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Abstract

This paper serves as a user’s guide to sampling strategies for sliced optimal transport [Rabin
et al., 2012; Bonneel et al., 2015]. We provide reminders and additional regularity results on
the Sliced Wasserstein distance. We detail the construction methods, generation time com-
plexity, theoretical guarantees, and conditions for each strategy. Additionally, we provide
insights into their suitability for sliced optimal transport in theory. Extensive experiments
on both simulated and real-world data offer a representative comparison of the strategies,
culminating in practical recommendations for their best usage.

1 Introduction

The Wasserstein distance is acclaimed for its geometric relevance in comparing probability distributions.
Having gathered a lot of theoretical work [Santambrogio, 2015; Villani, 2008], it has also proved to be relevant
in numerous applied domains in the last fifteen years, such as image comparison [Rabin et al., 2009], image
registration [Feydy et al., 2017], domain adaptation [Courty et al., 2016], generative modeling [Arjovsky
et al., 2017; Gulrajani et al., 2017; Salimans et al., 2018], inverse problems in imaging [Hertrich et al.,
2022] or topological data analysis [Edelsbrunner & Harer, 2009; Pont et al., 2021], to name just a few. The
computational demands of the Wasserstein distance are, however, quite high, since evaluating the distance
between two discrete distributions of N samples with traditional linear programming methods incurs a
runtime complexity of O(N3 log N) [Peyré et al., 2019]. This computational burden has motivated the
development of alternative metrics sharing some of the desirable properties of the Wasserstein distance but
with reduced complexity.

The Sliced Wasserstein (SW) distance [Rabin et al., 2012; Bonneel et al., 2015], defined by slicing the Wasser-
stein distance along all possible directions on the hypersphere, is one of these efficient alternatives. Indeed,
the SW distance maintains the core properties of the Wasserstein distance but with reduced computational
overhead. For compactly supported measures, Bonnotte [Bonnotte, 2013] showed for instance that the two
distances are equivalent. Again, it has been successfully applied in various domains, such as domain adap-
tation [Lee et al., 2019], texture synthesis and style transfer [Heitz et al., 2021; Elnekave & Weiss, 2022],
generative modeling [Deshpande et al., 2018; Wu et al., 2019], regularizing autoencoders [Kolouri et al.,
2018], shape matching [Le et al., 2024], and has even been adapted on Riemaniann manifolds [Bonet et al.,
2024].
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The SW distance between two measures µ and ν can be written as the expectation of the one dimensional
Wasserstein distance between the projections of µ and ν on a line whose direction is drawn uniformly on the
hypersphere. It benefits from the simplicity of the Wasserstein distance computation in one dimension. In
practice, computing the expectation on the hypersphere is unfeasible, so it is estimated thanks to numerical
integration. The most common method for approximating the SW distance is to rely on Monte Carlo
approximation, by sampling M random directions uniformly on the hypersphere and approximating the
integral by an average on these directions. Since the Wasserstein distance in 1D between two measures of
N samples can be computed in O(N log N), computing this empirical version of Sliced Wasserstein has a
runtime complexity of O(MN log N). This complexity makes it a compelling alternative to the Wasserstein
distance, especially when the number N of samples is high.

As a Monte Carlo approximation, the law of large numbers ensures that this empirical Sliced Wasserstein
distance converges to the true expectation, with a convergence rate of O( 1√

M
). This convergence speed is

slow but independent of the space dimension. However, it is important to keep in mind that to preserve some
of the properties of the SW distance, the number M of directions should increase with the dimension. For
instance, it has been shown that for the empirical distance to almost surely separate discrete distributions
(in the sense that if the distance between two distributions is zero then the two distributions are almost
surely equal), the number of directions M must be chosen strictly larger than the space dimension [Tanguy
et al., 2023].

Classical Monte Carlo with independent samples is not always optimal, since independent random samples
do not cover the space efficiently, creating clusters of points and leaving holes between these clusters. In
very low dimension, quadrature rules provide efficient alternative methods to classical Monte Carlo. On
the circle for instance, the simplest solution is to replace the M random samples by the roots of unity
{ei 2kπ

M | 0 ≤ k ≤ M − 1}: since the function that we wish to integrate is Lipschitz, this ensures that
the integral approximation converges at speed O( 1

M ). However, such quadrature rules are unsuitable for
high-dimensional problems, as they require an exponential number of samples to achieve a given level of
accuracy.

Another alternative sampling strategy is to rely on quasi-Monte Carlo (Q.M.C.) methods, which use deter-
ministic, low-discrepancy sequences instead of independent random samples. Traditional Q.M.C. methods
are designed for integration over the unit hypercube [0, 1]d. The quality of a Q.M.C. sequence is often mea-
sured by its discrepancy, which measures how uniformly the points cover the space. A lower discrepancy
correlates with a better approximation, according to the Koksma-Hlawka inequality [Brandolini et al., 2013].
Examples of low-discrepancy sequences for the unit cube include for instance the Halton sequence [Halton,
1964], and the Sobol sequence [Sobol, 1967], and different approaches have been investigated to project such
sequences on the hypersphere. While quadrature rules are recommended for very small dimensions (d = 1
or 2 for instance), Q.M.C. integration is particularly effective in low to intermediate dimensions. A variant
of low-discrepancy sequence is one where randomness is injected in the sequence while preserving its "low
discrepancy" property. Such a sequence is called a randomized low-discrepancy sequence, and this is the
foundation to randomized quasi-Monte Carlo (R.Q.M.C.) methods [Owen, 2019]. Q.M.C. methods do not
only rely on low-discrepancy sequences, but can also use point sets of a given size directly optimized to
have low-discrepancy, such as s-Riesz point configurations on the sphere [Götz, 2003]. However Q.M.C. and
R.Q.M.C. methods on the sphere have a strong practical downside: they suffer from the curse of dimen-
sionality. Indeed the higher the dimension the harder it is to generate samples with Q.M.C. and R.Q.M.C.
approaches. Moreover, the higher the dimension, the slower the convergence rate, and the more regular the
integrand needs to be to ensure fast convergence. The recent paper [Nguyen et al., 2024] already proposes an
interesting comparison of such Q.M.C. methods to approximate the Sliced-Wasserstein distance in dimension
3, showing that such methods could provide better approximations that conventional M.C. in this specific
dimensional setting.

All the sampling strategies mentioned above are designed to provide a good coverage of the space. However,
they do not take into account the specific structure of the integrand, which is the Wasserstein distance
between the one dimensional projections of the two measures µ and ν. More involved methods to improve
Monte Carlo efficiency include importance sampling, control variates or stratification [Asmussen & Glynn,
2007]. Such variance reduction techniques strategies can also be used in conjunction with quasi-Monte Carlo
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integration. Control variates have been explored for Sliced Wasserstein approximation in [Nguyen & Ho,
2023] and [Leluc et al., 2024], showing interesting improvements in intermediate dimensions over classical
Monte Carlo.

The goal of this survey is to provide a detailed comparison of these different sampling strategies for the
computation of Sliced-Wasserstein in various dimensional settings. It is intended as a user-guide to help
practitioners choose the appropriate sampling strategy for their specific problem, depending on the size and
dimension of their data, and the type of experiments to be carried out (whether or not they need to compute
numerous SW distances for instance). We will also look at the particularities of the different approaches,
some being more appropriate than others depending on whether a given level of accuracy is desired (in which
case an approach allowing sequential sampling is preferable to one requiring optimization of a point set) or,
on the contrary, a given computation time is imposed. We will mainly focus on sampling strategies which
are independent of the knowledge of the measures µ and ν, such as uniform random sampling [Asmussen
& Glynn, 2007], orthonormal sampling [Rowland et al., 2019], low-discrepancy sequences mapped on the
sphere [Halton, 1964; Sobol, 1967], randomized low-discrepancy sequences mapped on the spheres [Owen,
2019], Fibonacci point sets [Hardin et al., 2016] and Riesz configuration point sets [Götz, 2003]. For the sake
of completeness, we also include in our comparison the recent approach [Leluc et al., 2024], which appears to
be the most efficient among recent control variates approaches proposed to approximate Sliced Wasserstein.

The paper is organized as follows. Sec. 2 introduces some reminders on the Sliced Wasserstein distance
such as its definition and some regularity properties. Sec. 3 explores all the sampling methods considered
in this paper, hightlighting their theoretical guarantees, the conditions under which they can be used, and
identifying which methods suffer from the curse of dimensionality. Then Sec. 4 provides a comparison
of each sampling method’s experimental results on different datasets. Finally, in Sec. 5 we offer detailed
recommendations for choosing and using these sampling methods effectively in practice.

2 Reminders on the Sliced Wasserstein Distance

2.1 Definition

In the following, we write ⟨· | ·⟩ the Euclidean inner product in Rd, ∥ · ∥ the induced norm, Sd−1 = {x ∈
Rd | ∥x∥ = 1} the unit sphere of Rd. For θ ∈ Sd−1, we write πθ : Rd → R the map x 7→ ⟨θ|x⟩, sd−1 the
uniform measure over Sd−1. We also denote # the push-forward operation 1.

