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ABSTRACT

The transferability of adversarial examples (AE); known as adversarial transferabil-
ity, has attracted significant attention because it can be exploited for Transferable
Black-box Attacks (TBA). Most lines of works attribute the existence of the non-
robust features improves the adversarial transferability. As a motivating example,
we test the adversarial transferability on the early stopped surrogate models, which
are known to be concentrated on robust features than non-robust features from prior
works. We find that the early stopped models yield better adversarial transferability
than the models at the final epoch, which leaves non-intuitive interpretation from
the perspective of the robust and non-robust features (NRFs). In this work, we
articulate a novel Very Non-Robust Feature(VNRF) hypothesis that the VNRFs
learned can harm the adversarial transferability to explain this phenomenon. This
hypothesis is partly verified through zero-outing some filters with high l1 norm
values. This insight further motivates us to adopt light adversarial training that
mainly removes the VNRFs for significantly improving the transferability.

1 INTRODUCTION

Deep neural networks (DNNs) are widely known to be vulnerable to adversarial examples
(AE) (Szegedy et al., 2013; Goodfellow et al., 2015), i.e. images perturbed by imperceptible noise
fooling the network. Specifically, the transferability of AE has drawn significant attention because
such property can be used for achieving a Transferable Black-box Attack (TBA). Given full access
to the architecture and parameters of the target model, simple I-FGSM (Kurakin et al., 2017) or
PGD (Madry et al., 2018) has been proven to achieve sufficiently high attack success even for
adversarially trained models. However, TBA does not require access to the target model, thus it
constitutes a more practical threat in security-sensitive applications. Arguably, TBA is also more
practical than another variant of black-box attack that allows numerous forward query accesses to the
target model. A TBA pipeline typically involves two stages: (i) training a surrogate model the same
or similar training dataset; (ii) generating transferable AE on the surrogate model.

In the TBA community, the research on the second stage is like a hot-spot, while the first stage
remains like a blind spot that attracts very limited attention so far. Though the exact underpinnings of
adversarial transferability are not fully understood, numerous works have investigated transferability
from various perspectives, but mainly or exclusively focus on the second stage. For example,
increasing input diversity(DI2-FGSM) (Xie et al., 2019) and post-processing the input gradient with
momentum (MI-FGSM) (Dong et al., 2018) or smoothing kernel (TI-FGSM) (Dong et al., 2019)
improve the transferability. On the contrary, the influence of the first stage in TBA is limited to
comparing the different architectures. For example, models with similar architectures are often found
to transfer better between each other.

With surrogate models of different architectures, Wu et al. claim that high-accuracy models tend to ex-
hibit stronger adversarial transferability since the decision boundaries of high-accuracy models should
be similar. Our work revisits the relationship between surrogate model accuracy and transferability.
In contrast to Wu et al. (2018), we fix the same architecture but evaluate the adversarial transferability
of the surrogate model saved at different checkpoints. Counter-intuitively, we find that early stop
leads to lower model accuracy but it improves the transferability by a non-trivial margin. More
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interestingly, we note that this phenomenon also, at first sight, seems to contradict existing claims that
explain from the non-robust feature(NRF) perspective. Specifically, It is found in (Ilyas et al., 2019;
Nitin, 2021) that adversarial transferability can be attributed to mainly or exclusively non-robust
features. Longer training is expected to be beneficial for transferability given that the model learns
more NRFs in the latter stage of training (Benz et al., 2020; Nitin, 2021). However, our results show
a misaligned phenomenon that after certain epochs, longer training decreases the transferability. This
confusion motivates us to revisit the feature perspective on adversarial transferability. Actually, the
above confusion can be cleared if the following bold hypothesis statement is true.

VNRF Hypothesis on Transferability. Even though Non-Robust Features (NRFs) are the main, or
exclusive, cause of adversarial transferability, the very non-robust features (VNRFs) are actually
harmful to the transferability.

If true, the above VNRF hypothesis makes the existing feature perspective on transferability more
well-rounded. We verify the above hypothesis by identifying those VNRFs in the model by checking
the L1 norm of the convolution filter weights and demonstrate that zeroing out those VNRFs increases
the transferability.

Since NRFs are the cause of transferability while VNRFs are harmful to the transferability, it is
naturally conjectured that light adversarial training with a very small perturbation budget allows
the model to still learn NRFs while excluding VNRFs might be more beneficial for improving the
transferability. Note that heavy adversarial training further excludes the general NRFs from the
surrogate model, which is expected to reduce the performance. We empirically verify the above
conjecture and expectation throuth extensive experiments.

To this end, our work provides both new conceptual insight and strong empirical results for under-
standing and improving adversarial transferability. Our contributions are summarized as follows.

• Complementary to the existing NRF perspective on transferability, our work provides new
conceptual insight that VNRFs are harmful to the transferability. This verified new insight
well explains the phenomenon that is not readily explainable by the NRF perspective.

• In contrast to numerous works that exclusively study the second stage of TBA, our work
fills the gap to investigate its first stage that attracts little attention so far. Our work provides
strong empirical results for improving the transferability. For example, on ImageNet,
switching the surrogate model training procedure from standard training to adversarial
training improves transfer rate from 19.8% to higher than 91.8% (from ResNet50 to ViT-
B/16. In the more challenging targeted setting, the average transfer rate is increased from
0.4% to 38.4% (from ResNet18 to a wide range of CNN target models).

2 BACKGROUND & SETUP

2.1 PRELIMINARY KNOWLEDGE

Adversarial Examples. Adversarial examples x̃ = x+ δ consist of a (clean) sample and a specially
crafted small adversarial perturbation δ, and has the objective to fool a classifier, i.e. f(x̃) 6= y. To
ensure visual imperceptibility, adversarial perturbations are commonly constrained to be smaller than
a certain magnitude ε, i.e. ||δ||p ≤ ε, where the lp-norm is a common choice, here indicated as || · ||p.
A common choice for the objective function for (non-targeted) adversarial examples is to adopt the
loss function used for model training, but with an opposite sign. Targeted adversarial perturbations
have the objective to fool a model towards a specific target class yt. Targeted adversarial examples are
only considered successful, if a misclassification toward the target class is achieved, i.e. f(x̃) = yt.

Adversarial Training. Incorporating adversarial examples into the training process is an effective
method to defend against adversarial examples and is known under adversarial training (Goodfellow
et al., 2015; Madry et al., 2018). The FGSM attack(Goodfellow et al., 2015) was suggested on the fly
during the training process to robustify a model. (Madry et al., 2018) posed adversarial training as a
min-max optimization problem arg minθ E(x,y)∼D[maxδ∼∆ L(θ, x+ δ, y)], where ∆ indicates the
set of possible adversarial perturbations. In the above formula, the inner optimization maximizes the
loss to find an adversarial perturbation, and the outer part optimizes the model weights to minimize
the loss. For the inner optimization, any adversarial attack technique can be chosen, however, the
multi-step projected gradient descent (PGD) is one of the most common choices.
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Adversarial Transferability. Despite the capability of adversarial examples to fool a network,
adversarial examples do further exhibit a transferability property. (Szegedy et al., 2013) first demon-
strated such cross model generalization, where a large fraction of adversarial example generated on
one (surrogate) model, here indicated as fs, will be misclassified by other (target) networks, here
indicated as ft. Possible differences between the target and surrogate models include a different
model architecture, training paradigm, initialization, etc. Initially the transferability was investigated
in the untargeted setting, i.e. ft(x+ δs) 6= y, where the adversarial perturbation δs was generated
for surrogate network s. Later, also the relatively more difficult targeted transferability has been
investigated, i.e. ft(x+ δs) = yt.

2.2 EXPERIMENTAL SETUP

TBA First Stage. Our work mainly investigates two training factors: early stop and adversarial
training. For investigating early stops, we need to train a model from scratch and save the model
parameters at each epoch. We perform experiments on both ImageNet and CIFAR10. On ImageNet,
we train the model for 100 epochs with the initial learning rate of 0.1 which is decreased by 10 at
the epoch of 30, 60, and 90. Since it is resource-intensive to perform experiments on ImageNet, we
choose to adopt a relatively light ResNet18 as the surrogate model architecture. On CIFAR-10, we
train the model for 150 epochs with the initial learning rate of 0.1 which is decreases at the epoch
of 50 and 100. For investigating the effect of adversarial training, we mainly borrow the models
pretrained on ImageNet in (Salman et al., 2020), where they provide robust models adversarially
trained with l2-norm or l∞-norm bounded perturbations. Additionally, we also use the models
pretrained in (Wong et al., 2020) for investigating the effect of FGSM adversarial training.

TBA Second Stage. Following (Dong et al., 2018; 2019; Li et al., 2020a), we use the dataset
introduced in the NeurIPS 2017 adversarial challenge1 for evaluating the transferability performance
on ImageNet. This dataset is ImageNet-compatible and composed of 1000 images from each class.
For CIFAR10, we use its validation dataset. If not otherwise indicated, for the generating adversarial
examples, we set the number of iterations (T ) to 20 with a step size of 2/255. Following previous
conventions, the maximum allowed perturbation magnitude L∞ is set to ε=16/255. We follow the
hyper-parameter settings of previous works and set the momentum to µ = 1 for MI-FGSM as
in (Dong et al., 2018). For DI-FGSM (Xie et al., 2019) we set the probability of the stochastic input
diversity to p = 0.7. For attacks using TI-FGSM (Dong et al., 2019) we adopt a kernel length of 5 as
suggested by (Li et al., 2019). We further deploy a strong baseline attack, for which we combine the
previously proposed attack MI, DI, and TI-FGSM, which we indicate as MI+DI+TI.

