
Under review as submission to TMLR

Extending Path-Dependent NJ-ODEs to Noisy Observations
and a Dependent Observation Framework

Anonymous authors
Paper under double-blind review

Abstract

The Path-Dependent Neural Jump ODE (PD-NJ-ODE) (Krach et al., 2022) is a model for
predicting continuous-time stochastic processes with irregular and incomplete observations.
In particular, the method learns optimal forecasts given irregularly sampled time series of
incomplete past observations. So far the process itself and the coordinate-wise observation
times were assumed to be independent and observations were assumed to be noiseless. In this
work we discuss two extensions to lift these restrictions and provide theoretical guarantees
as well as empirical examples for them.

1 Introduction

While the online prediction1 of regularly observed or sampled time series is a classical machine learning problem
that can be solved with recurrent neural networks (RNNs) as proven e.g. by Schäfer & Zimmermann (2006),
the forecasting of continuous-time processes with irregular observation has long been an unsolved problem.
The Neural Jump ODE (NJ-ODE) (Herrera et al., 2021) was the first framework with theoretical guarantees
to converge to the optimal prediction in this setting. However, it was restricted to Markovian Itô-diffusions
with irregular but complete (i.e., all coordinates are observed at the same time) observations. This was
heavily generalised with the Path-Dependent NJ-ODE (Krach et al., 2022), where the convergence guarantees
hold for very general (non-Markovian) stochastic processes with irregular and incomplete observations. Still,
the process itself and the observation framework were assumed to be independent and observations were
assumed to be noisefree. In practice both of these assumptions are often unrealistic. E.g., for medical patient
data collected at a hospital irregularly over time such as Goldberger et al. (2000), measurements are never
noise-free and the decision whether to make a measurement depends on the status of the patient. Therefore,
the focus of this work is to lift those two restrictions. A detailed outline is given below. For more related
work we refer the interested reader to the respective sections in Herrera et al. (2021) and Krach et al. (2022).

1.1 Outline of the Work

We introduce two extensions of the PD-NJ-ODE (Krach et al., 2022) that can be used separately or jointly.
To highlight the needed adjustments for each of the extensions, we first recall the setup, model and results
from Krach et al. (2022) (Section 2) and then introduce the respective changes in the assumptions and
proofs for noisy observations (Section 3) and dependence between the underlying process and the observation
framework (Section 4) separately. We focus on re-proving the main results (Krach et al., 2022, Theorem 4.1
and Theorem 4.4) in the new settings, by giving the arguments which need to be adjusted while skipping
those which remain unchanged. In Appendix B we give the full proof for the most general result with both
extensions, making the paper self-contained. We remark here that also the results for the conditional variance
and for stochastic filtering (Krach et al., 2022, Section 5 and 6) follow in these extended settings similarly as
the main results. Due to the similarity, we do not elaborate on this but leave the details to the interested
reader. Finally, in Section 5 we show empirically that the PD-NJ-ODE performs well in these generalised
settings.

1With online prediction we mean that we use the currently available information to predict until we get new information. As
soon as new information becomes available, it is part of the available information and therefore taken into account for subsequent
predictions.
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2 Recall: the PD-NJ-ODE

We start by recalling the most relevant parts of the problem setting of the PD-NJ-ODE. For more details,
please refer to Krach et al. (2022).

For dX ∈ N and T > 0 we consider a filtered probability space (Ω, F ,F := {Ft}0≤t≤T ,P) with an adapted
càdlàg stochastic process X := (Xt)t∈[0,T ] taking values in RdX . We denote its running maximum process by
X⋆ and the random set of its jump times by J . The random observation framework is defined independently
of X on another filtered probability space (Ω̃, F̃ , F̃ := {F̃t}0≤t≤T , P̃) by

• n : Ω̃ → N≥0, an F̃-measurable random variable, the random number of observations,

• K := sup
{

k ∈ N | P̃(n ≥ k) > 0
}

∈ N ∪ {∞}, the maximal value of n,

• ti : Ω̃ → [0, T ] ∪ {∞} for 0 ≤ i ≤ K, sorted stopping times, which are the random observation times,
with ti(ω̃) := ∞ if n(ω̃) < i,

• τ : [0, T ] × Ω̃ → [0, T ], (t, ω̃) 7→ τ(t, ω̃) := max{ti(ω̃)|0 ≤ i ≤ n(ω̃), ti(ω̃) ≤ t}, the last observation
time before a certain time t, and

• M = (Mk)0≤k≤K , the observation mask, which is a sequence of random variables on (Ω̃, F̃ , P̃) taking
values in {0, 1}dX such that Mk is F̃tk

-measurable. The j-th coordinate of the k-th element of the
sequence M , i.e., Mk,j , signals whether Xtk,j , denoting the j-th coordinate of the stochastic process
at observation time tk is observed. By abuse of notation we also write Mtk

:= Mk.

In the following we consider the filtered product probability space (Ω × Ω̃, F ⊗ F̃ ,F ⊗ F̃,P × P̃) and the
filtration of the currently available information A := (At)t∈[0,T ] defined by

At := σ (Xti,j , ti, Mti |ti ≤ t, j ∈ {1 ≤ l ≤ dX |Mti,l = 1}) ,

where σ(·) denotes the generated σ-algebra. We note that At = Aτ(t) for all t ∈ [0, T ]. The conditional
expectation process of X, which is its L2-optimal prediction (Krach et al., 2022, Proposition 2.5), is defined as
X̂ = (X̂t)0≤t≤T , with X̂t := EP×P̃[Xt|At]. Moreover, for any 0 ≤ t ≤ T the j-th coordinate of the interpolated
observation process X̃≤t ∈ R2dX at time 0 ≤ s ≤ T is defined by

X̃≤t
s,j :=



Xtl(s,t),j
tℓ(s,t)−s

tℓ(s,t)−tℓ(s,t)−1
+ Xtℓ(s,t),j

s−tℓ(s,t)−1
tℓ(s,t)−tℓ(s,t)−1

, if tℓ(s,t)−1 < s ≤ tℓ(s,t) and
1 ≤ j ≤ dX ,

Xtl(s,t),j , if s ≤ tℓ(s,t)−1 and 1 ≤ j ≤ dX ,

utl(s,t),j−dX
+ s−tℓ(s,t)−1

tℓ(s,t)−tℓ(s,t)−1
, if tℓ(s,t)−1 < s ≤ tℓ(s,t) and

dX < j ≤ 2dX ,

utl(s,t),j−dX
, if s ≤ tℓ(s,t)−1 anddX < j ≤ 2dX ,

where ut,j :=
∑K

k=0 Mk,j1tk≤t is the jump process that counts the coordinate-wise observations and

l(s, t) := l(s, t, j) := max{0 ≤ l ≤ n|tl ≤ min(s, t), Mtl,j = 1},

ℓ(s, t) := ℓ(s, t, j) := inf{1 ≤ ℓ ≤ n|s ≤ tℓ ≤ t, Mtℓ,j = 1},

with t∞ := T . The paths of X̃≤t belong to BV c([0, T ]), the set of continuous RdX -valued paths of bounded
variation on [0, T ]. Since X̃≤τ(t) ∈ Aτ(t) carries all available information, the Doob-Dynkin Lemma (Taraldsen,
2018, Lemma 2) implies the existence of measurable functions Fj : [0, T ] × [0, T ] × BV c([0, T ]) → R such that
X̂t,j = Fj(t, τ(t), X̃≤τ(t)). In Krach et al. (2022) convergence of the PD-NJ-ODE model to the conditional
expectation X̂ was shown under the following assumptions.
Assumption 2.1. We assume that
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1. for every 1 ≤ k, l ≤ K, Mk is independent of tl and of n, P̃(Mk,j = 1) > 0 and M0,j = 1 for all
1 ≤ j ≤ dX (every coordinate can be observed at any observation time and X is completely observed
at 0) and |Mk|1 > 0 for every 1 ≤ k ≤ K P̃-almost surely (at every observation time at least one
coordinate is observed),

2. the probability that any two observation times are closer than ϵ > 0 converges to 0 when ϵ does, i.e.,
if δ(ω̃) := min0≤i≤n(ω̃) |ti+1(ω̃) − ti(ω̃)| then limϵ→0 P̃(δ < ϵ) = 0,

3. almost surely X is not observed at a jump, i.e., (P× P̃)(tj ∈ J |j ≤ n) = (P× P̃)(∆Xtj ̸= 0|j ≤ n) = 0
for all 1 ≤ j ≤ K,

4. Fj are continuous and differentiable in their first coordinate t such that their partial derivatives with
respect to t, denoted by fj, are again continuous and there exists a B > 0 and p ∈ N such that for
every t ∈ [0, T ] the functions fj , Fj are polynomially bounded in X⋆, i.e.,

|Fj(τ(t), τ(t), X̃≤τ(t))| + |fj(t, τ(t), X̃≤τ(t))| ≤ B(X⋆
t + 1)p,

5. X⋆ is L2p-integrable, i.e., E[(X⋆
T )2p] < ∞,

6. the random number of observations n is integrable, i.e., EP̃[n] < ∞.

Moreover, relaxations on the assumption of observing X0 completely were discussed in Krach et al. (2022,
Remark 2.3).
Definition 2.2. Let c0 := c0(k) := (P̃(n ≥ k))−1. A distance between càdlàg A-measurable processes
Z, ξ : [0, T ] × (Ω × Ω̃) → Rr is defined through the pseudo metrics

dk(Z, ξ) = c0(k)EP×P̃
[
1{n≥k}|Ztk− − ξtk−|

]
, (1)

for 1 ≤ k ≤ K and two processes are called indistinguishable, if dk(Z, ξ) = 0 for all 1 ≤ k ≤ K.

The path-dependent generalisation of the Neural Jump ODE model (Herrera et al., 2021) uses the truncated
signature transformation πm (Krach et al., 2022, Definition 3.4) and bounded output neural networks f(θ̃,γ),
where θ̃ are the weights of the standard neural network and γ > 0 is the trainable parameter of the bounded
output activation function (Krach et al., 2022, Definition 3.12)

Γγ : Rd → Rd, x 7→ x · min
(

1,
γ

|x|2

)
,

applied to the output of the standard neural network. By N we denote the set of all bounded output neural
networks based on a set Ñ of standard neural networks. In the following we assume that Ñ is a set of standard
feedforward neural networks with id ∈ Ñ that satisfies the standard universal approximation theorem with
respect to the supremum-norm on compact sets, see for example Hornik (1991, Theorem 2).
Definition 2.3. The Path-Dependent Neural Jump ODE (PD-NJ-ODE) model is given by

H0 = ρθ2 (0, 0, πm(0), X0) ,

dHt = fθ1

(
Ht−, t, τ(t), πm(X̃≤τ(t) − X0), X0

)
dt

+
(

ρθ2

(
Ht−, t, πm(X̃≤τ(t) − X0), X0

)
− Ht−

)
dut,

Yt = g̃θ̃3
(Ht).

(2)

The functions fθ1 , ρθ2 ∈ N are bounded output feedforward neural networks and g̃θ̃3
∈ Ñ is a feedforward

neural network with trainable parameters θ = (θ1, θ2, θ̃3) ∈ Θ, where θi = (θ̃i, γi) for i ∈ {1, 2} and Θ is the
set of all possible weights for the PD-NJ-ODE; m ∈ N is the signature truncation level and u is the jump
process counting the observations defined as ut :=

∑K
k=1 1tk≤t.
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The existence and uniqueness of a solution of (2) is implied by Protter (2005, Thm. 7, Chap. V). To
emphasize the dependence of the PD-NJ-ODE output Y on θ and X we write Y θ(X).

