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Abstract

Consider the problem of testing whether the out-
puts of a large language model (LLM) system
change under an arbitrary intervention, such as
an input perturbation or changing the model vari-
ant. We cannot simply compare two LLM out-
puts since they might differ due to the stochastic
nature of the system, nor can we compare the
entire output distribution due to computational
intractability. While existing methods for analyz-
ing text-based outputs exist, they focus on fun-
damentally different problems, such as measur-
ing bias or fairness. To this end, we introduce
distribution-based perturbation analysis, a frame-
work that reformulates LLM perturbation analysis
as a frequentist hypothesis testing problem. We
construct empirical null and alternative output dis-
tributions within a low-dimensional semantic sim-
ilarity space via Monte Carlo sampling, enabling
tractable inference without restrictive distribu-
tional assumptions. The framework is (i) model-
agnostic, (ii) supports the evaluation of arbitrary
input perturbations on any black-box LLM, (iii)
yields interpretable p-values; (iv) supports multi-
ple perturbations via controlled error rates; and (v)
provides scalar effect sizes. We demonstrate the
usefulness of the framework across multiple case
studies, showing how we can quantify response
changes, measure true/false positive rates, and
evaluate alignment with reference models. Above
all, we see this as a reliable frequentist hypothesis
testing framework for LLM auditing.

1. Introduction
Large language models (LLMs) generate outputs condi-
tioned on textual inputs by iteratively sampling from a dis-
tribution of tokens. Therefore, the outputs of LLMs exhibit
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inherent variability due to the stochastic sampling process, a
process controlled via parameters such as temperature or top-
k (Renze & Guven, 2024). This means that evaluating how
interventions—such as input perturbations, model variant
changes, prompt system modifications—affect the output, is
not straightforward (Romero-Alvarado et al., 2024). Under-
standing and quantifying the effects of such perturbations is
crucial in high-stakes applications—such as legal document
drafting or medical diagnosis—where errors or unintended
behavior could have significant consequences (Meskó &
Topol, 2023; Helberger et al., 2023).

Systematic evaluation of output responses to input pertur-
bation is fundamental to comprehending LLM behavior. It
provides quantitative insights into model robustness and
output consistency across diverse input conditions. Statisti-
cal hypothesis testing of model responses can be used for
quantifying these effects and isolating the effects of ran-
dom variability. There are multiple examples where this is
directly relevant. First, it helps with vulnerability identifica-
tion by quantifying potential vulnerabilities to adversarial
attacks (Goodfellow et al., 2014). Second, it aids with bias
discovery, whereby latent biases or unintended behaviors
may not become apparent through single-dimension audit-
ing approaches (Ribeiro et al., 2016). Third, it can work
within a compliance framework. Measurable frameworks
for assessing model behavior are essential for compliance
with emerging ethical and legal accountability regulations
(Doshi-Velez et al., 2017). In the context of language mod-
els, subtle changes in patient history could lead to wildly
different diagnoses; and patients with nearly identical health
records might receive drastically different treatment plans
due to minor grammatical changes. Given these critical
functions, there is a clear need for a comprehensive LLM
auditing framework centered around reliable statistics tools.

Current methods for analyzing LLM behavior changes of-
ten focus on simplistic metrics, such as word overlap or
direct log-probability comparisons. While effective in cer-
tain cases, these approaches fail to account for the nuanced,
high-dimensional nature of semantic information processed
by LLMs (Bhandari et al., 2020; Lin, 2004). Moreover,
existing methods typically lack rigorous statistical founda-
tions, making it difficult to disentangle meaningful changes
in model behavior from intrinsic randomness in the output
generation process. Efforts to address this have included
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specialized attribution methods, feature importance tech-
niques, and counterfactual reasoning frameworks (Ribeiro
et al., 2016; Garg et al., 2019). However, these approaches
are often model-specific, rely on restrictive assumptions
about the data or model, or fail to provide interpretable and
generalizable metrics.