3 MOTIVATION

3.1 DO ACCURATE MODELS TRANSFER BETTER?

An early work (Wu et al., 2018) has concluded that models with higher accuracy are better surrogate
models via comparing surrogate models with different architectures. Excluding the influence of
architecture, we intend to compare the same surrogate model trained with different epochs. Modern
DNNs are typically trained with stage-wise decreasing learning rates, where the accuracy increases
in the whole training process, especially with an immediate jump after the learning rate decreases.
By default, we adopt other well-trained models as the target model. With their conjecture (Wu et al.,
2018) that high-accuracy models learn similar decision boundaries and transfer better to each other,
it might be expected that the surrogate trained with higher accuracy achieves better transferability
performance. Evaluating with a wide range of model architectures on both CIFAR10 (Krizhevsky
et al., 2010) and ImageNet (Russakovsky et al., 2015), we find that the transferability performance
indeed increases in the early stage. However, after the learning decrease at first time, there is an
overall trend that the transferability decreases when the surrogate model is trained with more epochs,
suggesting that higher accuracy does not necessarily indicate higher transferability. The results are
detailed in the following.

Early Stop Improves Adversarial Transferability. Here, we investigate the transferability capa-
bilities of a surrogate model saved at intermediate epochs on CIFAR10. We adopt ResNet18 as the
surrogate model and evaluate the transferability on multiple well-trained models, including ResNet50,
VGG16, DenseNet121. We refer to a well-trained model as a model with a sufficient number of
training epochs to guarantee high performance on the validation dataset. The results are presented in

1https://github.com/rwightman/pytorch-nips2017-adversarial
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Figure 1: Transferability evaluation of adversarial examples generated with ResNet18 as the surrogate
saved at different epochs in untargeted (left) and targeted(right) settings on CIFAR10 dataset.

Figure 1 for both non-targeted and targeted settings. We observe that the transferability performance
increases significantly in the first few epochs and then saturates at a high plateau. After the first
learning rate decrease at epoch 50, there is an overall trend that the attack success rate on multiple
target models decreases. In the targeted setting, a similar trend can be observed. This observation
might appear counter-intuitive since models trained with fewer epochs exhibit a lower test accuracy,
and it might be tempting to jump to the conclusion that fully-trained models will also exhibit superior
transferability capabilities, which might be the reason why existing works mainly adopt a fully-trained
model as the surrogate.

Misalignment between existing NRF perspective and observed phenomenon. Ilyas et al. (Ilyas
et al., 2019) have found that adversarial transferability arises when models learn similar brittle NRFs
of the underlying dataset. One recent work (Nitin, 2021) claims that “adversarial examples transfer
if and only if they exploit predictive NRFs.”. Clearly, adversarial transferability can be attributed to
mainly or exclusively NRFs. On the other hand, two works (Benz et al., 2020; Nitin, 2021) have
independently shown that the DNNs first learn RFs before NRFs. The reason has been attributed to
that the RFs are easier to learn and are important for the network stability in the early stage (Benz
et al., 2020). Their finding echos well with the previous finding that DNN learns high-frequency
components in the later stage because high-frequency functions converge much slower (Xu et al.,
2019; Basri et al., 2019). As training goes on, the feature robustness is expected to decrease, i.e. the
model depends more and more on the NRFs. Overall, longer training, which is expected to decrease
the model robustness with more NRFs (Benz et al., 2020), is supposed to yield a more transferable
surrogate model since NRFs account for transferability (Ilyas et al., 2019; Nitin, 2021). However,
our results show a misaligned phenomenon that after a certain number of epochs, longer training
actually decreases the transferability. Towards explaining the observed phenomenon, we propose
VNRF hypothesis that VNRFs can be harmful to adversarial transferability.

3.2 ON THE INFLUENCE OF VNRFS ON ADVERSARIAL TRANSFERABILITY

Ilyas et al. introduce robust features (RFs) and non-robust features (NRFs) which are widely used
for understanding adversarial examples and their transferability. In the following, we summarize the
definitions of RFs/NRFs and define very non-robust features (VNRFs):

• RFs vsNRFs: a feature f is robust if a γ > 0 exists for it to be γ-robustly useful given a
certain perturbation budget δ, i.e. IE(x,y)∼D[ inf

||δ||≤ε
y · f(x + δ)] ≥ γ. A feature is NRF

when such γ > 0 does not exist.
• VNRFs: Assuming the perturbation budget adopted above is δa, a feature is very non-robust

if γ > 0 does not exist even if the perturbation is set to a sufficiently small δb, i.e εb << εa.

Straightforwardly, VNRF can be referred to the features that are non-robust even under only a
small amount of perturbations. The aforementioned VNRF hypothesis naturally explains the above
misalignment. Specifically, in the later stage of training, the model is increasingly dependent on the
VNRFs, resulting in a lower transferability. In the following, we will discuss the intuition behind this
hypothesis and design a toy example to verify this hypothesis.

4



Under review as a conference paper at ICLR 2022

Intuition behind VNRF hypothesis. We believe there is an opposite correlation between the feature
transferability and readiness to be exploited for the attack. Given a dataset that has a set of features
with a wide range of robustness, two models are independently trained on the model. We interpret
that those features with high robustness tend to be learned by both of the two models, i.e they share
high overlap between two independent models because RFs are stable and easier to be learned.
This interpretation aligns with the finding that the model learns RFs first (Benz et al., 2020; Nitin,
2021). However, those RFs can not be readily exploited for the attack because NRFs are the cause
of vulnerability (Ilyas et al., 2019). On the other hand, those VNRFs can be easily exploited for
a successful attack on the white-box surrogate model. However, those VNRFs tend to have low
overlap between different models. From the optimization point of view, the adversarial examples
mainly exploiting the VNRFs are likely to over-fit to the surrogate model and have a low transfer
rate. Thus, RFs nor VNRFs are both not beneficial for achieving transferable attacks, and only those
NRFs that are not very non-robust exploit are located at a sweet spot. We highlight that RFs do not
harm transferability, while VNRFs tend to harm transferability. The reason lies in that RFs are less
exploited in the generation of adversarial examples, while VNRFs are readily exploited. Given a fixed
perturbation budget, if the adversarial examples are overly dependent on the VNRFs, the exploited
transferable NRFs decrease.

Figure 2: Transferability evaluation of adversarial examples generated with ResNet18 as the surrogate
model deleted at every convolution layer(left) and last layer(right), on CIFAR10 dataset with targeted
I-FGSM attack.

Verifying the VNRF hypothesis via weight filtering. Our hypothesis-verifying experiment is
mainly inspired by (Borkar et al., 2020). Formally, let φm(u) be the output of the mth convolutional
filter with weight Wm. The additive perturbation on the activation map φ(x), denoted as em =
φ(x+ r)− φ(x), is caused by applying an additive perturbation r to the input x. The em is derived
to be bounded as ||em||∞ ≤ ||Wm||1||r||p (Equation 2 of (Borkar et al., 2020), applying lp-norm).
In other words, the ||Wm||1 can then be the hint for the upper bound of ||em||. The l1−norm
of the convolutional filters can then be used to identify and rank the filter activations regarding
their sensitivity to the perturbation on the input. As a consequence, (Borkar et al., 2020) identifies
that those filter weights with a small l1-norm are not sensitive to the additive input perturbation.
Empirically, (Borkar et al., 2020) has shown that only retraining those filter weights with a large
l1-norm is sufficient for increasing the model robustness. From the feature robustness perspective,
straightforwardly, we can perceive those filter weights with a small (large) l1-norm as weights
representing RFs (NRFs). It is reasonable to conjecture that VNRFs can arise from the convolution
filters with very high ||Wm||1, for which a very small input perturbation can lead to a large output
change on the intermediate activation maps, and thus cause a substantial change in the final logits.
To empirically verify the VNRF hypothesis, for each convolutional layer we rank the filters through
their l1-norm and zero out the filters with a large l1-norm, and the results are shown in Figure 2. We
apply the strategy in two ways, for all convolution layers in the whole network (left) and only at
the final residual block (right) based on the surrogate model ResNet18. We conduct experiments on
CIFAR-10 dataset with I-FGSM for 3 different target models(ResNet50, VGG16, ResNeXt-8x64d).
We find that in both setups, zero-outing a certain percentage of filters improves the transferability by a
visible margin. By perceiving those filters with very large l1-norm, the results empirically verify that
directly removing the VNRFs via filter removing increases boost the transferability. Note that when
the percentage zero-out gets sufficiently large, the transferability is expected to decrease because it
starts to remove the transferable NRFs.
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4 SIMPLE YET EFFECTIVE TECHNIQUES IN THE FIRST STAGE OF TBA

Our above analysis suggests that only NRFs that are not very non-robust are beneficial for the TBA
task, while VNRFs need to be removed due to its readiness to be exploited by the attack yet having
low transferability (overlap) between models. To this end, we propose two simple techniques in the
first stage of TBA: early stop and light adversarial training.

4.1 EARLY STOP FOR IMPROVING TRANSFERABILITY

Early stop can be a simple technique for improving transferability. The results on CIFAR10 is shown
in Table 1, where we observe that early stop with vanilla I-FGSM is sufficient to achieve an average
attack success rate of more than 98% for the surrogate model VGG16 and up to 99.9% for the
surrogate model ResNet18. The results in ImageNet are also shown in Table 1, where early stop also
non-trivially improves the transferability on both ResNet and VGG16.

Table 1: Early stop for improving the transferability on CIFAR-10 and ImageNet. Each entry indicates
the transfer rate without / with early stop.