The objective function (cf. equivalent objective function from Remark 4.7 & Appendix A.1.4 of Krach et al.
(2022)) for the training of the PD-NJ-ODE is defined as

Ψ :D → R,

Z 7→ Ψ(Z) := EP×P̃

[
1
n

n∑
i=1

(|Mi ⊙ (Xti − Zti)|2 + |Mi ⊙ (Xti − Zti−)|2)2

]
, (3)

Φ : Θ → R, θ 7→ Φ(θ) := Ψ(Y θ(X)), (4)

where ⊙ is the element-wise multiplication (Hadamard product) and D the set of all càdlàg RdX -valued
A-adapted processes on the product probability space Ω × Ω̃. Moreover, for N ∈ N and X(j) ∼ X, M (j) ∼ M

and (n(j), t
(j)
1 , · · · , t

(j)
n(j)) ∼ (n, t1, · · · , tn) i.i.d. random processes (respectively variables) for 1 ≤ j ≤ N the

Monte Carlo approximation of (4) is

Φ̂N (θ) := 1
N

N∑
j=1

1
n(j)

n(j)∑
i=1

(∣∣∣∣M (j)
i ⊙

(
X

(j)
t

(j)
i

− Y θ,j

t
(j)
i

)∣∣∣∣
2

+
∣∣∣∣M (j)

i ⊙
(

X
(j)
t

(j)
i

− Y θ,j

t
(j)
i

−

)∣∣∣∣
2

)2
, (5)

where Y θ,j := Y θ(X(j)).

Based on these loss functions, the following convergence guarantees can be derived, where Θ̂m ⊂ Θ is
defined as the set of possible weights for the 3 (bounded output) neural networks, such that their widths
are at most m and such that the truncated signature of level m or smaller is used. We use Θm := {θ =
((θ̃1, γ1), (θ̃2, γ2), θ̃3) ∈ Θ̂m | |θ̃i|2 ≤ m, γi ≤ m} ⊂ Θ̂m, which is a compact subset of Θm.
Theorem 2.4. Let θmin

m ∈ Θmin
m := argminθ∈Θm

{Φ(θ)} for every m ∈ N. If Assumption 2.1 is satisfied, then,
for m → ∞, the value of the loss function Φ (4) converges to the minimal value of Ψ (3) which is uniquely
achieved by X̂ up to indistinguishability, i.e.,

Φ(θmin
m ) m→∞−−−−→ min

Z∈D
Ψ(Z) = Ψ(X̂).

Furthermore, for every 1 ≤ k ≤ K we have that Y θmin
m converges to X̂ in the metric dk (1) as m → ∞.

Let θmin
m,N ∈ Θmin

m,N := argminθ∈Θm
{Φ̂N (θ)} for every m, N ∈ N. Then, for every m ∈ N, (P × P̃)-a.s.

Φ̂N
N→∞−−−−→ Φ uniformly on Θm.

Moreover, for every m ∈ N, (P × P̃)-a.s.

Φ(θmin
m,N ) N→∞−−−−→ Φ(θmin

m ) and Φ̂N (θmin
m,N ) N→∞−−−−→ Φ(θmin

m ).

In particular, one can define an increasing sequence (Nm)m∈N in N such that for every 1 ≤ k ≤ K we have
that Y θmin

m,Nm converges to X̂ in the metric dk as m → ∞.

3 PD-NJ-ODE with Noisy Observations

So far the PD-NJ-ODE model does not support measurement noise in the form of i.i.d. noise terms that are
added to each observation. Using the stochastic filtering approach described in Krach et al. (2022, Section 6)
would be a possibility to include (discrete or continuous) noise. However, this requires strong additional
assumptions (i.e., the knowledge of the joint distribution of the process and the noise or equivalently training
samples split up into the noise-free observations and the noise terms) which are not satisfied easily. Therefore,
we want to adapt our framework, such that it can be applied to noisy observations, while only imposing weak
assumptions that are easily satisfied.
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In this section, we introduce observation noise (e.g., measurement-noise), i.e., i.i.d. noise terms ϵi that are
added to the process X at each observation time ti leading to the noisy observations Oti := Xti + ϵi. Even
though we only observe the Oti , the goal still is to predict X, in particular to compute E[Xt | Ot0 , . . . , Oτ(t)].

Inspecting the PD-NJ-ODE model and its loss function (replacing X by O), we notice two things. First that
there is no reason why the model architecture should not be able to learn this modified objective, which
should still have the same properties. And secondly that the loss function needs to be modified. Indeed, the
first term of the loss function would train the model to jump to the noisy observation Oti

. However, this
would not be the correct behaviour, since in general E[Xti

| Ot0 , . . . , Oti
] ̸= Oti

as the conditional expectation
filters out the noise as good as possible. Therefore we drop the first term of the loss function.

On the other hand, it is easy to see that the conditional expectations of X and O coincide in between observation
times2 if the observation noise ϵi is independent of the observations and has mean 0. Therefore, the second
term of the loss function is minimised if the model learns the conditional expectation E[Xt | Ot0 , . . . , Oτ(t)]
between observation times.

Along these lines it turns out that it is enough to omit the first term of the loss function to recover the original
results of Theorem 2.4 under noisy observations. In particular, to optimize the loss, the model learns to jump
to the conditional expectation of X at observation times even without the respective loss term. Indeed, since
it evolves continuously after an observation it would otherwise be different from the optimal prediction right
after the observation time and therefore not optimizing the loss. In the following this is formalised.

3.1 Setting with Noisy Observations

The process X as well as the n, K, ti, τ, M are defined as in Section 2. Additionally, we define

• (ϵk)0≤k≤K , the observation noise, which is a sequence of i.i.d. random variables on (Ω̃, F̃ , P̃) taking
values in RdX ,

• Otk
:= Xtk

+ ϵk for 0 ≤ k ≤ n, the noisy observation sequence.

Since the goal is to predict X given the observations Oti
, we redefine the filtration of the currently available

information via
At := σ (Oti,j , ti, Mti |ti ≤ t, j ∈ {1 ≤ l ≤ dX |Mti,l = 1}) ,

such that X̂t = EP×P̃[Xt|At] is the conditional expectation of X given the noisy observations. We define
Õ≤t in the same way as X̃≤t and note that similarly as before there exist measurable functions Fj such that
X̂t,j = Fj(t, τ(t), Õ≤τ(t)). We need the following slight modification of Assumption 2.1.
Assumption 3.1. We assume that assumptions 1, 2, 3 and 5 of Assumption 2.1 hold and additionally that

4. Fj are continuous and differentiable in their first coordinate t such that their partial derivatives with
respect to t, denoted by fj, are again continuous and there exists a B > 0 and p ∈ N such that for
every t ∈ [0, T ] the functions fj , Fj are polynomially bounded in X⋆, i.e.,

|Fj(τ(t), τ(t), Õ≤τ(t))| + |fj(t, τ(t), Õ≤τ(t))| ≤ B(X⋆
t + 1)p + B

n∑
i=0

|ϵi|,

6. n is square-integrable, i.e., EP̃[|n|2] < ∞.

7. the i.i.d. random noise variables ϵk are independent of X, n, M, (ti)1≤i≤K , are centered and square-
integrable, i.e., EP̃[ϵk] = 0 and EP̃[|ϵk|2] < ∞,

Remark 3.2. The relaxations on the assumption of observing X0 completely discussed in Krach et al. (2022,
Remark 2.3) can equivalently be applied in this setting here.

2Note that, in general we have E[Xti | Ot0 , . . . , Oti ] ̸= E[Oti | Ot0 , . . . , Oti ] = Oti at observation times, in contrast to their
equality between observation times.
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In this setting, the PD-NJ-ODE uses the noisy observations Oti
and Õ≤τ(t) as inputs instead of Xti

and
X̃≤τ(t). Moreover, we redefine the objective function as described before as

Ψ :D → R, Z 7→ Ψ(Z) := EP×P̃

[
1
n

n∑
i=1

|Mi ⊙ (Oti − Zti−)|22

]
, (6)

Φ : Θ → R, θ 7→ Φ(θ) := Ψ(Y θ(X)), (7)

and its Monte Carlo approximation accordingly.

3.2 Convergence Theorem with Noisy Observations

In the setting defined in Section 3.1, Theorem 2.4 holds equivalently as before. To prove this, we first need to
adjust Krach et al. (2022, Lemma 4.2) for this setting.
Lemma 3.3. For any A-adapted process Z it holds that

EP×P̃

[
1
n

n∑
i=1

|Mti ⊙ (Oti − Zti−)|22

]

= EP×P̃

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (Oti

− X̂ti−)
∣∣∣2
2

]
+ EP×P̃

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (X̂ti− − Zti−)

∣∣∣2
2

]
.

Proof. First note that by Assumption 3.1 point 3 we have that Xti
= Xti− almost surely and when defining

Oti− := Xti− + ϵi we therefore also have that Oti = Oti− almost surely. Similarly as in Krach et al. (2022,
Lemma 4.2), we can derive for Ôti− := EP×P̃[Oti− | Ati−] that

EP×P̃

[
1
n

n∑
i=1

|Mti
⊙ (Oti− − Zti−)|22

]

= EP×P̃

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (Oti− − Ôti−)
∣∣∣2
2

]
+ EP×P̃

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (Ôti− − Zti−)
∣∣∣2
2

]
.

To conclude the proof, it is enough to note that

Ôti− = X̂ti− + E[ϵi|Ati−] = X̂ti− + E[ϵi] = X̂ti−, (8)

using that ϵi has expectation 0 and is independent of Ati−.

In the following we sketch the proof of Theorem 2.4 in the setting of noisy observations, by only outlining
those parts of it that need to be changed in comparison with the original proof in Krach et al. (2022). A full
proof is given in Appendix B.

Sketch of Proof of Theorem 2.4 for noisy observations. First, it follows directly from Lemma 3.3 that
Ψ(X̂) = minZ∈D Ψ(Z), i.e., that X̂ is a minimizer of the redefined objective function Ψ. Secondly, again by
Lemma 3.3, we have for any process Z ∈ D that

Ψ(Z) = Ψ(X̂) + EP×P̃

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (X̂ti− − Zti−)

∣∣∣2
2

]
,

hence Ψ(Z) > Ψ(X̂) follows as before if Z is not indistinguishable from X̂, meaning that X̂ is the unique
minimizer of Ψ.
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Under Assumption 3.1 the approximation of the functions fj , Fj by bounded output feedforward neural
networks works similarly as before, with the slight adjustment that their differences are now upper bounded
by

U := 3B

(
(X⋆

T + 1)p +
n∑

i=0
|ϵi|

)
.

