
Tensor Product Attention Is All You Need

Yifan Zhang∗⋄1,4 Yifeng Liu∗3 Huizhuo Yuan3 Zhen Qin
Yang Yuan1,2 Quanquan Gu3 Andrew Chi-Chih Yao1,2†

1IIIS, Tsinghua University 2Shanghai Qi Zhi Institute
3University of California, Los Angeles 4Princeton University
yifzhang@princeton.edu, liuyifeng@cs.ucla.edu
qgu@cs.ucla.edu, andrewcyao@tsinghua.edu.cn

Abstract

Scaling language models to handle longer input sequences typically necessitates
large key-value (KV) caches, resulting in substantial memory overhead during
inference. In this paper, we propose Tensor Product Attention (TPA), a novel
attention mechanism that uses tensor decompositions to represent queries, keys,
and values compactly, substantially shrinking the KV cache size at inference time.
By factorizing these representations into contextual low-rank components and
seamlessly integrating with RoPE and any possible position encoding mechanisms,
TPA achieves improved model quality alongside memory efficiency. Based on TPA,
we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model
architecture for sequence modeling. Through extensive empirical evaluation on
language modeling tasks, we demonstrate that T6 surpasses or matches the perfor-
mance of standard Transformer baselines, including Multi-Head Attention (MHA),
Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head
Latent Attention (MLA) across various metrics, including perplexity and a range of
established evaluation benchmarks. Notably, TPA’s memory efficiency and compu-
tational efficiency at the decoding stage enable processing longer sequences under
fixed resource constraints, addressing a critical scalability challenge in modern
language models. Project Page: https://github.com/tensorgi/TPA.

1 Introduction

Large language models (LLMs) have revolutionized natural language processing, demonstrating
exceptional performance across tasks [5, 12, 58, 6]. As these models evolve, their ability to process
longer contexts becomes increasingly important for sophisticated applications such as document
analysis, complex reasoning, and code completion. However, managing longer sequences during
inference poses significant computational and memory challenges, particularly due to the storage of
key-value (KV) caches [70, 34]. Because memory consumption grows linearly with sequence length,
the maximum context window is limited by practical hardware constraints.
A variety of solutions have been explored to address this memory bottleneck. Some approaches
compress or selectively prune cached states through sparse attention patterns [10] or token eviction
strategies [70, 62, 42], though such methods risk discarding tokens that may later prove important.
Other work proposes off-chip storage of key-value states [17], at the expense of increased I/O latency.
Attention variants like Multi-Query Attention (MQA) [46] and Grouped-Query Attention (GQA) [2]
reduce per-token cache requirements by sharing keys and values across heads, but often compromise
flexibility or require significant architectural modifications. Meanwhile, low-rank weight factorization
methods such as LoRA [20] effectively reduce fine-tuning memory, yet do not address the KV cache
overhead that dominates inference at runtime. The recently introduced Multi-Head Latent Attention

∗Equal contribution; ⋄Project lead; †Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/tensorgi/TPA

RoPE

Scale

Linear

Scaled Dot-Product Attention

Concat

Linear

AQ BQ

RoPE

Scale

Linear

AK

Scale

Linear

AV

h

RQ

1

BV

RK

1
RV

1

Linear Linear

BK

Linear

Figure 1: Tensor Product Attention (TPA) within the Tensor ProducT ATTenTion Transformer
(T6). In each TPA layer, the input hidden state xt is processed by linear layers to produce latent
factor matrices for query (e.g., AQ(xt),BQ(xt)), key (e.g., AK(xt),BK(xt)), and value (e.g.,
AV (xt),BV (xt)). Rotary Position Embedding (RoPE) is applied to the BQ(xt) and BK(xt) factors.
The query, key, and value tensors for each attention head are then formed by the tensor product of
these factor matrices (e.g., Qt =

1
RQ

AQ(xt)
⊤BQ(xt)). Finally, the TPA output is computed using

scaled dot-product attention, followed by a linear projection of the concatenated results from all
heads.

(MLA) in Deepseek-V2 [32] caches compressed key-value representations but encounters difficulties
with efficient Rotary Position Embedding (RoPE) [52] integration, necessitating additional position-
encoded parameters per head.
To overcome the limitations of existing approaches, we introduce Tensor Product Attention (TPA),
illustrated in Figure 1. TPA is a novel attention mechanism that employs tensor factorizations for
queries (Q), keys (K), and values (V). By dynamically factorizing activations rather than static weights
(as in LoRA), TPA constructs low-rank, contextual representations. This approach substantially
reduces KV cache memory usage while offering improved representational capacity. In practice, TPA
can decrease memory overhead by an order of magnitude compared to standard Multi-Head Attention
(MHA), alongside achieving lower pretraining validation loss (perplexity) and better downstream
performance. A key advantage of TPA is its native compatibility with rotary positional embeddings
(RoPE) [52] and any possible position encodings, enabling a straightforward drop-in replacement for
multi-head attention (MHA) layers in modern LLM architectures such as LLaMA [58], Qwen [3],
and Gemma [56].
Our main contributions are summarized as follows:

1. We propose Tensor Product Attention (TPA), a mechanism that factorizes Q, K, and V activa-
tions using contextual tensor decompositions. This achieves a substantial reduction in inference-
time KV cache size relative to standard attention mechanisms [60], MHA, MQA, GQA, and MLA,
while also improving performance. In addition, we analyze existing attention mechanisms and
reveal that MHA, MQA, and GQA can be expressed as non-contextual variants of TPA.

2. We introduce the Tensor ProducT ATTenTion Transformer (T6), a new TPA-based model archi-
tecture for sequence modeling. In language modeling experiments, T6 consistently improves or
matches validation perplexity and downstream evaluation performance, all while maintaining a
reduced KV cache size.

3. We demonstrate that TPA integrates seamlessly with RoPE [52] and any possible position encod-
ings as well as output gate and KV shifting, facilitating its easy adoption in popular foundation
model architectures like LLaMA, Gemma, and Qwen.

2

4. We develop FlashTPA Decoding, an efficient autoregressive inference algorithm for TPA. Our
empirical results show that FlashTPA Decoding can be faster than optimized MHA, MQA, GQA,
and MLA decoding methods, particularly for long sequences.

2 Background

In this section, we briefly review Scaled Dot-Product Attention, Multi-Head Attention [60], and
introduce key notations. Other attention mechanisms like Multi-Query Attention (MQA) [46],
Grouped Query Attention (GQA) [2], Multi-head Latent Attention (MLA) [32, 33], and Rotary
Position Embedding (RoPE) [52] are further discussed in the Appendix F.
Notations. We use bold uppercase letters (e.g., X, Q) for matrices, bold lowercase (e.g., a, b)
for vectors, and italic uppercase (e.g., WQ

i) for learnable parameter matrices. We denote by [n]
the set {1, . . . , n} for some positive integer n. We use ⊤ to denote the transpose of a vector or a
matrix. Let dmodel be the embedding dimension, h the number of attention heads, dh the dimension
per head, xt ∈ Rdmodel the input for the t-th token at a given attention layer, X ∈ RT×dmodel denotes
the input embeddings for T tokens, and Q, K, V ∈ RT×h×dh denote the queries, keys, and values
of h heads for T tokens. With a little abuse of notation, Qi, Ki, Vi ∈ RT×dh denote the i-th head
of queries, keys, and values, and Qt, Kt, Vt ∈ Rh×dh denote the heads of the query, key, and
value for t-th token. Throughout the paper, WQ,WK ,W V denote projection matrices for queries,
keys, and values, respectively. In multi-head attention, each head is associated with its own set of
WQ

i ,WK
i ,W V

i , and each has dimension WQ
i ,WK

i ,W V
i ∈ R dmodel×dh .5 Similarly, we have an

output projection matrix WO ∈ R(h·dh)×dmodel .
We define the tensor product of two vectors as follows: for vectors a ∈ Rm,b ∈ Rn, the tensor
product of a and b is: a⊗ b = C ∈ Rm×n,with Cij = aibj , where ai is the i-th element of a, bj is
the j-th element of b, and Cij is the (i, j)-th entry of C. The vectorization of a matrix C ∈ Rm×n,
denoted vec(C) ∈ Rmn, stacks the columns of C into a single column vector. For example, if
C = [c1, c2, . . . , cn] where cj are columns, then vec(C) = [c⊤1 , c

⊤
2 , . . . , c

⊤
n]

⊤.

2.1 Scaled Dot-Product Attention

Scaled dot-product attention [60] determines how to focus on different parts of an input sequence
by comparing queries (Q) and keys (K). It produces a weighted combination of the values (V).
Formally, the attention output is:

Attention(Q,K,V) = Softmax
(

QK⊤
√
dh

)
V,

where Q ∈ Rn×dh , K ∈ Rn×dh , and V ∈ Rn×dv for n tokens. The softmax is applied row-wise
over the n keys for each query.

2.2 Multi-Head Attention (MHA)

Multi-Head Attention (MHA) [60] extends scaled dot-product attention by dividing the model’s
internal representation into several heads. Each head learns different projections for queries, keys, and
values, allowing the model to attend to different types of information from different representational
subspaces. For each token embedding xt ∈ Rdmodel , MHA computes each head i as follows:

Qt,i = (WQ
i)⊤ xt ∈ Rdh , Kt,i = (WK

i)⊤ xt ∈ Rdh , Vt,i = (W V
i)⊤ xt ∈ Rdh ,

headi = Attention
(
Qi,Ki,Vi

)
,

where WQ
i ,WK

i ,W V
i ∈ Rdmodel×dh are learnable projection matrices for the i-th head, and

Qi,Ki,Vi ∈ RT×dh are the query, key, and value matrices for the i-th head over T tokens. After
computing each head’s attention output, the results are concatenated and mapped back to the model’s
original dimension via another learnable linear projection matrix WO ∈ Rhdh×dmodel :

MHA(X) = Concat
(
head1, . . . ,headh

)
WO.

MHA enables the model to capture a rich set of dependencies by allowing each head to focus on
different aspects of the input sequence. We also discuss how MHA, MQA, and GQA relate to TPA in
the Section 4.

5Often, h× dh = dmodel, so each head has query/key/value dimension dh.

3

3 Tensor Product Attention

In this section, we provide a detailed description of our proposed Tensor Product Attention (TPA),
which enables contextual low-rank factorization for queries, keys, and values. First, we explain how
TPA factorizes these components, specifying tensor shapes. Next, we describe TPA’s integration into
the multi-head attention framework and its benefits for reducing KV cache memory consumption
during inference. Finally, we demonstrate RoPE’s seamless integration with TPA, including a
pre-rotated variant for efficiency.

3.1 Tensor Factorization of Queries, Keys, and Values

Let dattn := h dh denote the total attention projection dimension. Typically one sets dattn = dmodel, but
this is not required: when dattn ̸= dmodel, the projection matrices WQ,WK ,W V map from Rdmodel

into Rdattn and WO maps Rdattn back to Rdmodel . Standard attention projects the entire sequence into
three tensors, Q, K, V ∈ RT×h×dh , where Qt,Kt,Vt ∈ Rh×dh denote the slices for the t-th
token.
Contextual Factorization. Instead of forming each head’s query, key, or value via a single linear
map, TPA factorizes each Qt,Kt,Vt into a sum of (contextual) tensor products whose ranks are
RQ, RK , and RV , respectively, and may differ. Specifically, for each token t, with a small abuse of
notation, we define:

Qt =
1

RQ

RQ∑
r=1

aQr (xt) ⊗ bQ
r (xt), Kt =

1

RK

RK∑
r=1

aKr (xt) ⊗ bK
r (xt),

Vt =
1

RV

RV∑
r=1

aVr (xt) ⊗ bV
r (xt), (3.1)

where aQr (xt),a
K
r (xt),a

V
r (xt) ∈ Rh,bQ

r (xt),b
K
r (xt),b

V
r (xt) ∈ Rdh . Hence, for queries, each

tensor product aQr (xt)⊗ bQ
r (xt) : Rh × Rdh → Rh×dh contributes to the query slice Qt ∈ Rh×dh .

Analogous definitions apply to the key slice Kt and value slice Vt.
Latent Factor Maps. Each factor in the tensor product depends on the token’s hidden state xt. For
example, for queries, we can write:

aQr (xt) = W aQ

r xt ∈ Rh, bQ
r (xt) = W bQ

r xt ∈ Rdh ,

where W aQ

r ∈ Rh×dmodel and W bQ

r ∈ Rdh×dmodel are learnable weight matrices. Similar linear maps
produce the factors for keys and values.
One often merges the rank index into a single output dimension. For instance, for queries:

aQ(xt) = W aQ

xt ∈ RRQ·h, bQ(xt) = W bQ xt ∈ RRQ·dh ,

which are then reshaped into AQ(xt) ∈ RRQ×h and BQ(xt) ∈ RRQ×dh (where each row of AQ(xt)
corresponds to an aQr (xt)

⊤ and each row of BQ(xt) to a bQ
r (xt)

⊤). The query tensor for token t
can then be expressed as:

Qt =
1

RQ
AQ(xt)

⊤ BQ(xt) ∈ Rh×dh .

This operation is equivalent to Qt = 1
RQ

∑RQ

r=1 a
Q
r (xt)(b

Q
r (xt))

⊤, where aQr is the r-th column
of AQ(xt)

⊤ and (bQ
r)

⊤ is the r-th row of BQ(xt). Repeating for all tokens reconstitutes Q ∈
RT×h×dh . Similar procedures are applied to obtain K and V with ranks RK and RV , respectively.
Scaled Dot-Product Attention. Once Q,K,V are factorized, multi-head attention proceeds as in
standard Transformers. For each head i ∈ {1, . . . , h}:

headi = Softmax
(

1√
dh

Qi (Ki)
⊤
)
Vi, (3.2)

where Qi,Ki,Vi ∈ RT×dh are the slices along the head dimension. Concatenating these h heads
along the last dimension yields an RT×(h·dh) tensor, which is projected back to RT×dmodel by an
output weight matrix WO ∈ R(h·dh)×dmodel :

TPA(Q,K,V) = Concat
(
head1, . . . ,headh

)
WO. (3.3)

4

Parameter Initialization. We use Xavier initialization [15] for the factor weight matrices; details are
in the Appendix G.

3.2 RoPE Compatibility and Acceleration

In a typical workflow of adding RoPE to standard multi-head attention, one first computes Qt,Ks ∈
Rh×dh of the t-th token and s-th token and then applies:

Qt 7→ Q̃t = RoPEt(Qt), Ks 7→ K̃s = RoPEs(Ks). (3.4)

Direct Integration. A useful optimization is to integrate RoPE directly into the TPA factorization.
For example, one can pre-rotate the token-dimension factors:

B̃K(xt) := RoPEt

(
BK(xt)

)
= BK(xt)Tt, (3.5)

yielding a pre-rotated key representation:

K̃t =
1

RK

RK∑
r=1

aKr (xt)⊗ RoPEt

(
bK
r (xt)

)
=

1

RK
AK(xt)

⊤B̃K(xt).