Dataset Surrogate Attack ResNet50 DenseNet121 VGG19 WideResNet28-10 Average

CIFAR-10

ResNet18

I 90.8 / 100 89.9 / 99.7 80.9 / 99.9 93.8 / 100.0 88.8 / 99.9
MI 96.1 / 100.0 93.9 / 99.7 90.9 / 100.0 98.2 / 100.0 94.8 / 99.9
DI 98.2 / 100.0 96.3 / 99.7 97.3 / 100.0 97.1 / 100.0 97.2 / 99.9
TI 97.1 / 99.9 92.9 / 99.4 94.1 / 100.0 94.5 / 99.7 94.7 / 99.8
MI+DI+TI 97.9 / 100.0 95.5 / 99.5 93.6 / 99.8 98.4 / 100.0 96.35 / 99.8

VGG16

I 89.0 / 99.1 86.0 / 95.9 89.5 / 99.3 88.9 / 98.1 88.3 / 98.1
MI 93.5 / 98.0 92.3 / 94.9 94.1 / 99.0 93.2 / 96.7 93.3 / 97.1
DI 92.9 / 99.5 92.4 / 98.1 94.5 / 99.5 93.7 / 99.2 93.4 / 99.1
TI 86.5 / 99.0 83.7 / 96.6 86.6 / 98.9 86.1 / 97.9 85.7 / 98.1
MI+DI+TI 96.5 / 98.9 94.1 / 96.0 97.6 / 98.5 96.8 / 97.0 96.3 / 97.6

ImageNet

ResNet18

I 79.2 / 84.0 71.9 / 80.8 75.9 / 78.0 78.6 / 84.5 76.4 / 81.8
MI 86.1 / 93.2 82.5 / 90.6 83.0 / 88.8 85.6 / 91.4 84.3 / 91.0
DI 96.4 / 97.5 94.5 / 96.6 95.8 / 96.4 95.2 / 97.1 95.5 / 96.9
TI 83.7 / 85.3 77.0 / 83.2 78.4 / 81.0 82.3 / 86.3 80.3 / 84.0
MI+DI+TI 98.1 / 98.5 98.1 / 98.7 98.1 / 98.3 97.8 / 98.8 98.0 / 98.5

VGG16

I 56.7/65.9 43.3/ 53.2 97.8 / 98.9 57.2 / 65.5 63.8 / 70.9
MI 71.7/ 81.0 61.7 / 68.9 97.9 / 99.3 69.8 / 76.2 75.3 / 81.3
DI 68.7 / 80.5 63.8 / 71.5 99.5 / 99.8 70.9 / 79.9 75.7 / 82.9
TI 61.7 / 74.2 55.5 / 64.4 97.8 / 99.0 67.1 / 75.3 70.5 / 78.2
MI+DI+TI 86.4 / 91.8 82.2 / 87.1 99.6 / 99.8 88.1 / 91.1 89.1 / 92.5

4.2 LIGHT ADVERSARIAL TRAINING FOR IMPROVING TRANSFERABILITY

Our above results show that early stop can significantly increase the transferability, while the
performance boost on ImageNet is relatively less satisfactory. The reason can be attributed to that
early stop forcing the model to be less dependent on VNRFs also inevitably prevent the model from
learning more transferable NRFs. Motivated by this, we further investigate light adversarial training as
an advanced alternative since adversarial training explicitly guides the model to not learn VNRFs. We
select a standard (εs = 0) trained and 9 `2 adversarially trained variants of ResNet18 and ResNet50
with different εs as the surrogate model and perform 5 FGSM-based attacks on them. We evaluate
the transferability on 4 naturally trained target models (εt = 0) (ResNet, DenseNet121, VGG16,
MobileNetV2). For the ResNet, it is set to ResNet18 when ResNet50 is the surrogate model and set
to Resnet50 when the surrogate model is ResNet18. We also test the adversarial transferability on two
non-CNNs, ViTs with the untargeted attack. For the ViTs, we choose ViT-B/16 and ViT-L/16 where
B and L stand for ”Base” and ”Large”, along with the patch size 16. The considered ViT models
were pre-trained on ImageNet-21K and fine-tuned on ImageNet-1K. Similar to the ViT models, we
also investigated Mixer-B/16 and Mixer-L/16, except that these models were directly trained on the
ImageNet-1K without additional pre-training.
Untargeted Attack. The results in untargeted setting are shown in Table 2, from which several
observations can be made. First, overall it can be observed that adversarially trained models transfer
better than standard models. For I-FGSM, a standard ResNet18 and ResNet50 have a transfer rate of
76.4% and 79.2%, respectively, while their adversarially trained variants with εs set to 0.5 have a
significantly higher transfer-rate of 98.8% and 99.3%, respectively. MI, DI, and TI can non-trivially
improve the transferability; however, the transferability improvement through adversarial training is
more effective. For example, when the εs is set to be as small as 0.05, the model accuracy is only
slightly lower than its counterparts without adversarial training, i.e. 69.15% vs. 69.79% for ResNet18
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Table 2: Attack success rate (%) with a single surrogate model on ImageNet for untargeted attack.
The standard (ε = 0) and various robust variants of two surrogate models (ResNet18, ResNet50)
are evaluated. The presented ASRs are the average over four standard target models: (ResNet50 for
ResNet18, ResNet18 for ResNet50), DenseNet121, VGG16 and MobileNetV2. All experiments are
performed for 5 different FGSM-based attacks with the negative CE-loss as the objective function.
Bold numbers indicate the best ASR for a specific attack. The best result for a surrogate model are
indicated by an asterisk (∗). More detailed results are shown in the appendix.

Surrogate Attack εs=0 εs=0.01 εs=0.03 εs=0.05 εs=0.1 εs=0.25 εs=0.5 εs=1 εs=3 εs=5

ResNet18

Accuracy 69.79 69.90 69.24 69.15 68.77 67.43 65.49 62.32 53.12 45.59
I 76.4 89.1 94.5 96.7 97.9 98.7 98.8 98.2 94.3 88.8
MI 84.3 93.0 96.6 97.3 98.5 98.8 98.4 97.5 92.1 84.7
DI 95.5 98.6 98.9 99.2 99.3 99.4 99.5∗ 98.7 94.0 87.7
TI 80.3 88.9 93.8 95.5 97.1 98.3 98.2 97.0 91.3 83.5
MI+DI+TI 98.0 98.9 98.8 99.4 99.2 99.3 98.6 97.2 89.0 78.5

ResNet50

Accuracy 75.80 75.68 75.76 75.59 74.78 74.14 73.16 70.43 62.83 56.13
I 79.2 89.7 93.6 96.4 97.9 99.0 99.3 98.9 97.5 94.8
MI 87.7 93.7 96.1 97.8 98.2 99.0 99.1 98.3 95.9 92.0
DI 97.4 99.0 99.3 99.7 99.7 99.7 99.8∗ 99.1 97.4 94.6
TI 82.6 90.0 93.0 95.7 97.2 98.5 98.7 98.1 95.4 91.6
MI+DI+TI 98.6 99.3 99.2 99.5 99.5 99.3 99.4 97.9 93.6 88.1

Table 3: Untargeted transfer-based black-box attack with a single surrogate model on ImageNet. Each
cell presents the untargeted ASR. The standard (ε = 0) and 9 robust variants of two surrogate models
(ResNet18, ResNet50) are evaluated. All experiments are performed I-FGSM with the CE-loss. Bold
numbers indicate the best ASR.

Surrogate Attack εs=0 εs=0.01 εs=0.03 εs=0.05 εs=0.1 εs=0.25 εs=0.5 εs=1 εs=3 εs=5

ResNet18

ViT-B/16 19.4 28.2 41.7 51.7 63.6 80.5 87.4 86.6 79.2 67.7
ViT-L/16 14.9 23.3 34.4 41.3 55.2 73.5 81.9 84.0 74.9 64.6
Mixer-B16 27.8 38.9 47.6 54.6 65.9 78.4 83.3 82.5 74.4 63.2
Mixer-L/16 34.1 40.7 48.8 54.6 63.8 74.6 80.4 82.4 75.1 66.7

ResNet50

ViT-B/16 19.8 29.4 41.2 50.1 65.6 82.4 90.1 91.8 87.3 80.0
ViT-L/16 16.2 23.0 32.1 42.2 59.5 75.3 84.7 88.2 85.8 75.8
Mixer-B/16 30.3 40.9 49.3 58.5 69.4 82.1 87.3 89.7 84.8 77.8
Mixer-L/16 36.1 42.1 50.4 58.1 67.9 78.5 85.8 87.0 83.3 78.3

and 75.59% vs. 75.80% for ResNet50, respectively, indicating only a small adversarial strength.
While DI-FGSM can improve a standard ResNet18 to 95.5%, an adversarially trained model with
εs = 0.05 can achieve a higher transferability of 96.7% with only I-FGSM. Further, the effectiveness
of MI, DI, and TI for improving the transferability are only significant on the standard model. When
an appropriate εs is chosen, e.g. 0.25 or 0.3, they only marginally improve the transferability or
even decrease the transferability. Overall, our results suggest that the vanilla I-FGSM is sufficient to
achieve close to 100% attack success rate if the surrogate model is adversarially trained with an εs set
to a range from 0.05 to 1. Such a wide range of εs, indicates the transferability performance is not
very sensitive to the chosen εs. We further set the target models to beyond the CNN architectures,
such as ViTs (Dosovitskiy et al., 2021) and Mixers (Tolstikhin et al., 2021) (Table 3). We find that
when εs to 0.5 or 1, we observe a very high transfer rate, higher than 80% for all target models.
Compared with the standard surrogate model (εs = 0) the performance has been improved from a
significant margin. For instance, from ResNet50 to ViT-B/16, the performance is increased from
19.8% to higher than 90%.