For two probability measures µ and ν supported in Rd and with finite moments of order 2, the Sliced
Wasserstein Distance between µ and ν is defined as

SW 2
2 (µ, ν) = Eθ∼U(Sd−1)[W 2

2 (πθ#µ, πθ#ν)] =
∫

Sd−1
W 2

2 (πθ#µ, πθ#ν)dsd−1(θ). (1)

This distance, introduced in [Rabin et al., 2012], has been thoroughly studied and used as a dissimilarity
measure between probability distributions in machine learning [Bonneel et al., 2015; Nadjahi, 2021; Kolouri
et al., 2018], and more generally as an alternative to the Wasserstein distance. Its simplicity stems from
the fact that the Wasserstein distance between two probability measures in one dimension has an explicit
formula. Indeed, for two probability measures ρ1 and ρ2 on the line, the Wasserstein distance W2(ρ1, ρ2)
can be written

W 2
2 (ρ1, ρ2) =

∫ 1

0
|F −1

1 (t) − F −1
2 (t)|2dt, (2)

where F1 and F2 are the cumulative distribution functions of ρ1 and ρ2, and F −1
1 and F −1

2 are their respective
generalized inverses (see [Santambrogio, 2015] Proposition 2.17). For two one dimensional discrete measures

1The push-forward of a measure µ on Rd by an application T : Rd → Rk is defined as a measure T #µ on Rk such that for
all Borel sets B ∈ B(Rk), T #µ(B) = µ(T −1(B)).
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ρ1 = 1
N

N∑
k=1

δxk
and ρ2 = 1

N

N∑
k=1

δyk
, this distance becomes

W 2
2 (ρ1, ρ2) = 1

N

N∑
k=1

|xσ(k) − yτ(k)|2, (3)

where σ and τ are permutations of J1, NK which respectively order the sets {x1, . . . , xN } and {y1, . . . , yN }
on the line.
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(a) On the left, we can see the two discrete distributions µ (blue points) and ν (yellow points). On the right, we have
their projections πθ#µ (blue circles) and πθ#ν (yellow circles) along the direction θ. One then takes the increasing
ordering of πθ#µ and πθ#ν, to obtain the corresponding matchings (green arrows) and computes the cost following
Eq. 3.

(b) On the left, we have a plot of θ 7→ W 2
2 (πθ#µ, πθ#ν) in polar coordinates, with the distributions µ and ν from

Fig. 2.1a (top). The grey lines represent the angles where θ 7→ W 2
2 (πθ#µ, πθ#ν) is not differentiable, the magenta

line is the line of angle θ = π
3 and the blue dot is a specific value of W 2

2 (πθ#µ, πθ#ν) with the same angle. On the
right, we have a 1D plot of θ 7→ W 2

2 (πθ#µ, πθ#ν), here the hashed area represents SW 2
2 (µ, ν) and again the vertical

grey lines represent the values where θ 7→ W 2
2 (πθ#µ, πθ#ν) is not differentiable.

Figure 2.1: On the first row, Fig. 2.1a illustrates the computation of W 2
2 (πθ#µ, πθ#ν) for a fixed θ. On

the second row, Fig. 2.1b gives a geometrical illustration of SW 2
2 (µ, ν) with µ, ν taken as in Fig. 2.1a.
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As a consequence, the Sliced Wasserstein distance between two discrete probability measures µ = 1
N

N∑
k=1

δxk

and ν = 1
N

N∑
k=1

δyk
on Rd (i.e. with (xk)k=1,...,N , (yk)k=1,...,N ∈ Rd) can be rewritten:

SW 2
2 (µ, ν) = 1

N

N∑
k=1

∫
Sd−1

(⟨xσθ(k) − yτθ(k), θ⟩)2dsd−1(θ) = 1
N

N∑
k=1

∫
Sd−1

(⟨xk − yτθ◦σ−1
θ

(k), θ⟩)2dsd−1(θ), (4)

where σθ and τθ denotes respectively permutations which order the one dimensional point sets
(⟨xk, θ⟩)k=1,...,N and (⟨yk, θ⟩)k=1,...,N . Fig. 2.1 illustrates the computation of W 2

2 (πθ#µ, πθ#ν) for two
discrete measures in two dimensions (Fig. 2.1a), and shows how this quantity varies when θ spans [0, 2π]
(Fig. 2.1b).

Since the permutations σθ and τθ depends on the direction θ, the integrals in Eq. 1 and Eq. 4 do not have
closed forms. For this reason, practitioners rely on Monte Carlo approximations of the form:

1
NM

N∑
k=1

M∑
j=1

(⟨xσθj
(k) − yτθj

(k), θj⟩)2, (5)

where θ1, . . . , θM are i.i.d. and follow a uniform distribution on the sphere. Classically, the convergence rate
of such Monte Carlo estimations to SW is O( 1√

M
) [Hammersley & Handscomb, 1964]. In this context, it is

natural to question the optimality of sampling methods to approximate SW efficiently in different scenarios.

2.2 Regularity results on θ 7→ W 2
2 (πθ#µ, πθ#ν)

The efficiency of sampling strategies used in numerical integration is highly dependent on the regularity of
the functions to be integrated. For this reason, in the following we give some properties of the function
(Fig. 2.1b):

f : θ 7→ W 2
2 (πθ#µ, πθ#ν) (6)

on the hypersphere Sd−1. We first look at classical regularity properties of f .
Proposition 1 : f is Lipschitz on Sd−1.

Proof. Let µ and ν be two probability measures with finite moments of order 2, and θ1, θ2 ∈ Sd−1. The
triangular inequality on W2 yields

|W2(πθ1#µ, πθ1#ν) − W2(πθ2#µ, πθ2#ν)| ≤ W2(πθ1#µ, πθ2#µ) + W2(πθ1#ν, πθ2#ν).

We also have

W 2
2 (πθ1#µ, πθ2#µ) = inf

X∼µ,Y ∼µ
E
[
|⟨θ1, X⟩ − ⟨θ2, Y ⟩|2

]
≤ inf

X∼µ
E
[
|⟨θ1 − θ2, X⟩|2

]
≤ ∥θ1 − θ2∥2EX∼µ[∥X∥2].

We can show similarly that W 2
2 (πθ1#ν, πθ2#ν) ≤ ∥θ1 − θ2∥2EX∼ν [∥X∥2]. Thus

|W2(πθ1#µ, πθ1#ν) − W2(πθ2#µ, πθ2#ν)| ≤ ∥θ1 − θ2∥
(√

EX∼µ[∥X∥2] +
√

EX∼ν [∥X∥2]
)

.

Since f is Lipschitz continuous, it is differentiable almost everywhere. However the previous result does not
give us the set where f is non differentiable. In the following we give a more complete proof when µ and ν
are discrete following the notations introduced in Sec. 2.1.
Proposition 2 : When µ and ν are finite discrete measures, f piecewise C∞ (C∞

pw) and Lipschitz on Sd−1.
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Proof. For discrete measures µ = 1
N

N∑
k=1

δxk
and ν = 1

N

N∑
k=1

δyk
on Rd, f can be rewritten as

f(θ) = min
σ∈ΣN

fσ(θ), where fσ(θ) =
N∑

k=1
⟨xk − yσ(k)|θ⟩2, (7)

where ΣN is the set of permutations of J1, NK. We assume that the {xi} (resp. {yj}) are all distinct. In
the following, we study the regularity of f as a function of Rd and deduce the regularity properties of its
restriction f|Sd−1 . Observe that each fσ defines a quadratic function on Rd and f , as a minimum of a finite
number of such functions, is continuous and also piecewise C∞ on Rd. Since f is continuous on Rd, its
restriction to Sd−1 is also continuous. To show that this restriction to Sd−1 is also in C∞

pw, it is enough to
observe that the set of points of Rd where f is not differentiable is included in the finite union of hyperplanes(
∪i,jSpan(xi − xj)⊥)⋃ (∪k,lSpan(yk − yl)⊥), since these hyperplanes are the locations where the minimum

in Eq. 7 jumps from a permutation σ to another one (see Fig. 2.2 as an illustration of those hyperplanes).
Each of these hyperplanes intersect Sd−1 on a great circle, and we call U the sphere minus this finite union
of great circles. The open set U (which is dense in Sd−1) can be written as the union

⋃p
k=1 Vk of a finite

number of connected open sets Vl, such that on each Vl, the permutation σ which attains the minimum
in Eq. 7 is constant and unambiguous. We write this permutation σl. On each Vl, f|Sd−1 = fσl

, thus is C∞

on Vl and its derivative can be obtained as the projection of ∇fσl
on the hypersphere. For θ ∈ U , writing

σθ the permutation which attains the minimum in Eq. 7 for the direction θ, this derivative can be written

∇(d−1)f(θ) = 2
(

N∑
k=1

(
⟨xk − yσθ(k)|θ⟩(xk − yσθ(k)) − ⟨xk − yσθ(k)|θ⟩2θ

))
. (8)

Since these derivatives are upper bounded on the compact set Sd−1, it follows that f is also Lipschitz on
Sd−1.
In the case where several xi (or yj) are equal, several of the functions fσ coincide. For instance, if x1 = x2,
the values of σ(1) and σ(2) can be exchanged without modifying fσ. By eliminating all the redundant
functions, we can make the same reasoning as before to show the same regularity results on f . In this case,
all the pairs (xi, xj) with xi = xj should be removed when constructing the set of great circles dividing the
hypersphere.