Here, RoPEt is applied to each row of BK(xt) (i.e., to each bK
r (xt) vector). Thus, each cached

key factor corresponds to a RoPE-rotated key slice. This removes the need to rotate cached keys at
decoding time; the current-step query (which is not cached) can still be rotated on the fly at negligible
cost. Depending on hardware and performance requirements, different RoPE integration strategies
can be adopted for training and inference.
Theorem 3.1 (RoPE’s Compatibility with TPA). Let Qt be factorized by TPA as

Qt =
1

RQ
AQ(xt)

⊤ BQ(xt) ∈ Rh×dh ,

where AQ(xt) ∈ RRQ×h and BQ(xt) ∈ RRQ×dh . Then we have:

RoPEt(Qt) = QtTt =
1

RQ
AQ(xt)

⊤ B̃Q(xt), (3.6)

where B̃Q(xt) := BQ(xt)Tt = RoPEt

(
BQ(xt)

)
(RoPE applied row-wise to BQ(xt)). Further-

more, let Q̃t = RoPEt(Qt) = QtTt and K̃s = RoPEs(Ks) = KsTs be the RoPE-transformed
query/key slices. Then RoPE’s standard relative-position identity is preserved:

Q̃t K̃
⊤
s = QtTt−sK

⊤
s , equivalently RoPEt−s(Qt)K

⊤
s = Q̃t K̃

⊤
s ,

where Tt−s := TtT
⊤
s . In particular, for any head i (the i-th row), if qt,i,ks,i ∈ R1×dh and

q̃t,i = qt,iTt, k̃s,i = ks,iTs, then q̃t,i k̃
⊤
s,i = qt,iTt−sk

⊤
s,i.

Theorem 3.1 indicates that TPA does not break RoPE’s relative translational property. We prove it in
the Appendix D.1.

3.3 KV Caching and Memory Reduction

In autoregressive decoding, standard attention caches Kt,Vt ∈ Rh×dh for each past token t. This
accumulates to RT×h×dh for keys and RT×h×dh for values, i.e., 2T h dh total.
TPA Factorized KV Caching. Instead of storing the full Kt and Vt, TPA stores only their factor
components. Specifically, for each past token t, we cache:

AK(xt), B̃K(xt) and AV (xt), BV (xt),

where AK(xt) ∈ RRK×h, B̃K(xt) ∈ RRK×dh(pre-rotated), AV (xt) ∈ RRV ×h, BV (xt) ∈
RRV ×dh .
Hence, the memory cost per token is RK(h+ dh)︸ ︷︷ ︸

for K

+ RV (h+ dh)︸ ︷︷ ︸
for V

= (RK + RV)
(
h + dh

)
.

Compared to the standard caching cost of 2h dh, the ratio is (RK+RV) (h+dh)
2h dh

. For large h and dh
(typically dh = 64 or 128), setting RK , RV ≪ h (e.g., rank 1 or 2) often yields substantial reduction
of KV cache size. Table 1 provides a comparative overview of different attention mechanisms,
including TPA and its variants, focusing on KV cache size per token and the number of parameters in
an attention layer.

5

Table 1: Comparison of different attention mechanisms. Here, RQ, RK , and RV denote the ranks for
queries, keys, and values in TPA, respectively. Variants of TPA, such as TPA (KVonly), TPA (Non-
contextual A), and TPA (Non-contextual B), are detailed in the Appendix G. For MLA, dRh and dh are
the dimensions for RoPE and non-RoPE parts; d′c and dc are the dimensions of compressed vectors
for query and key-value, respectively. The MLA parameter count includes the output projection.

METHOD KV CACHE # PARAMETERS # QUERY HEADS # KV HEADS

MHA 2hdh 4dmodel h dh h h
MQA 2dh 2dmodel dh (h+ 1) h 1
GQA 2Gdh 2dmodel dh (h+G) h G

MLA dc + dRh

d′c(dmodel + hdh + hdRh)

+dc(dmodel + 2hdh)

+dmodel(hdh + dRh)
h h

TPA (RK +RV)(h+ dh) dmodel(RQ +RK +RV)(h+ dh) + dmodel hdh h h
TPA (KVonly) (RK +RV)(h+ dh) dmodel(RK +RV)(h+ dh) + 2dmodel hdh h h

TPA (Non-contextual A) (RK +RV)dh (RQ +RK +RV)(dmodeldh + h) + dmodel hdh h h
TPA (Non-contextual B) (RK +RV)h (RQ +RK +RV)(dmodelh+ dh) + dmodel hdh h h

4 Expressing MHA, MQA, GQA as Non-contextual TPA

We demonstrate that standard Multi-Head Attention (MHA), Multi-Query Attention (MQA), and
Grouped-Query Attention (GQA) can be expressed as special, non-contextual variants of Tensor
Product Attention (TPA). This is achieved by imposing specific constraints on the TPA factors,
particularly by making the head-dimension factors (a) independent of the input token (xt).

4.1 MHA as Non-contextual TPA

Standard Multi-Head Attention (MHA) can be precisely formulated as a TPA where the rank is
equal to the number of heads (RQ = RK = RV = h), and the head-dimension factors are fixed,
non-contextual basis vectors. To recover MHA, we set the rank RQ = h and define the factors for
each head i ∈ [h] as follows:

• Contextual token factor: This is the standard linear projection for the i-th head’s query:

bQ
i (xt) = (WQ

i)⊤xt ∈ Rdh

• Non-contextual head factor: This factor is a scaled standard basis vector, independent of xt:

aQi = h · ei ∈ Rh

where ei is the i-th standard basis vector (a vector of zeros with a one at the i-th position).

Substituting these into the TPA equation, the 1/RQ = 1/h scaling factor cancels with the scaling of
the aQi factor:

Qt =
1

h

h∑
i=1

(h · ei)⊗
(
(WQ

i)⊤xt

)
=

h∑
i=1

ei ⊗
(
(WQ

i)⊤xt

)
The resulting tensor product, ei ⊗ bQ

i (xt), produces an h × dh matrix where only the i-th row is
non-zero and contains the vector (bQ

i (xt))
⊤. Summing these matrices for i = 1, . . . , h assembles

the complete query tensor Qt, where the i-th row is precisely the query vector for the i-th head in
standard MHA. An analogous construction applies to the key (Kt) and value (Vt) tensors.
Thus, MHA is equivalent to a non-contextual TPA where the head-dimension factors are fixed and
orthogonal, effectively assigning a dedicated rank component to each attention head.

4.2 MQA and GQA as Non-contextual TPA

Similarly, Multi-Query Attention (MQA) and Grouped-Query Attention (GQA) can be seen as
non-contextual TPAs where the key and value tensors are formed with a rank lower than the number
of heads.

• MQA as Rank-1 TPA (for K and V). In MQA, all h query heads share a single key and value.
This corresponds to a TPA with ranks RK = 1 and RV = 1. The key tensor Kt is formed using a

6

single, non-contextual head-dimension factor aK = 1h (a vector of all ones) and a single contextual
token-dimension factor bK(xt) = (WK)⊤xt:

Kt =
1

1

(
1h ⊗ bK(xt)

)
This creates an h × dh matrix where every row is the same shared key vector (bK(xt))

⊤. The
same logic applies to the value tensor Vt. The queries remain full-rank (RQ = h) as in MHA.

• GQA as Rank-G TPA (for K and V). GQA is an intermediate approach where h heads are divided
into G groups, with heads in the same group sharing a key and value. This is equivalent to a TPA
with ranks RK = G and RV = G. The key tensor is formed by summing G components:

Kt =
1

G

G∑
j=1

aKj ⊗ bK
j (xt)

Here, bK
j (xt) is the shared key vector for group j. The non-contextual factor aKj is a scaled mask

vector, defined as aKj = G ·maskj , where the maskj vector has ones for heads belonging to group
j and zeros elsewhere. This scaling cancels the 1/G pre-factor:

Kt =
1

G

G∑
j=1

(G ·maskj)⊗ bK
j (xt) =

G∑
j=1

maskj ⊗ bK
j (xt)

For example, with h = 8 heads and G = 2 groups (2 KV heads), the factor for the first group of
4 heads would be aK1 = 2 · [1, 1, 1, 1, 0, 0, 0, 0]⊤. This construction correctly assembles the final
key tensor by broadcasting each group’s shared key to its designated heads without any unintended
extra scaling.

This perspective highlights that MHA, MQA, and GQA are specific instances of a more general TPA
framework, where expressiveness and parameter sharing are controlled by the rank and the nature
(contextual vs. non-contextual) of the tensor factors.

4.3 Model Architectures

We propose a new architecture called Tensor ProducT ATTenTion Transformer (T6), which uses
our Tensor Product Attention (TPA) in place of standard MHA (multi-head attention) or GQA
(grouped-query attention). Building upon the query, key, and value tensors Q,K,V ∈ RT×h×dh

defined in Section 3.1, T6 utilizes the overall architecture of LLaMA [58] while changing the self-
attention block to our TPA-based version. The feed-forward network (FFN) adopts a SwiGLU layer,
as in [47, 58].
Rotary Positional Embedding (RoPE). As discussed in Section 3.2, RoPE [52] is applied to the Q

and K. Within TPA, we pre-rotate the factor bQ
t (xt) and bK

s (xs) directly, so that each Ks is already
rotated prior to caching, see Equation (3.5) and Theorem 3.1.
SwiGLU Feed-Forward Network. Following [47, 58], our T6 uses a SwiGLU-based Feed-
Forward Network (FFN): FFN(x) =

[
σ(xW1) ⊙ (xW2)

]
W3, where σ is the SiLU (a.k.a., swish)

nonlinearity, ⊙ is element-wise product, and W1,W2,W3 are learnable parameters. Note that other
activation functions can also be used.
Overall T6 Block Structure. Putting everything together, one T6 block consists of:

x ← x+TPA
(
RMSNorm(x)

)
,

x ← x+ SwiGLU-FFN
(
RMSNorm(x)

)
.

We place norm layers (e.g., RMSNorm) before each sub-layer. Stacking L such blocks yields a T6
model architecture with L layers.

5 FlashTPA Decoding Algorithm

For efficient autoregressive inference with Tensor Product Attention (TPA), we introduce FlashTPA
Decoding. This algorithm is optimized for generating one token at a time by leveraging the factorized

7

representation of queries, keys, and values. The core idea, illustrated in Figure 2, is to perform
attention computations using a sequence of Einstein summations (“einsum”) that operate directly on
these factorized components. This avoids materializing the full query, key, and value tensors, which
is particularly beneficial as the Key-Value (KV) cache grows with sequence length. The detailed
definitions of the input factorized components and the step-by-step pseudo-code for FlashTPA
Decoding are provided in Algorithm 2. An optimized Triton kernel implementation is outlined in
Algorithm 3 (see Appendix B.1).

BQ

(RQ, D)

bKcache
(M,D)

∑
D

S(1)

(M,RQ)

AQ

(H,RQ)

∑
RQ

S(2)

(M,H)

aK
cache

(M,H)

⊙ L
(H,M) Softmax

α
(H,M)

aV
cache

(H,M)

⊙ O(A)

(H,M)

bVcache
(M,E)

∑
M

O
(H,E)

Figure 2: Data flow diagram for FlashTPA Decoding. Rectangles represent tensors (blue for inputs,
yellow for intermediates, red for final output), circles with

∑
or ⊙ denote Einstein summation

contractions or element-wise products respectively, and the green rounded rectangle is the softmax
operation. Shapes are shown for a single query (N = 1) interacting with M cached items in the
common rank-1 setting RK = RV = 1. We use a head-first layout (H,M) for logits and attention
weights; the cached head factors aKcache and aVcache are shown transposed relative to their natural
token-major layout for readability. H is the number of heads, RQ is the query rank, and D,E are
respective feature dimensions for the BQ/b

K
cache and bVcache factors. Scaling factors are omitted for

visual clarity.

This sequence of factorized operations allows FlashTPA Decoding to compute the attention output
efficiently. Consequently, TPA is not only memory-efficient due to its smaller KV cache footprint
but can also be computationally efficient during inference. The experimental results for FlashTPA
decoding time are presented in Section 6.2.

6 Experiments

6.1 Language Modeling Tasks

All experiments reported in this paper are implemented based on the nanoGPT codebase [24], and
we pretrain our models using the FineWeb-Edu 100B dataset [37]. The dataset contains 100 billion
tokens for training and 0.1 billion tokens for validation. We compare T6 against the baseline Llama
architecture [58] with SwiGLU activation [47] and RoPE embeddings [52], as well as Llama variants
that replace Multi-Head Attention (MHA; [60]) with Multi-Query Attention (MQA; [46]), Grouped
Query Attention (GQA; [2]), or Multi-head Latent Attention (MLA; [32]). In our experiments, the
number of heads h is adjusted for each attention mechanism to ensure that all attention mechanisms
have the same number of parameters as the standard Multi-Head Attention (MHA), which has 4d2model
parameters per attention layer. We train models at four scales: small (124M parameters), medium
(353M), large (773M), and XL (1.5B). We pretrain all models for 50B tokens (roughly half an epoch
over FineWeb-Edu-100B). Details on architecture hyperparameters and training hardware are shown
in Appendix H.1.
Training & Validation Curves. Figure 4 compares validation loss curves for the medium (353M),
large (773M), and XL (1.5B) models on FineWeb-Edu-100B. Training loss curves are provided in
Appendix Figure 3. Overall, TPA (red curves) and its simpler variant TPA-KVonly (pink curves) (see
Appendix G) converge as fast as or faster than the baselines (MHA, MQA, GQA, MLA) while also
achieving visibly lower final validation losses. For instance, in Figure 4(b), TPA and TPA-KVonly
remain below the MHA baseline in terms of validation loss at nearly all training stages. Meanwhile,
Multi-Head Latent Attention (MLA) [32] (blue curves) generally trains more slowly and yields higher
validation losses.
Validation Perplexity. Figure 9 (in the Appendix) shows the validation perplexities of the medium-
and large-scale models. Mirroring the loss curves, TPA and TPA-KVonly steadily outperform MHA,
MQA, GQA, and MLA over the course of training. By the end of pretraining (around 49B tokens),
TPA-based approaches achieve the lowest perplexities in most configurations.
Downstream Evaluation. We evaluate zero-shot and two-shot performance on standard bench-
marks, including ARC [63], BoolQ [13], HellaSwag [64], OBQA [39], PIQA [4], WinoGrande [43],

8

and MMLU [18], using the lm-evaluation-harness codebase [14]. For ARC-E, ARC-C, Hel-
laSwag, OBQA, PIQA, and SciQ, we report accuracy norm; for other tasks, we report standard
accuracy. Due to the page limitation, we only display the zero-shot evaluation results of medium
and large models here in Tables 2 and 3. Zero-shot evaluation of small and XL models are dis-
played in Tables 11 and 12 in the appendix. Moreover, we also present 2-shot evaluation results in
Tables 13, 14, 15 and 16 in the appendix.
For the medium-size (353M) models (Table 2 for 0-shot and Table 14 in appendix for 2-shot), TPA
generally ties or outperforms all competing methods, achieving, for example, an average of 51.41%
in zero-shot mode versus MHA’s 50.11%, MQA’s 50.44%, and MLA’s 50.13%. When given two-shot
prompts, TPA again leads with 53.12% average accuracy. A similar trend appears for the large-size
(773M) models (Table 3), where TPA-KVonly attains the highest average (53.52% zero-shot). For the
XL size models (1.5B) (Table 12 in the appendix), TPA-KV only achieves the highest average (55.03%
zero-shot). Our experiments confirm that TPA consistently matches or exceeds the performance of
established attention mechanisms (MHA, MQA, GQA, MLA) across medium and large model scales.

(a) Medium models (353M) (b) Large models (773M) (c) XL models (1.5B)

Figure 3: The training loss of medium-size (353M), large-size (773M) as well as XL-size (1.5B)
models, with different attention mechanisms on the FineWeb-Edu 100B dataset.

(a) Medium models (353M) (b) Large models (773M) (c) XL models (1.5B)

Figure 4: The validation loss of medium-size (353M), large-size (773M) as well as XL-size (1.5B)
models, with different attention mechanisms on the FineWeb-Edu 100B dataset.