Targeted Attack. The results in the targeted setting are shown in Table 4. Similar to the trend in the
untargeted setting, in all attack scenarios (I, MI, DI, TI, MI+DI+TI), adversarially trained surrogate
models overall yield more transferable adversarial examples. For I-FGSM, the targeted attack success
rate of the surrogate model ResNet18 and ResNet50 is as low as only 0.4% and 0.7%, respectively,
while their adversarially trained counterparts with the εs set to 0.5, achieve a significantly higher
transfer rate of 38.4% and 44.4% respectively. DI, among MI, DI, TI, is the most effective technique
for boosting targeted transferability. With the assistance of DI, the targeted transfer rate on the
adversarially trained model (with εs = 0.5) is further boosted to 55.8% and 62.8%, for surrogate
models ResNet18 and ResNet50, respectively. It is interesting to note that combing MI, DI, and TI
achieves a non-trivial transferability boost for a standard surrogate model, however, such a surrogate
model still under-performs an adversarially trained surrogate model with the vanilla I-FGSM attack,
i.e. 12.4% vs. 38.4% for ResNet18 and 18.6% vs. 44.4% for ResNet50. Similar to the untargeted
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setting, we find that MI and TI decrease the transferability performance for an adversarially trained
model with εs set to an appropriate value, like 0.5.

Table 4: Targeted transfer-based black-box attack with a single surrogate model on ImageNet. Each
cell presents the targeted ASR. The standard (ε = 0) and 9 robust variants of three surrogate models
(ResNet18, ResNet50, WRN50-2) are evaluated. The presented ASRs are the average over four
standard target models. All experiments are performed for 5 different targeted FGSM variants with
the CE-loss. Bold numbers indicate the best ASR for a specific attack. The best result for a surrogate
model are indicated by an asterisk (∗). Detailed results are available in the appendix.

Surrogate Attack εs=0 εs=0.01 εs=0.03 εs=0.05 εs=0.1 εs=0.25 εs=0.5 εs=1 εs=3 εs=5

ResNet18

I 0.4 1.5 3.6 6.3 13.1 27.0 38.4 34.8 16.1 7.2
MI 1.1 3.1 4.9 8.5 13.3 25.3 34.6 32.6 16.5 7.8
DI 7.9 19.7 31.1 38.9 51.0 56.4∗ 55.8 42.6 16.8 5.9
TI 0.5 1.6 3.4 5.7 11.2 23.5 32.3 28.2 10.6 4.2
MI+DI+TI 12.4 20.2 26.3 30.2 36.3 37.6 32.2 21.3 5.2 1.4

ResNet50

I 0.7 2.5 4.5 7.9 14.5 29.4 44.4 47.2 31.4 17.9
MI 2.4 6.1 8.9 13.4 18.7 30.7 37.3 33.7 16.0 7.4
DI 13.3 23.5 30.9 42.1 55.1 61.2 62.8 56.5 30.5 16.4
TI 0.9 2.5 3.9 7.2 14.1 26.6 38.2 39.0 22.4 1.5
MI+DI+TI 18.6 24.9 26.4 33.6 40.0 41.1 38.9 30.1 11.4 4.4

WRN50-2 DI 68.1/14.1 76.0/21.7 83.4/34.1 86.3/36.8 90.9/46.1 93.1/54.7 92.2/50.8 90.6/46.5 83.0/28.3 76.5/17.2

Table 5: Average ASR (%) with standard
and robust surrogate models for I-FGSM
on ImageNet. See appendix for detailed
results.

Surrogate εs=0 εs=3

DenseNet160 49.2/0.6 65.9/5.4
MNASNet 26.4/0.0 47.7/0.5
MobileNet 36.2/0.3 62.2/4.3
ResNeXt 41.9/0.3 67.5/7.8
ShuffleNet 23.7/0.0 45.6/0.5

Other Surrogate Models and Adversarial Training
Techniques. We further provide evidence that the above
transferability performance improvement is not limited to
ResNet-architectures as surrogate models. We evaluate
other model architectures for the I-FGSM attack in Table 5.
The results further confirm that adversarial examples gen-
erated on robust models transfer better in terms of their
non-targeted ASR and targeted ASR than those extracted
from naturally trained models. Additionally, while the
previous robust models were trained with `2 adversarial
training, we test robust models that are trained with `∞
PGD adversarial training (Madry et al., 2018) as well as
fast adversarial training (FAT) (Wong et al., 2020).

The results are presented in Table 6. As in our previous observations, robust models for both
adversarial training techniques result in significantly higher transferability compared to standard
training. The adversarial examples generated from the robust model trained with PGD adversarial
training transfer overall better than those for FAT for the same εs. The adversarial examples from
robust models with εs=0.5 lead to the highest ASR; moreover, we can find that the DI attack method
yields the largest ASR under the same epsilon value for both PGD and FAT adversarial training.
Overall, the results suggest that the adversarial training type (PGD or FGSM) and perturbation norm
type (`2 or `∞) are not essential. As long as they can facilitate the model to learn RFs, they all
consistently yield more transferable surrogate models.

Transfer to very robust models. We further evaluate the transfer capability of standard and robust
models to 4 very robust models, ResNet18/50, DenseNet161, VGG16), MobileNet-V2. Note that
they are adversarially trained with PGD adversarial perturbation of `2-norm εt=3. The results are
shown in Table 7. Here, we perform a targeted attack but report both non-targeted attack success
rate and targeted attack success rate. Since the target models are very robust, when εs=0 or a very
small value (lower than 0.1), the targeted attack success rate is always zero even under the strong
transferable setup of MI+DI+TI. However, when the εs is set to 3 or 5, the vanilla I-FGSM already
achieves a targeted attack success rate of higher than 10%. The untargeted attack success rate results
further demonstrate that there is a clear trend of higher εs to induce higher transfer rate in this setup
of adopting very robust models.
Adversarial Training with Early Stop. We refer the reader to the appendix (Fig. 4) for the transfer-
ability performance during adversarial training. Here, we do not intend to boost the performance with
an early stop because choosing an appropriate εs might be more beneficial for the performance boost.
Instead, we are mainly interested in whether the phenomenon that early stop improves transferability
also applies to adversarial training. The results show that it does not apply to adversarial training.
Admittedly, here, it depends on the choice of εs. Overall, for a sufficiently large εs, the technique
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Table 6: Untargeted success rate (%) with a single surrogate model on ImageNet. We evaluate the
surrogate model adversarially trained with PGD adversarial training and FAT with different εs. All
Experiments are performed for I-FGSM, MI, DI, TI, MI-DI-TI untargeted attack with cross entropy
loss. It should be noted that ASR values presented here are the average values of 4 target models:
ResNet18, DenseNet121, VGG16, MobileNetV2. Detailed results are available in the appendix.

Surrogate Attack εs=0 εs=0.5 (PGD) εs=1 (PGD) εs=2 (PGD) εs=4 (PGD) εs=2 (FAT) εs=4 (FAT)

ResNet50

I 79.2 99.3 98.7 97.1 91.8 96.9 90.3
MI 87.7 98.9 98.1 95.5 89.5 95.8 87.8
DI 97.4 99.8 99.1 97.4 92.4 97.3 90.1
TI 82.6 98.8 97.7 95.1 87.4 94.8 85.0
MI+DI+TI 98.6 99.2 97.7 94.8 87.3 94.2 83.9

Table 7: Transferability evaluation on the robust models including ResNet50 (εt = 3), DenseNet161
(εt = 3), VGG16 (εt = 3), MobileNetV2 (εt = 3). The surrogate model is adversarially trained
ResNet18 or ResNet50 with εs ranging from 0 to 5 (l2-norm). Each entry indicates non-targeted
attack success / targeted attack success rate. It should be noted that ASR values presented here are
the average values of 4 target models. More detailed results are shown in the appendix.

Surrogate Attack εs=0 εs=0.01 εs=0.03 εs=0.05 εs=0.1 εs=0.25 εs=0.5 εs=1 εs=3 εs=5

ResNet18

I 37.4/0.0 37.4/0.0 37.7/0.0 37.8/0.0 38.9/0.0 41.1/0.0 45.1/0.2 51.5/2.6 63.7/12.0 65.3/11.7
MI 41.4/0.0 41.8/0.0 42.0/0.0 42.3/0.0 42.7/0.0 44.4/0.1 47.9/0.7 52.5/2.8 62.8/8.4 63.6/7.8
DI 37.6/0.0 37.9/0.0 38.6/0.0 38.8/0.0 40.2/0.0 42.2/0.0 45.9/0.5 51.5/2.5 61.2/8.5 62.5/8.1
TI 37.3/0.0 37.5/0.0 37.8/0.0 38.1/0.0 39.3/0.0 41.8/0.1 45.7/0.3 52.6/2.8 63.9/12.5 65.3/11.6
MI+DI+TI 42.0/0.0 42.6/0.0 43.0/0.0 43.1/0.0 43.9/0.0 46.5/0.2 49.6/1.1 54.7/3.2 63.0/7.2 62.4/6.1

ResNet50

I 40.5/0.0 40.7/0.0 40.5/0.0 41.0/0.0 41.8/0.0 43.9/0.0 48.1/0.1 54.2/1.6 67.9/11.0 72.2/13.9
MI 44.4/0.0 44.7/0.0 44.9/0.0 45.4/0.0 45.4/0.0 46.9/0.1 51.3/0.3 55.7/1.9 67.5/7.2 70.7/8.9
DI 41.1/0.0 41.4/0.0 41.7/0.0 42.0/0.0 43.0/0.0 44.9/0.0 49.8/0.2 55.1/1.8 67.0/8.0 69.1/9.1
TI 40.6/0.0 41.0/0.0 40.9/0.0 41.3/0.0 42.1/0.0 43.9/0.0 49.9/0.1 55.2/1.6 68.5/11.2 72.5/13.9
MI+DI+TI 45.5/0.0 45.7/0.0 45.7/0.0 47.4/0.0 46.8/0.0 49.7/0.1 53.5/0.7 58.5/2.3 68.4/6.5 69.6/6.9

becomes ineffective, which is somewhat expected because early stop improves transferability in
standard training because the model mainly learns NRFs/VNRFs in the later stage and adversarial
training explicitly discourages learning NRFs/VNRFs.