The following proposition will also be useful in the next sections.
Proposition 3 : f ∈ H1(Sd−1), where, for α ∈ N, the Sobolev space Hα(Sd−1) is defined as [Hebey, 1996]

Hα(Sd−1) = {h ∈ L2(Sd−1) | ∂|j|h ∈ L2(Sd−1), 0 ≤ |j| ≤ α},

with j a multi-index and ∂|j| the partial mixed derivative of order |j| on Sd−1.

Proof. We have seen previously that f is continuous and piecewise C∞, piecewise quadratic to be more
precise. Thus its weak derivative is piecewise linear with discontinuities on a finite union of hyperplanes,
which is L2.

3 Reminders on sampling strategies on the sphere and their theoretical guarantees

In this section, we present the different sampling methods for numerical integration on Sd−1 considered in
this paper, before comparing them experimentally in Sec. 4. This paper addresses three main types of
sampling: random sampling, discrepancy-based sampling, and a control variate approach. The first type
includes the classical Monte Carlo (M.C.) method ([Hammersley & Handscomb, 1964], [Lemieux, 2009])
on the sphere and its variant called orthonormal sampling [Rowland et al., 2019]. The second one relies
on a concept called the discrepancy ([Lemieux, 2009],[Dick & Pillichshammer, 2010]) of a point set, which
represents the number of points in a unit of volume, and can be divided into two categories: low-discrepancy
sequences (or digital nets) and point sets (or lattices). Among the former category, we also investigate a
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Figure 2.2: Illustration of the open subsets
⋃p

k=1 Vk and their intersection with the hyperplanes(
∪i,jSpan(xi − xj)⊥)⋃ (∪k,lSpan(yk − yl)⊥), in the specific case of two measures made of two diracs

µ = 1
2

2∑
i=1

δxi
with x1, x2 = (1, 0, 0)T , (0, −1, 0)T and ν = 1

2

2∑
i=1

δyi
with y1, y2 = (0, 0, 1)T , (0, 0, −1)T .

The hyperplanes divide the sphere into the colored sections where σθ and τθ are constant.

method based on a spherical sliced-Wasserstein type discrepancy [Bonet et al., 2023]. The last type details
a control variates method [Lemieux, 2009] using spherical harmonics [Müller, 1998] for this purpose [Leluc
et al., 2024]. We will also determine which method, and under which conditions, is theoretically suitable
based on the regularity properties established in Sec. 2.2. Tab. 1 presents a taxonomy of all the sampling
methods explored in this paper. It details which method’s convergence rate result is independent from
the dimension (i.e. the dimension does not appear in the asymptotic rate), which one can be computed
independently (i.e. each sample can be generated independently from the others), and which one can be
computed and stored in advance.

Sampling types Dimension independence Independent computation Possible pre-computation
Random Sampling

Uniform Sampling x x x
Orthonormal Sampling x x x

Based on discrepancy
Riesz Point Set / Riesz Point Set Randomized x

Fibonacci Point Set / Fibonacci Point Set Randomized x
Sobol / Sobol Randomized mapped on Sd−1 x x

Halton / Halton Randomized on Sd−1 x x
Spherical Sliced Wasserstein Discrepancy x x

Control variates
Spherical Harmonics Control Variates

Table 1: Taxonomy of the three types of sampling methods investigated in this paper.

Tab. 2 gives a summary of the convergence rate and computational complexity of each sampling method
explored in this paper. In this table nM = o

(
M1/

(
2(d−1)

))
.

3.1 Random samplings

We first explore classical strategies for randomly generating points on the sphere: uniform sampling [Ham-
mersley & Handscomb, 1964] and orthonormal sampling [Rowland et al., 2019]. These strategies are the
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Sampling types Theoretical convergence rate Time complexity Space complexity
Random Sampling

Uniform Sampling O(1/
√

M) O(M) O(M)
Orthonormal Sampling None O(M) O(M)

Based on discrepancy
Riesz Point Set / Riesz Point Set Randomized 1/M on S1, Not applicable otherwise O(M2) O(M)

Fibonacci Point Set / Fibonacci Point Set Randomized Not applicable O(M) O(M)
Sobol / Sobol Randomized mapped on Sd−1 None O

(
M log2

b(M)
)

O(M)
Halton / Halton Randomized on Sd−1 None O

(
M log2

b(M)
)

O(M)
Spherical Sliced Wasserstein Discrepancy None O(M log(M)) O(M)

Control variates
Spherical Harmonics Control Variates O

(
1/(nM

√
M)
)

O(M) O(M)

Table 2: Convergence rate, time complexity and spacial complexity (w.r.t the sampling number) summary
of the sampling methods studied in this paper.

most commonly used for estimating SW 2
2 , and their convergence rates do not depend on the dimension of

the input measures.

3.1.1 Classical Monte Carlo

The classical Monte Carlo method uses uniform random sampling to generate the projection angles. For
(θM )M∈N∗ i.i.d. samples of sd−1

2, we write the Monte Carlo Estimator

XM := 1
M

M∑
i=1

f(θi) with M ∈ N∗. (9)

The law of large numbers ensures that XM converges a.s. to SW 2
2 (µ, ν) = Eθ∼sd−1 [f(θ)] as M goes to

infinity. Moreover, the rate of convergence for this unbiased estimator is given by

√
V[XM ] =

√
V[X1]

M
= σ√

M
, (10)

where σ2 = V[f(θ)] =
∫

Sd−1
f2(θ)dsd−1(θ) − SW 4

2 (µ, ν) < +∞. This convergence rate in Eq. 10 does not

depend on the dimension of the input measures. In order to derive confidence intervals for SW 2
2 (µ, ν), we

can rely on the Central Limit Theorem [Fischer, 2010] , which states that

√
M

[XM − SW 2
2 (µ, ν)]

σ

L−−−−−→
M→+∞

N (0, 1),

This allows us to compute confidence intervals for SW 2
2 (µ, ν) by using the quantiles of the standard normal

distribution. This means that for M large enough, P
(

XM − SW 2
2 (µ, ν) ∈

[
− σq1−α/2√

M
,

σq1−α/2√
M

])
−−−−−→
M→+∞

1 −
α, with α in [0, 1] and q1−α/2 the quantile of level 1 − α/2 of N (0, 1). One strategy for choosing M is taking
M such that σq1−α/2√

M
≤ ε with ε ≥ 0 a chosen precision. The value of σ being unknown, a possibility is to

plug a consistent estimator of σ2, such as

σ̂2
M = 1

M

[
M∑

i=1
f(θi)2 − X2

M

]
.

Xianliang & Zhongyi [2022] provide an alternative criteria for choosing M , however it is quite impractical
as it requires to compute the Wasserstein distance between µ and ν.

2In practice, to simulate a random variable θ ∼ sd−1, one takes a normal random variable Z ∼ N (0, Id) ̸= 0 and chooses
θ = Z

∥Z∥ ∼ sd−1 [Asmussen & Glynn, 2007].
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3.1.2 Orthonormal sampling

A variant of the uniform sampling covered in Sec. 3.1.1 was introduced by [Rowland et al., 2019], which
presents a simple variant for the previous Monte Carlo estimator XM by sampling random orthonormal
bases. This method is inspired by variance reduction techniques known as stratification [Lemieux, 2009].
Let O(d) be the orthogonal group in Rd. For (ΘP )P ∈N∗ ∼ U

(
O(d)

)
, denoting θ1, . . . , θM all the columns of

the matrices Θ1, . . . , ΘK , we define YM = 1
M

M∑
i=1

f(θi). It is easy to show that each θi follows the uniform

distribution on Sd−1 [Rowland et al., 2019]. As a consequence, the estimator YM is still unbiased. Although
it is not possible to show that YM has a smaller variance than XM in general, this estimator is most of the
time more efficient than XM in our experiments and show an equivalent or better rate of convergence in
practice. This might be due to the fact that the diversity of the samples is increased by the orthonormality
constraint.
Remark 1 : Other fully random point processes on [0, 1]2 or S2 suitable for Monte Carlo integration are
studied in the literature. Among them, we can mention Determinantal Point Process (DPP). Recent works,
such as [Feng et al., 2023], have proposed DPP methods directly on the sphere S2. Unfortunately, due to
the lack of publicly available implementations, we could not experiment efficiently with these methods.

3.2 Sampling strategies based on discrepancy

We examine in this section two different types of deterministic sampling based on discrepancy: low-
discrepancy sequences (digital nets) and low-discrepancy point sets (lattices). They were developed to replace
random sampling, expecting to have a better convergence rate than the classical Monte Carlo method.

