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Abstract

As LLM-generated text becomes increasingly
prevalent on the internet, which may contain
hallucinations or biases, detecting such con-
tent has emerged as a critical area of research.
Recent methods have demonstrated impres-
sive performance in detecting text generated
entirely by LLMs. However, in real-world
scenarios, users often make perturbations on
the LLM-generated text, and the robustness
of existing detection methods to these per-
turbations has not been sufficiently explored.
This paper empirically investigates this ques-
tion and finds that even minor perturbation
can severely degrade the performance of cur-
rent detection methods. To address this issue,
we find that the syntactic tree is minimally
affected by disturbances and exhibits differ-
ences between human-written text and LLM-
generated text. Therefore, we propose a de-
tection method based on syntactic trees, which
can capture features invariant under perturba-
tions. It demonstrates significantly improved
robustness against perturbation on the HC3 and
GPT-3.5-mixed datasets.

1 Introduction

The proliferation of LLM-generated texts on the
internet has raised numerous issues, such as fake
news (Zellers et al., 2020) and papers. which is dif-
ficult to identify (Gehrmann et al., 2019). In recent
years, the task of LLM-generated text detection has
also shown good results on LLM-generated texts
(Mitchell et al., 2023; Liu et al., 2023; Bao et al.,
2024; McGovern et al., 2024).

However, we argue that the previous task settings
were overly simplistic, making it hard to reflect
real-world scenarios where LLLM-generated text is
frequently modified and adjusted. This paper finds
that if the text is subjected to certain perturbations,
the effectiveness of many detection tools will drop
significantly, as depicted in Figure 1.
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Figure 1: The accuracy of several detection methods
drop significantly after perturbing just 10% words of
each LLM-generated sentence in the HC3 datasets.

To solve this problem, we find differences
in the syntax trees between human-written texts
and LLM-generated texts shown in Section 4.2,
which exhibit minimal susceptibility to perturba-
tions. Based on this finding, this paper presents a
perturbation-robust text detection method (PRDe-
tect) and proposes a perturbation method that
mimics human editing. Under perturbation, the
paper compares the PRDetect with several well-
performing baselines. PRDetect demonstrates both
high accuracy and perturbation-robustness.

In summary, our contributions are as follows:

* PRDetect leverages the differences in syn-
tax trees and demonstrates outstanding per-
formance on two datasets of different lengths.

* We propose a novel perturbation method to
emulate the processes of real-world text pol-
ishing.

* PRDetect possesses state-of-the-art perturba-
tion robustness.

2 Related Work

2.1 LLM-Generated Text Detection

The task of detecting LL.M-generated texts is dis-
tinguishing whether a piece of text is written by



humans or generated by LLMs. Existing methods
can be broadly categorized into four groups.

Featured-based text detection. The various
features within a text can be employed to train a
model for classification. GLTR (Gehrmann et al.,
2019) calculates three features for detection: the
probability of the next word, the absolute rank of
the next word, and the entropy of the predicted dis-
tribution. LLMDet (Wu et al., 2023) saves a local
probability dictionary to calculate perplexity for
classification, which can save storage space. CoCo
(Liu et al., 2023) uses entity graphs for detection,
which performs well in detecting long texts.

Fine-tuning large pre-trained model. Pre-
trained language models offers significant advan-
tages in NLP tasks, which eliminates the need for
manually specified features. Transformer-based
models can be used to distinguish whether a piece
of text was generated by ChatGPT or manually
(Mitrovi¢ et al., 2023). OpenAl fine-tuned a
RoBERTa model’ to detect text generated by GPT-
2. These methods can be further refined and en-
hanced by fine-tuning with local data.

Zero-shot method. It relies on certain statisti-
cal regularities, saving time in training the model.
DetectGPT (Mitchell et al., 2023) found machine-
generated text tends to occupy regions of nega-
tive curvature in the model’s log-probability func-
tion. Perturb the text and calculate the changes
in log probability. Those with smaller average
changes are more likely to be human-written texts.
Fast-DetectGPT (Bao et al., 2024), DetectGPT-SC
(Wang et al., 2023) and DetectGPT4Code (Yang
et al., 2023) also achieved zero-shot classification.