5 RELATED WORKS AND DISCUSSION

Techniques for Improving Transferability. Early investigations have evaluated the transferability
of the white-box attack methods, such as I-FGSM (Kurakin et al., 2017) and PGD (Madry et al., 2018),
but with limited success. Generating adversarial examples on an ensemble of models is found to
improve transferability (Liu et al., 2017; Tramèr et al., 2018). One line of works extends the I-FGSM
with momentum (MI-FGSM) (Dong et al., 2018), input diversity (DI2-FGSM) (Xie et al., 2019), and
translation-invariant property(TI-FGSM) (Dong et al., 2019), to improve adversarial transferability.
Fine-tuning adversarial examples with intermediate-level attacks (Huang et al., 2019; Li et al., 2020b)
also boosts transferability. Towards transferable targeted attack, (Li et al., 2020a) has proposed a
new Po-Trip loss to replace the cross-entropy loss. Another line of works (Inkawhich et al., 2019;
2020a;b) has attempted to perform optimization in feature space for a more transferable targeted
attack. These approaches (Inkawhich et al., 2020a;b) require training class-wise and layer-wise
auxiliary classifiers. Recently, backpropagating linearly, e.g, ignoring some ReLU activations (Guo
et al., 2020) or decreasing the weight on residual path (Wu et al., 2020), is also found to be beneficial
for transferability enhancement. Most of them mainly or exclusively focus on the attack strategies
on the second stage of TBA, while our work investigates simple techniques for achieving a better
surrogate model in the first stage.

Transfer learning. Several studies (Liang et al., 2020; Terzi et al., 2020; Utrera et al., 2021; Salman
et al., 2020) have found that adversarial training improves model generalization for downstream tasks
in transfer learning. Their finding refutes a widely held belief in transfer learning that models with
higher accuracy tend to transfer better. In essence, their works show adversarial training improves
transferability to a new dataset, while our work shows it improves the transferability to a new model.
Our finding in the TBA task might also provide new insight into the phenomenon observed in transfer
learning. For example, VNRFs might also harm the transferability in transfer learning, and we leave
such investigation to future work.
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A APPENDIX

A.1 TRANSFERABILITY OF EARLY-STOPPED ROBUST MODELS

We further evaluate the early stopped model’s transferability on the adversarially trained models. As
mentioned in the main manuscript, we do not intend to boost the performance with early stopping
because choosing an appropriate εs might be more beneficial for the performance boost. Instead,
we are mainly interested in whether the phenomenon that early stop improves transferability also
applies to adversarial training. The results in Figure ?? show that the trend is different from that
in Figure 1 in the main manuscript even though we also observe a decrease in transferability in the
final stage of training of Figure ??. For the normally trained model on CIFAR10, the increase in the
transferability performance through early stopping is more obvious, while that for the adversarially
trained model (Figure ?? (left)) fluctuates more with a less obvious transferability in the final stage.
This is somewhat expected because adversarial training already encourages the model to learn robust
features and early stop is less significant in adversarial training for improving the transferability. The
transferability capabilities of adversarial examples extracted from an adversarially trained ImageNet
model are presented in Figure ?? (right), where nearly no positive effect on the transferability can be
observed for the early stop.
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Figure 3: Transferability evaluation for adversarial examples generated on early-stopped surrogate
models Sn and evaluated on early-stopped target models Tn. Left: The same ResNet18 with the
same model parameters as surrogate and target model. Center: Two separately trained ResNet18
architectures(ResNet18-A, ResNet18-B) for surrogate and target model. Right: ResNet18 as the
surrogate model and VGG16 as the target model. Each entry represents the target model accuracy
evaluated on the obtained adversarial examples from Sn. The experiments were performed for
CIFAR10 and the I-FGSM attack.

Figure 4: Transferability of adversarial examples generated for a robust ResNet18 as the surrogate
model. Left: Transferability for an adversarially trained model with l∞-PGD with ε=8/255 for
CIFAR10. Right: Transferability for an adversarially trained model with l∞-FGSM with ε=1/255 for
ImageNet. The transferability is evaluated for the adversarial examples obtained from the models
during different adversarial training stages of the surrogate model. The adversarial examples were
generated with an untargeted I-FGSM. The results are reported in the untargeted ASR.
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Table 8: Full results of Table 2 of the main manuscript showing the Attack success rate (%) with
a single surrogate model on ImageNet. The standard (ε = 0) and various robust variants of two
surrogate models (ResNet18, ResNet50) are evaluated. The detailed ASR, as well as the average,
are reported. All experiments are performed for 5 different FGSM-based attacks with the negative
CE-loss as the objective function. Bold numbers indicate the best ASR for a specific attack.

Source Attack Target εs=0 εs=0.01 εs=0.03 εs=0.05 εs=0.1 εs=0.25 εs=0.5 εs=1 εs=3 εs=5

ResNet18

I

ResNet50 79.2 91.3 96.4 98.4 98.6 99.4 99.5 99.2 95.5 89.4
DenseNet121 71.9 88.2 94.5 97.1 98.6 99.3 99.2 98.9 94.9 88.0

VGG16 75.9 86.1 92.2 93.9 96.5 96.7 97.2 95.9 89.7 82.7
MobileNetV2 78.6 90.8 95.0 97.5 97.8 99.4 99.3 98.9 97.2 95.0

Average 76.4 89.1 94.5 96.7 97.9 98.7 98.8 98.2 94.3 88.8

MI

ResNet50 86.1 94.7 97.9 98.3 98.7 99.6 99.2 98.7 92.8 84.6
DenseNet121 82.5 93.3 97.1 97.8 98.9 99.0 98.8 98.5 92.5 83.7

VGG16 83.0 90.7 94.6 95.6 97.4 97.1 96.6 94.4 87.1 78.1
MobileNetV2 85.6 93.5 96.7 97.7 98.8 99.3 98.8 98.4 96.1 92.2

Average 84.3 93.0 96.6 97.3 98.5 98.8 98.4 97.5 92.1 84.7

DI

ResNet50 96.4 99.0 98.9 99.5 99.5 99.7 99.7 99.4 94.9 87.4
DenseNet121 94.5 98.7 99.2 99.6 99.5 99.6 99.7 99.2 94.9 87.4

VGG16 95.8 98.4 98.3 98.8 98.9 98.7 99.2 97.0 89.3 83.0
MobileNetV2 95.2 98.4 99.1 99.1 99.4 99.7 99.5 99.0 97.1 93.0

Average 95.5 98.6 98.9 99.2 99.3 99.4 99.5 98.7 94.0 87.7

TI

ResNet50 83.7 91.3 94.9 97.2 98.2 99.4 98.7 98.0 92.0 82.8
DenseNet121 77.0 88.3 94.6 96.1 97.6 99.4 98.9 97.9 92.4 83.3

VGG16 78.4 86.8 90.8 92.5 95.2 95.1 96.1 93.4 85.4 77.0
MobileNetV2 82.3 89.3 94.7 96.3 97.3 99.2 98.9 98.7 95.5 90.8

Average 80.3 88.9 93.8 95.5 97.1 98.3 98.2 97.0 91.3 83.5

MI+DI+TI

ResNet50 98.1 99.3 99.2 99.9 99.6 99.6 99.3 97.9 89.2 77.2
DenseNet121 98.1 99.1 98.9 99.5 99.6 99.4 99.0 98.2 89.6 76.6

VGG16 98.1 98.9 98.4 98.8 98.5 98.6 97.0 93.9 82.4 72.2
MobileNetV2 97.8 98.4 98.7 99.3 99.1 99.5 98.9 98.6 94.7 88.0

Average 98.0 98.9 98.8 99.4 99.2 99.3 98.6 97.2 89.0 78.5

ResNet50

I

ResNet18 85.4 94.0 96.2 98.0 99.4 99.7 99.5 99.7 99.1 98.5
DenseNet121 80.1 90.7 94.4 98.0 98.7 99.6 99.7 99.4 98.1 95.4

VGG16 75.1 85.8 91.0 93.4 95.4 97.5 98.4 97.5 94.6 88.7
MobileNetV2 76.0 88.2 92.9 96.3 98.0 99.3 99.5 99.0 98.2 96.8

Average 79.2 89.7 93.6 96.4 97.9 99.0 99.3 98.9 97.5 94.8

MI

ResNet18 92.4 96.6 97.9 99.1 99.4 99.5 99.7 99.3 98.2 97.2
DenseNet121 89.1 94.8 97.0 98.7 99.1 99.8 99.7 98.7 96.5 91.7

VGG16 83.2 90.4 93.6 96.1 96.3 98.0 97.9 96.7 91.3 84.5
MobileNetV2 86.2 93.1 95.8 97.4 98.0 98.7 99.2 98.7 97.6 94.7

Average 87.7 93.7 96.1 97.8 98.2 99.0 99.1 98.3 95.9 92.0

DI

ResNet18 98.5 99.5 99.6 99.8 99.9 99.9 99.8 99.7 98.9 98.2
DenseNet121 98.1 99.5 99.6 99.9 99.8 99.9 99.9 99.3 98.1 94.5

VGG16 96.9 98.5 99.2 99.4 99.3 99.3 99.5 98.0 94.3 89.0
MobileNetV2 96.1 98.4 99.0 99.5 99.7 99.7 99.8 99.5 98.2 96.9

Average 97.4 99.0 99.3 99.7 99.7 99.7 99.8 99.1 97.4 94.6

TI

ResNet18 86.9 93.7 95.3 97.3 99.1 99.4 99.7 99.2 98.2 97.1
DenseNet121 78.2 86.5 89.5 92.4 93.7 96.4 96.3 95.5 89.8 83.0

VGG16 78.2 86.5 89.5 92.4 93.7 96.4 96.3 95.5 89.8 83.0
MobileNetV2 80.5 88.6 92.9 95.8 97.1 98.6 99.3 98.6 97.3 94.5

Average 82.6 90.0 93.0 95.7 97.2 98.5 98.7 98.1 95.4 91.6

MI+DI+TI

ResNet18 99.3 99.8 99.8 99.9 99.9 99.8 99.8 99.2 97.4 94.7
DenseNet121 99.1 99.6 99.5 99.8 99.9 99.5 99.8 98.5 94.8 87.1

VGG16 98.3 98.8 98.3 99.1 99.0 98.9 98.3 95.6 87.1 78.8
MobileNetV2 97.9 98.9 99.1 99.2 99.3 99.1 99.6 98.4 95.0 91.8

Average 98.6 99.3 99.2 99.5 99.5 99.3 99.4 97.9 93.6 88.1

A.2 FULL EXPERIMENT RESULTS

The majority of the results presented in the main manuscript report the average ASR over different
models. Here, we present the detailed results for each target model. Specifically, the full results
corresponding to Table 2, Table 4, Table 6, Table 7, Table 5 in the main manuscript are shown in
Table 8, Table 9, Table 10, Table 11, Table 12, respectively.
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Table 9: Full results of Table 4 of the main manuscript showing the targeted transfer-based black-box
attack with a single surrogate model on ImageNet. In each cell, the untargeted and targeted ASR
are presented. The standard (ε = 0) and 9 robust variants of three surrogate models (ResNet18,
ResNet50, WRN50-2) are evaluated. All experiments are performed for 5 different targeted FGSM
variants with the CE-loss. Bold numbers indicate the best ASR for a specific attack. Each entry shows
non-targeted ASR / targeted ASR. Note that we can also report non-targeted ASR in the targeted
setting.