3.2.1 Low-discrepancy sequences

Quasi-random sequences, better known as low-discrepancy sequences (L.D.S.), are sequences mimicking the
behavior of random sequences while being entirely deterministic. To date, these sequences are only defined
on the unit hypercube [0, 1]d. We introduce below a first definition of discrepancy ([Lemieux, 2009],[Dick &
Pillichshammer, 2010]).
Definition 1 : The discrepancy of a set of points P = {u1, . . . , uM } in [0, 1]d is defined as

DM (P ) = sup
I∈I

∣∣∣∣∣ |P ∩ I|
M

− λ⊗d(I)
∣∣∣∣∣,

where |A| denotes the cardinal of a set A, λ⊗d is the d-dimensional Lebesgue measure and I = {
d∏

i=1
[ai, bi[ | 0 ≤

ai < bi ≤ 1}. The star-discrepancy D∗
M (P ) is defined the same way with I∗ = {

d∏
i=1

[0, bi[ | 0 ≤ bi ≤ 1}.

We can now provide a definition of a Low discrepancy sequence (L.D.S.).
Definition 2 : Let (um)m∈N∗ be a sequence in [0, 1]d. Denoting PM = {u1, . . . , uM } for any M ∈ N∗, u is
a L.D.S. if

D∗
M (PM ) −−−−−→

M→+∞
0.

The notion of discrepancy is important because it is related to the error made when approximating an
integral on the hypercube by its Monte Carlo approximation. This relation is made explicit by the Koksma-
Hlawka inequality ([Lemieux, 2009]; [Dick & Pillichshammer, 2010]; [Brandolini et al., 2013]). This inequality
requires to introduce the notion of Hardy-Krause variation Vh of a function h on [0, 1]d [Aistleitner et al.,
2016], which is out of the scope of this paper, but can be broadly understood as a measure of the oscillation
of h on the unit cube [0, 1]d.
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Proposition 4 (Koksma-Hlawka inequality) : Let h : [0, 1]d → R have bounded variation Vh on [0, 1]d in
the sense of Hardy-Krause [Aistleitner et al., 2016]. Then for {u1, . . . , uM } a point set in [0, 1]d, we have∣∣∣∣∣ 1

M

M∑
k=1

h(uk) −
∫

S

h(x)dλ⊗d(x)
∣∣∣∣∣ ≤ VhD∗

M (u1, . . . , uM ). (11)

The proof of this inequality and basic results on discrepancy theory can be found in[Kuipers & Niederreiter,
2012] and [Dick & Pillichshammer, 2010]. Eq. 11 shows that the absolute error made by the Monte Carlo
approximation is upper bounded by a term depending only on h and the star discrepancy. Compared to the
Central Limit Theoreom, this inequality is not probabilistic and not asymptotic, the bound being valid for
every M ∈ N∗. An important limitation is the term Vh, which is impractical to compute directly. When
d = 1, this term is exactly the total variation of h, but in general, it is only upper bounded by the total
variation. In the case of our function f involved in the estimation of SW , Vf < +∞ holds since f is Lipschitz
continuous. Another limitation of the previous bound is that the rate of convergence of the star discrepancy
D∗

M of a sequence is most of the time not explicit and difficult to compute [Owen, 2005].

Nevertheless, this proposition ensures that if the rate of convergence of the star discrepancy of a sequence is
better than O( 1√

M
), for M large enough the approximation of the quasi Monte Carlo approximation using

this sequence will outperform the one of classical Monte Carlo.

In the following, we present two L.D.S. defined on the unit square [0, 1]d, and see how their star discrepancy
decreases with M . We then focus on practical methods to map these sequences from the hypercube to the
hypersphere Sd−1.

3.2.1.1 Halton sequence

The Halton sequence (ui)i∈N ∈ (Rd)N [Halton, 1964] is a generalization of the von der Corput sequence
[van der Corput, 1935]. In the following, we write, for any integer i, cl(i) the coefficients from the expansion
of i in base b, and we define the radical-inverse function in base b as

ϕb(i) =
+∞∑
l=0

cl(i)b−l−1, ∀i ∈ N.

The Halton sequence in dimension d is then defined as

ui = (ϕb1(i), . . . , ϕbd
(i))T ,

where bi is chosen as the i-th prime number.

3.2.1.2 Sobol sequence

This sequence uses the base b = 2. To generate the j-th coordinate of the i-th point ui in a Sobol sequence
[Sobol, 1967], one needs a primitive polynomial of degree nj in Z/2Z[X],

Xnj + a1,jXnj−1 + a2,jXnj−2 + . . . + anj−1,jX + 1.

This polynomial is used to define a sequence of positive integers (mk,j) by recurrence, with +Z/2Z the inner
law of Z/2Z:

mk,j = 2a1,jmk−1,j +Z/2Z 22a2,jmk−2,j +Z/2Z . . . +Z/2Z 2nj mk−nj ,j +Z/2Z mk−nj ,j .

The values mk,j , for 1 ≤ k ≤ nj , can be chosen chosen arbitrarily provided that each is odd and less than
2k. Then one generates what is called direction numbers:

vk,j = mk,j

2k
.

10



Published in Transactions on Machine Learning Research (06/2025)

The j-th coordinate of ui is then obtained as

ui,j =
+∞∑
k=1

ck(i)vk,j .

3.2.1.3 Convergence rate of Halton and Sobol sequences Both sequences (Halton and Sobol) have
a star discrepancy which converges to 0 (which means that they are indeed L.D.S.). The convergence rate
is given by the following property [Niederreiter, 1988] [Owen, 2019].
Proposition 5 : Let (um)m∈N∗ be either the Halton sequence or Sobol sequence in [0, 1]d. Then for M ≥ 1,
we have

D∗
M (u1, . . . , uM ) ≤ cd

log(M)d

M

where cd is a constant that depends only on the dimension.

Thanks to Eq. 11, for any function h such that Vh < +∞ (which is the case for our function f), this implies a
convergence rate of the Monte Carlo estimator using these sequences in O( log(M)d

M ), which means O(M−1+ϵ)
for every ϵ > 0. This convergence rate is better than the one of classical Monte Carlo with i.i.d. sequences,
even if the rate of convergence slows down when the dimension increases, because of the term log(M)d.
Remark 2 : Note that L.D.S. are designed to mimic the behavior of a random uniform sampling in [0, 1]d
while being completely deterministic. This deterministic behavior leads to patterns in the sampling; because
of those patterns, the higher the dimension, the harder it is for those to fill the "gaps" in [0, 1]d. Moreover,
the term log(M)d implies that one needs M to be very large (exponential) to get the same level of space
coverage in high dimension than in low dimension.

Remark 3 : Observe that both for Sobol and Halton sequences, generating M values has a complexity in
O
(
Mlog2

b (M)
)
, where b is the base (or smallest basis for Halton) chosen.

3.2.1.4 L.D.S. on the sphere
To our knowledge, there is no true L.D.S. on the unit sphere Sd−1 for d ≥ 3, this question remaining an
active research area. Practitioners typically map L.D.S. from the hypercube to the hypersphere, using one
of the methods described below:

• Equal area mapping [Aistleitner et al., 2012]: this method is only defined for mapping points in
the unit square to S2. Denoting (z1, z2) ∈ [0, 1[2, one gets a point u = Φ(2πz1, 1 − 2z2) on S2 with:

Φ(η, β) =
(√

1 − β2cos(η),
√

1 − β2sin(η), β
)

, η, β ∈ [0, 1[. (12)

• Spherical coordinates [Arfken et al., 2011]: This method maps the points from an L.D.S. in
[0, 1]d−1 to Sd−1 by using the spherical coordinates. Unfortunately, we found that the resulting
sampling is usually not competitive compared to other sampling methods.

• Normalization onto the sphere [Basu, 2016]: An L.D.S. is generated in the d-hypercube [0, 1]d
and mapped to Rd using the inverse cumulative distribution function of the standard normal distri-
bution (separately on each dimension). Then each point in the resulting sequence is normalized by
its norm to map it onto Sd−1.

Specific case of S2.
In the specific case of S2, it has been shown by Aistleitner et al. [2012] that if u is an L.D.S in [0, 1]2 and
Φ the equal area mapping defined in Eq. 12, the spherical cap discrepancy DL2,M

(
Φ(P )

)
(see definition 3

in the next section) of the mapped sequence is in O
( 1

M1/2

)
. However, their experiments showed that the

correct order seems rather to be O
(

logc(M)
M3/4

)
for 1/2 ≤ c ≤ 1.
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3.2.2 Deterministic point sets on Sd−1

This section details different methods to design well distributed point sets on Sd−1. Contrary to the L.D.S.
defined above, these point sets are defined directly on the sphere, in order to be approximately uniformly
distributed on Sd−1. To measure this uniformity, we can rely on the notion of spherical cap on the sphere:
a spherical cap of center c ∈ Sd−1 and t ∈ [−1, 1] is defined as

C(c, t) = {x ∈ Sd−1 | ⟨x, c⟩ > t}. (13)

In other words, a spherical cap is the intersection of a portion of the sphere and a half-space (see Fig. 3.1
for an illustration).

