
|Π| = O(s · t · q) = O

(
s·q
α

)
by our arguments, and |Π| = Ω

(
n
t

)
= Ω(αn) by the bounds above.

From this, we derive s ∈ Ω
(

α2n
q

)
.

Lemma 4.2. Given a graph G = (V,E), k ≥ 3, any q-pass streaming algorithm for the uniform

k-graphlet sampling problem on G requires memory Ω
(

|V |
q

)
.

Proof. We use the same construction of Lemma 4.1 while letting t = k − 1. In such a case, a "NO"
instance for the disjointness problem corresponds to a graph with maximum degree one (with each
connected component consisting of either a singleton or a single edge), while a "YES" instance
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corresponds to a graph containing a connected component being a star with t+1 = k nodes, with all
other connected components having maximum degree one. Observe there is exactly one k-graphlet in
the "YES" instance, with no k-graphlet in the "NO" instance. As a result, any streaming algorithm
succeeding in sampling uniformly a k-graphlet with probability δ would also solve the disjointness
problem.

E The Heuristic APPROX-DD

In this section we introduce a heuristic approach to substitute APPROX-DD, which efficiently reduces
the number of passes while preserving the probabilistic upper bounds in Theorem 3.1.

The heuristic approach aims to extract a large subgraph of high-degree vertices into memory, so that
it can run a simple greedy algorithm that removes the vertex with the largest degree in each iteration
without requiring any additional passes. The process starts from finding this subgraph and determining
whether running the heuristic is worthwhile. First, we sort vertices in descending order of d(v|G).
Let the sorted vertex list be v1, · · · , v|V (G)|. We use a streaming pass to compute d(vi|Ḡ(vi)) for
each vertex vi, where Ḡ(vi) represents the induced subgraph of the prefix v1, · · · , vi. We know that∑i

j=1 d(vj |Ḡ(vj)) is the number of edges in Ḡ(vi). Let i∗ be the largest i such that edges in Ḡ(vi)

can be stored in memory, i.e.,
∑i

j=1 d(vj |Ḡ(vj)) ≤M . If i∗ = |V (G)| or d(vi∗+1|G) ≤ ∆
1+α , we

run the heuristic algorithm PEEL-HEURISTIC instead, otherwise we still run PEEL.

In PEEL-HEURISTIC, we first use a streaming pass to record all edges in Ḡ(vi∗). Then we repeatedly
select the vertex v in Ḡ(vi∗) with the maximum d(v|G), append it to the DD order, remove it from
Ḡ(vi∗) and update d(v′|G) for all vertices v′ ∈ G(vi∗) that are connected to v. We continue this
process until d(v|G) of every remaining vertex v in Ḡ(vi∗) are less than d(vi∗+1|G)

1+ϵ .

The idea is summarized in Algorithm 8.

It is easy to see that whenever we append v to L, it holds that d(v|G(v)) = d(v|G) ≥ d(u|G) =

d(u|G(v)) for each u ∈ Ḡ(vi∗), and d(v|G(v)) ≥ d(vi∗+1|G)

1+ϵ ≥ d(vj |G(v))
1+ϵ for each vj where

j > i∗, therefore the final order we obtain is indeed a 1
1+ϵ -DD order. Note that after an execution

of PEEL-HEURISTIC, the degrees of all remaining vertices are no greater than d(vi∗+1|G) ≤ ∆
1+α .

This means that PEEL-HEURISTIC performs no worse than PEEL if the condition in line 9 is satisfied,
and Theorem 3.1 still bounds the number of passes for APPROX-DD-HEURISTIC. However, since
PEEL-HEURISTIC only requires 3 passes on average, and it removes more vertices and reduces the
maximum degree more effectively than PEEL in sparse graphs, APPROX-DD-HEURISTIC performs
much better than APPROX-DD in practice.
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Algorithm 8 Approximate DD order heuristically. The lines marked with a ▷ entail a streaming pass.

1: function APPROX-DD-HEURISTIC(G, ϵ)
2: L← empty list
3: α← ϵ

2
4: while V (G) ̸= ∅ do
5: compute d(v|G) for all v ∈ V (G) ▷
6: v1, · · · , v|V (G)| ← the sorted list of V (G) in descending order of d(v|G)

7: compute d(vi|Ḡ(vi)) for each i ∈ [|V (G)|] ▷

8: i∗ ← max{i|
∑i

j=1 d(vj |Ḡ(vj)) ≤M}
9: if i∗ = |V (G)| ∨ d(vi∗+1|G) ≤ ∆

1+α then
10: b← d(vi∗+1|G)

1+ϵ if i∗ < |V (G)| otherwise 0

11: (G,L)← PEEL-HEURISTIC(G, {v1, · · · , vi∗}, b, ϵ, L)
12: else
13: (G,L)← PEEL(G, ϵ, L)

14: return L

15: function PEEL-HEURISTIC(G,P, b, ϵ, L)
16: E(P )← the edges whose both endpoints are in P ▷
17: while P ̸= ∅ do
18: v ← argmaxv∈P {d(v|G)}
19: if d(v|G) < b then
20: break
21: append v to L
22: G← G \ {v}, P ← P \ {v}
23: for each v′ ∈ P such that (v, v′) ∈ E(P ) do
24: d(v′|G)← d(v′|G)− 1

25: return (G,L)
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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In the case of closed-source models, it may be that access to the model is limited in
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paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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the experiments?

Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Answer: [Yes]
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Justification: This work is about the streaming algorithm of graphlet sampling, which we
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any negative applications, the authors should point it out. For example, it is legitimate
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11. Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
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Answer: [NA]

Justification: This work poses no such risks.
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safety filters.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
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properly respected?
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [Yes]
Justification: We included the source code in the supplementary material and the Github
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• The answer NA means that the paper does not release new assets.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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