Table 2: The evaluation results of medium models with different attention mechanisms pre-trained
using FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best scores in each
column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 59.51 29.52 59.60 45.68 34.20 68.82 53.43 23.33 76.90 50.11
MQA 57.62 31.91 59.45 45.69 35.40 69.31 53.51 26.47 74.60 50.44
GQA 58.67 31.48 58.29 45.45 35.20 68.50 54.46 24.58 76.50 50.35
MLA 56.65 29.52 57.83 46.05 34.60 69.42 52.80 24.62 79.70 50.13

TPA-KVonly 58.01 30.12 58.01 45.95 35.60 69.10 53.12 25.39 75.10 50.04
TPA 58.38 31.57 59.39 46.83 37.00 70.02 54.06 25.52 79.90 51.41

6.2 Experimental Results on FlashTPA Decoding

This section presents an evaluation of FlashTPA’s decoding time in comparison to several other
optimized attention mechanisms. We benchmark FlashTPA against FlashMHA [45], FlashGQA,
FlashMQA, and FlashMLA [23]. It is important to note that our current FlashTPA implementation
utilizes Triton [57]. While the compared methods are typically available as highly optimized CUDA
kernels, these experiments provide initial insights into FlashTPA’s potential. Development of a CUDA-
based FlashTPA kernel is ongoing and is expected to yield further performance improvements.

9

Table 3: The evaluation results of large models with different attention mechanisms pre-trained using
the FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best scores in each column
are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 59.93 33.62 61.93 50.63 36.00 71.06 55.41 22.87 81.20 52.52
MQA 60.73 33.62 57.34 50.09 37.00 69.97 55.49 25.30 79.60 52.13
GQA 61.66 34.30 58.72 49.85 38.40 71.16 53.75 25.23 77.60 52.30
MLA 63.55 32.85 60.95 51.72 38.80 70.51 55.01 24.55 81.90 53.32

TPA-KVonly 63.26 34.13 61.96 50.66 37.20 72.09 55.25 26.06 81.10 53.52
TPA 63.22 35.58 60.03 51.26 36.80 71.44 55.56 24.77 79.60 53.10

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

0

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 1, Embedding Dim: 2048
MHA
MQA
GQA
MLA
TPA

(a) Batch Size=1

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

0

1

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 2, Embedding Dim: 2048
MHA
MQA
GQA
MLA
TPA

(b) Batch Size=2

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 4, Embedding Dim: 2048
MHA
MQA
GQA
MLA
TPA

(c) Batch Size=4

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

4

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 8, Embedding Dim: 2048
MHA
MQA
GQA
MLA
TPA

(d) Batch Size=8

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

4

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 16, Embedding Dim: 2048
MHA
MQA
GQA
MLA
TPA

(e) Batch Size=16

Figure 5: Decoding time comparison of different attention mechanisms with an embedding dimension
of 2048 and dh = 64. The y-axis represents log2(time) in seconds, and the x-axis represents
log2(sequence length). Each subfigure corresponds to a different batch size.

The evaluations were performed with batch sizes selected from {1, 2, 4, 8, 16}, model embedding
dimensions (dmodel) chosen from {1024, 2048, 3072}, and sequence lengths ranging from 212 (4,096)
to 219 (524,288). For all experiments, the dimension per head (dh) was fixed at 64. The ranks for
TPA’s factorized components (RQ, RK , RV) were set to (16, 1, 1), and for GQA configurations, the
number of key-value head groups was 4. The decoding time per token, measured as log2(time) in
seconds, is plotted against log2(sequence length). Lower values on the y-axis indicate faster decoding
times. Results are presented in Figure 5 for an embedding dimension of 2048 (corresponding to 32
attention heads). Additional results for embedding dimensions of 1024 (16 heads, Figure 8) and 3072
(48 heads, Figure 7) are provided in Appendix B. Figure 5 depicts these speed comparisons for an
embedding dimension of 2048. The results indicate that FlashTPA (blue line) is highly competitive
and often outperforms other attention mechanisms, especially as the sequence length increases.

7 Conclusion

We introduced Tensor Product Attention (TPA), which factorizes query, key, and value matrices
into rank-R tensor products dependent on the token’s hidden state. Storing only the factorized
key/value components during autoregressive decoding substantially decreases the KV memory size
with improved performance compared with MHA, MQA, GQA, and MLA. The approach is fully
compatible with RoPE (and can store pre-rotated keys). Variants of TPA include factorizing only
the key/value or sharing basis vectors across tokens. Overall, TPA offers a powerful mechanism for
compressing KV storage while improving the model performance, thereby enabling longer sequence
contexts under constrained memory.

10

Acknowledgements

We thank the anonymous reviewers and area chairs for their helpful comments. We acknowledge the
compute credits provided by Fetch.ai.

References
[1] Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and

Purushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

[2] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and
Sumit Sanghai. GQA: training generalized multi-query transformer models from multi-head
checkpoints. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 4895–4901. Association for Computational Linguistics, 2023.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[4] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
about physical commonsense in natural language. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7432–7439.
AAAI Press, 2020.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[7] Kerim Büyükakyüz. Olora: Orthonormal low-rank adaptation of large language models. arXiv
preprint arXiv:2406.01775, 2024.

[8] Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue
Dong, Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling. arXiv preprint arXiv:2406.02069, 2024.

[9] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
glora: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024, 2024.

[10] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[11] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with
performers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021, 2021.

[12] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,

11

Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways. J. Mach. Learn. Res., 24:240:1–240:113, 2023.

[13] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 2924–2936, 2019.

[14] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024.

[15] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

[16] Insu Han, R Jayaram, A Karbasi, V Mirrokno, D Woodruff, and A Zandieh. Hyperatten-
tion: Long-context attention in near-linear time. In International Conference on Learning
Representations. International Conference on Learning Representations, 2024.

[17] Jiaao He and Jidong Zhai. Fastdecode: High-throughput gpu-efficient llm serving using
heterogeneous pipelines. arXiv preprint arXiv:2403.11421, 2024.

[18] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021,
2021.

[19] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm
inference with kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

[20] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022, 2022.

[21] Jingcheng Hu, Houyi Li, Yinmin Zhang, Zili Wang, Shuigeng Zhou, Xiangyu Zhang, and
Heung-Yeung Shum. Multi-matrix factorization attention. arXiv preprint arXiv:2412.19255,
2024.

[22] Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei
Deng, Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-
efficient fine-tuning. arXiv preprint arXiv:2405.12130, 2024.

[23] Shengyu Liu Jiashi Li. Flashmla: Efficient mla decoding kernels. https://github.com/
deepseek-ai/FlashMLA, 2025.

[24] Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

[25] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International conference on
machine learning, pages 5156–5165. PMLR, 2020.

12

https://github.com/deepseek-ai/FlashMLA
https://github.com/deepseek-ai/FlashMLA
https://github.com/karpathy/nanoGPT

[26] Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pages 155–172, 2024.

[27] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of
sparsegpt. arXiv preprint arXiv:2408.12151, 2024.

[28] Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2023.

[29] Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 23638–23647, 2024.

[30] Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, Zhuoyan Xu, and Junze Yin. Conv-basis:
A new paradigm for efficient attention inference and gradient computation in transformers.
arXiv preprint arXiv:2405.05219, 2024.

[31] Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear ap-
proximations: A novel pruning approach for attention matrix. arXiv preprint arXiv:2410.11261,
2024.

[32] Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

[33] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[34] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. In Forty-
first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27,
2024, 2024.

[35] I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

[36] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[37] Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the
finest collection of educational content, 2024.

[38] Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pages
23610–23641. PMLR, 2023.

[39] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 2381–2391, 2018.

[40] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Waleed Ammar,
Annie Louis, and Nasrin Mostafazadeh, editors, Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Demonstrations,
pages 48–53. Association for Computational Linguistics, 2019.

[41] Weijieying Ren, Xinlong Li, Lei Wang, Tianxiang Zhao, and Wei Qin. Analyzing and reducing
catastrophic forgetting in parameter efficient tuning. arXiv preprint arXiv:2402.18865, 2024.

[42] Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas
Orr. Sparq attention: Bandwidth-efficient LLM inference. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024, 2024.

13

[43] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande:
An adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 8732–8740. Association for the Advancement of
Artificial Intelligence (AAAI), 2020.

[44] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast
weight programmers. In International Conference on Machine Learning, pages 9355–9366.
PMLR, 2021.

[45] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. Advances in
Neural Information Processing Systems, 37:68658–68685, 2024.

[46] Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

[47] Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

[48] Yiming Shi, Jiwei Wei, Yujia Wu, Ran Ran, Chengwei Sun, Shiyuan He, and Yang Yang. Loldu:
Low-rank adaptation via lower-diag-upper decomposition for parameter-efficient fine-tuning.
arXiv preprint arXiv:2410.13618, 2024.

[49] Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and
Somesh Jha. The trade-off between universality and label efficiency of representations from
contrastive learning. In The Eleventh International Conference on Learning Representations,
2023.

[50] Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki:
Low-rank keys for efficient sparse attention. arXiv preprint arXiv:2406.02542, 2024.

[51] Jianlin Su. The extreme pull between cache and effect: From MHA, MQA, GQA to MLA.
https://spaces.ac.cn/archives/10091, May 2024.

[52] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[53] Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong,
Yuejie Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context
llm inference. arXiv preprint arXiv:2410.21465, 2024.

[54] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang,
and Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

[55] Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST:
query-aware sparsity for efficient long-context LLM inference. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024, 2024.

[56] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

[57] Philippe Tillet, HT Kung, and David Cox. Triton: An intermediate language and compiler for
tiled neural network computations. In ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages co-located with PLDI. Association for Computing
Machinery, 2019.

[58] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

14

https://spaces.ac.cn/archives/10091

[59] Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan
Salakhutdinov. Transformer dissection: An unified understanding for transformer’s attention
via the lens of kernel. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4344–4353, 2019.

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[61] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In International Conference on Machine Learning, pages 38087–38099. PMLR, 2023.

[62] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024, 2024.

[63] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so) dirty: Unsupervised
selection of justification sentences for multi-hop question answering. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2578–2589, 2019.

[64] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can
a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Association for Computational Linguistics, 2019.

[65] Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024, 2024.

[66] Hengyu Zhang. Sinklora: Enhanced efficiency and chat capabilities for long-context large
language models. arXiv preprint arXiv:2406.05678, 2024.

[67] Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Re. The hedgehog & the
porcupine: Expressive linear attentions with softmax mimicry. In The Twelfth International
Conference on Learning Representations, 2024.

[68] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023.

[69] Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models
in-context. arXiv preprint arXiv:2306.09927, 2023.

[70] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

[71] Hongbo Zhao, Bolin Ni, Junsong Fan, Yuxi Wang, Yuntao Chen, Gaofeng Meng, and Zhaoxiang
Zhang. Continual forgetting for pre-trained vision models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 28631–28642, 2024.

15

Appendix

A Toward Faster Computation Without Materializing Q, K and V 17
A.1 Direct computation in factor space . 18
A.2 Complexity: materialized vs. specialized computation 18
A.3 Complexity of the specialized path . 19
A.4 Inference-time decoding cost across mechanisms 19

B More on FlashTPA Decoding Algorithm 24
B.1 Triton FlashTPA Decoding Kernel . 25
B.2 Additional Experimental Results . 25

C Higher-Order Tensor Product Attention 28
C.1 RoPE Compatibility in Higher-Order TPA . 28

D Proofs of Theorems 29
D.1 Proof of Theorem 3.1 . 29
D.2 Proof of Theorem C.1 . 30

E More Related Work 32

F More on Attention Mechanisms 32
F.1 Multi-Query Attention (MQA) . 32
F.2 Grouped Query Attention (GQA) . 33
F.3 Multi-head Latent Attention (MLA) . 33
F.4 Multi-matrix Factorization Attention (MFA) . 34
F.5 Rotary Position Embedding (RoPE) . 34

G More on TPA 35

H More on Experiments 36
H.1 Experimental Settings . 36
H.2 Additional Experimental Results . 36
H.3 Ablation Studies on Learning Rates . 39

I Broader Impacts and Limitations 39

16

A Toward Faster Computation Without Materializing Q, K and V

Our objective in this section is to compute attention without explicitly forming Q,K,V, by con-
tracting their factorized representations in a cache- and throughput-friendly order. Recall from
Equation (3.1) that each per-token slice Qt,Kt,Vt ∈ Rh×dh is a sum of rank-1 outer products.
Unless otherwise stated we use the per-factor normalizations sQ=1/RQ, sK=1/RK , sV =1/RV .

We make the batch/time/head/rank/value dimensions explicit and introduce the shorthands D := dh
and E := dv (typically E=D):

AQ ∈ RB×Tq×RQ×H , BQ ∈ RB×Tq×RQ×D, AK ∈ RB×Tk×RK×H , BK ∈ RB×Tk×RK×D,

AV ∈ RB×Tk×RV ×H , BV ∈ RB×Tk×RV ×E .

Indices b, q, k, h, r, s, u, d, e denote batch, query position, key position, head, query-rank, key-rank,
value-rank, feature (D), and value feature (E). We write T := Tq=Tk for full-sequence attention; in
decoding, Tq=1 and we denote the cache length by M=Tk.

Convention. For a single token, the main text defines A∗(xt) ∈ RR∗×H and B∗(xt) ∈ RR∗×D, with
Qt =

1
RQ

AQ(xt)
⊤BQ(xt). Accordingly, throughout this appendix we index AQ as AQ[b, q, r, h]

(rank-major). Some implementations may store A∗ transposed as (H ×R∗) for memory layout, this
is equivalent, since all uses contract over the rank index.

High-level idea. We first compute head-shared feature-space dot products between BQ and BK ,
then mix them with head-specific AQ,AK to obtain logits, apply the masked softmax, and finally
aggregate values via AV ,BV . This ordering avoids materializing any Tq×h×D queries/keys/values.

Phase 1: Attention Score Computation
BQ

BK

∑
d P

d

AQ AK

∑
rq,rk L′

incl. sQ, sK

Softmax α

incl. 1/
√
dh

over key
tokens tk

Phase 2: Value Aggregation

AV

BV

⊙ WAV

∑
tk,rv O

tk, rv

incl. sV

Figure 6: Specialized TPA computation without materializing Q,K,V. Phase 1 (top): compute
head-shared feature-space dot products P [b, q, k, r, s]=⟨BQ[b, q, r, :], BK [b, k, s, :]⟩ and mix them
with head-specific factors AQ,AK to obtain logits L[b, h, q, k]. Phase 2 (bottom): apply the
causal/padding mask and softmax to get α[b, h, q, k], then aggregate values via AV ,BV . Scalings
sQ, sK , sV and 1/

√
D are folded into the corresponding phases. Dropout is omitted for clarity. Batch

B, heads H , ranks RQ, RK , RV , and feature dims D,E are indicated in the nodes.

17

A.1 Direct computation in factor space

Single head. For a fixed head h∈ [H] and token indices (q, k), using sQ=1/RQ and sK=1/RK we
have

[
Q(h)(K(h))⊤

]
q,k

=
1

RQRK

RQ∑
r=1

RK∑
s=1

a
Q,(r)
q,h (xq) a

K,(s)
k,h (xk)

〈
bQ,(r)(xq), b

K,(s)(xk)
〉
, (A.1)

and for values (with sV =1/RV), V(h)
k = 1

RV

∑RV

u=1 a
V,(u)
k,h (xk)b

V,(u)(xk). The per-head attention

output at query position q is then
∑

k softmax
(

1√
D
[Q(h)(K(h))⊤]q,:

)
k
V

(h)
k .