Text watermarking method. Adding a water-
mark involves embedding a hidden representation
into the text, which is difficult for humans to de-
tect or eliminate. Such as selecting words from the
green list (Kirchenbauer et al., 2023), generating
a private key to create a watermark (Kirchenbauer
et al., 2023), using neural networks for watermark
generation and detection (Liu et al., 2024a).

2.2 Text Perturbation Analysis

Existing experiments have shown that simple per-
turbations can significantly interfere with detectors,
such as replacing characters with visually similar
letters from different languages (Wolff and Wollff,
2022), swapping letters within words (Huang et al.,
2024), back-translation or rewriting (Macko et al.,

1https://github.com/openai/
gpt-2-output-dataset/tree/master/detector

2024). Some papers have conducted perturbation
experiments at the token-level on the text (Liu et al.,
2023).

3 Methods

The primary framework of PRDetect comprises the
construction of syntax trees, node encoding, super-
vised training of a graph convolutional network,
and text perturbation for testing purposes. The
main process is depicted as shown in Figure 2.

3.1 Syntax tree construction and node
encoding

In this paper, we utilize spaCy? and Roberta to
accomplish this process.

For a given long input text, we utilize spaCy
for tokenization after segmenting the text into
chunks. SpaCy performs part-of-speech tagging
on each token and determines the dependency re-
lationships using a set of rules, such as identifying
the subject-verb relationship or the modifying re-
lationships. Using this method, a dependency tree
is constructed, where each node represents a token.
Subsequently, we construct an adjacency matrix A
based on the dependency tree, 1 is used to represent
dependency relationship between two tokens, and
0 otherwise.

For the token nodes of the dependency tree, we
use Roberta to get their embedding, which are used
to initialize the nodes in the graph network. Com-
pared to random initialization, this approach can
lead to faster convergence and improved perfor-
mance.

At this point, we have obtained the adjacency
matrix, the embeddings for the nodes and the text
labels for the training network.

3.2 Graph Convolutional Network

In this paper, we utilize two layers of Graph Convo-
lutional Network(GCN) (Kipf and Welling, 2017)
to perform graph convolution operations. Each
layer of the convolution can be expressed as:

HO = (D2 AD 2 HEDW D) (1)

where H (") is the node embedding matrix at layer
I, Ais the adjacency matrix of the graph that in-
corporates self-loops, D is the diagonal degree ma-
trix, W' is the weight matrix for layer [, and o is
a non-linear activation function, typically ReL.U.

2https://github.com/explosion/spaCy
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Figure 2: The primary procedure of PRDetect. It constructs and encodes syntax trees and nodes to train a GCN for

text detection.

HC3 GPT3.5-Mixed

Dataset

Human Machine Human Machine

Depth of Nodes 2.80 3.26 3.13 3.15
Number of Nodes  20.23 25.34 25.08 25.09
Height of Root 4.79 6.38 5.61 6.18

Length of Text 14793  178.65 756.55 501.13

Table 1: Statistical analysis of dataset. The values in the
table are all averages.

Self-loops for nodes can reinforce the inherent fea-
tures of the nodes during the convolution process,
represented as:

A=A+1 )

where [ is the identity matrix of the same dimen-
sion as A. Our model employs the Binary Cross-
Entropy Loss as the loss function L, which is suit-
able for the binary classification task.

4 Dataset and Syntactic Tree Difference
Analysis

4.1 Datasets and Metrics

The text generation capabilities of LLMs can affect
the difficulty of text detection tasks. We choose
texts generated by more recent LLMs, which are
typically more fluent and difficult for humans to
directly distinguish from human-written text.
Human ChatGPT Comparison Corpus
(HC3)? (Guo et al., 2023). In this dataset, there
are questions and answers from ChatGPT and
human experts, spanning various domains such

3https://github.com/Hello—SimpleAI/
chatgpt-comparison-detection

as computer science, finance, medicine, law, and
psychology.

GPT3.5-Mixed* (Liu et al., 2023). This dataset
is generated by text-davinci-003, focusing on the
news domain. The texts included are longer com-
pared to those in the HC3 dataset. The Mixed
dataset includes 17 different sources, such as news
websites like CNN, BBC, and Yahoo.