Our solution. In this work, we introduce distribution-based
perturbation analysis (DBPA), a framework that reformu-
lates the problem of LLM perturbation analysis as a fre-
quentist hypothesis testing task. DBPA constructs empirical
output distributions using Monte Carlo sampling to cap-
ture the inherent stochasticity of LLMs, and enables sta-
tistical hypothesis testing of perturbation effects within a
low-dimensional semantic similarity space. By using statis-
tical hypothesis testing, the framework enables robust, inter-
pretable inferences about whether and how input perturba-
tions meaningfully influence LLM outputs. DBPA is model-
agnostic, computationally efficient, and flexible enough
to accommodate arbitrary perturbations on any black-box
LLM. It also provides interpretable p-values, scalar effect
sizes, and supports multiple testing with controlled error
rates, making it a versatile tool for post-hoc interpretability
and reliability assessments of LLMs.1



Contributions. 1⃝ We identify limitations in exist-
ing methods for evaluating language model outputs
(Sec. 2). 2⃝ We introduce distribution-based pertur-
bation analysis which is a model-agnostic sensitivity
technique that can test the effect of any perturba-
tion with statistical significance measures (Sec. 3).
3⃝ We perform multiple case studies to show the
usefulness of DBPA (Sec. 4).

2. An analysis of viewing LLM outputs
through frequentist hypothesis testing

2.1. Problem formulation

Let X denote the input space and Y the output space of
a machine learning system. We define the system as a
stochastic mapping S : X → P(Y), where P(Y) is the
space of probability distributions over Y . This formulation
captures the inherent stochasticity of modern ML systems,
including LLMs.

Our objective is to address the following research question:
Given an ML system S, an input x ∈ X , and an input
perturbation ∆x, how can we systematically measure and
interpret the impact of ∆x on the output distribution of S(x)
under a general notion of sensitivity?

Definition 2.1 (Sensitivity). The sensitivity of a machine
learning system S with respect to an input perturbation ∆x :

1Code can be found at https://github.com/vanderschaarlab/dbpa

X → X , or a system perturbation ∆S : S → S , at input x ∈
X , is characterized by a non-negative discrepancy measure
d between the output distributions S(x) and S(∆x(x)), or
S(x) and ∆S(S)(x), respectively.

We aim to perform statistical hypothesis testing on black-
box LLMs S with respect to the system and input. Therefore,
(i) we do not assume access to the underlying system’s
parameters, such as their weights or biases; and (ii) we make
no assumptions about access to ground-truth labels, as the
evaluation is done with respect to the generated outputs of
the system.

2.2. Distribution testing as a frequentist
hypothesis-testing problem

The challenge of assessing the sensitivity of S can be re-
framed as a frequentist hypothesis testing problem. A com-
mon approach involves querying a language model once to
obtain an answer, modifying the input, querying again, and
comparing the outputs:

y ∼ S(x), y′ ∼ S(x′). (1)

This approach suffers from high variance and therefore low
statistical efficiency due to the stochastic nature of LLM sys-
tems. Since S(x) generates a random variable for any fixed
input x, both y and y′ represent single realizations from a
distribution of outputs. Any observed difference between
y and y′ could therefore arise from inherent randomness
rather than a true effect of ∆x.

To address this limitation, we propose reframing the prob-
lem from the lens of distribution testing. Instead of com-
paring individual outputs, we would ideally like to compare
the entire output distributions. For notational convenience,
let Dx := S(x) denote the output distribution for input x.
Let Yx and Yx′ be random variables where Yx ∼ Dx and
Yx′ ∼ Dx′ .
Definition 2.2 (Output Distribution). For a given input x ∈
X and an LLM S : X → P(Y), the output distribution
Dx is the probability distribution from which the random
variable Yx is drawn when generated by S(x). That is,
Yx ∼ Dx. The probability mass function is given by:

px(y) = P(Yx = y), ∀y ∈ Y. (2)

Our goal is to determine whether these distributions differ
significantly. This can be formulated as a hypothesis test:

H0 : Dx = Dx′ (The perturbation has no effect) (3)
H1 : Dx ̸= Dx′ (The perturbation has an effect) (4)

Here, x′ := ∆x(x) is shorthand for the perturbed input. The
primary benefit of such a distributional formulation is that it
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captures the full stochastic behavior of S instead of just a
single realization. This means we could perform statistical
inference by directly comparing these distributions and un-
derstanding how much the outputs have shifted across the
whole output space, such detecting subtle shifts that might
not be apparent from individual samples.



Takeaway. To understand the sensitivity of a lan-
guage model to changes in input, we need to look at
the entire range of possible outputs it can produce,
not just single examples.

Clearly, there are challenges in directly using this framework
in the context of language models: how do we practically
estimate Dx or how to practically interpret it? We discuss
these questions next.