Multi-head with head-shared feature dot-products. Define head-shared feature-space dot products
P [b, q, k, r, s]=⟨BQ[b, q, r, :],BK [b, k, s, :]⟩. With S= sQsK√

D
, we compute

L[b, h, q, k] = S
RQ∑
r=1

RK∑
s=1

AQ[b, q, r, h] AK [b, k, s, h] P [b, q, k, r, s], (A.2)

α[b, h, q, k] = Softmaxk(L[b, h, q, k] +mask[b, q, k]) ,

O[b, h, q, e] = sV

Tk∑
k=1

RV∑
u=1

α[b, h, q, k] AV [b, k, u, h] BV [b, k, u, e]. (A.3)

Here mask[b, q, k]∈{0,−∞} is an additive mask in logit space that enforces causality and padding.
Eqs. (A.2)–(A.3) make explicit that (i) feature-space dot products P are head-shared, and (ii) the
rank normalizations sQ, sK , sV can be absorbed into the corresponding factor tensors (or into the
scalar prefactors) without changing the computed attention output.

A.2 Complexity: materialized vs. specialized computation

We compare two execution strategies. (i) Naïve/materialized: form Q,K,V explicitly and call
standard kernels. (ii) Specialized: compute via Eq. (A.2)–(A.3) using head-shared feature-dot
products and per-head rank contractions.

Standard MHA (baseline). Ignoring projections, full-sequence attention uses Θ(BHT 2D) FLOPs
for scores and Θ(BHT 2D) for value aggregation, i.e., FMHA = 2Θ(BHT 2D).

TPA (materialized). Forming Q,K,V from factors costs Θ(BTHD(RQ+RK+RV)) after the
linear projections; subsequent attention uses the same 2Θ(BHT 2D) as MHA.

TPA (specialized). Using Eqs. (A.2)–(A.3) and writing Tq=Tk=T , the dominant FLOPs are

Θ(B T 2 RQRK D)︸ ︷︷ ︸
feature dots P

+ Θ(BH T 2 RQRK)︸ ︷︷ ︸
per-head rank combine

+ Θ(BH T 2 RV E)︸ ︷︷ ︸
value aggregation

.

Compared to FMHA, the specialized path reduces FLOPs whenever

RQRK D + H RQRK + H RV E < 2HD. (A.4)

Dividing by HD yields (RQRK/H) + (RQRK/D) +RV (E/D) < 2. For E=D and small ranks
(e.g., RQ=RK=RV =1), the inequality holds for typical H,D≥2 and the benefit grows with larger
H or D.

Memory traffic and peak working set. For full-sequence attention the naive path streams Q,K,V
of size Θ(BTHD) each. The specialized path streams factors only and needs the head-shared P
tiles of size Θ(B T tile

q T tile
k RQRK) plus per-head tiles for the rank combine/value aggregation. In

decoding with cache length M , the factorized KV cache uses (RK+RV)(h+D) numbers per token
(cf. Section 3.3), vs. 2hD for MHA; this reduction directly lowers memory bandwidth pressure.

18

Algorithm 1 Specialized TPA (no explicit Q,K,V; causal)
Require: AQ ∈ RB×Tq×RQ×H , BQ ∈ RB×Tq×RQ×D

Require: AK ∈ RB×Tk×RK×H , BK ∈ RB×Tk×RK×D

Require: AV ∈ RB×Tk×RV ×H , BV ∈ RB×Tk×RV ×E

Require: scales sQ=1/RQ, sK=1/RK , sV =1/RV ; mask mask ∈ {0,−∞}B×Tq×Tk

Ensure: O ∈ RB×Tq×H×E

1: P ← einsum("bqrd,bksd->bqkrs", BQ, BK) ▷ ∈ RB×Tq×Tk×RQ×RK

2: L ← (sQsK/
√
D) · einsum("bqrh,bksh,bqkrs->bhqk", AQ, AK , P)

3: L ← L+ broadcast(mask) ▷ causal/padding mask
4: α← Softmaxk(L) ▷ ∈ RB×H×Tq×Tk ; online/LSE in practice
5: O← sV · einsum("bhqk,bkuh,bkue->bhqe", α, AV , BV)
6: return transpose(O, "bhqe"→ "bqhe")

A.3 Complexity of the specialized path

Combining the terms above gives complexity FTPA-spec = Θ(BT 2RQRKD) + Θ(BHT 2RQRK) +
Θ(BHT 2RV E), with the speed condition Eq. (A.4).
For a single query (Tq=1) against a cache of length M , the specialized FLOPs are

Θ(BM RQRK D) + Θ(BHM RQRK) + Θ(BHM RV E),

while MHA uses 2Θ(BHMD). This matches the asymptotics embodied in FLASHTPA (Section 5)
and explains the regimes where RQ≪D and RK=RV ∈ {1, 2} yield the largest gains.
We apply the causal mask before softmax and use an online log-sum-exp update for numerical
stability (as in FlashAttention). The intermediate P ∈ RB×Tq×Tk×RQ×RK is evaluated blockwise in
Tk to keep peak memory linear in the block size; the same blocking naturally fuses with the masked
softmax and the value aggregation step.
The constants sQ, sK , sV can be absorbed into either A(·) or B(·) at training time. We expose them
explicitly only to make Eq. (A.4) transparent; The choice has no effect on softmax invariance or
gradients.
The Triton kernel in Section 5 implements the blocked computation of P , the masked online softmax
over k, and the fused value aggregation, mirroring Algorithm 1. This avoids creating any Q,K,V or
full Tq×Tk temporaries beyond working tiles.

Compared with 2Θ(BHT 2D) for MHA, the specialized path improves with small (RQ, RK , RV)
and benefits further from pre-rotating BK for RoPE (cf. Section 3.2), which removes per-step
rotations in decoding. Practical speed also depends on tiling, memory bandwidth, and kernel fusion;
our measured gains in Section 6.2 align with the regime predicted by Eq. (A.4).

A.4 Inference-time decoding cost across mechanisms

In autoregressive decoding, we generate the output for the current token xT given cached keys and
values from T−1 previous tokens. We analyze the FLOPs for computing the attention output for this
single query token and use M for the current cache length. For all mechanisms, we analyze the total
Floating Point Operations (FLOPs) and the number of parameters in the attention layer, including
the cost of projecting the current token’s hidden state xT into its respective Query, Key, and Value
representations. The parameter count formulas are taken from Table 1.
For Multi-Head Attention (MHA), with H query heads and H distinct Key/Value heads, the
complexity is determined by the dot-product attention and value aggregation steps.

• Projection: Projecting xT to get a query, key, and value vector for each of the H heads costs
Θ(dmodelHdh).

• Attention: Dot products and value aggregation over a cache of length M cost Θ(2MHdh) (ignoring
softmax constants).

• Total MHA: The complexity is Θ(dmodelHdh + 2MHdh).

Multi-Query Attention (MQA) uses H query heads but shares a single Key/Value head (Hkv = 1).
The arithmetic complexity remains the same as MHA for the same number of query heads.

19

• Projection: Projecting for H query heads and 1 shared K/V head costs Θ(dmodel(Hdh + 2dh)).
• Attention: The interaction with the cache costs Θ(2MHdh).
• Total MQA: The complexity is Θ(dmodeldh(H + 2) + 2MHdh).
Grouped-Query Attention (GQA) uses H query heads and G Key/Value head groups (Hkv = G).
The arithmetic complexity is also identical to MHA.
• Projection: Projecting for H query heads and G K/V head groups costs Θ(dmodel(Hdh + 2Gdh)).
• Attention: The interaction with the cache costs Θ(2MHdh).
• Total GQA: The complexity is Θ(dmodeldh(H + 2G) + 2MHdh).
MQA and GQA significantly reduce the KV cache size and memory bandwidth compared to MHA.
While the arithmetic FLOP count for the core attention computation (dot products and weighted sums)
is 2MHdh for all three (for fixed H, dh), practical speedups for MQA/GQA arise from improved
memory locality due to smaller K/V caches.
Multi-Head Latent Attention (MLA), as described in Appendix F.3, uses H heads. Each head’s
(up-projected) query/key vectors have dimension dh + dRh . During decoding, however, the score
computation against the cache can be decomposed into (i) a dot product in the cached latent space Rdc

for the content part and (ii) an additional RoPE dot product in RdR
h for the positional part. Concretely,

MLA caches cKV
s ∈ Rdc per past token s, aggregates values in Rdc , and then up-projects once per

step.

• Cached state: MLA caches the compressed KV latent cKV
s ∈ Rdc and the shared RoPE key

component kR
s ∈ RdR

h per past token s.
• Projection (current token): Computing the query latents and the new cache entry (up to constant

factors) costs
Θ
(
dmodeld

′
c + d′cH(dh + dRh) + dmodel(dc + dRh)

)
,

corresponding to forming cQ, QC , QR, and computing/storing cKV and kR for the current token.
• Attention (cache interaction): Using the identity qC⊤

t,i kC
s,i = (WUK

i qC
t,i)

⊤cKV
s , the score against

each cached token can be computed via a dot product in Rdc plus the RoPE dot product in RdR
h . The

latent value can be aggregated in Rdc and then up-projected once. The dominant cache-dependent
cost is

Θ
(
MH(2dc + dRh)

)
,

up to lower-order per-step terms such as Θ(Hdcdh).
• Total MLA: Θ

(
dmodeld

′
c + d′cH(dh + dRh) + dmodel(dc + dRh) +MH(2dc + dRh)

)
.

TPA. We use the FlashTPA Decoding algorithm (Algorithm 2) for FLOPs analysis, with N = 1 query
token, M cached items, D as feature dimension for BQ/b

K (typically dh), and E for bV (typically
dh). For ranks (RQ, RK , RV):

• Projection: Projecting the current token xT to all Q/K/V factors costs
Θ
(
dmodel(RQ+RK+RV)(H+dh)

)
.

• Attention (cache interaction): Using Algorithm 2 with cache length M , the dominant cache-
dependent FLOPs are

Θ
(
M (RQRKD + HRQRK + HRV E)

)
,

up to lower-order terms (masking/element-wise products and online-softmax bookkeeping).
• Total for TPA decoding: Θ

(
dmodel(RQ+RK+RV)(H+dh) + M(RQRKD + HRQRK +

HRV E)
)
.

Example Comparison I.
We compare the total Floating Point Operations (FLOPs) required to process a single token during
autoregressive inference. This analysis separates the initial, constant projection cost from the attention
cost, which scales linearly with the cache length M .
The following parameters are used for the comparison:

• Model Dimension: dmodel = 2048
• Heads: H = 32
• Head Dimension: dh = 64 (so D = E = dh)

20

• GQA Groups: G = 4
• MLA Dimensions: dc = 256, dRh = 32, and d′c = 768

MHA (16.8M parameters):

Parameters = 4dmodelHdh = 4 · 2048 · (32 · 64) ≈ 16.8× 106

Projection = 3 · dmodel ·H · dh = 3 · 2048 · 32 · 64 ≈ 12.6× 106

Attention = 2 ·M ·H · dh = 4096M

GQA (G = 4, 9.4M parameters):

Parameters = dmodeldh(2H + 2G) = 2048 · 64 · (2 · 32 + 2 · 4) ≈ 9.4× 106

Projection = dmodel(H + 2G)dh = 2048 · (32 + 8) · 64 ≈ 5.2× 106

Attention = 2 ·M ·H · dh = 4096M

MLA (9.8M parameters):

Parameters = 768(2048 + 2048 + 1024) + 2048(32 + 2048) + 256(2048 + 4096) ≈ 9.8× 106

Projection ≈ dmodeld
′
c + d′cH(dh + dRh) + dmodel(dc + dRh) +Hdcdh

= 2048 · 768 + 768 · 32 · (64 + 32) + 2048 · (256 + 32) + 32 · 256 · 64
≈ 5.0× 106

Attention = M ·H · (2dc + dRh) = M · 32 · (512 + 32) = 17408M

TPA (RQ = 16, RK = 1, RV = 1, 7.7M parameters):

Parameters = dmodel(16 + 1 + 1)(H + dh) + dmodelHdh = 2048(18)(96) + 20482 ≈ 7.7× 106

Projection = dmodel(16 + 1 + 1)(H + dh) = 2048 · (18) · (96) ≈ 3.5× 106

Attention = M · [1(1536) + 1(2048)] = 3584M

TPA (RQ = 16, RK = 2, RV = 2, 8.1M parameters):

Parameters = dmodel(16 + 2 + 2)(H + dh) + dmodelHdh = 2048(20)(96) + 20482 ≈ 8.1× 106

Projection = dmodel(16 + 2 + 2)(H + dh) = 2048 · (20) · (96) ≈ 3.9× 106

Attention = M · [2(1536) + 2(2048)] = 7168M

TPA (RQ = 8, RK = 1, RV = 1, 6.2M parameters):

Parameters = dmodel(8 + 1 + 1)(H + dh) + dmodelHdh = 2048(10)(96) + 20482 ≈ 6.2× 106

Projection = dmodel(8 + 1 + 1)(H + dh) = 2048 · (10) · (96) ≈ 2.0× 106

Attention = M · [1(768) + 1(2048)] = 2816M

TPA (RQ = 8, RK = 2, RV = 2, 6.6M parameters):

Parameters = dmodel(8 + 2 + 2)(H + dh) + dmodelHdh = 2048(12)(96) + 20482 ≈ 6.6× 106

Projection = dmodel(8 + 2 + 2)(H + dh) = 2048 · (12) · (96) ≈ 2.4× 106

21

Attention = M · [2(768) + 2(2048)] = 5632M

The analysis shows that TPA with low ranks offers a favorable trade-off. Reducing the query
rank (RQ) from 16 to 8 further decreases both the projection and attention costs, making the
TPA (RQ=8, RK=1, RV =1) configuration the most computationally efficient in this comparison.
Increasing key/value ranks (e.g., to RK=2, RV =2) raises the attention cost linearly, remaining
competitive with MHA for sufficiently long contexts where kernel fusion and blocking amortize
memory traffic.

Example Comparison II.
We now repeat the analysis for a larger model configuration to observe how these trade-offs scale.
The following parameters for a larger model are used for this comparison:

• Model Dimension: dmodel = 4096
• Heads: H = 32
• Head Dimension: dh = 128 (so D = E = dh)
• GQA Groups: G = 4
• MLA Dimensions: dc = 512, dRh = 64, and d′c = 1536

MHA (67.1M parameters):

Parameters = 4dmodelHdh = 4 · 40962 ≈ 67.1× 106

Projection = 3 · 4096 · 32 · 128 ≈ 50.3× 106

Attention = 2 ·M · 32 · 128 = 8192M

GQA (G = 4, 37.7M parameters):

Parameters = dmodeldh(2H + 2G) = 4096 · 128 · (2 · 32 + 2 · 4) ≈ 37.7× 106

Projection = 4096 · (32 + 8) · 128 ≈ 21.0× 106

Attention = 2 ·M · 32 · 128 = 8192M

MLA (39.1M parameters):

Parameters = 1536(4096 + 4096 + 2048) + 4096(64 + 4096) + 512(4096 + 8192) ≈ 39.1× 106

Projection ≈ dmodeld
′
c + d′cH(dh + dRh) + dmodel(dc + dRh) +Hdcdh

= 4096 · 1536 + 1536 · 32 · (128 + 64) + 4096 · (512 + 64) + 32 · 512 · 128
≈ 20.2× 106

Attention = M · 32 · (1024 + 64) = 34816M

TPA (RQ = 16, RK = 1, RV = 1, 28.6M parameters):

Parameters = 4096(18)(160) + 40962 ≈ 28.6× 106

Projection = 4096 · (16 + 1 + 1) · (32 + 128) ≈ 11.8× 106

Attention = M · [1(2560) + 1(4096)] = 6656M

TPA (RQ = 16, RK = 2, RV = 2, 29.9M parameters):

Parameters = 4096(20)(160) + 40962 ≈ 29.9× 106

Projection = 4096 · (16 + 2 + 2) · (32 + 128) ≈ 13.1× 106

Attention = M · [2(2560) + 2(4096)] = 13312M

TPA (RQ = 8, RK = 1, RV = 1, 23.3M parameters):

Parameters = 4096(10)(160) + 40962 ≈ 23.3× 106

Projection = 4096 · (8 + 1 + 1) · (32 + 128) ≈ 6.6× 106

22

Attention = M · [1(1280) + 1(4096)] = 5376M

TPA (RQ = 8, RK = 2, RV = 2, 24.6M parameters):

Parameters = 4096(12)(160) + 40962 ≈ 24.6× 106

Projection = 4096 · (8 + 2 + 2) · (32 + 128) ≈ 7.9× 106

Attention = M · [2(1280) + 2(4096)] = 10752M

For this larger configuration, TPA (RQ=8, RK=1, RV =1) remains the clear leader in computational
efficiency, with the lowest projection and attention costs. This highlights the value of tuning TPA
ranks to balance expressiveness against compute.