Figure 3.1: Illustration of a spherical cap on S2. The circle represents the intersection of the plane ⟨x, c⟩ = t
with the sphere, and the purple colored area is the cap C(c, t) as noted in Eq. 3.2.2.

To the best of our knowledge, there is no equivalent to the Koksma-Hlawka inequality for the sphere in full
generality [Brauchart, 2011]. A sequence of points {un} on Sd−1 is said asymptotically uniformly distributed
on Sd−1 if for every spherical cap C, the proportion of points inside the cap, converges to the measure of
the cap sd−1(C). It can be shown that this assumption is equivalent to assume that for every continuous
function h, the Monte Carlo approximation 1

M

∑M
k=1 h(uk) converges to Eθ∼sd−1 [h(θ)].

In order to get a non asymptotic notion of the uniformity of a point set on Sd−1, we can rely on different
notions of spherical cap discrepancy on the sphere, defined as follows.
Definition 3 : The spherical cap max-discrepancy of a point set PM of size M is defined as [Marzo & Mas,
2021]:

Dmax(PM ) = sup
c∈Sd−1,t∈[−1,1]

{∣∣∣∣ |PM ∩ C(c, t)|
M

− sd−1
(
C(c, t)

)∣∣∣∣} .

The spherical cap L2-discrepancy of a point set PM of size M is defined as [Brauchart, 2011]:

D2
L2

(PM ) =
{∫ 1

−1

∫
Sd−1

∣∣∣∣ |PM ∩ C(c, t)|
M

− sd−1
(
C(c, t)

)∣∣∣∣2dsd−1(c)dt

}
,

where C(c, t) is a spherical cap of center c and height t.

Again, the idea is to compare the proportion of points in PM that fall inside a spherical cap with the measure
of the cap. This comparison is done for all possible caps on the sphere, and Dmax represents the worst error
over all possible caps, while D2

L2
represents the average squared error over all possible caps.

12
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When using Q.M.C. on the hypersphere to approximate the integral of functions h, another notion often
used in the literature is the worst-case (integration) error (W.C.E.) on a Banach space of functions, which
is the largest possible error made by the method on the space. For instance, on Hα(Sd−1),
Definition 4 : For PM = {u1, . . . , uM }, for α ∈ N

WCE
(

PM , Hα(Sd−1)
)

= sup
h∈Hα(Sd−1)

∣∣∣∣ 1
M

M∑
m=1

h(um) − 1
sd−1(Sd−1)

∫
Sd−1

h(w)dsd−1(w)
∣∣∣∣.

Under some regularity condition, a sufficient and necessary one being α ≥ 1
2 + d−1

2 for Hα(Sd−1), Brauchart
& Dick [2013] show that optimizing the spherical cap L2-discrepancy is equivalent to optimizing the W.C.E.
thanks to the Stolarsky’s invariant principle [Stolarsky, 1973]. In the case of our function f , we have seen
that f is regular enough in the specific case of S1, since f ∈ Hα(S1) with α = 1 = 1

2 + 1
2 . However in

dimension larger than 3, this result does not hold anymore since f does not belong to any Sobolev space
Hα(Sd) with α > 1.

3.2.2.1 Fibonacci point set on S2

Denoting φ the polar angle and χ the azimuthal angle forming the geographical coordinates (φ, χ), we
retrieve the Cartesian coordinates (x, y, z) using the spherical coordinates (see Fig. 3.2 for an illustration).
Noting ϕ = 1+

√
5

2 the golden ratio, the m-th point um = (φm, χm) of the Fibonacci point set is given by

φm = arccos
(

2m

2M + 1

)
,

χm = 2mπϕ−2.

It is a simple and efficient way, convergence rate wise, to generate points on S2 for the quasi-Monte Carlo
method but it is only defined on S2. The complexity of the generation is linear in M , and according to
[Marques, 2013], the corresponding convergence rate for the W.C.E. and the L2-spherical cap discrepancy is
in O( 1

M3/4 ). For an extensive list of other popular point configurations on S2, see [Hardin et al., 2016].

Figure 3.2: Illustration of the spherical coordinates in R3 for points on the sphere S2.

3.2.2.2 Equi-distributed points generated by the discrete s-Riesz energy

Another classical way to define equi-distributed point sets on the hypersphere is to rely on optimization. In
such methods, the point set PM is defined as the minimizer of a certain energy functional Es,

P ∗
M := arg min

u1,...,uM ∈Sd−1
Es(u1, . . . , uM ).
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The most common energy functional is the s-Riesz energy, which is defined as follows.
Definition 5 : For s ≥ 0 and PM = {u1, . . . , uM } a set of points on Sd−1, the s-Riesz energy of P is defined
as

Es(PM ) =


∑
i̸=j

1
∥ui − uj∥s

if s > 0,∑
i̸=j

log 1
∥ui − uj∥

if s = 0.

The resulting point set is called a minimal s-energy configuration. The s-Riesz energy can also be defined
for s < 0, in this case the point set PM is obtained as the maximizer of Es =

∑
i̸=j

∥ui − uj∥s [Brauchart,

2011]. Minimising Es is non trivial, the functional being not convex, and the problem becomes more complex
when the dimension increases. Minimal energy configuration points for Es are called Fekete points and it is
known that for 0 ≤ s < d, these sets are asymptotically uniformly distributed with respect to the normalized
surface measure sd−1, which means that Monte Carlo estimates using the Fekete points converge to the
integral against sd−1 [Marzo & Mas, 2021].

The spherical cap L2-discrepancy of a point configuration is minimal if and only if the sum of distances in
the configuration is maximal. This would correspond to maximizing a s-Riesz energy for s = −1 [Brauchart,
2011]. However, the link between the configurations of minimal s-Riesz energy and the max or L2 discrep-
ancies of these configurations is in general not straightforward, see [Brauchart, 2011], [Marzo & Mas, 2021],
[Götz, 2003]. For 0 ≤ s < d, and PM a minimizer of size M of the Riesz s-energy on Sd−1, the authors of
[Marzo & Mas, 2021] show that

Dmax(PM ) ≲ O
(

max
(

M− 2
d(d−s+1) , M− 2(d−s)

d(d−s+4)

))
.

This implies that Dmax(PM ) −−−−−→
M→+∞

0, but the speed of convergence degrades with the dimension d, which
means that the uniformity of these configurations is likely to suffer from the curse of dimensionality. Fig. 3.4
shows an example of s-Riesz points and Fibonacci points on S2 with 500 points.
Remark 4 : Since computing Riesz point configurations involves optimization (with a non linear complex-
ity), the time needed to generate those points can be impractical. Note that generally the generation of the
s-Riesz configuration points has a runtime complexity of O(TM2), where T is the number of iterations of
the optimization loop.

In the specific case of S1, the Fekete points are unique up to a rotation, and are the M -th unit roots (see
[Götz, 2003] and see Fig. 3.3 for an illustration):{

e
2ikπ

M | k = 0, . . . , M − 1
}

.

This explains why for 2D discrete measures, a uniform grid on S1 gives better results than any other sampling
method for computing SW 2

2 , as we will see in Sec. 4.

3.2.3 Random Quasi Monte-Carlo

The principle of Randomized Quasi-Monte Carlo (R.Q.M.C.) methods is to reintroduce stochasticty in
Q.M.C. sequences. Indeed, Q.M.C. methods such as the ones described in Sections Sec. 3.2.1 and Sec. 3.2.2
are deterministic. For a given M , the estimator given by one of these methods is always the same. As such,
we cannot easily estimate the error or the variance of the Monte Carlo approximation. Besides, while results
such as the Koksma-Hlawka inequality ensures that they converge at a certain rate, the different quantities
involved in the inequality are much more complex to estimate than the one involved in the Central Limit
theorem. Random Quasi-Monte Carlo methods were especially designed to recover this ability to estimate
the error easily. These sequences are usually defined on [0, 1]d.
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Figure 3.3: Plot of the 10-th unity roots, i.e solutions to the equation z10 = 1.

Figure 3.4: Illustration of s-Riesz points (on the left) and Fibonacci points (on the right) on S2, with 500
points for both configurations.

Definition 6 ([Owen, 2019]) : Let {ûi}i≥1 be a sequence of points in [0, 1]d. It is said to be suitable for
R.Q.M.C. if ∀i, ûi ∼ U([0, 1]d) and if there exist a finite c > 0 and K > 0 such that for all M ≥ K,

P

[
D∗

M (P̂M ) < c
logd(M)

M

]
= 1, where P̂M = {û1, . . . , ûM }.