Source Attack Target εs=0 εs=0.01 εs=0.03 εs=0.05 εs=0.1 εs=0.25 εs=0.5 εs=1 εs=3 εs=5

ResNet18

I

ResNet50 37.1/0.7 44.9/2.9 55.0/5.3 59.8/9.6 69.2/17.6 83.9/34.1 87.2/46.9 85.0/40.6 70.8/16.2 60.7/8.9
DenseNet121 31.5/0.2 41.0/1.1 51.0/4.1 56.9/6.6 69.1/14.7 79.8/30.8 85.7/44.0 83.3/39.8 70.2/19.0 59.9/7.4

VGG16 41.0/0.5 49.4/0.9 55.8/1.5 58.8/3.1 67.7/7.6 77.4/13.4 78.6/18.6 78.1/16.0 66.6/6.4 57.4/2.4
MobileNetV2 43.2/0.1 52.9/1.2 61.0/3.5 67.2/5.9 75.3/12.7 85.9/29.8 90.6/44.1 88.9/42.6 81.4/22.7 74.7/10.3

Average 38.2/0.4 47.1/1.5 55.7/3.6 60.7/6.3 70.3/13.1 81.8/27.0 85.5/38.4 83.8/34.8 72.2/16.1 63.2/7.2

MI

ResNet50 50.5/0.4 63.5/3.3 70.6/6.1 74.5/9.8 79.9/16.4 84.6/32.2 83.9/35.8 79.8/27.2 63.1/9.4 52.1/3.0
DenseNet121 43.4/0.4 59.2/1.6 67.3/5.4 72.7/9.0 78.7/16.5 83.2/29.7 81.6/34.8 77.8/27.6 63.3/9.2 52.2/2.7

VGG16 53.3/0.2 64.1/1.0 68.1/2.0 72.6/2.8 75.5/4.2 78.5/10.0 77.3/11.7 72.8/9.2 60.4/2.5 53.0/0.7
MobileNetV2 61.8/0.3 70.7/1.8 75.5/3.8 79.4/5.0 83.6/9.5 86.5/25.0 87.7/32.5 84.6/29.1 76.0/11.1 65.9/3.9

Average 52.2/0.3 64.4/1.9 70.4/4.3 74.8/6.7 79.4/11.7 83.2/24.2 82.6/28.7 78.8/23.3 65.7/8.1 55.8/2.6

DI

ResNet50 58.7/9.0 73.0/24.9 81.2/36.5 86.6/45.8 90.2/58.0 92.0/62.8 90.6/61.4 85.9/46.8 71.8/17.5 57.9/6.4
DenseNet121 52.4/8.0 68.0/21.7 79.1/32.2 85.4/41.5 90.2/56.2 91.9/62.1 91.6/60.9 86.1/46.1 71.6/18.4 56.8/5.4

VGG16 64.7/9.1 73.4/18.4 79.9/27.5 82.7/32.2 87.7/40.7 87.5/41.6 85.4/37.6 81.3/25.2 66.2/7.4 55.6/2.1
MobileNetV2 63.3/5.3 75.3/13.8 82.5/28.1 85.8/36.2 90.5/49.3 92.9/59.0 93.5/63.2 91.1/52.1 82.3/23.9 71.6/9.8

Average 59.8/7.9 72.4/19.7 80.7/31.1 85.1/38.9 89.7/51.0 91.1/56.4 90.3/55.8 86.1/42.6 73.0/16.8 60.5/5.9

TI

ResNet50 38.6/0.9 44.0/2.5 50.0/4.5 54.7/7.9 63.5/14.5 76.0/29.6 80.0/38.7 77.8/30.7 62.4/11.4 51.6/4.0
DenseNet121 34.4/0.2 41.6/1.8 49.5/3.8 53.0/6.1 65.9/13.4 75.4/26.7 80.4/38.4 78.4/33.4 63.4/12.3 52.1/4.8

VGG16 44.5/0.7 48.5/0.9 54.2/2.1 56.3/3.4 60.7/5.9 70.3/11.8 72.6/14.0 71.1/12.0 59.0/3.5 51.0/1.3
MobileNetV2 45.6/0.3 51.3/1.2 58.6/3.0 60.6/5.5 70.5/11.1 81.1/26.1 86.8/38.2 84.6/36.9 73.8/15.2 66.1/6.5

Average 40.8/0.5 46.4/1.6 53.1/3.4 56.1/5.7 65.2/11.2 75.7/23.5 80.0/32.3 78.0/28.2 64.7/10.6 55.2/4.2

MI+DI+TI

ResNet50 75.5/14.8 80.8/25.1 84.3/31.2 85.6/37.9 88.0/43.6 86.9/45.1 82.5/37.4 76.6/24.2 58.8/5.7 45.2/1.2
DenseNet121 71.8/13.0 79.5/24.0 84.3/31.8 86.8/37.5 86.7/46.0 87.4/46.6 84.3/40.1 77.7/24.9 57.7/5.9 44.9/1.2

VGG16 77.8/13.2 81.8/16.6 83.2/19.7 83.1/20.0 81.8/21.8 80.2/18.4 76.0/14.8 70.8/9.1 54.7/1.4 48.7/0.5
MobileNetV2 81.2/8.7 82.9/15.3 86.0/22.6 87.5/25.3 87.6/33.8 88.6/40.3 88.1/36.6 82.8/26.9 70.7/7.7 59.4/2.7

Average 76.6/12.4 81.2/20.2 84.5/26.3 85.8/30.2 86.0/36.3 85.8/37.6 82.7/32.2 77.0/21.3 60.5/5.2 49.5/1.4

ResNet50

I

ResNet18 53.2/1.3 61.9/3.7 62.7/5.8 70.4/10.2 81.7/19.6 88.3/36.9 93.2/54.7 93.8/59.3 89.9/41.5 83.4/25.0
DenseNet121 35.6/0.6 45.1/3.0 51.0/5.7 61.7/12.1 71.3/19.9 84.8/39.2 90.8/56.4 90.7/55.3 83.8/38.3 72.7/20.1

VGG16 42.3/0.2 49.5/1.3 55.5/2.8 62.9/4.5 66.8/6.7 79.3/15.1 83.9/23.8 81.9/26.1 74.9/12.4 65.9/6.2
MobileNetV2 44.5/0.6 54.8/2.2 57.8/3.5 67.3/5.0 76.4/11.8 85.7/26.6 90.7/42.9 91.0/48.0 87.3/33.4 83.4/20.2

Average 43.9/0.7 52.8/2.5 56.8/4.5 65.6/7.9 74.1/14.5 84.5/29.4 89.6/44.4 89.3/47.2 84.0/31.4 76.3/17.9

MI

ResNet18 71.6/1.3 79.2/4.5 79.6/5.9 83.5/10.4 87.9/17.9 89.8/31.2 92.4/43.6 91.3/41.4 85.6/23.1 78.1/11.3
DenseNet121 50.6/2.0 60.0/4.9 64.2/8.1 75.7/14.2 80.0/21.8 87.8/38.8 90.1/47.5 87.8/41.5 74.5/20.8 64.7/9.3

VGG16 57.2/0.7 64.7/1.2 65.3/1.9 73.8/3.8 75.6/5.7 81.5/11.2 83.4/16.1 77.3/13.4 68.1/4.5 59.3/2.0
MobileNetV2 63.1/0.4 72.1/1.8 74.6/3.6 80.6/5.4 82.7/7.8 87.0/19.9 88.8/31.2 88.3/34.2 82.1/17.5 77.1/8.8

Average 60.6/1.1 69.0/3.1 70.9/4.9 78.4/8.5 81.5/13.3 86.5/25.3 88.7/34.6 86.2/32.6 77.6/16.5 69.8/7.8

DI

ResNet18 73.4/12.3 82.5/25.2 86.0/30.5 91.7/43.5 95.7/60.2 96.3/66.1 97.2/69.7 95.6/64.0 89.1/38.6 81.6/23.2
DenseNet121 65.8/20.7 77.3/34.2 84.5/42.5 90.2/55.7 94.4/66.6 95.9/72.8 96.2/72.7 93.8/63.6 82.5/34.6 72.4/17.6

VGG16 71.7/14.5 77.5/21.0 83.4/28.2 88.0/36.6 90.6/46.1 91.6/48.8 92.1/46.4 88.6/39.5 76.9/14.1 64.8/6.2
MobileNetV2 67.2/5.8 77.1/13.7 82.5/22.3 88.5/32.7 92.7/47.6 94.0/57.3 94.4/62.5 93.1/58.9 86.9/34.6 81.9/18.7