Following several related works (Wu et al., 2023;
Liu et al., 2023), we use accuracy and F1 score as
metrics.

4.2 Syntactic Tree Difference Analysis

We conduct a statistical analysis of human-written
texts and LLM-generated texts in the HC3 and
GPT3.5-Mixed.

Table 1 presents the average number of nodes
in the syntax tree, the average height of the root
node, the average depth of nodes per tree, and the
average length of the texts in the dataset. The first
three are some basic characteristics of the graph
structure. It can be observed that, aside from the
average number of nodes in the GPT3.5-Mixed
dataset, other features show noticeable differences
between human-written and LLM-generated texts.
This allows the GCN to learn these differences and
classify correctly. Furthermore, the difference in
length between the two datasets also has a certain
impact in the experiments, shown in the Appendix
B. Detailed analysis and distribution graphs can be
found in the Appendix C.

4https ://huggingface.co/datasets/ZachW/
MGTDetect_CoCo
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Dataset HC3 GPT3.5-Mixed

Ratio 0% 5% 10% 20% 30% 0% 5% 10% 20% 30%
RoBERTa 0.9380 0.5800 0.5570 0.5270 0.5080 0.8927 0.5055 0.4995 0.4945 0.4945
DetectGPT 0.8350 0.8010 0.7720 0.7030 0.6580 0.6060 0.5860 0.5820 0.5680 0.5500
CoCo 0.9981 0.5432 0.5421 0.5356 0.5333 1.0000 0.6995 0.6893 0.6829 0.6805
PRDetect 0.9850 0.9870 0.9880 0.9890 0.9880 09610 0.9570 0.9570 0.9590 0.9610

Table 2: Accuracy of different models on LLM-generated texts and perturbed texts. CoCo demonstrated the
best performance on original texts. PRDetect showed the highest overall effectiveness, exhibiting state-of-the-art

performance on perturbed texts.

5 Experiments

5.1 Baselines

In our study, we compared PRDetect with sev-
eral state-of-the-art detectors designed for LLM-
generated text identification.

RoBERTa (Liu et al., 2019) is an advanced NLP
model that improves upon BERT (Devlin et al.,
2018). In this paper, we employ a version of
RoBERTa that has been fine-tuned by OpenAl°.

DetectGPT (Mitchell et al., 2023) is a zero-shot
LLM-text detection method.

CoCo (Liu et al., 2023) leverages entity graph
for training a text detection model.

5.2 Text Perturbation

While constructing the syntax tree in subsection
3.1, we obtain the part of speech for each word.
Selecting a category of words for marking. Then,
we employ WordNet, which is part of the NLTK®,
to obtain a list of synonyms for a word. From this
list, we opt to replace the original word with the
first synonym listed.

When we replace the synonyms for adjectives,
we select proportions of 5%, 10%, 20%, and 30%.
The paper also compares other word-level pertur-
bations in Appendix A.

5.3 Main Experiments

We primarily compared the detection accuracy
of PRDetect with other baselines on both LLM-
generated texts and perturbed texts.

Detecting LLLM-generated texts. The results of
our experiments are detailed in Table 2. PRDetect
achieved an accuracy rate of 98.5% on the HC3
dataset and 96.1% on the GPT3.5-Mixed dataset,

Shttps://github.com/openai/
gpt-2-output-dataset/tree/master/detector
®https://github.com/nltk/nltk

demonstrating its effectiveness in detecting LLM-
generated text. Both PRDetect and CoCo, which
utilized GCN to learn graph features, outperformed
the other two methods based on semantic features,
which proves the effectiveness of graph information
in detecting text. DetectGPT faces challenges in
detecting long texts, which is an issue noted on its
official Github’.

Detecting perturbed texts. We perturbed the
test set texts according to the method described
in Section 5.2. Table 2 demonstrates that PRDe-
tect achieves the highest detection accuracy for
perturbed texts. Moreover, as the degree of pertur-
bation varies, the accuracy of PRDetect declines
by no more than 0.05%. In contrast, the other
baselines experience a decrease in accuracy as the
perturbation intensity increases.