Denoting XM = 1
M

M∑
i=1

h(ûi) the empirical estimator of Eθ∼sd−1 [h(θ)], the assumption ûi ∼ U([0, 1]d) implies

that XM is unbiased. Besides, the previous inequality implies that if {ûi}i≥1 is suitable for R.Q.M.C., then
the variance of XM is bounded by c2V 2

h
log2d(M)

M2 . For functions h such that Vh < ∞, this yields a convergence
rate in O

(
logd(M)/M

)
, similar to the one of low discrepancy sequences.

Once a randomization method is chosen (such that it provides suitable R.Q.M.C. sequences), the process
can be repeated several times to obtain K independent random estimators X1

M , . . . XK
M of Eθ∼sd−1 [h(θ)].

The agregated estimate XM,K = 1
K

K∑
k=1

XK
M has a variance decreasing in O

(
logd(M)/(MK−1/2)

)
. One of

the key advantages of this approach is that this variance (or confidence intervals) can be estimated by the
empirical variance of the K independent estimators.

There are several ways to generate sequences from low discrepancy sequences on [0, 1]d in order to make
them suitable for R.Q.M.C.. One of the most simple methods consists in applying the same random shift U
to all points in the sequence, and taking the result modulo 1 componentwise [Lemieux, 2009]. More involved
methods, such as Digital shift or Scrambling, are described in [Lemieux, 2009] and [Owen, 2019].
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However, to the best of our knowledge, there is no proper R.L.D.S. on the sphere, as stated by Nguyen
et al. [2024]. In practice, R.L.D.S. on the unit cube are mapped onto the sphere by the methods described
in paragraph 3.2.1.4. Another possibility, as done in Nguyen et al. [2024], is to generate a random rotation
matrix and apply it directly on point configurations on Sd−1, such as the ones described in Sec. 3.2.2.

3.3 Spherical Sliced Wasserstein

A sampling method based on a Sliced-Wasserstein type discrepancy on the sphere Sd−1 was developped
by Bonet et al. [2023] for d ≥ 3. We denote Cd,2 the set of great circles of Sd−1, a great circle being the
intersection between a plane of dimension 2 and Sd−1 [Jung et al., 2012]. The authors of Bonet et al. [2023]
define a pseudo distance, called Spherical Sliced Wasserstein distance, between two probability measures
Θ, Ξ defined on Sd−1:

SSW 2
2 (Θ, Ξ) =

∫
Cd,2

W 2
2 (πC#Θ, πC#Ξ)dζ(C), (14)

where for all x ∈ Sd−1, πC(x) = arg miny∈C dSd−1(x, y) with dSd−1(x, y) = arcos(⟨x, y⟩) [Fletcher et al., 2004]
and ζ is the uniform distribution over Cd,2.
As shown in Bonet et al. [2023], this distance can be used to sample points on Sd−1 by minimizing SSW2

between a discrete measure Θ = 1
M

M∑
i=1

δθi
and the uniform measure Ξ = sd−1 on Sd−1. To this aim, for

C1, . . . , CL L independent great circles, they approximate SSW 2
2 (Θ, Ξ) by its Monte Carlo approximation

ZL(Θ, Ξ) = 1
L

L∑
l=1

W 2
2 (πCl

#Θ, πCl
#Ξ). Then, they note that πCl

#sd−1 = s1 [Jung, 2021] for each l, and

derive a closed form for W 2
2 (πCl

#Θ, s1) based on Delon et al. [2010]. The final distance SSW 2
2 (Θ, Ξ) can

then be optimized with respect to the point positions θi with a projected gradient descent.

Remark 5 : There are cases in which SSW is a metric:

• Based on Quellmalz et al. [2023], SSW is a metric between any two probability measures on S2.

• A result from Liu et al. [2024] also shows that SSW is a metric between any two absolutely continuous
probability measures with continuous density functions on Sd−1 for d ≥ 3.

Remark 6 : Noting T the number of iterations for the gradient descent algorithm, and L as above, then
the time complexity of this method is in O(TLM log(M)).
Remark 7 : Notice that SSW ’s form is similar to the L2-spherical cap discrepancy, where instead of
averaging the "error" made by the sampling on a spherical cap, it averages the "error" made by the sampling
on a great circle.

3.4 Variance reduction

All methods described so far are based on the idea of generating points on the sphere in such a way that
these points are sufficiently well distributed to be used for Monte Carlo integration, and ideally yield faster
convergence than M.C. with i.i.d. sequences. These point sequences or point sets are defined independently
of the function to be integrated.

More involved approaches, such as importance sampling or control variates, use the knowledge of the function
to be integrated to improve Monte Carlo estimators by decreasing their variance. Recently, two control
variates based methods have been developped to estimate the Sliced Wasserstein distance. A control variate
is a centered random vector Y ∈ Rp, easy to sample, with finite second moments. Assume we want to
estimate Eθ∼sd−1 [f(θ)]. Writing θ1, . . . , θM i.i.d. samples of θ ∼ sd−1 and Y1, . . . , YM M independent copies
of the random centered vector Y , we consider the following estimator

1
M

M∑
i=1

[f(θi) − βT Yi],
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where β ∈ Rp is a constant vector to be determined. The variance of this estimator is proportional to
Var(f(θ) − βT Y ). It follows that if we write β∗ the parameter minimizing this variance, then the pair
(E(f(θ)), β∗) is solution of the least square problem

min
(ζ,β)∈R×Rp

E[(f(θ) − ζ − βT Y )2].

An empirical version of this quadratic problem on a sample (θ1, . . . , θM ) writes

(Ê(f(θ))M , βM ) = arg min
ζ,β∈R×Rp

∥F − ζ1M − Yβ∥2
2 (15)

where F =
(
f(θi)

)T

i=1,...,M
, 1M = (1, . . . , 1)T ∈ RM , and Y =

(
Y T

i

)
i=1,...,M

∈ RM×p.

Recently, Nguyen & Ho [2024] introduced a Sliced Wasserstein distance estimation using Gaussian control
variates and Leluc et al. [2024] developped a method using spherical harmonics control variates. We focus
only on Leluc et al. [2024] here, since their method yields much better experimental results. In their
work, Leluc et al. [2024] chose Spherical Harmonics [Müller, 1998] as control variates. Spherical harmonics
are functions which form an orthonormal basis (ϕi) of the Hilbert space L2(Sd−1, sd−1). In this setting,
the random variable Y is thus chosen as Y = (ϕi(θ))i=1,...,p, with θ ∼ sd−1. In practice, the number p

is chosen as p = Ln,d =
n∑

l=1
N(d, 2l), the number of spherical harmonics of even degree up to 2n, with

N(d, n) = (2n + d − 2) (n+d−3)!
(d−2)!n! the number of spherical harmonics of degree n in dimension d.

Leluc et al. [2024] then compute the solution (SHCV 2
M,n, βM ) of (15) on a sample (θ1, . . . , θM ) and use the

control variates estimator SHCV 2
M,n as estimator of the (squared) Sliced Wasserstein distance.

They prove the following convergence property.
Proposition 6 : Let µ, ν be two discrete measures in Rd with finite moments of order 2 and let d ≥ 2. For
any sequence of degrees n = (nM )M such that nM = o

(
M1/

(
2(d−1)

))
as M −→ +∞, we have

∣∣SHCV 2
M,n(µ, ν) − SW 2

2 (µ, ν)
∣∣ = OP

(
1

nM1/2

)
, (16)

where the notation Xn = OP(an) means that the sequence Xn

an
is stochastically bounded 3.

Notice that since nM = o

(
M1/

(
2(d−1)

))
, in high dimensions d the global convergence rate is similar to that

of the classical Monte Carlo method described in Sec. 3.1.1.

4 Experimental results

This section presents experimental results from all the different sampling strategies presented in Sec. 3, on a
variety of datasets. To provide representative results, we select datasets spanning a range of dimensions going
from 2 to 28×28. Those include a toy dataset and three "real-life" ones. We first present results on Gaussian
mixtures in the following dimensions {2, 3, 5, 10, 20, 50}, the six ground truths (true distances) are estimated
using 108 projections. Secondly, we show some dimensionality reduction results on 12 different datasets of
persistence diagrams (for the case of 2 dimensional discrete measures). Then we show some convergence
results in the specific case of measures in 3 dimensions. Specifically, we compare different estimations of the
Sliced Wasserstein distance between 3D point clouds taken from the ShapeNetCore dataset, see [Chang et al.,
2015]. Finally we compare different dimensionality reduction results on the MNIST dataset [LeCun, 1998].
For the experiments on the Gaussian mixtures we compare the listed strategies with the following sampling

3The notation Xn = OP(an) means that for all ϵ > 0, there exists finite K > 0 and N > 0 such that P[|Xn| > Kan] < ϵ for
all n > N .
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numbers {100, 300, 500, 700, 900, 1100, 2100, 3100, 4100, 5100, 6100, 7100, 8100, 9100, 10100}. Otherwise, we
use the following sampling numbers {100, 1100, 2100, 3100, 4100, 5100, 6100, 7100, 8100, 9100, 10100}. Tab. 3
displays the acronyms of all the sampling methods compared in the following experiments. For each sampling
method from Tab. 3, there are two variants finishing with the term "Area Mapped" and two variants finishing
with the term "Normalized Mapped". The first one means that we applied the equal area mapping detailed
in paragraph 3.2.1.4. The second one means we normalize each point generated by those methods, this
normalization method is also detailed in paragraph 3.2.1.4.