Defining
cm := c ε(T + 1)dX + c(T + 1)dXU

(
1{X⋆

T
≥1/ε} + 1{n≥1/ε} + 1{δ≤ε}

)
it follows that for all t ∈ [0, T ] we have

∣∣∣Y θ∗
m

t − X̂t

∣∣∣
2

≤ cm. Convergence of Φ(θ⋆
m) to Ψ(X̂) then follows

similarly as before, when noting that by Assumption 3.1

E

(X⋆
t + 1)2p +

(
n∑

i=0
|ϵi|

)2
 ≤ E

[
(X⋆

t + 1)2p
]

+ E[n2]E
[
|ϵ0|2

]
< ∞, (9)

using Cauchy–Schwarz and that the ϵi are i.i.d. and independent of n for the first step and the integrability
of X⋆, ϵ0 and n2 for the upper bound. Moreover, the convergence of dk(X̂, Y θ⋆

m) → 0 follows as before.

Finally, the remaining claims of the theorem (including the Monte Carlo convergence) also hold similarly as
before upon replacing Xti

by Oti
and noting that the integrability of supθ h(θ, ξj) follows from (9).

3.3 More General Noise Structure & Conditional Moments

Revisiting the proof in Section 3.2, we see that the noise terms need neither be independent nor centered. If
we assume that the conditional bias of the noise,

βi(Õ≤τ(t)) := E[ϵi|Ati−],

is a known function of the observations (using Doob-Dynkin Lemma (Taraldsen, 2018, Lemma 2) for its
existence), then we can modify the objective function by subtracting it. This leads to

Ψ :D → R, Z 7→ Ψ(Z) := EP×P̃

[
1
n

n∑
i=1

∣∣Mi ⊙
((

Oti − βi(Õ≤ti−1)
)

− Zti−
)∣∣2

2

]
. (10)

Revisiting (8), which is the only part of the proof where we needed the noise terms to be centered, we see that

E
[(

Oti− − βi(Õ≤ti−1)
)

|Ati−
]

= X̂ti− + E[ϵi | Ati−] − βi = X̂ti−. (11)

This implies that the statement of Lemma 3.3 holds equivalently under the reduced assumption of a known
conditional bias function, when using the adjusted loss (10). Additionally assuming that E

[
(
∑n

i=0 |ϵi|)2
]

< ∞,
the following result follows as before.
Corollary 3.4. In the setting described in this sub-section (i.e., arbitrary known mean of the noise and no
independence assumption on the noise), which is a generalisation of the setting in Section 3.1, Theorem 2.4
holds equivalently as before when using the objective function (11).

The following remark explains how Corollary 3.4 can be used to predict conditional higher moments (instead
of only the conditional expectation) under certain assumptions.
Remark 3.5. This result makes it possible to compute the conditional moments of X given the noisy
observations, which doesn’t work in the setting of Section 3.1. In particular, we consider observations
Oti− = Xti− + ϵi, where we assume that

• ϵi is independent of Ati−,

• ϵi is conditionally independent of Xti− given Ati−

7
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• and ϵi have known finite moments.

Remark that Proposition A.8 implies that the first two assumptions are in particular satisfied if ϵi is independent
of σ(Ati−, Xti−). The binomial theorem implies for any q ∈ N

Oq
ti− = Xq

ti− +
q∑

j=1

(
q

j

)
Xq−j

ti− ϵj
i .3

We interpret the entire sum as the observation noise and accordingly define the conditional bias of the
observation noise of the q-th moment as

βq
i := E

 q∑
j=1

(
q

j

)
Xq−j

ti− ϵj
i | Ati−

 =
q∑

j=1

(
q

j

)
E[Xq−j

ti− |Ati−]E[ϵj
i ],

where we use the assumptions on ϵi together with Proposition A.7 for the second inequality.

Then an inductive argument shows that βq
i is a known function of the observations, using the assumption

that the moments of ϵi are known. Indeed, to compute βq
i the conditional expectations of smaller moments

E[Xq−j
ti− |Ati−] need to be computed, which can be done according to the induction hypothesis (note that the

base case follows directly from Corollary 3.4 and the assumptions on ϵi). Therefore, Corollary 3.4 implies
that we can compute E[Xq

ti−|Ati−] (assuming that we reach the limit where the PD-NJ-ODE output equals
the conditional expectation). In case of an exponential moment assumption E[exp(λ|Xti−|)] < ∞ for some
λ > 0 we can therefore infer the conditional law of Xti−.

3.4 Examples

In principle, all the examples presented in Krach et al. (2022, Section 7) are valid examples for this setting
when adding some type of i.i.d. observation noise satisfying our assumptions, as e.g. Gaussian or uniform
noise. However, it is important to note that the (true) conditional expectation is not the same, since we
now condition on the noisy observations Oti

instead of the original observations Xti
. Therefore, we give one

explicit example where we compute the conditional expectation in the noisy observation setting.

3.4.1 Brownian Motion with Gaussian Observation Noise

Let X := W be a standard Brownian motion and let ϵ0 = 0, ϵi ∼ N(0, σ2) for i ≥ 1 be the i.i.d. noise terms
for some σ > 0. Then Oti

= Xti
+ ϵi are the observations. Clearly, all integrability assumptions are satisfied

by X and ϵi (cf. Krach et al. (2022, Section 7.6)). To compute the true conditional expectations we first note
that the independent increments property of the Brownian motion imply for tk ≤ t < tk+1

E[Xt|At] = E[Wt − Wtk
|Atk

] + E[Wtk
|Atk

] = E[Wtk
|Atk

] = E[Wtk
|Ot1 , . . . , Otk

],

and therefore, f(s, τ(t), Õ≤τ(t)) = 0. Since W is a Brownian motion and ϵi are independent i.i.d. Gaussian
noise terms, we know that

v := (Ot1 , . . . , Otk
, Wtk

)⊤ ∼ N(0, Σ)

where
Σ =

(
Σ11 Σ12
Σ21 Σ22

)
∈ R(k+1)×(k+1),

with Σ11 ∈ Rk×k and (Σ11)i,j = min(ti, tj) + σ2
1{i=j}, Σ⊤

12 = Σ21 = (t1, . . . , tk) ∈ R1×k and Σ22 = tk. Then
the conditional distribution of (Wtk

| Ot1 , . . . , Otk
) is again normal with mean µ̂ := Σ21Σ−1

11 (Ot1 , . . . , Otk
)⊤

and variance Σ̂ := Σ22 − Σ21Σ−1
11 Σ12 (Eaton, 2007, Proposition 3.13). In particular we have

E[Xt|At] = E[Wtk
|Ot1 , . . . , Otk

] = µ̂.

3Note that q, j and q − j denote exponents here rather than superscripts.
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4 PD-NJ-ODE with Dependence between X and the Observation Framework

Recall that the observation mask process is given by M and the underlying process by X. In this section,
we remove the assumptions that the observation times are independent of X, and that M is independent
of the observation times and of X. In essence, the model is now defined on only one probability space P
and no independence assumptions between the random variables are made. Instead, we need some weaker
conditional independence assumptions to recover the results of Theorem 2.4.

4.1 Intuition on independence assumptions

In many real word applications the independence of the process X and the observation framework (i.e.,
(ti)i∈{1,...,n} and M) is heavily violated. Think for example of irregular measurements of patients’ health-
parameters taken at a hospital. Usually (expensive) measurements are only taken if any information on the
state X of the patient hints that this measurement might be relevant. In practice different measurements are
taken from different patients depending on observations of their state. This motivates the crucial importance
of lifting the independence assumption for real-world applications.

However, even in this paper, we cannot completely remove any independence assumption; we still need
conditional independence of the process X and the observation framework given all past observations (as
we will precisely formulate in item 7 in Assumption 4.1). In theory this is a perfectly realistic assumption,
if we assume that every piece of information the hospital gets from the patient is immediately logged as
an (possibly incomplete and noisy) observation of X; in this case the hospital does not have any further
information on X rather than the observations, which makes decisions whether a measurement should be
taken conditionally independent of X given the past observations (thus fulfilling item 7).

However, in real-world practical applications one has to be careful, since it can for example happen that the
hospital gets access to information on X that is not officially logged as an observation; e.g., imagine the
doctor measures the body temperature of a patient who told her that he feels feverish. If the doctor often
does not log the observation of feverish feelings of her patients, but only logs their temperature-measurements,
our model (and most other classical forecasting methods too) would learn a quite biased forecast of the
body temperature. For example, in the extreme case that the body temperature is only measured if patients
feel very feverish, most measurements will give a high body temperature, which leads our model to always
predicting a high body temperature (i.e., the expected body temperature conditioned on feeling feverish and
all other past observations) even if the patient does not feel feverish. This problem can be mitigated in this
example, if the hospital also logs whether the patient feels feverish in a further coordinate of X. Then one
should first enter the feverish feeling of the patient as an observation and then enter the measurement of
the body temperature as the next observation with a (slightly) later time stamp. In this case one would
still have a problem with the conditional independence assumption if the patients mainly report feverish
feelings rather than the absence of such a feeling. This could be fixed if the software automatically logs the
absence of feverish feelings whenever they do not report a feverish feeling, if one can rely on the patients
always reporting the intervals of feverish feelings. In such practical situations one should be aware that even
our weakened, more realistic assumption of conditional independence is often not fully satisfied.

4.2 Setting with Dependence

To allow for dependence, we only consider the probability measure P and define X, n, K, ti, τ, M, At similar
as before, but all on the same probability space associated with P. For a random variable Z and a family of
sets B we use the natural notation for their smallest jointly generated sigma algebra σ(Z, B) := σ(Z) ∨ σ(B).
Then we need the following assumptions, where the main difference to the original Assumption 1 is in item 7
(and 8).
Assumption 4.1. We assume that

1. M0,j = 1 for all 1 ≤ j ≤ dX (X is completely observed at 0) and |Mk|1 > 0 for every 1 ≤ k ≤ K
P-almost surely (at every observation time at least one coordinate is observed),

9
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2. the probability that any two observation times are closer than ϵ > 0 converges to 0 when ϵ does, i.e.,
if δ(ω) := min0≤i≤n(ω) |ti+1(ω) − ti(ω)| then limϵ→0 P(δ < ϵ) = 0,

3. almost surely X is not observed at a jump, i.e., P(tj ∈ J | j ≤ n) = P(∆Xtj ̸= 0 | j ≤ n) = 0 for all
1 ≤ j ≤ K,

4. Fj are continuous and differentiable in their first coordinate t such that their partial derivatives with
respect to t, denoted by fj, are again continuous and there exists a B > 0 and p ∈ N such that for
every t ∈ [0, T ] the functions fj , Fj are polynomially bounded in X⋆, i.e.,∣∣∣Fj(τ(t), τ(t), X̃≤τ(t))

∣∣∣+
∣∣∣fj(t, τ(t), X̃≤τ(t))

∣∣∣ ≤ B(X⋆
t + 1)p,

5. X⋆ is L2p-integrable, i.e., E[(X⋆
T )2p] < ∞,

6. the random number of observations n is integrable, i.e., EP̃[n] < ∞,

7. for every 1 ≤ i ≤ n, Xti− is conditionally independent of σ(n, Mti
) given Ati−, and

8. for all 1 ≤ k ≤ K, 1 ≤ j ≤ dX there is some ηk,j > 0 such that P(Mk,j = 1 | σ(n, Atk−)) > ηk,j (i.e.,
given the currently known information and n, for each coordinate the probability of observing it at
the next observation time is positive).

Remark 4.2. The relaxations on the assumption of observing X0 completely discussed in Krach et al. (2022,
Remark 2.3) can equivalently be applied here.

We can use the original objective function (4) and its Monte Carlo approximation (5).