Average 69.5/13.3 78.6/23.5 84.1/30.9 89.6/42.1 93.3/55.1 94.5/61.2 95.0/62.8 92.8/56.5 83.8/30.5 75.2/16.4

TI

ResNet18 54.1/1.6 60.4/3.5 63.1/5.4 69.5/9.7 77.8/18.6 84.5/34.4 90.3/49.0 89.6/51.4 85.0/32.5 75.7/17.3
DenseNet121 39.5/0.7 44.5/2.7 51.5/5.6 59.7/9.8 68.4/18.5 80.9/37.8 88.2/51.2 87.5/48.6 75.4/24.6 64.9/13.1

VGG16 47.0/0.8 50.1/1.5 53.7/2.0 58.6/3.7 63.5/7.1 72.4/11.8 77.0/16.5 75.0/18.1 67.5/7.7 58.5/2.6
MobileNetV2 49.4/0.6 54.1/2.4 58.6/2.6 64.0/5.4 71.1/12.1 81.6/22.4 87.5/36.2 87.5/38.1 81.1/24.7 73.4/12.9

Average 47.5/0.9 52.3/2.5 56.7/3.9 63.0/7.2 70.2/14.1 79.8/26.6 85.8/38.2 84.9/39.0 77.2/22.4 68.1/11.5

MI+DI+TI

ResNet18 6.2/17.7 89.1/27.4 89.5/29.7 92.2/36.0 93.9/48.2 92.8/47.9 92.4/46.8 89.7/38.7 79.1/17.3 70.1/7.4
DenseNet121 79.3/31.0 83.7/37.2 86.3/41.3 91.7/52.2 92.0/54.6 90.9/56.1 91.6/52.5 84.4/39.9 69.0/14.1 56.9/4.4

VGG16 80.7/16.2 82.6/19.3 84.0/18.2 86.4/23.2 86.0/23.7 84.6/23.7 82.3/19.4 76.2/11.6 62.2/2.5 54.1/1.2
MobileNetV2 81.3/9.5 86.1/15.7 85.9/16.4 90.0/23.0 90.2/33.3 87.8/36.8 89.1/36.7 86.3/30.3 75.1/11.7 67.2/4.6

Average 81.9/18.6 85.4/24.9 86.4/26.4 90.1/33.6 90.5/40.0 89.0/41.1 88.8/38.9 84.2/30.1 71.3/11.4 62.1/4.4

WRN50-2 DI

ResNet50 75.1/27.1 81.1/38.8 90.0/59.6 92.7/60.6 93.9/67.9 95.9/74.0 94.9/64.5 92.8/56.0 83.5/33.6 76.4/20.6
DenseNet121 64.6/16.5 75.1/25.1 83.8/38.5 85.2/42.2 92.2/53.3 94.8/64.9 93.6/60.0 91.1/55.4 83.9/32.0 76.6/21.2

VGG16 69.0/9.6 77.4/14.8 80.4/21.8 84.5/25.0 88.3/32.3 90.3/37.7 87.9/32.4 86.5/29.5 77.0/15.7 70.3/7.9
MobileNetV2 63.6/3.0 70.6/8.0 79.3/16.6 82.8/19.4 89.0/30.7 91.4/42.2 92.6/46.1 92.0/45.1 87.6/31.9 82.7/19.3

Average 68.1/14.1 76.0/21.7 83.4/34.1 86.3/36.8 90.9/46.1 93.1/54.7 92.2/50.8 90.6/46.5 83.0/28.3 76.5/17.2
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Table 10: Full results of Table 6 in the main manuscript showing the transferability evaluation
on the robust models including ResNet50 (εt = 3), DenseNet161(εt = 3), VGG16(εt = 3),
MobileNetV2(εt = 3). The surrogate model is adversarially trained ResNet18 or ResNet50 with εs
ranging from 0 to 5 (l2-norm).

Source Attack Target εs=0 (Normal) εs=0.5 (PGD) εs=1 (PGD) εs=2 (PGD) εs=4 (PGD) εs=2 (FAT) εs=4 (FAT)

ResNet50

I

ResNet18 85.4 99.8 99.6 98.9 95.3 99.1 96.7
DenseNet121 80.1 99.7 99.1 97.7 92.0 97.5 89.4

VGG16 75.1 98.4 97.5 94.1 86.2 92.5 81.7
MobileNetV2 76.0 99.3 98.6 97.6 93.8 98.3 93.6

Average 79.2 99.3 98.7 97.1 91.8 96.9 90.3

MI

ResNet18 92.4 99.6 99.2 97.9 94.2 98.7 95.1
DenseNet121 89.1 99.5 98.3 95.8 88.6 96.0 85.4

VGG16 83.2 97.7 96.5 92.0 83.5 91.1 79.3
MobileNetV2 86.2 98.8 98.4 96.5 91.7 97.6 91.4

Average 87.7 98.9 98.1 95.5 89.5 95.8 87.8

DI

ResNet18 98.5 99.9 99.6 98.8 96.2 99.3 96.2
DenseNet121 98.1 99.9 99.4 97.7 92.3 97.2 88.7

VGG16 96.9 99.7 98.1 95.1 87.1 94.6 81.7
MobileNetV2 96.1 99.5 99.3 97.9 94.0 98.0 93.7

Average 97.4 99.8 99.1 97.4 92.4 97.3 90.1

TI

ResNet18 86.9 99.6 99.2 98.0 92.9 98.7 93.8
DenseNet121 78.2 99.7 98.4 95.7 87.6 95.4 82.8

VGG16 78.2 97.1 94.8 90.0 78.6 88.2 73.8
MobileNetV2 80.5 99.0 98.3 96.6 90.3 96.8 89.6

Average 82.6 98.8 97.7 95.1 87.4 94.8 85.0

MI+DI+TI

ResNet18 99.3 99.8 98.9 97.3 93.0 98.1 92.7
DenseNet121 99.1 99.8 98.4 95.8 86.9 94.8 81.3

VGG16 98.3 98.2 95.6 90.6 79.4 88.0 73.2
MobileNetV2 97.9 98.9 97.9 95.4 90.0 96.1 88.3

Average 98.6 99.2 97.7 94.8 87.3 94.2 83.9

Table 11: Full results of Table 7 showing the transferability evaluation on robust models. The
surrogate model is an adversarially trained ResNet18 or ResNet50 with εs ranging from 0 to 5
(l2-norm). Each entry indicates non-targeted attack success / targeted attack success rate.

Source Attack Target εs=0 εs=0.01 εs=0.03 εs=0.05 εs=0.1 εs=0.25 εs=0.5 εs=1 εs=3 εs=5

ResNet18

I

ResNet50 (εt=3) 23.6/0.0 23.6/0.0 24.2/0.0 24.4/0.0 25.5/0.0 28.7/0.0 35.7/0.1 43.0/3.9 57.5/15.0 58.8/14.9
DenseNet161 (εt=3) 25.9/0.0 26.1/0.0 26.5/0.0 26.4/0.0 26.7/0.0 28.9/0.0 32.4/0.1 37.8/1.9 50.1/9.6 52.3/8.9

VGG16 (εt =3) 45.2/0.0 44.9/0.0 45.1/0.0 45.3/0.0 46.3/0.0 48.6/0.0 50.8/0.3 58.2/2.3 70.1/11.1 71.3/10.4
MobileNetV2 (εt=3) 54.7/0.0 54.9/0.0 55.1/0.0 55.2/0.0 57.1/0.0 58.4/0.0 61.4/0.5 67.0/2.3 77.1/12.2 78.7/12.7

Average (εt =3) 37.4/0.0 37.4/0.0 37.7/0.0 37.8/0.0 38.9/0.0 41.1/0.0 45.1/0.2 51.5/2.6 63.7/12.0 65.3/11.7

MI

ResNet50 (εt=3) 36.6/0.0 37.5/0.0 37.7/0.0 36.7/0.0 36.3/0.0 36.5/0.2 39.7/1.0 45.3/3.8 55.4/9.5 55.7/9.9
DenseNet161 (εt=3) 26.8/0.0 27.2/0.0 27.2/0.0 28.4/0.0 27.6/0.0 30.3/0.0 34.7/0.4 38.9/2.2 49.5/6.3 50.9/5.2

VGG16 (εt=3) 46.1/0.0 46.2/0.0 46.5/0.0 47.2/0.0 48.0/0.0 49.4/0.0 53.6/0.7 58.1/2.9 69.1/8.5 69.4/7.2
MobileNetV2 (εt=3) 56.1/0.0 56.2/0.0 56.8/0.0 56.8/0.0 58.8/0.0 61.2/0.2 63.7/0.7 67.5/2.1 77.2/9.5 78.5/8.7

Average (εt=3) 41.4/0.0 41.8/0.0 42.0/0.0 42.3/0.0 42.7/0.0 44.4/0.1 47.9/0.7 52.5/2.8 62.8/8.4 63.6/7.8

DI

ResNet50 (εt=3) 24.1/0.0 24.4/0.0 24.9/0.0 25.8/0.0 27.7/0.0 30.3/0.0 37.2/0.6 45.0/4.8 59.4/14.9 59.8/13.5
DenseNet161 (εt=3) 26.4/0.0 26.9/0.0 27.8/0.0 26.8/0.0 27.7/0.0 29.7/0.0 32.2/0.1 37.5/1.2 44.8/5.2 47.3/5.0

VGG16 (εt=3) 45.4/0.0 44.8/0.0 45.7/0.0 45.8/0.0 47.7/0.0 48.1/0.0 51.8/0.7 56.5/2.1 66.1/6.8 67.4/6.4
MobileNetV2 (εt=3) 54.7/0.0 55.5/0.0 56.2/0.0 56.6/0.0 57.8/0.0 60.7/0.1 62.2/0.7 67.2/2.1 74.7/7.1 75.3/7.4