Example Comparison III.
Then we analyze a very large model configuration (e.g. MoE model with 1∼2T parameters) to
examine the scaling properties of each architecture, where dmodel ̸= H · dh to align MLA with other
attention mechanisms. We also denote the number of parameters in the attention part for each layer.
The following parameters are used for this comparison:

• Model Dimension: dmodel = 7168
• Heads: H = 64
• Head Dimension: dh = 128 (so D = E = dh)
• GQA Groups: G = 8
• MLA Dimensions: dc = 512, dRh = 64, and d′c = 1536

MHA (235M parameters):

Parameters = 4dmodelHdh = 4 · 7168 · 8192 ≈ 235× 106

Projection = 3 · 7168 · 64 · 128 ≈ 176.2× 106

Attention = 2 ·M · 64 · 128 = 16384M

GQA (G = 8, 132M parameters):

Parameters = dmodeldh(2H + 2G) = 7168 · 128 · (2 · 64 + 2 · 8) ≈ 132× 106

Projection = 7168 · (64 + 16) · 128 ≈ 73.4× 106

Attention = 2 ·M · 64 · 128 = 16384M

MLA (101M parameters):

Parameters = 1536(7168 + 8192 + 4096) + 7168(64 + 8192) + 512(7168 + 16384) ≈ 101× 106

Projection ≈ dmodeld
′
c + d′cH(dh + dRh) + dmodel(dc + dRh) +Hdcdh

= 7168 · 1536 + 1536 · 64 · (128 + 64) + 7168 · (512 + 64) + 64 · 512 · 128
≈ 38.2× 106

Attention = M · 64 · (2 · 512 + 64) = 69632M

TPA (RQ = 16, RK = 1, RV = 1, 83M parameters):

Parameters = 7168(18)(192) + 7168 · 8192 ≈ 83.5× 106

Projection = 7168 · (16 + 1 + 1) · (64 + 128) ≈ 24.8× 106

Attention = M · [1(3072) + 1(8192)] = 11264M

TPA (RQ = 16, RK = 2, RV = 2, 86.2M parameters):

Parameters = 7168(20)(192) + 7168 · 8192 ≈ 86.2× 106

Projection = 7168 · (16 + 2 + 2) · (64 + 128) ≈ 27.5× 106

Attention = M · [2(3072) + 2(8192)] = 22528M

23

TPA (RQ = 8, RK = 1, RV = 1, 72.5M parameters):
Parameters = 7168(10)(192) + 7168 · 8192 ≈ 72.5× 106

Projection = 7168 · (8 + 1 + 1) · (64 + 128) ≈ 13.8× 106

Attention = M · [1(1536) + 1(8192)] = 9728M

TPA (RQ = 8, RK = 2, RV = 2, 75.2M parameters):
Parameters = 7168(12)(192) + 7168 · 8192 ≈ 75.2× 106

Projection = 7168 · (8 + 2 + 2) · (64 + 128) ≈ 16.5× 106

Attention = M · [2(1536) + 2(8192)] = 19456M

At this very large scale, the cost of MHA projections becomes prohibitive. While MLA’s projection
cost can be competitive, its attention cost scales with (2dc+dRh) and exceeds MHA for long sequences.
TPA with low ranks (RQ=8, RK=1, RV =1) yields the lowest attention cost and a substantially
smaller projection cost, strengthening its advantage as model size increases.

B More on FlashTPA Decoding Algorithm

In this section, we present FlashTPA for decoding in a hardware–friendly, numerically stable form
and extend it to general key/value ranks RK , RV ≥ 1. The algorithm computes attention without
materializing Q,K,V or the full N×M attention matrix, by (i) forming head-shared feature–space
dot products, (ii) mixing them with head-specific factors to obtain logits as in Eq. (A.2), and (iii)
aggregating values as in Eq. (A.3) in a single online softmax pass.

Notation and shapes. We allow N query positions but decoding uses N=1. Let B be batch, M
the cache length, H heads, RQ, RK , RV ranks, and D,E feature sizes (typically D=E=dh). Inputs:

AQ∈RB×N×RQ×H , BQ∈RB×N×RQ×D, Acache
K ∈RB×M×RK×H , Bcache

K ∈RB×M×RK×D,

Acache
V ∈RB×M×RV ×H , Bcache

V ∈RB×M×RV ×E .

We use scalings sQ=1/RQ, sK=1/RK , sV =1/RV , and stotal=1/
√
D. Let mask ∈

{0,−∞}B×N×M encode causality/padding. If RoPE pre-rotation is used (Section 3.2), Bcache
K

already includes positional phases; otherwise apply RoPE to BK on load.

Algorithm 2 FlashTPA Decoding (general RK , RV , masked, online-LSE)
Require: AQ,BQ,A

cache
K ,Bcache

K ,Acache
V ,Bcache

V , mask; sQ, sK , sV , stotal

Ensure: O ∈ RB×N×H×E

1: Initialize y← 0B×H×N×E , s← 0B×H×N , m← (−∞)B×H×N ▷ s accumulates∑
exp(·); log-sum-exp is log s+m

2: for each cache block m:m+∆m≤M do
3: Load BK,blk∈RB×∆m×RK×D, AK,blk∈RB×∆m×RK×H

4: Load AV,blk∈RB×∆m×RV ×H , BV,blk∈RB×∆m×RV ×E , maskblk∈RB×N×∆m

5: (1) Head-shared feature dots: P← einsum(“bnrd,bmsd→bnmrs”, BQ, BK,blk) ▷
RB×N×∆m×RQ×RK

6: (2) Per-head rank mixing to logits:
7: Lblk ← (stotalsQsK) · einsum(“bnrh,bmsh,bnmrs→bhnm”, AQ, AK,blk, P) ▷

RB×H×N×∆m

8: Lblk ← Lblk + broadcast(maskblk)
9: (3) Online softmax update (no α materialization):

10: mblk ← maxm(Lblk); pblk ← exp(Lblk −mblk); sblk ←
∑

m pblk
11: (4) Block value aggregation (fused over m,u):
12: yblk ← einsum(“bhnm,bmuh,bmue→bhne”, pblk, AV,blk, BV,blk) ▷ RB×H×N×E

13: (5) Fuse blocks with log-sum-exp:
14: mnew ← max(m,mblk); y ← exp(m − mnew)[..., None] ⊙ y + exp(mblk −

mnew)[..., None]⊙ yblk
15: s← exp(m−mnew)⊙ s + exp(mblk −mnew)⊙ sblk; m←mnew
16: end for
17: return O← sV · y

s[...,None] permuted to (B,N,H,E)

24

Step (1)–(2) implements Eq. (A.2); step (4)–(5) implements Eq. (A.3) while fusing the masked
softmax with value aggregation via online log-sum-exp (as in FlashAttention), thereby avoiding any
α materialization. When RK=RV =1 the contractions reduce to the simpler einsums in Figure 2.

Complexity and working set. Per block of ∆m cache items, the dominant FLOPs are

Θ(BN ∆mRQRKD) + Θ(BH N ∆mRQRK) + Θ(BH∆mRV E),

matching the specialized analysis in Appendix A.2 and the decoding bounds in Appendix A.4.
Peak memory scales with tiles of BK ,AK ,AV ,BV and the small temporaries P and Vblk; neither
Q,K,V nor the full N×M attention matrix is formed.

RoPE and masking. If keys are pre-rotated (Eq. (3.5)), Bcache
K needs no decoding-time rotation.

Otherwise apply RoPE to BK,blk row-wise before step (1). The mask mask (zeros or −∞) is added
to logits in step (2) and supports both causal and padding masks.

B.1 Triton FlashTPA Decoding Kernel

We implement the experiments using Triton [57]; Algorithm 3 sketches the kernel corresponding
to Algorithm 2. The provided kernel outline specializes to the frequently used case RK=RV =1;
general ranks follow by tiling over RK , RV and replacing the rank-1 vector–matrix products with the
corresponding small GEMMs in steps S1/S2 and the value mixing path.

B.2 Additional Experimental Results

The following figures present additional speed comparisons for different embedding dimensions, with
dh = 64 maintained. The y-axis represents log2(time) in seconds (lower is faster), and the x-axis
represents log2(sequence length).
Detailed Analysis of Figure 5 (Embedding Dimension 2048): Figure 5 in the main paper depicts
speed comparisons for an embedding dimension of 2048. The results indicate that FlashTPA (blue
line) is highly competitive. Across all tested batch sizes (1 to 16) for dmodel = 2048:

• MHA (orange line) is consistently the slowest mechanism, with its decoding time increasing most
rapidly with sequence length.

• MQA (purple line) and GQA (green line) offer significant speedups over MHA and perform very
similarly to each other, often overlapping in the plots.

• MLA (blue line) demonstrates strong performance, generally being faster than GQA, particularly
at longer sequence lengths.

• FlashTPA shows excellent scalability. While at very short sequence lengths (e.g., 212 to 213), its
performance is comparable to MQA/GQA and MLA, its decoding time increases at a notably
slower rate with sequence length. Consequently, FlashTPA becomes significantly faster than GQA
for sequences longer than approximately 214.

• Compared to MLA, FlashTPA is consistently among the top two performers. In many instances,
particularly at sequence lengths greater than 214 or 215, FlashTPA matches or slightly surpasses
MLA in speed. The logarithmic scale for time suggests that these differences can be substantial in
practice for very long contexts. For example, at a sequence length of 219 across various batch sizes,
FlashTPA often shows a visible advantage over MLA.

Figure 7 (Embedding Dimension 3072): With a larger embedding dimension of 3072, the relative
performance trends observed in Figure 5 largely persist.

• FlashTPA (red line) remains one of the most efficient decoding methods. MHA (orange line)
is consistently the slowest, while MQA (purple line) and GQA (green line) offer considerable
improvements over MHA.

• MLA (blue line) and FlashTPA are the top two performers. FlashTPA consistently matches
or exceeds the speed of MLA, particularly at longer sequence lengths (e.g., beyond 215 or 216
depending on the batch size). Its advantage often becomes more pronounced at the longest
sequences tested (219). For instance, in batch size 1, TPA is clearly faster than MLA for sequence
lengths 216 and above. A similar trend is seen across other batch sizes, where TPA maintains a
competitive edge or becomes superior at longer contexts.

25

Algorithm 3 Triton FlashTPA Decoding Kernel
Require: Input Tensors: AQ(B,N,RQ, H), aK(B,M,H), aV (B,M,H), BQ(B,N,RQ, D),

bK(B,M,D), bV (B,M,E)
Require: Scaling factors: stotal, sQ, sK , sV ; Dimensions: B,N(= 1),M,H,RQ, D,E
Require: Kernel Block dims: BH , BR, BD, BE ; Sequence Blocking: Mblock,Mchunk
Require: Program IDs: pidB

, pidH
, pidM

Ensure: Partial Output Opartial(B,NumM , N,H,E), Log-Sum-Exp LSEpartial(B,NumM , H)

1: b← pidB
; hstart ← pidH

·BH

2: mblock_start ← pidM
·Mblock; mblock_end ← min((pidM

+ 1) ·Mblock,M)
3: ▷ BH , BR, BD, BE are tile sizes for dimensions H, R, D, E respectively.

4: ▷ Initialize accumulators for the head block
5: oaccum ← 0(E×BH); mmax ← −∞(BH); sexp_sum ← 0(BH); cscale ← stotal · sQ · sK

6: ▷ Load query factors (fixed for this program as N=1)
7: Load A

(RQ×BH)
Q,local from AQ[b, 0, :, hstart . . .]

8: Load B
(D×RQ)
Q,local from BQ[b, 0, :, :] ▷ Dimensions may be transposed after loading for matmul

9: ▷ Iterate over Mchunk-sized chunks within the K/V block
10: for mchunk_start from mblock_start to mblock_end − 1 step Mchunk do
11: mchunk_end ← min(mchunk_start +Mchunk,mblock_end)
12: Mcurr_chunk ← mchunk_end −mchunk_start
13: ▷ Load K/V factors for the current chunk
14: Load aKchunk(Mcurr_chunk, BH); aVchunk(Mcurr_chunk, BH); bKchunk(Mcurr_chunk, D);

bVchunk(E,Mcurr_chunk) ▷ Layouts optimized for memory access and matmuls
15: bVchunk ← bVchunk · sV
16: ▷ Core TPA Score Calculation for the chunk
17: S1chunk ← MatMul(bKchunk,BQ,local) ▷ Shape: (Mcurr_chunk, RQ)
18: S2chunk ← MatMul(S1chunk,AQ,local) ▷ Shape: (Mcurr_chunk, BH)
19: S3chunk ← S2chunk ⊙ aKchunk · cscale ▷ Shape: (Mcurr_chunk, BH)
20: ▷ Online Softmax Update for the chunk
21: mmax_local ← maxaxis=0(S3chunk) ▷ Shape: (BH)
22: mmax_new ← max(mmax,mmax_local)
23: pnum ← exp(S3chunk −mmax_new[None, :])
24: sexp_sum_local ←

∑
axis=0(pnum)

25: pweighted_av ← (pnum/sexp_sum_local[None, :])⊙ aVchunk
26: ochunk ← MatMul(bVchunk,pweighted_av) ▷ Shape: (E,BH)
27: ▷ Update global (M-block level) accumulators
28: sexp_sum_prev_rescaled ← sexp_sum · exp(mmax −mmax_new)
29: sexp_sum ← sexp_sum_prev_rescaled + sexp_sum_local
30: ratio← sexp_sum_local/sexp_sum ▷ This is sexp_sum_local/sexp_sum_new
31: oaccum ← (1− ratio) · oaccum + ratio · ochunk
32: mmax ←mmax_new
33: end for

34: ▷ Store partial results for this program’s (batch, head_block, M_block)
35: Store oaccum into Opartial[b, pidM

, 0, hstart . . . , :]
36: LSEval ← log(sexp_sum) +mmax
37: Store LSEval into LSEpartial[b, pidM

, hstart . . .]

This suggests that FlashTPA’s efficiency is well-maintained even as the model’s embedding dimension
increases.
Figure 8 (Embedding Dimension 1024): For a smaller embedding dimension of 1024, similar trends
are observed:

26

• FlashTPA (red line) is highly competitive. MHA (orange line) remains the least performant. MQA
(purple line) and GQA (green line) are faster than MHA.