4.3 Convergence Theorem with Dependence

In the Setting defined in Section 4.2, Theorem 2.4 holds equivalently. Before we can show this we need
some additional results. First, we prove an extension of the L2-orthogonality result Herrera et al. (2021,
Proposition B.2).
Proposition 4.3. Let (Ω, F ,P) be a fixed probability space, and A, B be sub-σ-algebras such that B ⊆ A ⊆ F .
For some random variable X ∈ L2(Ω, F ,P) we define X̂ := E[X | A]. Then for every random variable
Z ∈ L2(Ω, A,P) with P(Z ̸= X̂) > 0 we have

E
[
|X − Z|22 | B

]
= E

[∣∣∣X − X̂
∣∣∣2
2

| B
]

+ E
[∣∣∣Z − X̂

∣∣∣2
2

| B
]

(12)

≥ E
[∣∣∣X − X̂

∣∣∣2
2

| B
]

, (13)

with strict inequality with positive probability.

The proof is based on Durrett (2010, Theorem 5.1.8). We focus on the one-dimensional case, though this can
easily be generalised to multiple dimensions via the 2-norm, as in Herrera et al. (2021).

Proof. We begin by expanding the left hand side.

E
[
|X − Z|2 | B

]
= E

[∣∣∣(X − X̂) − (Z − X̂)
∣∣∣2 | B

]
= E

[∣∣∣X − X̂
∣∣∣2 | B

]
+ E

[∣∣∣Z − X̂
∣∣∣2 | B

]
− 2E

[
(X − X̂)(Z − X̂) | B

]

10
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We now analyse the cross term, which expands to E[Z(X − X̂) | B] − E[X̂(X − X̂) | B]. Focusing on the
first term, we note that since Z ∈ L2(Ω, A,P), it holds that ZE[X | A] = E[ZX | A]. By taking expectation
(conditioned on B) of both sides, we get

E
[
ZX̂ | B

]
= E [ZE [X | A] | B] = E [E [ZX | A] | B] = E [ZX | B]

via the tower property, as B ⊆ A. Hence, E[Z(X − X̂) | B] = 0. Note that showing this only required that Z
is A-measurable. Since this is also satisfied by X̂ we directly have E[X̂(X − X̂) | B] = 0 and therefore the
cross term vanishes and the equality follows. The inequality holds since E[|Z − X̂|22 | B] is non-negative. We
therefore just need to show that the inequality is strict with positive probability. To this end, assume for the
sake of contradiction that E[|Z −X̂|22 | B] = 0 P-a.s, which implies (by the tower property) that E[|Z −X̂|22] = 0.
This is only possible if Z = X̂ P-a.s., which contradicts the assumption that P(Z ̸= X̂) > 0.

Next we re-prove Krach et al. (2022, Lemma 4.2) under the relaxed assumptions.
Lemma 4.4. For any A-adapted process Z ∈ L2(Ω,A,P) it holds that

E

[
1
n

n∑
i=1

|Mti ⊙ (Xti − Zti−)|22

]

= E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (Xti

− X̂ti−)
∣∣∣2
2

]
+ E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (X̂ti− − Zti−)

∣∣∣2
2

]
.

Proof.

E

[
1
n

n∑
i=1

|Mti ⊙ (Xti− − Zti−)|22

]
=

K∑
i=1

E
[

1
n
1{i≤n} |Mti ⊙ (Xti− − Zti−)|22

]

=
K∑

i=1
E
[
E
[

1
n
1{i≤n} |Mti

⊙ (Xti− − Zti−)|22 | σ(n, Mti
, Ati−)

]]

=
K∑

i=1
E

 1
n
1{i≤n}

dX∑
j=1

Mti,jE
[
|Xti−, − Zti−,j |2 | σ(n, Mti

, Ati−)
]

=
K∑

i=1
E

 1
n
1{i≤n}

dX∑
j=1

Mti,jE
[
|Xti−, − Zti−,j |2 | Ati−

] .

The first step follows by monotone convergence, the last by Lemma 4.5 below. Now we can conclude by first
applying the equality from Proposition 4.3 with A, B = Ati− and then reversing the above steps to arrive at
the desired form.

Lemma 4.5. Assume the context of Lemma 4.4. Then for all i, j it holds that

E
[
|Xti−,j − Zti−,j |2 | σ(n, Mti

, Ati−)
]

= E
[
|Xti−,j − Zti−,j |2 | Ati−

]
.

Proof. We prove this by showing that if we expand the |Xti−,j − Zti−,j |2 term, all three resulting terms can
just be conditioned on Ati−. This is a valid argument as X and Z are both assumed to be square-integrable.
Note that squaring a random variable plays no role in the information given by the σ-algebra it is being
conditioned on, and so we only need to analyse the terms Zti−,j , Xti−,j , and Xti−,jZti−,j . See Appendix A
for an overview of conditional independence and how it’s used here.

CASE Zti−,j : Z is A-adapted, and so Zti−,j is Ati−-measurable. Thus we have

E [Zti−,j | σ(n, Mti , Ati−)] = Zti−,j = E [Zti−,j | Ati−]

11
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as desired.

CASE Xti−,j : Assumption 4.1 point 7 implies that Xti−,j is conditionally independent of σ(n, Mti)
given Ati−. We therefore have by Proposition A.4

E [Xti−,j | σ(n, Mti , Ati−)] = E [Xti−,j | Ati−] .

CASE Xti−,jZti−,j : We combine the previous two ideas, namely that Zti−,j is Ati−-measurable and that
Xti−,j is conditionally independent of σ(n, Mti

) given Ati−. Thus

E [Xti−,jZti−,j | σ(n, Mti , Ati−)] = Zti−,jE [Xti−,j | σ(n, Mti , Ati−)]
= Zti−,jE [Xti−,j | Ati−] = E [Zti−,jXti−,j | Ati−] .

Combining these 3 cases proves the claim.

Finally, the following lemma shows that Assumption 4.1 point 8 can replace the independence assumption for
M and X in the context of the following lemma.
Lemma 4.6. There exists some c2(k) > 0 such that for any A-adapted process Z ∈ L2(Ω,A,P) we have

E
[
1{n≥k}

∣∣∣X̂tk− − Ztk−

∣∣∣
1

]
≤ 1

c2(k)E
[
1{n≥k}

∣∣∣Mtk
⊙ (X̂tk− − Ztk−)

∣∣∣
1

]
.

Proof. Assumption 4.1 point 8 states that 0 < ηk,j < P(Mk,j = 1 | σ(n, Atk−)) = E[Mtk,j | σ(n, Atk−)] for all
k, j. Let c2 := c2(k) := min1≤j≤dX

ηk,j , then c2 > 0 and

E
[
1{n≥k}

∣∣∣Mtk
⊙ (X̂tk− − Ztk−)

∣∣∣
1

]
=

dX∑
j=1

E
[
1{n≥k}Mtk,j

∣∣∣X̂tk−,j − Ztk−,j

∣∣∣]

=
dX∑
j=1

E
[
1{n≥k}

∣∣∣X̂tk−,j − Ztk−,j

∣∣∣E [Mtk,j | σ(n, Atk−)]
]

≥ c2 E
[
1{n≥k}

∣∣∣X̂tk− − Ztk−

∣∣∣
1

]
,

where we used that 1{n≥k}|X̂tk−,j − Ztk−,j | is σ(n, Atk−)-measurable in the second line and the definition of
c2 in the last line.

Now we are ready to prove Theorem 2.4 in the setting with dependence. In the following we give again
a sketch of the proof, by only outlining those parts of it that need to be changed in comparison with the
original proof in Krach et al. (2022) and refer the interested reader to the full proof in Appendix B.

Sketch of Proof of Theorem 2.4 with dependence. As before it follows that X̂ is a minimizer of Ψ. To show
its uniqueness, we first note that

EP×P̃

[
1{n≥k}

∣∣∣X̂tk− − Ztk−

∣∣∣
2

]
≤ c3

c2(k)EP×P̃

[
1{n≥k}

∣∣∣Mtk
⊙ (X̂tk− − Ztk−)

∣∣∣
2

]
(14)

is implied as before when using Lemma 4.6 instead of the independence. Then

EP×P̃

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (X̂ti− − Zti−)

∣∣∣2
2

]
≥
(

c2(k)
c0c1c3

)2
dk(X̂, Z)2 > 0,

follows as before, implying the uniqueness of X̂ as minimizer of Ψ.

The approximation of the functions fj , Fj also works as before. With this we have

min
Z∈D

Ψ(Z) ≤ Φ(θmin
m ) ≤ Φ(θ∗

m)

12
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= E

[
1
n

n∑
i=1

(∣∣∣Mti
⊙ (Xti

− Y
θ∗

m
ti

)
∣∣∣
2

+
∣∣∣Mti

⊙ (Y θ∗
m

ti
− Y

θ∗
m

ti−)
∣∣∣
2

)2
]

≤ E

[
1
n

n∑
i=1

(∣∣∣Mti
⊙ (X̂ti

− Y
θ∗

m
ti

)
∣∣∣
2

+
∣∣∣Mti

⊙ (Y θ∗
m

ti
− X̂ti

)
∣∣∣
2

+
∣∣∣Mti

⊙ (X̂ti
− X̂ti−)

∣∣∣
2

+
∣∣∣Mti

⊙ (X̂ti− − Y
θ∗

m
ti−)

∣∣∣
2

)2
]

≤ E

[
1
n

n∑
i=1

(∣∣∣X̂ti
− Y

θ∗
m

ti

∣∣∣
2

+
∣∣∣Y θ∗

m
ti

− X̂ti

∣∣∣
2

+
∣∣∣Mti

⊙ (X̂ti
− X̂ti−)

∣∣∣
2

+
∣∣∣X̂ti− − Y

θ∗
m

ti−

∣∣∣
2

)2
]

≤ E

[
1
n

n∑
i=1

(∣∣∣Mti ⊙ (Xti − X̂ti−)
∣∣∣
2

+ 3cm

)2
]

= Ψ(X̂) + E

[
1
n

n∑
i=1

(
6cm

∣∣∣Mti
⊙ (Xti

− X̂ti−)
∣∣∣
2

+ 9c2
m

)]

= Ψ(X̂) + E

[
1
n

n∑
i=1

6cm

∣∣∣Mti
⊙ (Xti

− X̂ti−)
∣∣∣
2

]
+ 9E

[
c2

m

]
≤ Ψ(X̂) + 6E

[
1
n

n∑
i=1

cm

∣∣∣Xti − X̂ti−

∣∣∣
2

]
+ 9E

[
c2

m

]
≤ Ψ(X̂) + 6E

[
1
n

n∑
i=1

cm · 2TB(X⋆
T + 1)p

]
+ 9E

[
c2

m

]
= Ψ(X̂) + 12TBE [cm(X⋆

T + 1)p] + 9E
[
c2

m

]
,

where the triangle inequality was used in the third line, and we use Assumption 4.1 point 4 (which implies
that |X̂t| ≤ TB(X⋆ + 1)p for all t) to construct a crude bound in the second to last line. As in Krach et al.
(2022), dominated convergence can be used to show

min
Z∈D

Ψ(Z) = Ψ(X̂) ≤ Φ(θmin
m ) ≤ Φ(θ∗

m) m→∞−−−−→ min
Z∈D

Ψ(Z),

since 2p is again the largest power of X⋆
T in both terms (remember cm has an (X⋆

T )p term). The convergence
of dk(X̂, Y θ⋆

m) → 0 follows as before, finishing the first part of the theorem. Finally, it is easy to see that the
proof of the convergence of the Monte Carlo approximation is not affected by our more general dependence
assumptions such that also the second part of the theorem follows.