Name Legends Dimensions
Riesz Randomized R.R. 2,3,5,10,20,50
Uniform Sampling U.S. 2,3,5,10,20,50
Othornormal Sampling O.S. 2,3,5,10,20,50
Halton Area Mapped H.A.M. 2,3
Halton Randomized Area Mapped H.R.A.M. 3
Halton Normalized Mapped H.N.M. 5,10,20,50
Halton Randomized Normalized Mapped H.R.N.M 5,10,20,50
Fibonacci Point Set F.P.S. 3
Fibonacci Randomized Point Set F.R.P.S. 3
Sobol Area Mapped S.A.M. 3
Sobol Randomized Area Mapped S.R.A.M. 3
Sobol Normalized Mapped S.N.M. 5,10,20
Sobol Randomized Normalized Mapped S.R.A.M. 5,10,20
Spherical Harmonics Control Variates S.H.C.V. 3,5,10,20
Spherical Sliced Wasserstein Randomized S.S.W.R. 3,5,10,20,50

Table 3: For each method used in this experimental part, associated acronym, and list of dimensions where
this method is used.

4.1 Implementation of the sampling methods

This section provides details on the implementations used for the sampling methods, and specifies how the
parameters are set. The implementations used are grouped and are available here https://github.com/
Keanu-Sisouk/SW-Sampling-Guide.

• Classical M.C. methods: For both methods we used python included functions to sample a
Gaussian variable and to sample orthogonal matrices in d dimension. For sampling orthogonal
matrices we use the following python library scipy.stats.ortho_group https://docs.scipy.org/
doc/scipy/reference/generated/scipy.stats.ortho_group.html.

• Halton & Sobol sequences: In dimension 3 and less, we use python implementations from
the library scipy.stats.qmc (https://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.qmc.Halton.html & https://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.qmc.Sobol.html. As for the parameters we set "scramble" to True to get the randomized
version. For high dimensions, we use Leluc et al. [2024]’s implementation available here https:
//github.com/RemiLELUC/SHCV.
Remark 8 : For the Sobol sequence, we noticed that the implementation provided by Leluc et al.
[2024] cannot be used in dimension higher than 20.

• Riesz point configuration: We use a code provided by François Clement (https://sites.
math.washington.edu/~fclement/), implementing a projected gradient descent method, where
we choose the number of iterations as T = 10, the gradient step as 1 and s = 0.1. The function
can be found in the riesz_noblur.py script in the repository https://github.com/Keanu-Sisouk/
SW-Sampling-Guide.

• Spherical Sliced Wasserstein: We used the following implementation from Bonet et al. [2023]
that can be found in POT library (Python Optimal Transport) https://pythonot.github.io/
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auto_examples/backends/plot_ssw_unif_torch.html. For the hyper-parameters we set the num-
ber of iteration T = 250, the learning rate ϵ = 150 and the number of great circles L = 500. For the
initialization, we generate θ1, . . . , θM ∼ sd−1 following the method described in Sec. 3.1.1.

• Spherical Harmonics Control Variates: We use the implementation provided by Leluc et al.
[2024], available in https://github.com/RemiLELUC/SHCV. They provide two possible functions
SHCV and SW_CV, both functions return a value of a SW estimate. These functions differ in
the way they implement the optimization of Eq. 15. Depending on the number of control variates,
one of the functions is much more efficient than the other. For this reason, in our experiments, we
use both functions and always keep only the minimal error among the two.

4.2 Gaussian data

This part details the experiments on a toy dataset chosen because it is simple to replicate and simple to
understand. We compare different estimates of SW 2

2 (µd, νd) for d ∈ {2, 3, 5, 10, 20, 50}. We pick up Leluc

et al. [2024]’s setting, using µd = 1
N

N∑
i=1

δxi
and νd = 1

N

N∑
i=1

δyi
with x1, . . . , xN ∼ N (x, X), y1, . . . , yN ∼

N (y, Y), where N = 1000. The means are drawn as x, y ∼ N (1d, Id) and the covariances are X, Y =
ΣxΣT

x , ΣyΣT
y where all entries of the matrices are drawn using the standard normal distribution. In Fig. 4.1,

we show convergence curves generated by all the different sampling strategies in all the dimensions listed
above. Fig. 4.2 reports the distance estimation error as a function of computation time (in seconds). In
both figures, both axes are log scaled. We can see in Fig. 4.1 that up to dimension 5, Q.M.C. methods
are preferable convergence wise, then the orthonormal sampling is preferable in dimension 20 and 50. In
contrast, we can see in Fig. 4.2 that for dimensions less than 10, the S.H.C.V. method has a better error,
with similar running time. For higher dimensions, however, the orthonormal sampling is much faster, for a
given error target.
Remark 9 : One may notice in Fig. 4.1b that both the S.H.C.V. method and the Q.M.C. method with the
s-Riesz points (R.R.) reach a plateau at around 103 projections. Our hypothesis is that both methods have
a better estimation of SW 2

2 than the simple random sampling with 108 projections that we use as a ground
truth. We test this hypothesis in a simple case where SW 2

2 (µ, ν) can be computed explicitly. We define
µ = 1

2 [δx1 + δx2 ] and ν = 1
2 [δy1 + δy2 ], with x1, x2 = (1, 0, 0)T , (0, −1, 0)T and y1, y2 = (0, 0, 1)T , (0, 0, −1)T .

Simple computations yield SW 2
2 (µ, ν) = 2(π−

√
2)

3π . Knowing the true value of SW 2
2 (µ, ν), we find that with

104 points, the Q.M.C. method with the s-Riesz points configuration and the S.H.C.V. methods already have
errors one order smaller that ones made by uniform sampling with 108 points.

Remark 10 : Note that for the running time curves, we do not include the s-Riesz points configuration
starting from the dimension 3 because it takes around 102 seconds to generate 103 points and 9×103 seconds
to generate 104 points. However, observe that those points, once generated, can be stored once for all to
compute other SW 2

2 distances or any other Monte Carlo estimation problems for functions defined on the unit
sphere. This means that these configurations should not be discarded by default. For practical applications
where the number of SW 2

2 distances to compute is large, the computing time for these configurations can
be factorized by the number of distances to compute and hence could become a negligible factor when the
sampling number is moderate.
Remark 11 : Recalling the running time complexity O(TM2) in paragraph 3.2.2.2 and the running time
results above, this shows that one needs to spend 9 × 107 seconds to generate 106 points. This demonstrates
the limitation of this sampling method in terms of scalability, in other words when one needs a very large
sampling number.

4.3 Persistence diagrams reduction dimension score

The goal of this section is to evaluate the relevance of the sampling methods studied in Sec. 3, in the
context of a concrete use case, involving two-dimensional real-life datasets. For that, we focus in this section
on persistence diagrams, a popular object used in Topological Data Analysis [Edelsbrunner & Harer, 2009].
Persistence diagrams are data abstractions encapsulating the features of interest of complex input datasets
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Figure 4.1: Comparison of convergence rate results for the studied sampling methods (Gaussian data,
Sec. 4.2).

(e.g. scalar fields) into simple two-dimensional representations. Specifically, we consider an input dataset
represented as a piecewise linear (PL) scalar field, namely a function f : M → R defined on a PL (dM)-
manifold M with dM ≤ 3. Take a value a ∈ R, we denote f−1

−∞(a) = f−1(] − ∞, a]) the sub-level set
of f at a. While increasing a, the topology of f−1

−∞(a) changes at the critical points of f in M. Those
critical points are classified by their index I: 0 for minima, 1 for 1-saddles, dM − 1 for (dM − 1)-saddles
and dM for maxima. Following the Elder rule [Edelsbrunner & Harer, 2009], a topological feature of f−1

−∞(a)
(connected component, cycle, void) is associated with a pair of critical points (c, c′) such that f(c) < f(c′)
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Figure 4.2: Distance estimation error as a function of computation time (seconds). Computation times
include the point generation as well as the SW 2

2 distance approximation.

and Ic = Ic′ − 1. This pair corresponds to the birth and death of the topological feature during the sweep
of the range from −∞ to +∞ by a, and it is called a persistence pair. As an example, when two connected
components of f−1

−∞(a) merge at a critical point c′, the younger one (created last) dies to let the older
one (created first) live on. Then those persistence pairs are represented as 2D points where the horizontal
coordinate corresponds to the birth of a topological feature (noted b = f(c)) and where the vertical one
corresponds to its death (noted d = f(c′)). The lifespan of a feature is called persistence and is simply
encoded as b − d. This representation is called the Persistence Diagram, and its popularity in topological

21



Published in Transactions on Machine Learning Research (06/2025)

data analysis is explained by its stability to the addition of noise. See Fig. 4.3 for a simple example of a
persistence diagram.
Remark 12 : Two persistence diagrams can have a different number of points, so to make it a balanced

transport problem one has to augment them. Formally, denoting d1 = 1
N1

N1∑
k=1

δxk
, d2 = 1

N2

N2∑
k=1

δyk
the

diagrams, and noting ∆d1 = 1
N1

N1∑
k=1

δπ∆(xk), ∆d2 = 1
N2

N1∑
k=1

δπ∆(yk) their projections on the diagonal ∆, one

considers µ = 1
N [N1d1 + N2∆d2 ] and ν = 1

N [N2d2 + N1∆d1 ] as input measures with N = N1 + N2. Then
the Sliced Wasserstein distance can be used to compare persistence diagrams as detailed by Carrière et al.
[2017].