• However, as sequence length increases, both MLA (blue line) and FlashTPA demonstrate superior
scalability. FlashTPA generally matches or outperforms MLA, particularly for sequences longer
than 215. For example, with a batch size of 16, TPA shows a clear speed advantage over MLA for
sequence lengths 216 and greater.

These results across different embedding dimensions highlight the robustness of FlashTPA’s decoding
speed advantages, especially for long sequences where it consistently ranks as one of the fastest, if
not the fastest, attention mechanisms among those tested.

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

0

1

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 1, Embedding Dim: 3072
MHA
MQA
GQA
MLA
TPA

(a) Batch Size=1

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

0

1

2

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 2, Embedding Dim: 3072
MHA
MQA
GQA
MLA
TPA

(b) Batch Size=2

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 4, Embedding Dim: 3072
MHA
MQA
GQA
MLA
TPA

(c) Batch Size=4

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

4

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 8, Embedding Dim: 3072
MHA
MQA
GQA
MLA
TPA

(d) Batch Size=8

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

4

6
lo

g 2
(ti

m
e)

 (s
ec

on
ds

)
Batch Size: 16, Embedding Dim: 3072

MHA
MQA
GQA
MLA
TPA

(e) Batch Size=16

Figure 7: Decoding time comparison of different attention mechanisms with an embedding dimension
of 3072 and dh = 64.

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 1, Embedding Dim: 1024
MHA
MQA
GQA
MLA
TPA

(a) Batch Size=1

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

0

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 2, Embedding Dim: 1024
MHA
MQA
GQA
MLA
TPA

(b) Batch Size=2

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

0

1

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 4, Embedding Dim: 1024
MHA
MQA
GQA
MLA
TPA

(c) Batch Size=4

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 8, Embedding Dim: 1024
MHA
MQA
GQA
MLA
TPA

(d) Batch Size=8

12 13 14 15 16 17 18 19
log2(sequence length)

4

2

0

2

4

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 16, Embedding Dim: 1024
MHA
MQA
GQA
MLA
TPA

(e) Batch Size=16

Figure 8: Decoding time comparison of different attention mechanisms with an embedding dimension
of 1024 and dh = 64.

27

C Higher-Order Tensor Product Attention

All prior discussions have focused on TPA where the query, key, and value matrices (e.g., Qt ∈
Rh×dh) are formed as a sum of RQ components. Each component is an outer product of two
context-dependent vectors, one spanning the head dimension (Rh) and the other spanning the feature-
per-head dimension (Rdh), as detailed in Section 3.1 (e.g., Qt = 1

RQ
AQ(xt)

⊤BQ(xt) implies
Qt =

∑
r arb

⊤
r where ar are columns of A⊤

Q and b⊤r are rows of BQ). We now generalize this by
introducing additional latent factors in the construction of the feature-per-head vectors, leading to
what we term higher-order TPA. This approach allows for more complex interactions in forming
these feature vectors.
For instance, in a third-order factorization, the query tensor Qt ∈ Rh×dh for a single token t is
constructed as:

Qt =
1

RQ

RQ∑
r=1

aQr (xt) ⊗ vec
(
bQ
r (xt) ⊗ cQr (xt)

)
,

where aQr (xt) ∈ Rh. The term bQ
r (xt) ∈ Rdb and the newly introduced factor cQr (xt) ∈ Rdc first

form a matrix bQ
r (xt)⊗ cQr (xt) ∈ Rdb×dc via an outer product (as defined in Section 2). This matrix

is then vectorized by vec(·) into a column vector of dimension dh = dbdc. The final query Qt is
formed by the sum of outer products between aQr (xt) and these resulting dh-dimensional vectors.
Analogous expansions apply to Kt and Vt.
The additional factor cQr (xt) can be viewed as a learnable, context-dependent modulation or gating
term for the features generated by bQ

r (xt).

bQ
r (xt) ∈ Rdb , cQr (xt) ∈ Rdc , dh = dbdc.

This higher-order construction can enhance expressiveness. While introducing cQr increases the
parameter count for the factors, it might allow for the use of smaller base ranks (RQ, RK , RV) to
achieve comparable representational power, thus offering a different design choice. One could also
explore tying or sharing cQr across queries, keys, and values to manage parameter overhead.
From a memory perspective, during inference, higher-order TPA maintains the benefit of factorized
KV caching. Only the constituent factors aK(xt),bK(xt), cK(xt) (and similarly for values) for
each past token need to be stored. A trade-off arises between model capacity and the overhead of
memory and computation. Higher-order tensor decompositions can provide additional flexibility and
potentially increased capacity.

C.1 RoPE Compatibility in Higher-Order TPA

Rotary positional embeddings (RoPE) remain compatible with higher-order factorizations. In second-
order TPA, RoPE applies rotations to the dh-dimensional feature vectors. This compatibility extends
to higher-order TPA. Consider the case where RoPE is intended to primarily rotate feature pairs
derived from the bQ

r (xt) components, while the structural influence of cQr (xt) components on
the dh-dimensional vector is preserved. More formally, RoPE acts on the dh-dimensional vector
vec(bQ

r ⊗ cQr) such that the transformation is equivalent to rotating bQ
r to b̃Q

r = Rtb
Q
r (where Rt is

the RoPE rotation matrix for db dimensions) and then forming vec(b̃Q
r ⊗ cQr). This is achieved by

a specific RoPE transformation matrix Tt acting on the full dh-dimensional vector, as stated in the
following theorem.

Theorem C.1 (RoPE Compatibility in Higher-Order TPA). Consider the higher-order (3-order)
Tensor Product Attention (TPA) query factorization

Qt =
1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
bQ
r (xt)⊗ cQr (xt)

)
∈ Rh×dh ,

28

where aQr (xt) ∈ Rh, bQ
r (xt) ∈ Rdb , cQr (xt) ∈ Rdc , with dh = dbdc. Define the RoPE-transformed

query as Q̃t = RoPEt

(
Qt

)
= QtTt, where

Tt = Idc ⊗ (Rt)
⊤ =


(Rt)

⊤ · · · 0 0
0 (Rt)

⊤ · · · 0
...

...
. . .

...
0 0 · · · (Rt)

⊤

 ∈ Rdh×dh ,

Idc
is the identity matrix of size dc × dc, and Rt ∈ Rdb×db (db ∈ Z+ is even) is the standard RoPE

block-diagonal matrix composed of 2× 2 rotation matrices:

Rt =



cos(tθ1) − sin(tθ1)
sin(tθ1) cos(tθ1)

cos(tθ2) − sin(tθ2)
sin(tθ2) cos(tθ2)

. . .
cos(tθdb/2) − sin(tθdb/2)
sin(tθdb/2) cos(tθdb/2)


,

for t ∈ {1, . . . , T} and j ∈ {1, . . . , db/2}. The transformation Tt = Idc
⊗ (Rt)

⊤ operates on the
dh-dimensional vectorized features by post-multiplication. This structure of Tt ensures that the
rotation effectively applied to the bQ

r (xt) component (which is a column vector) corresponds to
a pre-multiplication by Rt, as detailed in the proof (Appendix D.2). This preserves the structure
induced by cQr (xt) while rotating bQ

r (xt).

Under these conditions, the RoPE-transformed query RoPEt

(
Qt

)
admits a higher-order TPA factor-

ization of the same rank RQ:

1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
b̃Q
r (xt)⊗ cQr (xt)

)
= RoPEt

(
Qt

)
, (C.1)

where b̃Q
r (xt) = Rtb

Q
r (xt).

Please see Appendix D.2 for the proof. For fourth-order or higher, this result still holds.
To assess its empirical performance, we implemented third-order TPA. Table 4 lists the evaluation
results for a small model. These results provide an initial indication of its viability. A comprehensive
comparison with second-order TPA variants of similar parameter counts or ranks would be necessary
to fully evaluate the trade-offs.

Table 4: The evaluation results of small models with third-order TPA pre-trained using FineWeb-
Edu 100B dataset with lm-evaluation-harness. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Few-shot ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

0-shot 49.24 24.91 57.06 34.01 31.80 63.33 50.59 23.23 66.9 44.56
2-shot 53.37 25.34 48.78 34.00 29.20 62.79 52.33 26.41 75.3 45.28

D Proofs of Theorems

D.1 Proof of Theorem 3.1

Proof. Because RoPE is a linear orthogonal transform, we can write

Q̃t = Qt Tt =
1

RQ

(
AQ(xt)

⊤ BQ(xt)
)
Tt =

1

RQ
AQ(xt)

⊤(BQ(xt)Tt

)
,

where Tt is the block-diagonal matrix encoding RoPE. This allows us to define

B̃Q(xt) = BQ(xt)Tt,

29

thereby obtaining

RoPEt(Qt) =
1

RQ
AQ(xt)

⊤B̃Q(xt).

Similarly, for the key tensor Ks, we have

K̃s = Ks Ts =
1

RK

(
AK(xs)

⊤ BK(xs)
)
Ts =

1

RK
AK(xs)

⊤(BK(xs)Ts

)
,

which defines

B̃K(xs) = BK(xs)Ts,

and thus

RoPEs(Ks) =
1

RK
AK(xs)

⊤B̃K(xs).

Now, consider the product of the rotated queries and keys:

Q̃t K̃
⊤
s =

1

RQRK

(
AQ(xt)

⊤B̃Q(xt)
)(

AK(xs)
⊤B̃K(xs)

)⊤

=
1

RQRK
AQ(xt)

⊤B̃Q(xt)B̃K(xs)
⊤AK(xs),

Since Tt and Ts encode positional rotations, the product TtT
⊤
s corresponds to a relative rotation

Tt−s. Therefore, we can express the above as

Q̃t K̃
⊤
s =

1

RQRK
AQ(xt)

⊤ (
BQ(xt)TtT

⊤
s BK(xs)

⊤)AK(xs)

=
1

RQRK
AQ(xt)

⊤ (
BQ(xt)Tt−sBK(xs)

⊤)AK(xs)

=
1

RQRK
AQ(xt)

⊤ (BQ(xt)Tt−s)
(
BK(xs)

⊤AK(xs)
)

=

(
1

RQ
AQ(xt)

⊤BQ(xt)Tt−s

)(
1

RK
AK(xs)

⊤BK(xs)

)⊤

,

This shows that

RoPEt−s(Qt)K
⊤
s = Q̃t K̃

⊤
s ,

Focusing on individual heads i, the above matrix equality implies:

(qt,iTt−s)k
⊤
s,i = (qt,iTt) (ks,iTs)

⊤,

where

q̃t,i = RoPEt(qt,i) = qt,iTt ∈ R1×dh , k̃s,i = RoPEs(ks,i) = ks,iTs ∈ R1×dh .

This equality confirms that the relative positional encoding between queries and keys is preserved
under TPA’s factorization and RoPE’s rotation. Thus, TPA maintains compatibility with RoPE. This
completes the proof of Theorem 3.1.

D.2 Proof of Theorem C.1

Theorem C.1 addresses the compatibility of RoPE with higher-order (specifically, 3rd-order) Tensor
Product Attention. The theorem considers the query factorization:

Qt =
1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
bQ
r (xt)⊗ cQr (xt)

)
∈ Rh×dh ,

where aQr (xt) ∈ Rh (column vector), bQ
r (xt) ∈ Rdb (column vector), cQr (xt) ∈ Rdc (col-

umn vector), and dh = dbdc. The term bQ
r (xt) ⊗ cQr (xt) is interpreted as the matrix Mr =

30

bQ
r (xt)(c

Q
r (xt))

⊤ ∈ Rdb×dc . The notation a⊗v for a ∈ Rh and v ∈ Rdh (column vectors) implies
the outer product av⊤. Thus, Qt =

1
RQ

∑RQ

r=1 a
Q
r (xt)(vec(Mr))

⊤.

The RoPE-transformed query is defined as Q̃t = RoPEt

(
Qt

)
= QtTt. Crucially, for the theorem’s

conclusion to hold as intended (i.e., that the bQ
r component is transformed by pre-multiplication with

the standard RoPE matrix Rt), the global transformation matrix Tt ∈ Rdh×dh (that post-multiplies
Qt) is given by:

Tt = Idc ⊗ (Rt)
⊤,

where Idc
is the dc×dc identity matrix, and Rt ∈ Rdb×db is the standard RoPE block-diagonal matrix

that pre-multiplies db-dimensional column vectors (as defined explicitly in the theorem statement in
Section C).

The theorem claims that, under these conditions, Q̃t admits a higher-order TPA factorization:

Q̃t =
1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
b̃Q
r (xt)⊗ cQr (xt)

)
,

where b̃Q
r (xt) = Rtb

Q
r (xt).

Proof. Let aQr ≡ aQr (xt), bQ
r ≡ bQ

r (xt), and cQr ≡ cQr (xt) for brevity. Let Mr = bQ
r (c

Q
r)

⊤ ∈
Rdb×dc . Let vr = vec(Mr) ∈ Rdh be the column vector obtained by stacking the columns of Mr.
The query tensor is Qt =

1
RQ

∑RQ

r=1 a
Q
r (vr)

⊤.

The RoPE transformation is Q̃t = QtTt. Substituting the factorization and the revised definition of
Tt:

Q̃t =

 1

RQ

RQ∑
r=1

aQr (vr)
⊤

 (Idc
⊗ (Rt)

⊤)

=
1

RQ

RQ∑
r=1

aQr
(
(vr)

⊤(Idc
⊗ (Rt)

⊤)
)
.

Let’s analyze the transformed vector part for the r-th component: (vr)
⊤(Idc

⊗ (Rt)
⊤). This row

vector is the transpose of ((Idc
⊗ (Rt)

⊤)⊤vr). Let’s compute the pre-multiplying matrix:

((Idc ⊗ (Rt)
⊤)⊤ = (Idc)

⊤ ⊗ ((Rt)
⊤)⊤ = Idc ⊗Rt.

So, the column vector transformation is (Idc ⊗Rt)vr. Substitute vr = vec(Mr) = vec(bQ
r (c

Q
r)

⊤):

(Idc
⊗Rt) vec(b

Q
r (c

Q
r)

⊤).

We use the Kronecker product identity: (B0
⊤ ⊗A0) vec(X0) = vec(A0X0B0). To match our

expression (Idc
⊗Rt) vec(Mr), we identify: A0 = Rt, B0

⊤ = Idc
=⇒ B0 = Idc

, X0 = Mr =
bQ
r (c

Q
r)

⊤. Applying the identity, we get:

vec
(
Rt(b

Q
r (c

Q
r)

⊤)Idc

)
= vec

(
(Rtb

Q
r)(c

Q
r)

⊤) .
Let b̃Q

r = Rtb
Q
r . This is precisely the transformation for the bQ

r component as claimed in the
theorem. So the transformed column vector is vec(b̃Q

r (c
Q
r)

⊤). The corresponding row vector in the
sum for Q̃t is therefore (vec(b̃Q

r (c
Q
r)

⊤))⊤.

Substituting this back into the expression for Q̃t:

Q̃t =
1

RQ

RQ∑
r=1

aQr (vec(b̃
Q
r (c

Q
r)

⊤))⊤.

This is equivalent to the theorem’s claimed factorization, using the definition a ⊗ col_vec =
a(col_vec)⊤:

Q̃t =
1

RQ

RQ∑
r=1

aQr ⊗ vec
(
b̃Q
r ⊗ cQr

)
,

31

where b̃Q
r = Rtb

Q
r . This completes the proof, showing that RoPE can be consistently applied to

higher-order TPA representations if the global RoPE transformation matrix Tt (that post-multiplies
Qt) is appropriately defined as Idc ⊗ (Rt)

⊤, ensuring that the standard RoPE matrix Rt effectively
pre-multiplies the bQ

r component.