4.4 Examples

Clearly, all the examples from Krach et al. (2022) are trivially valid for our generalised settings of Section 4.2
since points 6 & 7 of Assumption 4.1 are implied by independence. Furthermore, we provide a relatively
general class of examples in Section 4.4.1 and extend two of the examples from Krach et al. (2022) to a
setting where independence does not hold in Example 4.7 and Example 4.9.

4.4.1 Class of Examples Incorporating Dependence

A main problem when constructing examples where the observation times ti have a dependence on the
process X, is that in general this will also lead to n having a dependence on X (since n, as the amount of
observations, increases when observations become more likely). This, in turn, might lead to a contradiction
of Assumption 4.1 point 7. One way to circumvent this problem is to define n conditionally independent of
Xti− given Ati− for all i and to introduce a dummy variable, e.g. the time t itself, that is observed at every

13



Under review as submission to TMLR

ti. Then we can control whether the process X is observed at an observation time ti via the observation
mask MX

i (denoting the mask for the X-part of the observation, i.e., without the dummy variable). Since
the dummy variable is always observed, the assumption that at least one coordinate of the mask has to be
positive is trivially satisfied, such that MX

i = 0 is admissible. In this way, the times at which X is observed
can depend on X through the observation mask. Therefore, the original problem is replaced by having an
observation mask depending on X, which will be discussed in detail below.

When using a time grid on which the process X is sampled, one concrete example of defining n conditionally
independent of Xti− given Ati− is to use the grid points as observation times ti leading to n being the
number of grid points. In this case, both n and the ti are deterministic, hence, they satisfy the conditional
independence assumptions.

We need to ensure that Assumption 4.1 points 7 and 8 are satisfied (assuming that a dummy variable is
observed at every observation time), when defining the observation mask. A way to define MX

i such that
point 7 is satisfied is to define it as a function of random variables that are Ati−-measurable and random
variables that are independent of σ(Ati−, Xti−, n). In particular, let MX

i := gi

(
(U i

j)j∈Ji
1
, (V i

j )j∈Ji
2

)
, where

gi is a measurable function (mapping to {0, 1}dX ), J i
1, J i

2 ⊆ N, U i
j is a Ati−-measurable random variable and

V i
j a random variable independent of σ(Ati−, Xti−, n) for all j in J i

1 and J i
2 respectively. By Proposition A.5

we need to show that for any measurable function ϕ we have E[ϕ(Xti−) | σ(n, Mi, Ati−)] = E[ϕ(Xti−) | Ati−].
Indeed, Mi is σ(Ati−, (V i

j )j∈Ji
2
)-measurable by construction, therefore, we have for such a ϕ that

E [ϕ(Xti−) | σ(n, Mi, Ati−)] = E
[
E
[
ϕ(Xti−) | σ(n, (V i

j )j∈Ji
2
, Ati−)

]
| σ(n, Mi, Ati−)

]
,

by the tower property. On the other hand,

E
[
ϕ(Xti−) | σ(n, (V i

j )j∈Ji
2
, Ati−)

]
= E [ϕ(Xti−) | σ(n, Ati−)] = E [ϕ(Xti−) | Ati−] ,

using the independence of V i
j together with Corollary A.2 in the first equality and n being conditionally

independent together with Proposition A.5 in the second equality. Together, this implies the claim and
therefore Assumption 4.1 point 7.

For Assumption 4.1 point 8, we note that by Durrett (2010, Lemma 6.2.1) we have

P(Mk = 1 | σ(n, Atk−)) = E [Mtk
| σ(n, Atk−)]

= E
[
gk

(
(Uk

j )j∈Jk
1
, (V k

j )j∈Jk
2

)
| σ(n, Atk−)

]
= g̃k((Uk

j )j∈Jk
1
),

for g̃k((uk
j )j∈Jk

1
) := E

[
gk

(
(uk

j )j∈Jk
1
, (V k

j )j∈Jk
2

)]
. Hence, we need to define the gk and V k

j such that g̃k > ηk

(coordinate-wise) for some ηk > 0.
Example 4.7 (Homogeneous Poisson Point Process with Dependent Observations). We use a homogeneous
Poisson point process X = Nλ (Krach et al., 2022, Section 7.4) and defined observations depending on its
value following the instructions above. To begin with, we define the observation times to be the grid points of
the sampling grid of the process and n accordingly to be the number of grid points. To permit observation
times of the process depending on the process, we use time as dummy variable that is always observed and
define the observation mask for X as

MX
i =

{
1{xi≥λti−1}, xi ∼ N (Nλ

ti−1
, σ2) if MX

i−1 = 1,

ui ∼ Bernoulli(p) if MX
i−1 = 0.

for some σ > 0 and p ∈ (0, 1). Thus the process is more likely to be observed if the previous value was
observed and was large (note E[Nλ

tj
] = λtj for all j). Otherwise the mask value is sampled from a Bernoulli

distribution.

14
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To satisfy Assumption 4.1 point 1, we define M0 := 1. To see that Assumption 4.1 point 7 holds, let
V i

1 ∼ Bernoulli(p) and V i
2 ∼ N (0, σ2) be independent random variables independent of σ(Ati−, Nλ

ti−). Then

MX
i = 1{MX

i−1=1}1{Nλ
ti−1

+V i
2 ≥λti−1} + V i

11{MX
i−1=0} =: gi(MX

i−1, Nλ
ti−1

, ti−1, V i
1 , V i

2 ),

and the claim follows as explained above. Moreover, Assumption 4.1 point 8 is satisfied because

g̃i(MX
i−1, Nλ

ti−1
, ti−1) = 1{MX

i−1=1} E
[
1{a+V i

2 ≥λb}

] ∣∣∣
(a,b)=

(
Nλ

ti−1
,ti−1

) + 1{MX
i−1=0} E

[
V i

1
]

≥ min
(
P
[
V i

2 ≥ λb − a
] ∣∣∣

(a,b)=
(

Nλ
ti−1

,ti−1
), p

)
≥ min

(
P
[
V i

2 ≥ λT
]

, p
)

=: ηi > 0,

using that λti−1 − Nλ
ti−1

≤ λT , since Nλ ≥ 0, ti−1 ≤ T and λ > 0, in the last line.

Remark 4.8. We note that the choice X = Nλ is only explicitly used for the fact that Nλ is lower bounded
(by 0). Hence, the Poisson point process could be replaced by any other process that is lower bounded and
satisfies Assumption 4.1 points 4 & 5.
Example 4.9 (Black–Scholes with Dependent Observations). We use a 1-dimensional Black–Scholes process
(geometric Brownian motion) (Krach et al., 2022, Example 7.3) with constant drift and volatility µ, σ starting
at x0 and again define observations depending on its value. The observation times and n are defined as in the
previous example and we define the actual times when X is observed via the mask MX . We set MX

0 = 1.
Moreover, we define the last time before t at which X was observed as τX(t) = max{ti | ti < t, MX

i = 1}. Let
V i

1 ∼ Bernoulli
(

ti−ti−1
ti−τX (ti)

)
, V i

2 ∼ N (0, η2) and V i
3 ∼ Bernoulli (p) be independent random variables for some

η > 0 and p ∈ (0, 1). Then we define

MX
i := V i

1 1{XτX (ti)+V i
2 ≥x0eµti } + (1 − V i

1 ) V i
3 ,

for all i ≥ 1. In particular, if X was observed at the previous observation time V i
1 = 1 and the probability of

observing X increases with the size of the last observation of X (compared to the current expected value of X
at the current time). The further the last observation of X is in the past, the more likely V i

1 = 0 in which
case X is observed with probability p. Upon noting that the ti are deterministic, it follows as in the previous
example that Assumption 4.1 point 7 and 8 are satisfied.

5 Experiments

The code with all new experiments and those from Krach et al. (2022) is available at https://github.com/???.
Further details about the experiments can be found in Appendix C. In particular, in Appendix C.1 we give
details on the slightly deviation of the practical implementation from the theoretical description.

As in Krach et al. (2022) we use the following evaluation metric to quantify and compare the training success.

eval(X̂, Y θ) := 1
N2

N2∑
j=1

1
κ + 1

κ∑
i=0

(
X̂

(j)
iT
κ

− Y θ,j
iT
κ

)2
,

where the outer sum runs over the test set of size N2 and the inner sum runs over the equidistant grid points
on the time interval [0, T ].

5.1 Noisy Observations – Brownian Motion with Gaussian Observation Noise

We test the PD-NJ-ODE trained with the loss function adapted to noisy observations (6) in the context of
Section 3.4.1. In particular, X is a Brownian motion and we assume to have observation noise of a centered
normal distribution with standard deviation σ = 0.5. Moreover, we compare these results to using the original
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loss function (3) with the noisy observation. PD-NJ-ODE adapted to noisy observations achieves a minimal
evaluation metric of 1.1 ·10−3 while using the original loss function leads to a nearly 20 times larger evaluation
metric of 1.9 · 10−2. Moreover, in Figure 1 we see that the noise-adapted method learns to correctly jump
when new observations become available, while the original method jumps to the noisy observations and
afterwards tries to get close to the true conditional expectation quickly. We note that this is the expected
behaviour.

0.0 0.2 0.4 0.6 0.8 1.0
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true path
our model
true conditional expectation
observed
true value at obs time
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0.5

1.0

true path
our model
true conditional expectation
observed
true value at obs time

Figure 1: A test sample of a Brownian motion X with noisy observations Oti = Xti + ϵi together with the
true and predicted conditional expectation. The PD-NJ-ODE is trained with the noise-adapted loss (left)
and the original loss (right).

5.2 Dependent Observation Framework – a Black–Scholes Example

Based on Example 4.9 we train a PD-NJ-ODE on a 1-dimensional geometric Brownian motion with drift
µ = 2 and volatility σ = 0.3 and with observation probability depending on the last observation of X, the
time since the last observation and on independent random variables V i

{2,3} for which we use the parameters
η = 3 and p = 0.1. As our theoretical result suggests, our model learns to predict the conditional expectation
well with a minimal evaluation metric of 1.1 · 10−3 which is also visible in Figure 2.

6 Conclusion

In this work we broadened the applicability of the PD-NJ-ODE of Krach et al. (2022) by extending the
theoretical foundation to allow for noisy observations and for the observation framework (i.e., observation
times and masks) to depend on previous information. In particular, we showed that any centered i.i.d.
observation noise satisfying some integrability conditions can be dealt with by switching to the noise-adapted
objective function (6). Moreover, we showed that the proof of the main result can be retained when lifting
the independence assumption between the process X and the observation framework, by extensively working
with conditional independence. Finally, we provided experiments showing empirically that the PD-NJ-ODE
works well in those extended settings.
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on the left) and the observation probability over time (scale on the right).
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Appendix

A Conditional independence

Let (Ω, F ,P) be a probability space, G, H ⊆ F be two sigma-algebras and let X be a random variable.