2.3. Challenges with analyzing output distributions

There are two primary challenges in comparing output distri-
butions to evaluate the effect of an input perturbation on the
output: computational intractability and poor interpretabil-
ity.

▶ Challenge 1: Computational intractability. Even when
we restrict the language model to sequences of a fixed
length L, the output space is exponential: Y = V L with
|Y| = |V |L. For a given input x, the distribution Dx is fully
described by its probability mass function

px(y) =

L∏
t=1

p
(
yt | y<t, x

)
, y = (y1, . . . , yL) ∈ Y.

(5)
Enumerating px(y) for every y ∈ Y requires O(|V |L) eval-
uations and is therefore infeasible in practice.

▶ Challenge 2: Interpretability. A second major issue is
that the distribution Dx does not provide an interpretable
understanding of the LLM output. As LLMs are increas-
ingly being employed as reasoning engines (Yao et al., 2022;
Hao et al., 2023), we care about whether their outputs differ
semantically, not probabilistically. For instance, suppose S
outputs two answers to a question on treatment recommen-
dations

y1: “Targeted radiation therapy is suggested”, y2: “We
suggest targeted radiation therapy”.

The two outputs may have different probabilities under px
even though, semantically, they convey identical recommen-
dations.

Ideally, we would like to be able to resolve both issues at
the same time — (i) be able to computationally approximate
the distribution and (ii) evaluate whether the differences
are semantically meaningful, not just probabilistically dif-

ferent. We show how to achieve both with finite-sample
approximations.



Takeaway. Analyzing output distributions of lan-
guage models faces two unique challenges: the com-
putational intractability due to the enormous out-
put space, and the need for semantic rather than
just probabilistic interpretation of differences.

2.4. Finite sample approximation to output distributions

We have established that using distributions to analyze LLM
outputs offers significant advantages compared to using a
single output. These advantages come with two practical
challenges: (i) computational intractability and (ii) poor
interpretability. Here, we suggest that using finite sample
approximations can resolve both challenges.

▶ Addressing challenge 1: Computational complexity.
We address the computational complexity by Monte Carlo
sampling. We define the finite sample approximations of the
output distributions for an input x ∈ X and its perturbation
x′ as:

D̂x = {yi}ki=1, yi
i.i.d.∼ S(x), (6)

D̂x′ = {y′i}ki=1, y′i
i.i.d.∼ S(x′) (7)

where k is the sample size. The choice of k affects both the
variance of our estimator (which scales as O(1/k)) and the
power of subsequent hypothesis tests. The number of MC
samples k can be treated as a hyperparameter and it should
be adapted based on the problem setup (different needs for
similarity variance and statistical power).

▶ Addressing challenge 2: Interpretability. Given a finite
set of samples, we would like to measure how much the
output varies given an input perturbation. To quantify the
distributional changes induced by input perturbations, we
introduce the similarity measure s : Y × Y → R. This
measure allows us to construct empirical distributions of
pairwise similarities:

P0 = {s(yi, yj) : yi, yj ∈ D̂x, i ̸= j}, (8)

P1 = {s(yi, y′j) : yi ∈ D̂x, y
′
j ∈ D̂x′} (9)

Here, P0 captures the intrinsic variability within the orig-
inal output distribution, whereas P1 captures the cross-
distribution similarities between the original and perturbed
outputs. We have therefore constructed two similarity distri-
butions which represent the variability in answer similarities
as a proxy for sensitivity (Definition 2.1).
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Takeaway. Finite sample approximations using
Monte Carlo sampling and pairwise similarity mea-
sures offer a computationally feasible and inter-
pretable approach to analyzing output distributions
of language models.

3. Distribution-based perturbation analysis
We present a model-agnostic methodology for assessing the
sensitivity of LLMs to perturbations. Our approach avoids
restrictive distributional assumptions and utilizes the entire
output distribution of S, capturing the intrinsic variability
in LLM responses. We enable frequentist statistical hy-
pothesis testing using p-values through the construction of
null and alternative distributions. Importantly, our frame-
work is applicable to any perturbation and any language
model, with the minimal requirement of being able to sample
from the language model’s output distribution and construct
embeddings. Henceforth, we assume that the embedding
function is deterministic and stable, while the embeddings
are semantic-preserving: if two outputs are judged equally
similar by humans, the distance between their embeddings
should be equal up to monotone transform.