E More Related Work

Transformers and Attention. As a sequence-to-sequence architecture, Transformer [60] intro-
duced Multi-Head Attention (MHA), enabling more effective capture of long-range dependencies.
Subsequent work has explored a variety of attention mechanisms aimed at improving scalability
and efficiency, including sparse patterns [10, 49, 16, 30, 27, 31], kernel-based projections [11], and
linearized transformers [59, 25, 44, 69, 54, 67]. To decrease memory usage and circumvent the limi-
tation of memory bandwidth in training, [46] proposed Multi-Query Attention (MQA) where multiple
query heads share the same key head and value head. To tackle the issue of quality degradation and
instability in training, Grouped-Query Attention (GQA) [2] divides queries into several groups, and
each group of queries shares a single key head and value head. Recently, DeepSeek-V2 [32] applied
multihead latent attention (MLA) to achieve better performance than MHA while reducing KV cache
in inference time by sharing the same low-rank representation of key and value. Concurrently, [21]
proposed Multi-matrix Factorization Attention (MFA), which can be simply seen as MQA with low-
rank factorized Q. Compared to the approaches above, TPA applied contextual tensor decompositions
to represent queries, keys, and values activations compactly, achieving better reduction on the size of
KV cache with improved performance.
KV Cache Optimization. During the auto-regressive inference of Transformers, key and value
(KV) tensors from previous tokens are cached to avoid recomputation, a technique first proposed
by [40]. This Key-Value (KV) cache, while crucial for efficiency, consumes significant memory and
can introduce latency bottlenecks due to memory bandwidth limitations [1]. Consequently, various
studies have explored methods to mitigate these issues. These include KV cache eviction strategies
that discard less significant tokens [70, 62, 8, 1], dynamic sparse attention mechanisms focusing on
selected keys and values [42, 55, 50], offloading the KV cache to CPU memory [17, 26, 53], and
quantizing the KV cache [61, 34, 19]. In contrast to these approaches, TPA focuses on reducing the
intrinsic size of the KV cache by employing tensor-decomposed key and value representations.
Low-Rank Factorizations. Low-rank approximations are widely used to compress model parameters
and reduce computational complexity. Notable examples include LoRA [20], which factorizes weight
updates during fine-tuning, and its derivatives tailored for various training scenarios such as efficient
pretraining (ReLoRA [28], MoRA [22]), long-context training (LongLoRA [9], SinkLoRA [66]), and
continual training (InfLoRA [29], GS-LoRA [71], I-LoRA [41]). These methods generally produce
static low-rank expansions that are independent of the input context. Theoretical justifications for the
expressiveness of low-rank approximations have been provided by [38, 65]. Initialization strategies
for these factorization matrices have also been explored: OLoRA [7] utilizes QR-decomposition
of pretrained weights for improved language model performance, while LoLDU [48] employs
LDU-decomposition to accelerate LoRA training. Furthermore, AdaLoRA [68] uses Singular
Value Decomposition (SVD) on pretrained weights and introduces parameter importance scores to
dynamically adjust ranks. TPA, in contrast, constructs Q, K, and V tensors using contextually-aware
factorizations, allowing for dynamic adaptation based on the input.

F More on Attention Mechanisms

F.1 Multi-Query Attention (MQA)

Multi-Query Attention (MQA) [46] significantly reduces memory usage, particularly for the KV
cache, by sharing a single key and value projection across all attention heads, while each head
maintains a unique query projection. Given a sequence of input embeddings X ∈ RT×dmodel , the
query, shared key, and shared value tensors are computed as:

Qi = XWQ
i , Kshared = XWK

shared, Vshared = XW V
shared.

Thus, each head i uses a distinct query projection Qi ∈ RT×dh but shares the common key Kshared ∈
RT×dh and value Vshared ∈ RT×dh tensors. The weight matrices are:

WQ
i ∈ Rdmodel×dh , WK

shared,W
V
shared ∈ R dmodel×dh .

32

The resulting MQA operation is:

MQA(X) = Concat
(

head1, . . . ,headh

)
WO,

where

headi = Attention
(
Qi,Kshared,Vshared

)
.

By sharing key and value projections, MQA substantially reduces memory demands, especially for
the KV cache during autoregressive inference. However, this comes at the cost of reduced model
expressivity, as all heads must utilize the same key and value representations.

F.2 Grouped Query Attention (GQA)

Grouped Query Attention (GQA) [2] generalizes Multi-Head Attention (MHA) and MQA by dividing
the total h attention heads into G groups. Within each group, heads share a common key and value
projection, while each head maintains its own unique query projection. Formally, let g(i) denote the
group index for head i ∈ {1, . . . , h}, where g(i) ∈ {1, . . . , G}. The projections are:

Kg(i) = XWK
g(i), Vg(i) = XW V

g(i), Qi = XWQ
i ,

and

headi = Attention
(
Qi,Kg(i),Vg(i)

)
.

Here, WK
g and W V

g are the shared weight matrices for group g, each in Rdmodel×dh , and WQ
i ∈

Rdmodel×dh is the query weight matrix for head i. The complete output is again a concatenation of all
heads:

GQA(X) = Concat
(

head1, . . . , headh

)
WO.

By varying G from 1 (equivalent to MQA) to h (equivalent to MHA), GQA offers a trade-off between
memory efficiency and model capacity.

F.3 Multi-head Latent Attention (MLA)

Multi-head Latent Attention (MLA), as used in DeepSeek-V2 [32] and DeepSeek-V3 [33], introduces
low-rank compression for keys and values to reduce KV caching costs during inference.

CKV = XWDKV ,

Concat
(
KC

1 ,K
C
2 , . . . ,K

C
h

)
= KC = CKV WUK ,

KR = RoPE
(
XWKR

)
,

Ki = Concat
(
KC

i ,K
R
)
,

Concat
(
VC

1 ,V
C
2 , . . . ,V

C
h

)
= VC = CKV WUV ,

Here, WDKV ∈ Rdmodel×dc projects to a compressed dimension dc, WUK ∈ Rdc×(dhh) up-projects
the compressed keys, WKR ∈ Rdmodel×dR

h projects to a residual key component for RoPE, and
WUV ∈ Rdc×(dhh) up-projects the compressed values. CKV ∈ RT×dc is the shared compressed
KV latent (where dc ≪ dhh). The RoPE transformation is applied to a separate key embedding
KR ∈ RT×dR

h . Thus, only CKV and KR are cached, reducing KV memory usage while largely
preserving performance compared to standard MHA [60].
MLA also compresses the queries, lowering their training-time memory footprint:

CQ = XWDQ,

Concat
(
QC

1 ,Q
C
2 , . . . ,Q

C
h

)
= QC = CQWUQ,

Concat
(
QR

1 , Q
R
2 , . . . , Q

R
h

)
= QR = RoPE

(
CQWQR

)
,

Q = Concat
(
QC ,QR

)
.

33

The weight matrices are WDQ ∈ Rdmodel×d′
c , WUQ ∈ Rd′

c×(dhh), and WQR ∈ Rd′
c×(dR

h h). Here,
CQ ∈ RT×d′

c (where d′c ≪ dhh) is the compressed query latent. The final query Qi for each head,
formed by concatenating QC

i and QR
i , has a dimension of dh + dRh .

Given compressed queries, keys, and values, the final attention output for the t-th token is:

Oi = Softmax
(

QiK
⊤
i√

dh+dR
h

)
VC

i ,

U = Concat
(
O1,O2, . . . ,Oh

)
WO,

where Vi is typically VC
i as no residual value component is explicitly defined, and WO ∈

R(dhh)×dmodel is the output projection.
During inference, CKV and KR are cached to accelerate decoding. In detail, if RoPE were ignored
for the compressed components, the inner product q⊤

t,iks,i (where qt,i,ks,i ∈ Rdh) of the i-th head
between t-th token query and s-th token key could be calculated using the current hidden state
xt ∈ Rdmodel and the cached latent state cKV

s ∈ Rdc for the s-th token:

q⊤
t,iks,i = [(WUQ

i)⊤(WDQ
i)⊤xt]

⊤[(WUK
i)⊤cKV

s] (F.1)

= x⊤
t [W

DQ
i WUQ

i (WUK
i)⊤]cKV

s , (F.2)

where W
(·)
i denotes the i-th head’s portion of the respective weight matrix. The term

[WDQ
i WUQ

i (WUK
i)⊤] could be pre-computed for faster decoding. However, as noted by [51],

this pre-computation strategy is not directly compatible with RoPE if RoPE were applied to these
compressed representations. RoPE applies a rotation matrix Tt ∈ Rdh×dh based on position t (see
Section F.5), satisfying TtT

⊤
s = Tt−s (Equation F.4). If RoPE were applied to the up-projected QC

and KC :

q⊤
t,iks,i = [Tt

⊤(WUQ
i)⊤(WDQ

i)⊤xt]
⊤[Ts

⊤(WUK
i)⊤cKV

s]

= x⊤
t [W

DQ
i WUQ

i Tt−s(W
UK
i)⊤]cKV

s .
(F.3)

Unlike Equation (F.2), acceleration by pre-computing the term [WDQ
i WUQ

i Tt−s(W
UK
i)⊤] is

not possible because it depends on the relative position (t − s) and thus varies for different (t, s)
pairs. To maintain RoPE compatibility while benefiting from compression, MLA introduces an
additional, smaller key component KR (and similarly QR) to which RoPE is applied, while the
main compressed components KC and VC (derived from CKV) remain RoPE-free. As we will
demonstrate in Section 3.2 of the main paper, TPA offers a different approach to integrate RoPE
efficiently with factorized attention through its tensor product formulation.

F.4 Multi-matrix Factorization Attention (MFA)

[21] proposed Multi-matrix Factorization Attention (MFA), which can be conceptualized as a variation
of MQA where the shared key and value projections have a dimension dc, and the query projection
for each head is low-rank factorized:

Qi = XWDQWUQ
i , Kshared = XWK

shared, Vshared = XW V
shared,

where

WDQ ∈ Rdmodel×dc , WUQ
i ∈ Rdc×dc , WK

shared,W
V
shared ∈ R dmodel×dc .

F.5 Rotary Position Embedding (RoPE)

Many recent LLMs use rotary position embedding (RoPE; 52) to encode positional information in the
query/key vectors. Specifically, for a vector at position t, RoPE applies a rotation matrix Tt ∈ Rd×d

(where d is the dimension of the query/key vectors, typically dh per head). Tt is a block-diagonal

matrix composed of d/2 rotation blocks of the form
(
cos(tθj) − sin(tθj)
sin(tθj) cos(tθj)

)
for j ∈ {1, . . . , d/2}.

The frequencies {θj} are typically defined as θj = base−2j/d, with a common base like 10000. If
qt ∈ Rd is a query (or key) row vector for a specific head at position t, RoPE is applied as:

RoPE(qt) ≜ qtTt.

34

A key property of RoPE is that the inner product between RoPE-transformed vectors depends only
on their relative position. For a query qt and key ks: (qtTt)(ksTs)

⊤ = qtTtT
⊤
s k

⊤
s = qtTt−sk

⊤
s .

This relies on the property:

TtT
⊤
s = Tt−s, (F.4)

which embeds relative positional information (t− s) into the attention scores.

G More on TPA

Parameter Initialization for TPA Factors. We initialize the weight matrices for TPA factors,
such as W aQ

r , W aK

r , W aV

r , W bQ

r , W bK

r , and W bV

r (or their combined forms W aQ

, W bQ , etc.),
using Xavier initialization [15]. Specifically, each entry of a weight matrix is drawn from a uniform
distribution U(−bound, bound), where bound =

√
6/(nin + nout). Here, nin and nout are the input

and output dimensions of the respective weight matrix. This initialization strategy is chosen to help
maintain the variance of activations and gradients as they propagate through the network layers,
contributing to stable training.
TPA with Non-contextual B. In Section 4.1, we have introduced TPA with non-contextual A, where
head-dimension factors aQr ,a

K
r ,aVr ∈ Rh are fixed. Conversely, one may fix the token-dimension

factors bQ
r ,b

K
r ,bV

r ∈ Rdh as learned parameters, while allowing aQr (xt),a
K
r (xt),a

V
r (xt) to adapt

to the input token xt. The key tensor for token t, Kt ∈ Rh×dh , would then be constructed as:

Kt =
1

RK

RK∑
r=1

aKr (xt)⊗ bK
r .

A similar formulation applies to values. This configuration might be effective if the fundamental
token-level features (captured by br) are relatively stable, while their combination across heads
(captured by ar(xt)) needs to adapt to the context. Performance comparisons for TPA with non-
contextual A factors versus non-contextual B factors on small and medium-sized models are presented
in Tables 5, 6, 7, and 8.
Table 5: Evaluation results of small models with TPA using non-contextual A or B factors, pre-trained
on FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). Abbreviations: HellaSw. =
HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

TPA (non-ctx-A) 50.17 25.60 57.95 36.13 31.40 64.80 49.57 24.88 64.80 45.03
TPA (non-ctx-B) 47.39 26.37 54.8 32.71 30.2 63.38 50.2 23.13 64.8 43.66

Table 6: Evaluation results of small models with TPA using non-contextual A or B factors, pre-trained
on FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). Abbreviations: HellaSw. =
HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

TPA (non-ctx-A) 55.09 27.65 53.82 36.24 30.20 64.53 50.75 26.01 78.60 46.99
TPA (non-ctx-B) 50.8 26.96 57.65 32.4 29.4 63.22 49.57 23.96 66.4 44.48

Table 7: Evaluation results of medium models with TPA using non-contextual A or B factors, pre-
trained on FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). Abbreviations: HellaSw.
= HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

TPA (non-ctx-A) 58.96 31.48 59.76 45.07 34.80 69.21 53.59 25.42 76.40 50.52
TPA (non-ctx-B) 55.43 29.69 58.32 40.77 34.40 66.92 51.38 25.66 71.10 48.19

TPA KV Only. A simpler variant involves using a standard linear projection for queries,

Qt = WQxt ∈ Rh×dh ,

and factorize only the key and value tensors (Kt,Vt). This approach, termed TPA-KVonly, maintains
the standard query projection mechanism but still achieves significant KV cache reduction through
factorized key and value representations.

35

Table 8: Evaluation results of medium models with TPA using non-contextual A or B factors, pre-
trained on FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). Abbreviations: HellaSw.
= HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

TPA (non-ctx-A) 65.45 33.79 56.88 45.23 33.60 68.61 54.22 25.00 85.00 51.98
TPA (non-ctx-B) 61.20 30.20 55.93 40.45 34.40 68.23 51.78 26.11 78.10 49.60

TPA KV with Shared B. Further parameter reduction can be achieved by sharing the token-
dimension factors br between keys and values:

bK
r (xt) = bV

r (xt) (if contextual), or bK
r = bV

r (if non-contextual).