The assumption that X is independent of G leads to the natural but incorrect conclusion that E[X | σ(G, H)] =
E[X | H]. For this to hold, we actually need a stronger assumption as in the following proposition that is due
to Hansen (2015); Yoo (2014).
Proposition A.1. If σ(X, H) is independent of G then E[X | σ(G, H)] = E[X | H].

Proof. We prove the desired equality in the context of basic measure theory. We first assume that X is
integrable on σ(G, H), since otherwise neither of the expectations are valid. Then we recall that conditional
expectation is simply a random variable Z that satisfies the following three properties

1. Z is σ(G, H)-measurable,

2. Z is σ(G, H)-integrable,

3.
∫

A
XdP =

∫
A

ZdP for all A ∈ σ(G, H).

By the definition of the conditional expectation we know that E[X | σ(G, H)] satisfies these properties. To
show the claim, it is therefore enough to prove that also Z = E[X | H] satisfies them. The first two follow
trivially since H ⊆ σ(G, H). For the third, we note that it is enough to consider the ∩-stable generator
{A ∩ B | A ∈ G, B ∈ H} of σ(G, H) and show that∫

A∩B

XdP =
∫

A∩B

ZdP ∀A ∈ G, B ∈ H,

or equivalently

E [X · 1A∩B ] = E [E [X | H] · 1A∩B ] ∀A ∈ G, B ∈ H.

Note that σ(X, H) being independent of G implies that H is independent of G. Therefore,

E [X · 1A∩B ] = E [X · 1B1A]
= E [X · 1B ]E [1A] (σ(X, H) indep. of G)
= E [E [X · 1B | H]] · E [1A] (tower property)
= E [E [X · 1B | H] · 1A] (H indep. of G)
= E [E [X | H] · 1A1B ] (1B is H-measurable)
= E [E [X | H] · 1A∩B ] ,

completing the proof.

Corollary A.2. If σ(X, H) is independent of G then E[ϕ(X) | σ(G, H)] = E[ϕ(X) | H] for all measurable and
integrable functions ϕ.

Proof. This follows directly from Proposition A.1 upon replacing X by ϕ(X) and noting that σ(ϕ(X), H) ⊆
σ(X, H), implying the needed condition.

It should now be apparent that the assumption that X and G are independent is insufficient if we want to
show E[X | σ(G, H)] = E[X | H] (a counterexample is provided in Hansen (2015)). However, we can actually
make a weaker assumption (though still stronger than the assumption that X and G are independent) to
attain the same result, as shown in the next proposition.
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Definition A.3. X and G are conditionally independent given H if for all x ∈ σ(X), A ∈ G,

E [1x1A | H] = E [1x | H]E [1A | H] .

Proposition A.4. If X is conditionally independent of G given H then E[X | σ(G, H)] = E[X | H].

Proof. Following the previous proof it is clear that we only need to show

E [X · 1A∩B ] = E [E [X | H] · 1A∩B ]

for all A ∈ G and B ∈ H. We do this by measure-theoretic induction (as in Durrett (2010, Proof of Theorem
1.6.9)), in particular, we proceed in a four-part case distinction of X. In the first case, assume X is an
indicator function, i.e., X = 1x for some x ∈ F . Then

E [X · 1A∩B ] = E [1x1A∩B ]
= E [E [1x1A∩B | H]] (tower property)
= E [E [1x1A | H]1B ] (B ∈ H)
= E [E [1x | H]E [1A | H]1B ] (cond. indep.)
= E [E [E [1x | H] · 1A | H]1B ] (E [1x | H] H-mbl.)
= E [E [E [1x | H] · 1A∩B | H]] (B ∈ H)
= E [E [1x | H] · 1A∩B ] (tower property)
= E [E [X | H] · 1A∩B ] .

Thus in the most basic case we have the required property. In the second case we let X =
∑n

i=1 ci1xi
be

a finite weighted sum of indicator random variables, where ci ∈ R and xi ∈ F . The result of the first case
combined with linearity of expectation immediately shows that the property holds for X in this form too.

In the third case, we assume X is some non-negative function. We define a random variable Xk that is simple
and such that Xk ↑ X as k → ∞. For example, we can take Xk =

∑n2n−1
i=0

i
2n1{ i

2n ≤ X < i+1
2n } + n1n≤X ,

as in Durrett (2010, Proof of Theorem 1.6.9). Then, by monotone convergence and the previous case, the
property also holds when X is an arbitrary non-negative function.

Finally, in the fourth case, we let X be an arbitrary integrable function. Then we can write X = X+ − X−

where f+(x) := max{0, f(x)} and
f−(x) := min{0, f(x)}. Integrability of X means that X+ and X− are themselves integrable. We can use
linearity of expectation and the previous cases to conclude that, in this general setting, the property still
holds. This concludes the proof by measure-theoretic induction.

Proposition A.5. X is conditionally independent of G given H if and only if E[ϕ(X) | σ(G, H)] = E[ϕ(X) | H]
for all measurable and integrable functions ϕ.

Proof. The “⇒” direction is a simple corollary of Proposition A.4 that follows with the same proof upon
replacing X by ϕ(X) and noticing that ϕ(X) is a σ(X)-measurable random variable.

The “⇐” direction is also easy to see. Let x ∈ σ(X), A ∈ G and define ϕ such that ϕ(X) = 1x. Then we have

E [1x1A | H] = E [E [1x1A | σ(G, H)] | H] (tower property)
= E [E [1x | σ(G, H)]1A | H] (A ∈ G ⊆ σ(G, H))
= E [E [1x | H]1A | H] (RHS of claim with ϕ(X) = 1x)
= E [1x | H]E [1A | H] (E [1x | H] H-mbl.)

This completes the proof.

Proposition A.6. If X is conditionally independent of G given H, and Y is independent of σ(X, G, H) then
for any measurable and integrable function f also f(X, Y ) is conditionally independent of G given H.
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Proof. By Proposition A.5 we have to show that for any measurable ϕ we have E[ϕ(f(X, Y )) | σ(G, H)] =
E[ϕ(f(X, Y )) | H]. First note that it is enough to show this for ϕ being the identity, since both ϕ and f are
arbitrary measurable and integrable functions. Then we have for g(x) := EY [f(x, Y )], which is a measurable
and integrable function again, that

E [f(X, Y ) | σ(G, H)] = E [E [f(X, Y ) | σ(X, G, H)] | σ(G, H)] (tower property)
= E [g(X) | σ(G, H)] (Durrett (2010, Lemma 6.2.1))
= E [g(X) | H] , (Proposition A.5)
= E [f(X, Y ) | H] , (reversing step 1 & 2)

as wanted, proving the claim.

Proposition A.7. If X is conditionally independent of Y given H then

E[XY | H] = E[X | H]E[Y | H].

Proof. From Proposition A.4 we know that E[X | σ(Y, H)] = E[X | H]. Therefore,

E [XY | H] = E [E [XY | σ(Y, H)] | H] (tower property)
= E [E [X | σ(Y, H)] Y | H] (Y ∈ σ(Y, H))
= E [E [X | H] Y | H] (Proposition A.4)
= E [X | H]E [Y | H] , (E [X | H] H-mbl.)

as wanted.

Proposition A.8. If X is independent of σ(G, H) then X is conditionally independent of G given H.

Proof. Follows directly from Proposition A.5.

B Combining the Two Extensions With Full Proof

In this section we prove convergence of the PD-NJ-ODE to the optimal prediction in the most general setting
that allows for non-Markovian processes with irregular incomplete noisy observations, where dependence
between the observation framework and the process is possible.

B.1 Setting

As in Section 4.2 we consider only the probability space (Ω, F ,F,P) on which we define X, n, K, ti, τ, M . As
in Section 3.1, we additionally define the observation noise (ϵk)0≤k≤K , the noisy observations Otk

:= Xtk
+ ϵk

for 0 ≤ k ≤ n, the filtration of the currently available information via

At := σ (Oti,j , ti, Mti
|ti ≤ t, j ∈ {1 ≤ l ≤ dX |Mti,l = 1}) ,

Õ≤t and the functions Fj such that X̂t,j = Fj(t, τ(t), Õ≤τ(t)). Then we make the following assumptions.
Assumption B.1. We assume that

1. M0,j = 1 for all 1 ≤ j ≤ dX (X is completely observed at 0) and |Mk|1 > 0 for every 1 ≤ k ≤ K
P-almost surely (at every observation time at least one coordinate is observed),

2. the probability that any two observation times are closer than ϵ > 0 converges to 0 when ϵ does, i.e.,
if δ(ω) := min0≤i≤n(ω) |ti+1(ω) − ti(ω)| then limϵ→0 P(δ < ϵ) = 0,

3. almost surely X is not observed at a jump, i.e., P(tj ∈ J | j ≤ n) = P(∆Xtj ̸= 0 | j ≤ n) = 0 for all
1 ≤ j ≤ K,
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4. Fj are continuous and differentiable in their first coordinate t such that their partial derivatives with
respect to t, denoted by fj, are again continuous and there exists a B > 0 and p ∈ N such that for
every t ∈ [0, T ] the functions fj , Fj are polynomially bounded in X⋆, i.e.,

|Fj(τ(t), τ(t), Õ≤τ(t))| + |fj(t, τ(t), Õ≤τ(t))| ≤ B(X⋆
t + 1)p + B

n∑
i=0

|ϵi|,

5. X⋆ is L2p-integrable, i.e., E[(X⋆
T )2p] < ∞,

6. the i.i.d. ϵk are independent of X, n, M, (ti)1≤i≤K , are centered and square-integrable, i.e., E[ϵk] = 0
and E[|ϵk|2] < ∞

7. n is square-intgrable, i.e., E[n2] < ∞,

8. for every 1 ≤ i ≤ n, Xti− is conditionally independent of σ(n, Mti
) given Ati−, and

9. for all 1 ≤ k ≤ K, 1 ≤ j ≤ dX there is some ηk,j > 0 such that P(Mk,j = 1 | σ(n, Atk−)) > ηk,j (i.e.,
given the currently known information and n, for each coordinate the probability of observing it at
the next observation time is positive).

Remark B.2. The relaxations on the assumption of observing X0 completely discussed in Krach et al. (2022,
Remark 2.3) can equivalently be applied in this setting here.

As in Section 3.1, the PD-NJ-ODE uses the noisy observations Oti
and Õ≤τ(t) as inputs instead of Xti

and
X̃≤τ(t) and is trained with the objective functions (6) respectively (7) and their Monte Carlo approximations.

B.2 Convergence Theorem

We start with the following result which is a combination of Lemma 3.3 and Lemma 4.4.
Lemma B.3. For any A-adapted process Z it holds that

E

[
1
n

n∑
i=1

|Mti
⊙ (Oti

− Zti−)|22

]

= E

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (Oti − X̂ti−)
∣∣∣2
2

]
+ E

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (X̂ti− − Zti−)
∣∣∣2
2

]
.

Proof. First note that by Assumption B.1 point 3 we have that Xti
= Xti− almost surely and when defining

Oti− := Xti− + ϵi we therefore also have that Oti
= Oti− almost surely. Next notice that Assumption B.1

point 6 & 8 together with Proposition A.6 imply that Oti− is conditionally independent of σ(n, Mi) given
Ati−. Hence, for Ôti− := EP×P̃[Oti− | Ati−] it follows as in Lemma 4.4 that

E

[
1
n

n∑
i=1

|Mti ⊙ (Oti− − Zti−)|22

]

= E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (Oti− − Ôti−)

∣∣∣2
2

]
+ E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (Ôti− − Zti−)

∣∣∣2
2

]
.