3.1. The procedure

Objective. With the approach, we are able to evaluate two
values. First, we calculate the effect size (“by how much has
the response distribution shifted”?). Second, we calculate
the p-value (“is the difference between the new and old
distributions significant”?). We follow a simple procedure,
the general form of which is outlined below.

Distribution-based perturbation analysis: a quick
overview of the procedure

Distribution-based perturbation analysis proceeds
in four steps: response sampling, distribution con-
struction, distributional comparison, and statistical
inference.
I. Response Sampling. Draw k independent out-
puts from the original prompt and k from the per-
turbed prompt

D̂x = {yi}ki=1, D̂x′ = {y′i}ki=1,

where yi
i.i.d.∼ S(x) and y′i

i.i.d.∼ S(x′) with x′ :=
∆x(x). Define the pooled vector Z = (z1, . . . , z2k)
with

zi = yi (1 ≤ i ≤ k), zk+i = y′i (1 ≤ i ≤ k).

II. Distribution construction. Using a similarity
function s : Y × Y → R, build

P0 = { s(yi, yj) : 1 ≤ i < j ≤ k},
P1 = { s(yi, y′j) : 1 ≤ i, j ≤ k}.

III. Distributional comparison. Measure the dis-
crepancy between P0 and P1 with any non-negative
functional

ω : P × P −→ R≥0, Tobs = ω(P0, P1).

IV. Statistical inference. Formulate the hypotheses

H0 : S(x) = S(x′), H1 : S(x) ̸= S(x′).

We can evaluate this hypothesis via a simple per-
mutation procedure described in Algorithm 1.
Objective. If p̂ is small, this suggests that Tobs is
unusually large relative to its null distribution. The
value Tobs itself serves as the effect-size estimate,
whereas the permutation test provides frequentist p-
values (Knijnenburg et al., 2009; Phipson & Smyth,
2010).

We can then perform statistical inference by permutation
testing. The procedure is simple and requires only minimal
exchangeability assumptions on raw outputs. Exchangeabil-
ity would not be guaranteed by permuting the similarity
scores because they are correlated.

Assumption 3.1 (Exchangeability Under the Null Hypoth-
esis). Under the null hypothesis H0 : Dx = Dx′ , the
pooled outputs Z = (y1, . . . , yk, y

′
1, . . . , y

′
k) are exchange-

able. That is, for every permutation π of the index set
{1, . . . , 2k}, we have

(y1, . . . , yk, y
′
1, . . . , y

′
k)

d
= (yπ(1), . . . , yπ(2k)).

With this assumption, we can formalize the algorithm for
permutation testing as follows.

Under the strict null hypothesis H0 : Dx = Dx′ , any
function of the pooled outputs is exchangeable, so our
permutation-based p-value is valid. We choose to summa-
rize outputs only via a semantic similarity function s (e.g.,
cosine on sentence embeddings). Thus, the test is sensitive
only to differences that appear in those similarity scores. Re-
jection implies a detectable shift in meaning; non-rejection
means “no detectable semantic shift under s,” but does not
imply that the full text-generation distribution is identical.
We discuss why this is desirable in Challenge 2 of Sec. 2.3.
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Algorithm 1 Permutation Testing for Distribution-based
Perturbation Analysis

Require: Pooled vector Z = (z1, . . . , z2k), similarity func-
tion s, discrepancy measure ω, number of permutations
B

Ensure: p-value p̂
1: Compute observed test statistic:
2: P0 = {s(zi, zj) : 1 ≤ i < j ≤ k}
3: P1 = {s(zi, zj) : 1 ≤ i ≤ k < j ≤ 2k}
4: Tobs = ω(P0, P1)
5: Initialize counter: count = 0
6: for π = 1 to B do
7: Randomly select subset I ⊂ {1, . . . , 2k} of size k
8: O = {zi : i ∈ I}, P = {zj : j /∈ I}
9: P

(π)
0 = {s(u, v) : u, v ∈ O, u ̸= v}

10: P
(π)
1 = {s(u, v) : u ∈ O, v ∈ P}

11: T (π) = ω(P
(π)
0 , P

(π)
1 )

12: if T (π) ≥ Tobs then
13: count = count + 1
14: end if
15: end for
16: p̂ = 1+count

1+B
return p̂

3.2. From theory to practice: design choices to consider
for distribution-based perturbation analysis

There are a few practical implementation essentials to take
into account for the outlined procedure.