Average (εt=3) 37.6/0.0 37.9/0.0 38.6/0.0 38.8/0.0 40.2/0.0 42.2/0.0 45.9/0.5 51.5/2.5 61.2/8.5 62.5/8.1

TI

ResNet50 (εt=3) 23.3/0.0 23.1/0.0 23.6/0.0 24.2/0.0 25.7/0.0 29.1/0.0 35.3/0.2 44.1/3.8 57.3/15.1 58.7/14.8
DenseNet161 (εt=3) 26.1/0.0 26.6/0.0 27.1/0.0 26.3/0.0 26.9/0.0 29.5/0.0 33.0/0.2 39.5/2.0 51.1/10.2 52.6/8.6

VGG16 (εt=3) 44.9/0.0 45.4/0.0 45.5/0.0 46.1/0.0 46.7/0.0 48.4/0.0 51.8/0.5 58.7/2.8 70.3/11.9 71.1/10.3
MobileNetV2 (εt=3) 54.8/0.0 55.0/0.0 55.0/0.0 55.8/0.0 57.8/0.0 60.0/0.2 62.6/0.5 68.3/2.7 77.0/12.9 78.8/12.5

Average (εt=3) 37.3/0.0 37.5/0.0 37.8/0.0 38.1/0.0 39.3/0.0 41.8/0.1 45.7/0.3 52.6/2.8 63.9/12.5 65.3/11.6

MI+DI+TI

ResNet50 (εt=3) 36.2/0.0 37.4/0.0 37.6/0.1 36.9/0.1 36.8/0.0 39.7/0.4 42.3/1.8 47.7/5.4 56.8/10.0 56.8/8.3
DenseNet161 (εt=3) 28.0/0.0 28.1/0.0 28.8/0.0 28.8/0.0 29.7/0.0 32.0/0.1 35.1/0.5 41.0/1.8 48.5/4.7 47.9/4.0

VGG16 (εt=3) 47.0/0.0 47.3/0.0 47.7/0.0 48.1/0.0 49.9/0.0 51.0/0.3 55.4/1.0 60.4/3.0 69.1/6.6 67.8/5.2
MobileNetV2 (εt=3) 56.9/0.0 57.5/0.0 58.0/0.0 58.7/0.0 59.4/0.0 63.3/0.1 65.8/1.0 69.6/2.8 77.7/7.5 76.9/6.9

Average (εt=3) 42.0/0.0 42.6/0.0 43.0/0.0 43.1/0.0 43.9/0.0 46.5/0.2 49.6/1.1 54.7/3.2 63.0/7.2 62.4/6.1

ResNet50

I

ResNet18 (εt=3) 36.2/0.0 36.5/0.0 36.6/0.0 36.7/0.0 37.3/0.0 40.3/0.0 45.6/0.2 52.8/1.9 67.6/13.5 73.0/19.0
DenseNet161 (εt=3) 26.1/0.0 26.3/0.0 26.1/0.0 26.5/0.0 27.4/0.0 29.1/0.0 33.5/0.0 38.7/1.7 54.6/13.7 60.1/15.3

VGG16 (εt=3) 44.6/0.0 44.9/0.0 45.3/0.0 45.5/0.0 46.5/0.0 48.2/0.0 50.9/0.1 58.8/1.5 72.6/8.5 75.3/10.6
MobileNetV2 (εt=3) 54.9/0.0 55.1/0.0 54.2/0.0 55.5/0.0 56.0/0.0 58.0/0.0 62.4/0.0 66.4/1.1 76.9/8.4 80.3/10.9

Average (εt=3) 40.5/0.0 40.7/0.0 40.5/0.0 41.0/0.0 41.8/0.0 43.9/0.0 48.1/0.1 54.2/1.6 67.9/11.0 72.2/13.9

MI

ResNet18 (εt=3) 48.6/0.0 49.1/0.0 48.2/0.0 48.0/0.0 46.8/0.0 46.9/0.0 51.1/0.4 54.7/2.3 66.5/8.6 71.1/12.0
DenseNet161 (εt=3) 26.9/0.0 26.8/0.0 27.9/0.0 28.6/0.0 29.4/0.0 30.9/0.0 36.3/0.3 40.6/1.9 54.4/8.7 57.6/8.7

VGG16 (εt=3) 46.4/0.0 46.7/0.0 47.0/0.0 47.8/0.0 47.5/0.0 49.4/0.0 53.5/0.4 60.2/2.1 72.1/6.1 74.0/7.2
MobileNetV2 (εt=3) 55.7/0.0 56.1/0.0 56.6/0.0 57.1/0.0 58.0/0.0 60.5/0.2 64.3/0.3 67.4/1.2 77.2/5.6 80.0/7.8

Average (εt=3) 44.4/0.0 44.7/0.0 44.9/0.0 45.4/0.0 45.4/0.0 46.9/0.1 51.3/0.3 55.7/1.9 67.5/7.2 70.7/8.9

DI

ResNet18 (εt=3) 37.0/0.0 37.1/0.0 37.3/0.0 37.9/0.0 39.5/0.0 42.1/0.0 48.7/0.5 55.2/2.5 70.3/13.9 74.4/16.4
DenseNet161 (εt=3) 26.7/0.0 26.6/0.0 27.1/0.0 27.7/0.0 27.7/0.0 29.4/0.0 34.3/0.0 39.2/1.6 51.4/7.9 53.1/7.6

VGG16 (εt=3) 45.3/0.0 45.6/0.0 46.2/0.0 46.2/0.0 47.2/0.0 48.7/0.0 52.4/0.3 58.6/1.7 71.1/5.3 71.0/6.5
MobileNetV2 (εt=3) 55.4/0.0 56.4/0.0 56.2/0.0 56.3/0.0 57.4/0.0 59.5/0.1 63.9/0.2 67.3/1.2 75.1/4.8 77.9/5.9

Average (εt=3) 41.1/0.0 41.4/0.0 41.7/0.0 42.0/0.0 43.0/0.0 44.9/0.0 49.8/0.2 55.1/1.8 67.0/8.0 69.1/9.1

TI

ResNet18 (εt=3) 36.1/0.0 36.7/0.0 36.4/0.0 36.4/0.0 37.9/0.0 39.5/0.0 47.1/0.2 53.6/1.6 67.4/13.2 72.6/17.4
DenseNet161 (εt=3) 26.0/0.0 26.1/0.0 26.8/0.0 27.4/0.0 27.5/0.0 29.8/0.0 34.8/0.0 40.1/1.6 55.9/14.7 61.2/16.9

VGG16 (εt=3) 45.5/0.0 45.0/0.0 45.2/0.0 45.5/0.0 46.9/0.0 48.8/0.0 53.1/0.1 59.8/1.7 73.0/8.6 75.2/10.3
MobileNetV2 (εt=3) 54.9/0.0 56.1/0.0 55.1/0.0 55.8/0.0 56.2/0.0 57.6/0.0 64.4/0.1 67.4/1.3 77.9/8.5 80.8/11.1

Average (εt=3) 40.6/0.0 41.0/0.0 40.9/0.0 41.3/0.0 42.1/0.0 43.9/0.0 49.9/0.1 55.2/1.6 68.5/11.2 72.5/13.9

MI+DI+TI

ResNet18 (εt=3) 48.2/0.0 48.9/0.0 48.0/0.0 49.0/0.0 48.3/0.0 49.3/0.0 53.8/1.0 58.5/3.3 70.3/9.0 72.4/10.5
DenseNet121 (εt=3) 28.5/0.0 27.8/0.0 28.8/0.0 30.3/0.0 30.5/0.0 33.6/0.0 37.9/0.2 42.8/2.1 53.8/7.2 54.6/6.4

VGG16 (εt=3) 47.8/0.0 47.9/0.0 48.1/0.0 49.9/0.0 48.8/0.0 52.6/0.1 55.9/0.8 61.6/2.2 71.7/4.8 72.7/5.2
MobileNetV2 (εt=3) 57.6/0.0 58.3/0.0 57.8/0.0 60.4/0.0 59.4/0.0 63.3/0.1 66.4/0.6 70.9/1.7 77.9/4.8 78.8/5.4

Average (εt=3) 45.5/0.0 45.7/0.0 45.7/0.0 47.4/0.0 46.8/0.0 49.7/0.1 53.5/0.7 58.5/2.3 68.4/6.5 69.6/6.9
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Table 12: Full results of Table 5 of the main manuscript showing the attack success rate (%) with
standard and robust surrogate models for I-FGSM on ImageNet.

Source Model Target Model εs=0 εs=3

DenseNet161

Accuracy 77.37 66.98
ResNet50 48.4/0.7 63.0/5.3

DenseNet121 50.3/1.3 65.5/9.2
VGG16 48.4/0.2 61.0/1.4

MobileNetV2 49.8/0.3 74.0/5.7
Average 49.2/0.6 65.9/5.4

MNASNet

Accuracy 60.97 41.83
ResNet50 19.4/0.0 41.6/0.4

DenseNet121 18.8/0.0 40.5/0.2
VGG16 30.4/0.0 48.2/0.2

MobileNetV2 37.0/0.0 60.5/1.0
Average 26.4/0.0 47.7/0.5

ResNeXt

Accuracy 77.38 66.25
ResNet50 44.7/0.7 68.9/11.3

DenseNet121 36.3/0.2 66.7/10.0
VGG16 41.7/0.2 60.9/2.1

MobileNetV2 45.0/0.1 73.5/7.6
Average 41.9/0.3 67.5/7.8

ShuffleNet

Accuracy 64.25 43.32
ResNet50 20.2/0.0 41.6/0.4

DenseNet121 17.6/0.0 36.1/0.4
VGG16 26.6/0.0 46.7/0.2

MobileNetV2 30.4/0.0 58.0/0.8
Average 23.7/0.0 45.6/0.5
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