This sharing reduces both parameter count and the KV cache footprint. Although it constrains Kt

and Vt to be constructed from the same token-level basis vectors, this variant can still offer strong
performance with additional memory savings.
Nonlinear Head Factors. Instead of using purely linear transformations to derive the contextual
head-dimension factors aQr (xt),a

K
r (xt),a

V
r (xt), one can introduce element-wise nonlinearities (e.g.,

sigmoid σ(·) or softmax). Applying softmax, for instance, to the coefficients that generate ar(xt)
could be interpreted as a form of Mixture-of-Heads, where the network learns to dynamically weight
different head configurations based on the input context.
Discussion. These variants highlight the flexibility of the TPA framework, allowing for different
trade-offs between memory efficiency, computational cost, and model expressiveness. By carefully
choosing which factor components (head-dimension or token-dimension) are contextual versus non-
contextual, and by adjusting the ranks (RQ, RK , RV), TPA can not only unify existing mechanisms
like MHA, MQA, and GQA but also significantly reduce KV cache size—potentially by an order of
magnitude—during autoregressive inference.

H More on Experiments

H.1 Experimental Settings

We list the main architecture hyper-parameters and training devices in Table 9. For all models, the
head dimension dh is fixed at 64. Specific architectural choices include: 2 KV heads for GQA models;
a residual key dimension dRh = 32 for MLA models; and ranks RK = RV = 2 and RQ = 6 for TPA
and TPA-KVonly models, unless otherwise specified. Other relevant hyper-parameters are listed in
Table 10.
Training Setup Details. We follow the nanoGPT training configuration [24]. In particular, we
use the AdamW [35] optimizer with (β1, β2) = (0.9, 0.95), a weight decay of 0.1, and gradient
clipping at 1.0. We follow the same setting as nanoGPT that the learning rate is managed by a cosine
annealing scheduler [36] with 2,000 warmup steps and a (total) global batch size of 480. For the
small, medium, large and XL models, we set maximum learning rates of 6×10−4, 3×10−4, 2×10−4,
and 1 × 10−4 (respectively), and minimum learning rates of 3 × 10−5, 6 × 10−5, 1 × 10−5, and
1× 10−5 (respectively).
Table 9: The architecture hyper-parameters and training devices of models. Abbreviations: BS. =
Batch Size, GAS. = Gradient Accumulation Steps.

MODEL SIZE PARAMETERS DEVICES MICRO BS. GAS. #LAYERS dMODEL

SMALL 124M 4× A100 GPUS 24 5 12 768
MEDIUM 353M 8× A100 GPUS 20 3 24 1024
LARGE 772M 8× A100 GPUS 15 4 36 1280

XL 1.55B 8× A100 GPUS 6 10 48 1600

H.2 Additional Experimental Results

H.2.1 Perplexity Curves

We display the perplexity curves for medium, large, and XL size models in Figure 9.

36

Table 10: The architecture hyper-parameters for different models.

MODEL SIZE SMALL MEDIUM LARGE XL

h (MHA) 12 16 20 25
h (MQA) 23 31 39 49
h (GQA) 22 30 38 48
h (MLA) 12 23 34 49

h (TPA-KVONLY) 22 29 37 47
h (TPA) 34 47 61 78

dc (MLA) 256 512 512 512
d′c (MLA) 512 1024 1024 1024

(a) Validation Perplexity (b) Validation Perplexity (c) Validation Perplexity

Figure 9: The validation perplexity of medium-size (353M) models, large-size (773M), and XL-size
(1.5B) models with different attention mechanisms on the FineWeb-Edu 100B dataset.

H.2.2 Ablation Study on Different Ranks

Figure 10 illustrates the training loss, validation loss, and validation perplexity for XL-sized (1.5B
parameters) TPA models with varying key/value ranks (RK = RV = R, as indicated in the figure
legend), trained on the FineWeb-Edu 100B dataset. Corresponding 0-shot evaluation results are
presented in Table 12 (rows for TPA-KVonly with different RK,V). These results indicate that
increasing the ranks for key and value factorizations generally improves the performance of the TPA
models.

(a) Training Loss (b) Validation Loss (c) Validation Perplexity

Figure 10: The training loss, validation loss and validation perplexity curves of XL-size (1.5B) TPA
models with different key/value ranks (RK = RV = R) on the FineWeb-Edu 100B dataset.

H.2.3 0-shot Evaluation with lm-evaluation-harness

We present 0-shot evaluation results using the lm-evaluation-harness for small (124M parameters)
and XL (1.5B parameters) models in Tables 11 and 12, respectively.

H.2.4 2-shot Evaluation with lm-evaluation-harness

Similarly, 2-shot evaluation results are provided in Tables 13 (Small), 14 (Medium), 15 (Large), and
16 (XL).

37

Table 11: Evaluation results of small models (124M) with different attention mechanisms, pre-trained
on FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best scores in each column
are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 50.63 26.96 59.39 36.18 32.00 64.96 51.85 23.40 70.30 46.19
MQA 49.62 25.34 55.72 35.94 31.40 64.85 51.30 23.37 68.70 45.14
GQA 48.70 25.68 56.15 35.58 31.40 64.91 51.62 23.12 68.20 45.04
MLA 50.21 26.71 58.01 36.25 32.80 64.69 50.59 24.67 71.90 46.20

TPA-KVonly 51.05 26.54 57.25 36.77 32.60 65.02 50.91 23.64 69.70 45.94
TPA 51.26 27.39 57.00 36.68 32.80 64.47 49.72 24.61 72.00 46.21

Table 12: Evaluation results of XL models (1.5B) with different attention mechanisms, pre-trained on
the FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best scores in each column
are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande. If not specified, TPA and
TPA-KVonly models use RK = RV = 2.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.81 35.41 61.90 54.32 37.20 72.74 55.80 25.44 82.80 54.49
MQA 64.10 36.01 62.26 54.38 39.00 72.58 56.43 23.70 81.90 54.48
GQA 63.68 35.92 60.46 54.17 38.40 73.56 56.27 24.77 81.70 54.33
MLA 64.14 35.92 60.12 53.60 39.20 72.25 55.17 24.71 81.60 54.08

TPA-KVonly 65.61 36.77 63.02 54.17 37.00 73.34 54.62 25.02 81.60 54.57
TPA-KVonly (RK,V = 4) 64.52 37.03 63.27 54.89 39.80 72.91 56.51 24.74 81.60 55.03
TPA-KVonly (RK,V = 6) 65.78 35.92 61.71 54.86 38.60 72.69 57.93 25.59 82.20 55.03
TPA 66.71 36.52 61.38 54.03 40.40 72.52 56.83 24.49 82.20 55.01

Table 13: Evaluation results of small models (124M) with different attention mechanisms, pre-trained
on FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). The best scores in each column
are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 57.66 28.24 57.28 36.43 29.60 64.09 51.14 26.57 82.00 48.11
MQA 53.79 26.35 44.95 34.18 28.80 62.79 52.01 25.91 78.10 45.21
GQA 55.01 25.94 55.72 35.68 31.80 65.29 51.93 25.27 77.80 47.16
MLA 54.76 27.13 58.07 36.13 31.40 65.07 51.30 25.90 78.90 47.63

TPA-KVonly 54.25 27.90 57.06 36.36 31.80 64.31 53.59 26.18 79.20 47.85
TPA 57.53 28.07 56.33 36.49 31.80 64.36 51.14 25.92 79.70 47.93

Table 14: Evaluation results of medium models (353M) with different attention mechanisms, pre-
trained on FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness, default LR 6× 10−4). The
best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.73 32.42 58.29 45.89 34.20 68.50 53.20 25.86 88.00 52.34
MQA 64.98 33.62 55.02 45.81 34.00 69.59 53.43 24.30 85.20 51.77
GQA 65.24 33.19 56.54 45.41 34.80 69.04 55.72 24.73 87.90 52.51
MLA 64.98 33.62 53.52 45.94 33.00 68.55 51.85 25.46 89.10 51.78

TPA-KVonly 64.69 32.34 59.48 46.23 35.40 70.08 54.06 25.64 86.30 52.69
TPA 67.97 34.56 57.22 46.87 34.60 69.91 52.01 25.07 89.90 53.12

Table 15: Evaluation results of large models (772M) with different attention mechanisms, pre-trained
on the FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). The best scores in each
column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 67.85 36.35 59.82 50.22 35.00 70.67 53.35 23.92 91.10 54.25
MQA 68.86 36.09 53.79 50.50 37.00 70.89 54.70 25.01 88.00 53.87
GQA 69.15 36.09 58.84 50.29 36.20 70.73 54.22 26.08 90.00 54.62
MLA 70.54 38.74 61.50 51.86 36.00 70.89 54.22 25.47 92.40 55.74

TPA-KVonly 71.34 37.71 59.76 51.10 36.00 71.49 54.62 25.83 90.10 55.33
TPA 70.41 37.71 60.06 51.30 34.00 71.06 54.54 25.79 90.30 55.02

38

Table 16: Evaluation results of XL models (1.5B) with different attention mechanisms, pre-trained
on the FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). The best scores in each
column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande. If not specified,
RK = RV = 2 for TPA and TPA-KVonly models.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 70.83 39.93 59.85 54.05 36.20 72.52 55.17 25.42 91.70 56.18
MQA 71.34 39.76 58.93 54.27 39.40 72.96 57.38 24.74 91.90 56.74
GQA 71.17 39.08 60.18 54.05 37.40 73.07 56.35 24.87 92.20 56.49
MLA 70.79 37.54 50.83 53.33 40.00 72.09 56.51 24.93 91.80 55.31

TPA-KVonly 72.85 39.68 60.92 53.81 37.00 73.34 56.83 26.19 91.30 56.88
TPA-KVonly (RK,V = 4) 72.98 40.27 60.15 54.88 36.80 73.29 56.43 25.50 92.10 56.93
TPA-KVonly (RK,V = 6) 73.95 39.76 58.99 54.73 36.80 72.91 59.04 24.93 92.90 57.11
TPA 71.76 39.16 61.25 53.74 37.80 72.80 55.49 23.86 90.70 56.28

H.3 Ablation Studies on Learning Rates

To assess sensitivity to learning rates, we conducted parallel experiments on medium-sized models
using a learning rate of 3× 10−4 (compared to the default 6× 10−4 used for other medium model
results). The training loss, validation loss, and validation perplexity curves are shown in Figure 11.
Performance on standard benchmarks for these models trained with the 3× 10−4 learning rate are
reported in Tables 17 (0-shot) and 18 (2-shot). The results demonstrate that TPA and TPA-KVonly
maintain their performance advantages over other attention mechanisms even with this alternative
learning rate.

(a) Training Loss (b) Validation Loss (c) Validation Perplexity

Figure 11: The training loss, validation loss, and validation perplexity of medium-size (353M) models
(learning rate 3× 10−4) with different attention mechanisms on the FineWeb-Edu 100B dataset.

Table 17: The evaluation results of medium models (learning rate 3× 10−4) with different attention
mechanisms pretrained using the FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The
best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 56.52 29.27 58.84 44.06 35.00 68.44 51.07 25.35 76.40 49.44
MQA 55.68 28.24 60.86 44.17 35.20 68.66 52.72 25.14 72.90 49.29
GQA 54.88 29.61 56.36 43.77 35.20 68.82 52.57 25.41 74.80 49.05
MLA 59.64 29.78 60.73 45.17 34.20 68.66 52.80 25.34 75.70 50.22

TPA-KVonly 57.11 30.03 61.25 44.83 34.60 69.04 54.54 23.35 74.60 49.93
TPA 59.30 31.91 60.98 45.57 34.60 69.48 53.91 24.93 77.20 50.88

I Broader Impacts and Limitations

This work allows for the processing of much longer sequences of information with limited hardware
resources by reducing the KV cache size. This could make advanced AI capabilities accessible
to entities with limited computational budgets, potentially fostering improvement on downstream
tasks, including in-depth document analysis, complicated-context reasoning, and code generation,
promoting innovation across various sectors in fields of scientific research, education, and software
development.

39

Table 18: The evaluation results of medium models (learning rate 3× 10−4) with different attention
mechanisms pre-trained using the FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness).
The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.44 32.85 59.05 44.18 33.20 68.72 50.12 26.01 87.40 51.77
MQA 64.27 32.94 57.71 44.36 31.80 68.01 51.70 25.99 86.00 51.42
GQA 61.70 32.17 52.81 43.99 33.80 68.50 53.35 24.44 86.40 50.80
MLA 65.95 31.48 50.98 44.99 32.20 68.93 51.93 25.89 88.80 51.24

TPA-KVonly 65.99 33.70 57.49 44.47 34.20 69.53 53.28 24.23 86.50 52.15
TPA 66.54 34.47 58.96 45.35 33.00 69.21 53.99 24.51 91.30 53.04

Although our work proposes a KV-cache efficient architecture for large language models, it may
contain certain limitations. For instance, generalization to other modalities deserves more extensive
investigation.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We describe all the contributions and scope in the abstract and introduction
parts.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitations in Appendix I.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be

40

used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We list all the assumptions and proofs in Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We listed all the experiment details in Section 6 for reproduction of our work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

41

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data required to reproduce the main experimental results are
provided at https://anonymous.4open.science/r/T6-anonymous-2025. The sup-
plemental material will contain instructions for their use.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We just list all the training and test details in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

42

https://anonymous.4open.science/r/T6-anonymous-2025
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The error bars are not reported because it would be too computationally
expensive for repeated experiments on LLMs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We just list all the computer resources in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research only explores a novel framework for large language models with
better KV-Cache efficiency. Therefore, the research conducted in the paper conform, in
every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

43

https://neurips.cc/public/EthicsGuidelines

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the potential positive societal impacts and negative societal
impacts in Appendix I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work proposes a novel framework of large language models. To our
knowledge, this work has no direct path to any negative applications.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

44

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We add the citation to all the codes (nanoGPT and lm-evaluation-harness: MIT
License) and datasets (FineWeb-Edu-100B: odc-by) that we used in this work. No other
models are included in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code implementing our proposed TPA model and experimental setup is
released at https://anonymous.4open.science/r/T6-anonymous-2025. This code
will be documented to facilitate understanding and use by other researchers. No new datasets
or pre-trained models are introduced beyond the code for the methods.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper only use open-source codes and datasets which do not involve
crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

45

paperswithcode.com/datasets
https://anonymous.4open.science/r/T6-anonymous-2025

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper only use open-source codes and datasets which do not involve
crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This work aims at exploring more efficient architecture for large language
models. Therefore, LLM architectures are well described in the main part of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

46

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Scaled Dot-Product Attention
	Multi-Head Attention (MHA)

	Tensor Product Attention
	Tensor Factorization of Queries, Keys, and Values
	RoPE Compatibility and Acceleration
	KV Caching and Memory Reduction

	Expressing MHA, MQA, GQA as Non-contextual TPA
	MHA as Non-contextual TPA
	MQA and GQA as Non-contextual TPA
	Model Architectures

	FlashTPA Decoding Algorithm
	Experiments
	Language Modeling Tasks
	Experimental Results on FlashTPA Decoding

	Conclusion
	Appendices
	Toward Faster Computation Without Materializing Q, K and V
	Direct computation in factor space
	Complexity: materialized vs. specialized computation
	Complexity of the specialized path
	Inference-time decoding cost across mechanisms

	More on FlashTPA Decoding Algorithm
	Triton FlashTPA Decoding Kernel
	Additional Experimental Results

	Higher-Order Tensor Product Attention
	RoPE Compatibility in Higher-Order TPA

	Proofs of Theorems
	Proof of Theorem 3.1
	Proof of Theorem C.1

	More Related Work
	More on Attention Mechanisms
	Multi-Query Attention (MQA)
	Grouped Query Attention (GQA)
	Multi-head Latent Attention (MLA)
	Multi-matrix Factorization Attention (MFA)
	Rotary Position Embedding (RoPE)

	More on TPA
	More on Experiments
	Experimental Settings
	Additional Experimental Results
	Ablation Studies on Learning Rates

	Broader Impacts and Limitations