▶ Why use scalar pairwise cosine similarities instead of
directly using high-dimensional embeddings? Employing
unreduced embeddings to construct null and alternative dis-
tributions faces two main obstacles. (a) High dimensionality.
Embedding spaces typically have hundreds or thousands of
dimensions, so estimating a full distribution in that space
is intractable because of the curse of dimensionality. (b)
Excess semantic information. Embeddings capture rich se-
mantics—most of which are irrelevant when the sole aim
is to quantify how much the responses move as the input
is perturbed, rather than where each response lives in the
embedding manifold. Reducing each pair of embeddings to
a single similarity score sidesteps both issues.

▶What is an appropriate similarity function? Instead
of an explicit dimensionality-reduction map, we apply a
similarity function that takes two outputs to R. Among
several viable choices (e.g., negative ℓ1 or ℓ2 distance), we
adopt the cosine similarity

s(yi, yj) =
⟨e(yi), e(yj)⟩
∥e(yi)∥ ∥e(yj)∥

,

where e(·) is an assumed deterministic, stable embedding
function (ada-002 for most experiments). Cosine similarity

is not a metric because the triangle inequality fails (Schubert,
2021). However, we only require a meaning-preserving,
bounded similarity, not a metric structure.

▶What is an appropriate distance measure ω? The rea-
son why there exists a choice for ω is that we are dealing
with the comparison between two distributions. This is dif-
ferent from traditional resampling-based approaches that
construct a null distribution and evaluate a single instance
against it (Yu, 2003). While the choice for ω might vary de-
pending on the application, we employ the Jensen-Shannon
divergence (JSD) as a measure for ω: JSD(P0∥P1) =
1
2 (DKL(P0∥M) +DKL(P1∥M)), where M = 1

2 (P0 +P1)
and DKL is the Kullback-Leibler divergence. We convert
each multiset into an empirical probability measure and the
JSD is taken between those empirical distributions. This
is because JSD has three useful properties for evaluating
distributions: (i) symmetry, ensuring that the measure is
invariant to the order of the distributions being compared;
(ii) boundedness, providing a consistent scale for interpre-
tation across different inputs and perturbations; and (iii)
sensitivity to differences in both the location and shape of
the distributions.

▶Why perform permutation-based testing instead of di-
rect Monte-Carlo sampling from S? In principle, one
could approximate null distributions by repeatedly sampling
S(x) and S(∆x(x)). However, new model calls are typ-
ically the dominant cost. A permutation test reuses the
same 2k generated outputs, yet—because the pooled vector
is exchangeable under H0 (Assumption 3.1)—delivers a
valid p-value with far fewer queries. We expand on this in
Appendix A.

▶How should we control multiplicity when testing many
perturbations? When DBPA is applied to a family of per-
turbations {∆i}mi=1, each hypothesis

H
(i)
0 : S(x) = S

(
∆i(x)

)
is assessed with its own permutation p-value p̂i. Running
m independent tests in parallel inflates the probability of
at least one Type-I error. To keep the family-wise error
rate (FWER) at a desired level α, one can default to the
Bonferroni correction:

FWER = 1− (1−α)m ≈ mα, αadj =
α

m
, pcrit =

α

m
.

A common countermeasure is to increase the Monte Carlo
sample size k used to build the empirical distributions P0

and P1. Under the usual normal approximation,

kadj ∝
(

z1−α/(2m)+z1−β

ω

)2
,

where ω denotes the target effect size, zq is the q-th standard-
normal quantile, and β the tolerated Type-II error. Hence,
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Experiment Purpose Finding Name Case study Insight

Persona Perturbation Test role instruction effect Large LMs stable on medical roles; small LMs variable Table 1 ✓ ✗

TPR/FPR Trade-off Measure TPR/FPR in healthcare Model choice depends on FPR threshold Fig. 2 ✓ ✗

Model Alignment Compare outputs to GPT-4 Most models align; some small LMs differ Fig. 3 ✓ ✗

Input Length Impact Assess effect of prompt length Longer contexts reduce detectability Table A.1 ✗ ✓

Alt. Distance Measures Compare JSD, Euclid., etc. Significance decisions consistent across measures Table A.2 ✗ ✓

Embedding Costs Estimate embedding expenses Perturbations remain inexpensive even at scale Table A.3 ✗ ✓

Text Similarity Alt. Use BLEU/ROUGE in DBPA Highly sensitive to small changes; less reliable Table A.4 ✗ ✓

Impact of Embeddings Test various embedding models Creative personas’ effects consistent across embeds Table A.5 ✗ ✓

Table 1: Bite-sized summary of experiments and case studies conducted. We conduct three case studies (main section)
and five additional insight studies (appendix) to understand why, how, and when our framework might be useful.

practitioners can trade additional model calls for restored
power while still enjoying rigorous FWER control; less
conservative multiplicity-adjustment methods may be sub-
stituted when appropriate.