Figure 4.3: A simple example of a persistence diagram issued from a gaussian mixture (left). On the right
you can see that the persistence diagram is stable to the addition of noise.

We present dimensionality reduction results on 12 ensembles of persistence diagrams [Pont et al., 2021]
described in [Pont et al., 2022], which original scalar fields include simulated and acquired 2D and 3D
ensembles from SciVis constests [Organizers, 2004]. The dimensionality reduction techniques used are MDS
[Kruskal & Wish, 1978] and t-SNE [van der Maaten & Hinton, 2008] applied on distance matrices obtained
by the SW estimations between the persistence diagrams. For a given technique, one quantifies its ability
to preserve the cluster structure of an ensemble by running the k-means algorithm in the resulting 2D-
layouts. Then one evaluates the quality of the clustering with the normalized mutual information (NMI)
and adjusted rand index (ARI), which should both be equal to 1 for a clustering that is identical to the
classification ground-truth. Tab. 4 shows the average clustering scores of both MDS [Kruskal & Wish, 1978]
and t-SNE [van der Maaten & Hinton, 2008]. First we take the average from distance matrices made by
each SW 2

2 estimates on all sampling number {100, 1100, 2100, 3100, 4100, 5100, 6100, 7100, 8100, 9100, 10100}.
Then we average again over all the 12 different ensembles of persistence diagrams. One can see that all the
methods are quite similar. But overall the s-Riesz points configuration, which are just the M -th unity roots
up to a rotation, is slightly better.

Table 4: Average NMI and ARI scores for over all 12 ensembles of persistence diagrams.

Method MDS NMI t-SNE NMI
Riesz 0.74 0.65
Uniform 0.74 0.59
Orthonormal 0.75 0.63
Halton 0.74 0.58

Method MDS ARI t-SNE ARI
Riesz 0.64 0.51
Uniform 0.64 0.44
Orthonormal 0.64 0.48
Halton 0.63 0.41

4.4 3D Shapenet 55Core Data

This part details convergence results on a 3D dataset commonly used as a benchmark when studying shape
comparison techniques. So as in [Nguyen et al., 2024] and [Leluc et al., 2024], we took three 3D point clouds
issued from the ShapenetCore dataset introduced by [Chang et al., 2015]. Among the different shapes in the
dataset, we took one lamp, one plane and one bed; with all three of them having N = 2048 points. Fig. 4.4
displays the three datasets considered for this experiment.
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Figure 4.4: The three point clouds taken from the ShapenetCore dataset (a plane, a lamp and a bed).

102 103 104

10−5

10−3

10−1

Number of samples

E
rr

or

102 103 104

10−6

10−4

10−2

Number of samples
102 103 104

10−7

10−4

10−1

Number of samples

S.H.C.V.

R.R

U.S

O.S

H.A.M

H.R.A.M

F.P.S

F.R.P.S

S.S.W.R.

Figure 4.5: Comparison of convergence rate results from the different sampling methods. The first plot shows
errors made with respect to the SW 2

2 distance between a lamp and a plane. The second one is between a
plane and a bed. The last one corresponds to SW 2

2 between a plane and a bed.

Fig. 4.5 shows different convergence curves of Sliced Wasserstein estimates between the three point clouds.
As in Sec. 4.2, the methods dominating are the Q.M.C., R.Q.M.C., S.S.W. and S.H.C.V. methods, especially
the s-Riesz points configuration and the Spherical Sliced Wasserstein sampling.

4.5 MNIST reduction dimension score

The goal of this section is twofold. First, it evaluates the practical convergence of the studied sampling
methods on real-life high-dimensional datasets. Second, it describes an application of the SW distance for
high-dimensional data, namely, dimensionality reduction. For this, we select the classical MNIST dataset
[LeCun, 1998]. To construct our dataset, we represent each digit image as a point in R28×28. For each
class {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, we select randomly 600 digit images and divide them into groups of 200. This
results in 30 point clouds of 200 points each, in R28×28, with 10 ground-truth classes. Fig. 4.6 illustrates
the 30 × 30 matrix of SW distances between all point clouds in the dataset. We use MDS and t-SNE to
produce 2D layouts from the distance matrices generated by the various sampling methods with different
sample sizes. We then apply a clustering algorithm to these 2D layouts and average the clustering scores
(NMI and ARI, see Sec. 4.3) on all sampling numbers for all the studied sampling strategies. Results are
provided in Tab. 5. In such high dimension (d = 784), we see that the performance of L.D.S. collapse, the
three sampling methods standing out being the s-Riesz points configuration, the uniform sampling and the
orthonormal sampling.

5 Recommendation & conclusion

In this paper, we have studied several sampling strategies on the sphere for computing an approximation of
the Sliced Wasserstein distance.
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Figure 4.6: Sliced Wasserstein distance matrix of our dataset using 106 projections. All 10 classes,
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, of 3 members each are well represented in the matrix.

Table 5: Average NMI and ARI scores with standard deviation. Higher scores correspond to better clustering.

Method MDS NMI t-SNE NMI
Riesz 1 ± 0. 0.98 ± 2e-2
Uniform 1 ± 0. 0.97 ± 4e-2
Orthonormal 1 ± 0. 0.98 ± 3e-2
Halton 0.91 ± 1e-1 0.91 ± 9e-2
S.S.W. 1 ± 0. 0.98 ± 4e-2

Method MDS ARI t-SNE ARI
Riesz 1 ± 0. 0.95 ± 7e-2
Uniform 1 ± 0. 0.91 ± 1e-1
Orthonormal 1 ± 0. 0.94 ± 8e-2
Halton 0.75 ± 2e-1 0.76 ± 2e-1
S.S.W. 1 ± 0. 0.94 ± 1e-1

Regarding theoretical guarantees, this study highlighted the following limitations. The classical i.i.d. sam-
pling benefits from theoretical guarantees with a convergence rate in O(1/

√
M) and a time complexity linear

in the number M of projections. Orthonormal sampling and L.D.S. such as Halton or Sobol lack conver-
gence rate guarantees on the sphere (these guarantees being only obtained for sequences on hypercubes for
L.D.S). As for deterministic point generation methods (like Riesz), the Sliced Wasserstein integrand also
lacks sufficient regularity to guarantee results in dimensions higher than 2.

While lacking theoretical guarantees in terms of convergence, the experimental study suggests that Q.M.C
methods (L.D.S. or s-Riesz points) provide competitive results in small to intermediate dimension, while
having a similar convergence rate to classical random sampling methods in intermediate to higher (for Riesz)
dimensions. These results seem to indicate that, while f is not regular enough for the convergence guaran-
tees detailed in this paper, there may be some non-proven convergence results requiring weaker regularity
conditions that would be applicable to SW .

Now, considering computation times, as shown by Fig. 4.2 and Tab. 2, classical i.i.d. sampling remains the
slowest method in all our experiments. While orthonormal sampling lacks theoretical guarantees, it seems
to be one of the most efficient methods whatever the dimension, and is particularly competitive in high
dimensions, with a very reasonable increase of computation time. L.D.S. methods also remain competitive
in pratice for small dimensions. s-Riesz points, while competitive in terms of convergence rate, have a
prohibitive time complexity in O(M2), which makes them completely unsuitable for a large number of
projections.

The experiments also suggest that the S.H.C.V. method is very competitive in intermediate dimensions,
while becoming less efficient when d increases.

Based on the different experimental results provided in this paper, we make the following recommendations:

• For small dimensions (less than 3), Q.M.C. methods such as s-Riesz points or L.D.S. mapped onto
the sphere can be privileged with respect to uniform sampling,
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• For high dimensions (greater than 20), the orthonormal sampling method emerges as the most
suitable choice. It is also one of the simplest methods to implement, which makes it particularly
attractive in practice.

• For intermediate dimensions (between 5 and 10), choosing an appropriate method should depend
on the experimental requirements. Spherical harmonics are an excellent option if computational
resources are limited and if the number of SW distances to be computed is low. However, it is worth
noting that some Q.M.C. strategies, being independent of the input measures, have the advantage
of allowing the generated points to be reused and of allowing an independent computation in M
(except the Riesz points). This should be particularly beneficial when a high number of projections
is required and a large number of SW distances must be computed. In such cases, we suggest to
store the samples to factorize the computing time across experiments.
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