Then we can conclude the proof as in Lemma 3.3, by noting that

Ôti− = X̂ti− + E[ϵi|Ati−] = X̂ti− + E[ϵi] = X̂ti−,

using that ϵi has expectation 0 and is independent of Ati−.
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Proof of Theorem 2.4 – Part 1. We start by showing that X̂ ∈ D is the unique minimizer of Ψ up to
indistinguishability (as defined in Definition 2.2). Note that for every ti we have Mti ⊙ X̂ti = Mti ⊙ Xti

and that Xti = Xti− if ti /∈ J , hence with probability 1. It follows directly from Lemma B.3 that X̂ is a
minimizer of Ψ, since

Ψ(Z) = Ψ(X̂) + E

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (X̂ti− − Zti−)
∣∣∣2
2

]
. (15)

Before we can show uniqueness of X̂, we need some additional results. For those, let Z ∈ D. Let c1 :=
E [n]1/2 ∈ (0, ∞), then the Hölder inequality, together with the fact that n ≥ 1, yields

E [|Z|2] = E
[√

n√
n

|Z|2

]
≤ c1 E

[
1
n

|Z|22

]1/2
. (16)

By Lemma 4.6 and by the equivalence of 1- and 2-norm we have for some constant c3 > 0 and for any
1 ≤ k ≤ K

E
[
1{n≥k}

∣∣∣X̂tk− − Ztk−

∣∣∣
2

]
≤ c3

c2(k)E
[
1{n≥k}

∣∣∣Mtk
⊙ (X̂tk− − Ztk−)

∣∣∣
2

]
. (17)

To see that X̂ is the unique minimiser up to indistinguishability, let Z ∈ D be a process which is not
indistinguishable from X̂. Hence, there exists some 1 ≤ k ≤ K such that dk(X̂, Z) > 0. We have

E

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (X̂ti− − Zti−)
∣∣∣2
2

]
= E

[
1
n

K∑
i=1

1{n≥i}

∣∣∣Mti ⊙ (X̂ti− − Zti−)
∣∣∣2
2

]

≥ E
[

1
n1{n≥k}

∣∣∣Mtk
⊙ (X̂tk− − Ztk−)

∣∣∣2
2

]
≥ c−2

1 E
[
1{n≥k}

∣∣∣Mtk
⊙ (X̂tk− − Ztk−)

∣∣∣
2

]2

≥
(

c2

c1c3

)2
E
[
1{n≥k}

∣∣∣X̂tk− − Ztk−

∣∣∣
2

]2

=
(

c2

c0c1c3

)2
dk(X̂, Z)2 > 0,

(18)

where we used (16) for the 3rd, (17) for the 4th and (1) for the last line. Together with (15) this implies
Ψ(Z) > Ψ(X̂).

Next we show that (2) can approximate X̂ arbitrarily well. Since the dimension dH can be chosen freely,
let us fix it to dH := dX . Furthermore, let us fix θ̃⋆

3 such that g̃θ⋆
3

= id, which is possible since we assumed
that id ∈ Ñ . Let ε > 0, Nε := ⌈2(T + 1)ε−4⌉ (implying that limε→0 Nε = ∞) and Pε be the closure of
the set ANε

of Krach et al. (2022, Remark 3.11), which is compact. For any 1 ≤ j ≤ dX , the function fj

is continuous by Assumption B.1 and can (by abuse of notation) equivalently be written as (continuous)
function fj(t, τ(t), Õ≤τ(t) − O0, O0). Therefore, Krach et al. (2022, Proposition 3.8) implies that there exists
an m0 = m0(ε) ∈ N and a continuous function f̂j such that

sup
(t,τ,X)∈[0,T ]2×Pε

∣∣∣fj(t, τ, X) − f̂j(t, τ, πm0(X − X0), X0)
∣∣∣ ≤ ε/2.

Since the variation of functions in Pε is uniformly bounded by a finite constant, the set of their truncated
signatures πm0(Pε) is a bounded subset in Rd for some d ∈ N (depending on dX and m0), hence its closure,
denoted by Πε, is compact. Therefore, the universal approximation theorem for neural networks (Hornik et al.,
1989, Theorem 2.4) implies that there exists an m1 = m1(ε) ∈ N and neural network weights θ̃⋆,m1

1 ∈ Θ̃1
m1

such that for every 1 ≤ j ≤ dX the function f̂j is approximated up to ε/2 by the j-th coordinate of the
neural network f̃θ̃

⋆,m1
1

∈ Ñ (denoted by f̃θ̃
⋆,m1
1 ,j) on the compact set [0, T ]2 × Πε. Hence, combining the two
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approximations we get (by triangle inequality)

sup
(t,τ,X)∈[0,T ]2×Pε

∣∣∣fj(t, τ, X) − f̃θ̃
⋆,m1
1 ,j(t, τ, πm0(X − X0), X0)

∣∣∣ ≤ ε.

Obviously, extending the input of the neural network does not make the approximation worse, by simply
setting the corresponding weights to 0, hence, also Ht− can be used as additional input. Similarly we get that
there exists an m2 = m2(ε) ∈ N and neural network weights θ̃⋆,m2

2 ∈ Θ̃2
m2

such that for every 1 ≤ j ≤ dX

sup
(t,X)∈[0,T ]×Pε

∣∣∣Fj(t, t, X) − ρ̃θ̃
⋆,m2
2 ,j(t, πm1(X − X0), X0)

∣∣∣ ≤ ε.

As before, Ht− can be used as additional input without worsening the approximation.

Next we define the bounded output neural networks based on these neural networks. For this let us define

γ1 := max
(t,τ,X)∈[0,T ]2×Pε

∣∣∣f̃θ̃
⋆,m1
1

(t, τ, πm0(X − X0), X0)
∣∣∣

and γ2 equivalently for ρ̃θ̃
⋆,m2
2

. Since the neural networks are continuous functions they take a finite
maximum on the compact sets, hence γ1, γ2 are finite. Then we define the bounded output neural networks
fθ

⋆,m1
1

, ρθ
⋆,m2
2

∈ N with θ⋆,mi

i := (θ̃⋆,mi

i , γi). Clearly, these bounded output neural networks coincide
with the neural networks on the compact sets. Therefore, they satisfy the same ε-approximation and
since Fj , fj are bounded by U := B ((X⋆

T + 1)p +
∑n

i=0 |ϵi|) (Assumption B.1 item 4), it follows that
fθ

⋆,m1
1

, ρθ
⋆,m2
2

are bounded by U + ε. In particular, we have for ϵ < B the global bounds |fj − fθ
⋆,m1
1 ,j |∞ ≤ 3U

and |Fj − ρθ
⋆,m2
2 ,j |∞ ≤ 3U . Setting m := max(m0, m1, m2, γ1, γ2, |θ̃⋆,m2

i |2, |θ̃⋆,m2
2 |2), it follows that θ⋆

m :=
(θ⋆,m1

1 , θ⋆,m2
2 , θ̃⋆

3) ∈ Θm.

Now we can bound the distance between Y
θ⋆

m
t and X̂. Whenever X⋆

T < 1/ε, the number of observations
satisfies n < 1/ε, the minimal difference between any two consecutive observation times δ > ε and all noise
terms satisfy |ϵi|2 < 1/ε we know that the corresponding path X̃≤τ(t) −X0 is an element of ANε and therefore
the neural network approximations up to ε hold. Otherwise, one of those conditions is not satisfied and the
global upper bound can be used. Hence, if t ∈ {t1, . . . , tn}, we have for F = (Fj)1≤j≤dX

and f = (fj)1≤j≤dX∣∣∣Y θ∗
m

t − X̂t

∣∣∣
1

=
∣∣∣ρθ

⋆,m2
2

(
Ht−, t, πm(Õ≤t − O0), O0

)
− F

(
t, t, Õ≤t

)∣∣∣
1

≤ εdX1{X⋆
T

<1/ε}1{n<1/ε}1{δ>ϵ}1{∀0≤i≤n:|ϵi|2<1/ε}

+ dX3U
(
1{X⋆

T
≥1/ε} + 1{n≥1/ε} + 1{δ≤ϵ} + 1{∃0≤i≤n:|ϵi|2≥1/ε}

)
,

and if t /∈ {t1, . . . , tn},∣∣∣Y θ∗
m

t − X̂t

∣∣∣
1

≤
∣∣∣Y θ∗

m

τ(t) − X̂τ(t)

∣∣∣
1

+
∫ t

τ(t)

∣∣∣fθ
⋆,m1
1

(
Hs−, s, τ(t), πm(Õ≤τ(t) − O0), O0

)
− f(s, τ(t), Õ≤τ(t))

∣∣∣
1

ds

≤ ε(T + 1)dX1{X⋆
T

<1/ε}1{n<1/ε}1{δ>ε}1{∀0≤i≤n:|ϵi|2<1/ε}

+ (T + 1)dX3U
(
1{X⋆

T
≥1/ε} + 1{n≥1/ε} + 1{δ≤ε} + 1{∃0≤i≤n:|ϵi|2≥1/ε}

)
.

Moreover, by equivalence of the 1- and 2-norm, there exists a constant c > 0 such that for all t ∈ [0, T ]∣∣∣Y θ∗
m

t − X̂t

∣∣∣
2

≤ c ε(T + 1)dX

+ c(T + 1)dX3U
(
1{X⋆

T
≥1/ε} + 1{n≥1/ε} + 1{δ≤ε} + 1{∃0≤i≤n:|ϵi|2≥1/ε}

)
=: cm.
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So far, we have fixed an ε > 0 and argued that there exists some m ∈ N such that the neural network
approximation bounds hold with ε-error. However, what we actually need to show is that this error converges
to 0 when increasing the truncation level and network size m. Therefore, we define εm ≥ 0 to be the smallest
number such that the above bounds hold with error εm when using an architecture with signature truncation
level m ∈ N and weights in Θm. Since increasing m can only make the approximations better (by setting the
new weights to 0, the same approximation error as before is achieved, but potentially there exists a better
choice), we have εm1 ≥ εm2 for any m1 ≤ m2. In particular (εm)m≥0 is a a decreasing sequence, hence, our
derivations before proof that limm→∞ εm = 0. In the following we denote by θ⋆

m ∈ Θm the best choice for the
weights within the set Θm to approximate the functions Fj , fj .

Since θmin
m ∈ argminθ∈Θm

{Φ(θ)} (note that at least one minimum exists in the compact set Θm since Φ is
continuous), we get with Lemma B.3 that

min
Z∈D

Ψ(Z) ≤ Φ(θmin
m ) ≤ Φ(θ∗

m) = E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (Oti

− Y
θ∗

m
ti

)
∣∣∣2
2

]

= Ψ(X̂) + E

[
1
n

n∑
i=1

∣∣∣Mti
⊙ (X̂ti− − Y

θ∗
m

ti−)
∣∣∣2
2

]
≤ Ψ(X̂) + E

[
c2

m

]
.

(19)

Integrability of |X⋆
T |2, |n| and |ϵi| together with Assumption B.1 item 2 on δ imply that

1{X⋆
T

≥1/εm} + 1{n≥1/εm} + 1{δ≤εm} + 1{∃0≤i≤n:|ϵi|2≥1/εm}
P−a.s.−−−−→
m→∞

0.