In summary, PRDetect demonstrates a strong
capacity to resist text perturbation while maintain-
ing a high detection accuracy rate. In Section A,
we will further compare them with other perturba-
tion methods, showcasing PRDetect’s perturbation
robustness.

6 Conclusion

In this paper, we propose PRDetect, a perturbation-
robust detection method for LLM-generated text,
which leverages differences in syntax trees to train
a GCN. Not only can it effectively identify gen-
erated text, but also possesses strong perturbation
robustness. To mimic the polishing of generated
text before its actual use, we propose a perturbation
method based on synonym replacement. PRDetect
is minimally affected by text perturbation on the
HC3 and GPT3.5 datasets and its accuracy is sig-
nificantly higher than that of other baselines.

7https://github.com/eric—mitchell/detect—gpt/
issues/4
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Limitations

Although PRDetect demonstrates robustness
against perturbations, there are still some imper-
fections that need to be addressed.

The types of perturbations. The text perturba-
tions discussed in this paper are all the token-level.
We have not tested methods such as backtranslation
and rewriting at the sentence-level. There are two
reasons: First, sentence-level perturbations have a
significant impact on the graph structure, making it
difficult to detect using the approach of this paper.
Second, it is challenging to specify the proportion
of perturbation at the sentence-level, and texts with
perturbations exceeding 50% are difficult to label.
The issue of sentence-level perturbations requires
further definition and analysis.

Different Length and Cross-Dataset Detec-
tion. Short text detection remains a challenge for
most classifiers. As shown in the Appendix B, the
performance of PRDetect, when trained on long
texts, significantly declines when the text length
falls below 300 characters, with accuracy levels
between 0.6 and 0.75. However, when trained on
the short text dataset HC3, the performance drop
is not as pronounced. Furthermore, we have ob-
served that model trained with short texts achieves
an accuracy of 0.87 when detecting long texts. Con-
versely, when model trained on long texts is used
to detect short texts, the accuracy is only 0.73. The
specific reasons behind this discrepancy are yet to
be discovered.
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A Other Perturbation Types

Model  Original Insert Repeat Replace Detele
CoCo 0.9981 0.4733 0.5380 0.4713 0.5212
PRDetect 0.9850 0.9830 0.9820 0.7980 0.7470

Table 3: Accuracy on four common types of perturba-
tion.

In some papers (Liu et al., 2023, 2024b), they
randomly insert, delete, repeat or replace words
to perturb the text. We applied these four types of
perturbations at 25% ratio on the HC3 test dataset.

As shown in Table 3, PRDetect is hardly affected
by Insert and Repeat perturbations, as these modifi-
cations have minimal impact on the original syntax
tree. For the other two methods that alter the syntax
tree, the detection accuracy of PRDetect declines
but still maintains good performance.

B Short Text Detection

Length Original [300,400) [200,300) [150,200) [100,150)
Acc 09610 07450 07575  0.6900  0.6200
FI 09617 07571 07696 07373 0.6996

Table 4: The results of PRDetect in short text detection
experiments.

The detection of short texts poses significant
challenges for LLM text detectors (McGovern et al.,
2024).

As shown in Table 4, the performance of PRDe-
tect gradually decreases with the reduction in
length. This is because the average length of the
texts in the GPT3.5-Mixed dataset is quite long,
making the decrease in performance on short texts
more pronounced.

C Text analysis in the dataset
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Figure 3: The length distribution of the dataset. To
facilitate presentation, some excessively long instances
were excluded when creating the graph.
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Figure 4: The average node depth in the syntactic trees
of the dataset.
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Figure 5: The average number of nodes in the syntactic
trees of the dataset.

Figure 3 demonstrates the difference in length be-
tween human-written and machine-generated texts
in the two datasets. Figure 4, 5, 6 demonstrate the
differences in syntax trees between human-written
and machine-generated texts in the datasets. The
distribution differences in syntax trees determine
the effectiveness of the methodology employed in
this experiment.
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Figure 6: The average height of root nodes in the syn-
tactic trees of the dataset.
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