Therefore, we have for a suitable constant c > 0 (not depending on εm and m),

E
[
c2

m

]
≤ cε2

m+cE
[
U2
(
1{X⋆

T
≥1/εm} + 1{n≥1/εm}

+1{δ≤εm} + 1{∃0≤i≤n:|ϵi|2≥1/εm}
)] m→∞−−−−→ 0,

by dominated convergence, since U is L2-integrable. Indeed,

E[U2] ≤ 8B2E

[
(X⋆

t + 1)2p + n

n∑
i=0

|ϵi|2
]

= 8B2 (E [(X⋆
t + 1)2p

]
+ E[n2]E

[
|ϵ0|2

])
< ∞, (20)

using Cauchy-Schwarz inequality for the first step, that the ϵi are i.i.d. and independent of n for the equality
and the integrability of X⋆, ϵ0 and n2 for the upper bound. Using this and Ψ(X̂) = minZ∈D Ψ(Z), we get
from (19)

min
Z∈D

Ψ(Z) ≤ Φ(θmin
m ) ≤ Φ(θ∗

m) m→∞−−−−→ min
Z∈D

Ψ(Z).

Finally, we show that limm→∞ dk

(
X̂, Y θmin

m

)
= 0 for all 1 ≤ k ≤ K. Applying (16), (17) and (1) in reverse

order than it was done in (18) and finally Lemma B.3, yields

dk

(
X̂, Y θ∗

m

)
≤ c0 c1 c3

c2
E

[
1
n

n∑
i=1

∣∣∣Mti ⊙ (X̂ti− − Y
θ∗

m
ti−)

∣∣∣2
2

]1/2

= c0 c1 c3

c2

(
Φ(θ∗

m) − Ψ(X̂)
)1/2 m→∞−−−−→ 0,

(21)

which completes the first part of the proof.

Next we assume the size m of the neural network and of the signature truncation level is fixed and we study
the convergence of the Monte Carlo approximation when the number of samples N increases. The convergence
analysis is based on Lapeyre & Lelong (2021, Chapter 4.3) and follows Herrera et al. (2021, Theorem E.13).
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We define the separable Banach space S := {x = (xi)i∈N ∈ ℓ1(Rd) | ∥x∥ℓ1 < ∞} for a suitable d (see below)
with the norm ∥x∥ℓ1 :=

∑
i∈N|xi|2, the function

F (x, y, m) := |m ⊙ (x − y)|2

and ξj := (ξj,0, . . . , ξj,n(j) , 0, . . . ), where ξj,k := (t(j)
k , O

(j)
t

(j)
k

, M
(j)
t

(j)
k

, πm(Õ≤t
(j)
k

,(j))) ∈ Rd and t
(j)
k , M

(j)
t

(j)
k

and O
(j)
t

(j)
i

(with 0 entries for coordinates which are not observed) are random variables describing the j-th realization
of the training data (cf. Section 2). Let nj(ξj) := maxk∈N{ξj,k ̸= 0}, tk(ξj) := t

(j)
k , Ok(ξj) := O

(j)
t

(j)
k

and

Mk(ξj) := M
(j)
t

(j)
k

. By this definition we have n(j) = nj(ξj) P-almost-surely. Moreover, we have that ξj are

i.i.d. random variables taking values in S. Let us write Y θ
t (ξ) to make the dependence of Y on the input and

the weight θ explicit. Then we define

h(θ, ξj) := 1
nj(ξj)

nj(ξj)∑
i=1

F
(

Oi(ξj), Y θ
ti(ξj)−(ξj), Mi(ξj)

)2
.

The following lemma is known from Krach et al. (2022).
Lemma B.4. Almost-surely the random function θ ∈ ΘM 7→ Y θ

t is uniformly continuous for every t ∈ [0, T ].

Now we are ready to prove the second part of our main theorem.

Proof of Theorem 2.4 – Part 2. First we note that, Y θ
t is the (integration over the) output of (bounded

output) neural networks and therefore bounded in terms of the input, the weights (which are bounded by
m), T and some constant depending on the architecture and the activation functions of the neural network.
In particular we have that |Y θ

t (ξj)| ≤ B̃
(

(X⋆,(j)
T + 1)p +

∑n
i=0 |ϵ(j)

i |
)

for all t ∈ [0, T ] and θ ∈ Θ̃m for some

constant B̃ (possibly depending on m), where X⋆,(j), ϵ
(j)
i corresponds to the input ξj . Hence,

F
(

Oi(ξj), Y θ
ti(ξj)−(ξj), Mi(ξj)

)2
=
∣∣∣Mi(ξj) ⊙ (Oi(ξj) − Y θ

ti(ξj)−(ξj))
∣∣∣2
2

≤

(
(B + B̃)

(
(X⋆

T + 1)p +
n∑

i=0
|ϵi|

))2

=
(

B + B̃

B
U (j)

)2

,

where U (j) is as defined before corresponding to the input ξj . Hence,

E

[
sup

θ∈Θ̃M

h(θ, ξj)
]

≤ E

[
1
n

n∑
i=1

(
B + B̃

B
U (j)

)2]
< ∞, (22)

by Assumption 2.1 and (20). By Lemma B.4, the function θ 7→ h(θ, ξ1) is continuous, hence, we can apply
Herrera et al. (2021, Lemma E.15), yielding that almost-surely for N → ∞ the function

θ 7→ 1
N

N∑
j=1

h(θ, ξj) = Φ̂N (θ) (23)

converges uniformly on Θm to
θ 7→ E[h(θ, ξ1)] = Φ(θ). (24)

We deduce from Herrera et al. (2021, Lemma E.14) that d(θmin
m,N , Θmin

m ) → 0 a.s. when N → ∞. Then there
exists a sequence (θ̂min

m,N )N∈N in Θmin
m such that |θmin

m,N − θ̂min
m,N |2 → 0 a.s. for N → ∞. The uniform continuity

of the random functions θ 7→ Y θ
t on Θm implies that

|Y θmin
m,N

t (ξ1) − Y
θ̂min

m,N

t (ξ1)|2 → 0 a.s. for all t ∈ [0, T ] as N → ∞.
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By continuity of F this yields |h(θmin
m,N , ξ1) − h(θ̂min

m,N , ξ1)| → 0 a.s. as N → ∞. With (22) we can apply
dominated convergence which yields

lim
N→∞

E
[
|h(θmin

m,N , ξ1) − h(θ̂min
m,N , ξ1)|

]
= 0.

Since for every integrable random variable Z we have 0 ≤ |E[Z]| ≤ E[|Z|] and since θ̂min
m,N ∈ Θmin

m we can
deduce

lim
N→∞

Φ(θmin
m,N ) = lim

N→∞
E
[
h(θmin

m,N , ξ1)
]

= lim
N→∞

E
[
h(θ̂min

m,N , ξ1)
]

= Φ(θmin
m ). (25)

Now by triangle inequality,

|Φ̂N (θmin
m,N ) − Φ(θmin

m )| ≤ |Φ̂N (θmin
m,N ) − Φ(θmin

m,N )| + |Φ(θmin
m,N ) − Φ(θmin

m )|. (26)

(23), (24) and (25) imply that both terms on the right hand side converge to 0 when N → ∞, which finishes
the proof of the convergence with respect to N .

Finally, we want to show the joint convergence. We define N0 := 0 and for every m ∈ N

Nm := min
{

N ∈ N | N > Nm−1, |Φ(θmin
m,N ) − Φ(θmin

m )| ≤ 1
m

}
,

which is possible due to (25). Then Theorem 2.4 implies that

|Φ(θmin
m,Nm

) − Ψ(X̂)| ≤ 1
m + |Φ(θmin

m ) − Ψ(X̂)| m→∞−−−−→ 0.

Therefore, we can apply the same arguments as in the first part of the proof (cf. (21)) to show that

dk

(
X̂, Y θmin

m,Nm

)
≤ c0 c1 c3

c2

(
Φ(θmin

m,Nm
) − Ψ(X̂)

)1/2 m→∞−−−−→ 0,

for every 1 ≤ k ≤ K.

The following corollary follows as in Krach et al. (2022).
Corollary B.5. In the setting of Theorem 2.4, we also have that P-a.s.

Φ(θmin
m,Nm

) m→∞−−−−→ Ψ(X̂) and Φ̂Ñm
(θmin

m,Ñm
) m→∞−−−−→ Ψ(X̂),

where (Ñm)m∈N is another increasing sequence in N.

C Experimental Details

Our experiments are based on the implementation used by Krach et al. (2022), which is available at
https://github.com/FlorianKrach/PD-NJODE. Therefore, we refer the reader to its Appendix A for any
details that are not provided here.

C.1 Differences between the Implementation and the Theoretical Description of the PD-NJ-ODE

Since we use the same implementation of the PD-NJ-ODE, all differences between the implementation and
the theoretical description listed in Krach et al. (2022, Appendix A.1.1) also apply here. In particular, we
use standard neural networks for fθ1 and ρθ2 with additional inputs. In contrast to the original objective
function, we do not need to add a regularizing constant for the noise-adapted objective functions (6) and (7),
since no square-root needs to be computed. We do not use the u-coordinates of X̃ in the implementation,
since we anyways use the observation times and masks as additional inputs for ρθ2 .
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C.2 Details for Noisy Observations

Dataset. We sample paths from a standard 1-dimensional Brownian motion on the interval [0, 1], i.e., with
T = 1, and discretisation time grid with step size 0.01. At each time point we observe the process with
probability p = 0.1. Whenever the process is observed, an independent observation noise is sampled from a
centered normal distribution with standard deviation σ = 0.5 and added to the observation. The model never
sees the observation of the original process, but only the noisy observation. We sample 20′000 paths of which
80% are used as training set and the remaining 20% as test set.

Architecture. We use the PD-NJ-ODE with the following architecture. The latent dimension is dH = 100,
the readout network is a linear map and the other 2 neural networks have the same structure of 1 hidden layer
with ReLU activation function and 100 nodes. The signature is used up to truncation level 3, the encoder is
recurrent and the decoder uses a residual connection.

Training. We use the Adam optimizer with the standard choices β = (0.9, 0.999), weight decay of 0.0005
and learning rate 0.001. Moreover, a dropout rate of 0.1 is used for every layer and training is performed
with a mini-batch size of 200 for 200 epochs. The model is trained once with the noise-adapted objective
function (6) and once with the original one (3).

C.3 Details for Dependent Observation Framework

Dataset. We use the Euler scheme to sample paths from a 1-dimensional Black–Scholes model (geometric
Brownian motion) with drift µ = 2, volatility σ = 0.3, and starting value X0 = 1. At each time point
we observe the process with the probability P(MX

i = 1 | Ati−) = E[MX
i | Ati−], where MX

i is described in
Example 4.9, using η = 3 and p = 0.1. We use the same discretisation grid and dataset sizes as in Section C.2.

Architecture. We use the PD-NJ-ODE with the following architecture. The latent dimension is dH = 50
and all 3 neural networks have the same structure of 2 hidden layers with tanh activation function and 50
nodes. The signature is used up to truncation level 3, the encoder is recurrent and the decoder does not use
a residual connection.

Training. Same as in Section C.2 but only trained with original loss function (3).
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