4. Case studies
We demonstrate the effectiveness of our method on a variety
of use cases. In the following subsections, we will show
that our method can (1) capture those answer divergences
that are significant and those that are not under perturbation
(2) analyze the robustness of language models to irrelevant
changes in the prompt (3) evaluate alignment with reference
language model. By default, we run the experiment over
5 seeds, and report the mean and standard deviation of the
measurements. We calculate the distance measure ω, com-
puted as the JSD distance between the null and alternative
distributions, and the p-values.

4.1. Case study 1: How much do responses change
under different input perturbations?

Language models are known to have strong role-playing
abilities which shape their responses (Wang et al., 2023;
Kong et al., 2023; Chen et al., 2024). We use this property
to evaluate response changes under different assigned roles.

• Setup. We evaluate whether we can capture LLM
response variability to prompt perturbations. We
compare response distributions before and after a
prompt perturbation. First, we query an LLM with
a healthcare question to establish a null distribution
from the baseline responses. Then we pre-pend a
role-playing instruction of the form ‘Act as {role}’,
where {role} describes a specific given role. We
divide the setups into medical professions (medi-
cal supervisor, therapist, doctor, medical student)
and other roles (comedian, robot from the future,
neurips reviewer, child). We then quantify the ef-
fect size ω and the p-value. We run the case study
with larger models (GPT-4 and GPT-3.5) as well
as smaller open-source models which are generally
considered less capable.

• Goal. We aim to showcase that we can quantify
the shift in the output distribution by pre-pending
a different role to a language model and that this
shift is both model and prompt dependent.

The results for Case Study 1 are presented in Table 2. Given
that the scenario in the prompt is a medical one, we would
expect that there should be no difference in the similarities
of the output distributions for the first four personas (which
represent medical professions); and there should be such
differences for the other four personas. We see that this
is true in larger models (GPT-4 and GPT-3.5) where none
of the effect sizes are significant for medical personas and
most of them are for the non-medical personas.

On the other hand, smaller models indicate no such relation-
ship between persona and output distribution shift. We inter-
pret this as smaller models showing higher level of answer
variability and being generally less consistent / sensitive to
specific instructions than larger, more capable models. In
fact, we view this analysis as showcasing why using smaller
models would be unsuitable because the kinds of responses
obtained by adding a persona diverge too much from what
we would expect. Changing the number of Monte Carlo
samples is one way to make the estimates more precise.

These results directly relate to our primary question of au-
diting robustness. We observe that smaller models exhibit
much greater variability around personas which, intuitively,
should not affect the output responses. Therefore, we sug-
gest that smaller models are less robust than larger models.

4.2. Case study 2: Can we measure true positive and
false positive response changes?

Measuring robustness of language models by quantifying
TPR and FPR. We adapt our framework to design a new
sensitivity measure for language models by balancing the
true positive and false positive rates of LLM responses. Let
{∆i}mi=1 be a collection of perturbations, partitioned into
control indices C (where outputs should not change under
a perturbation) and target indices T (where outputs should
change under a perturbation). For each i, define x′

i = ∆i(x)
and let pi be the permutation-test p-value comparing Dx
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Table 2: Effect-size estimates ω by persona for all models based on the situation described in Sec. 4.1. Stars denote
two-sided significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 calculated using Alg. 1. Higher effect sizes show that
the output distribution has shifted given the selected number of Monte Carlo samples. As a helpful proxy, we expect outputs
to remain stable under the four medical personas (top of table) but shift under the other four personas (bottom).

Large models Smaller models

Persona GPT-4 GPT-3.5 LLama-3.1-8B GPT-2 Gemma-2-9B SmolLM-135M Phi-3-mini MagicPrompt Mistral-7B

Doctor 0.22 0.21 0.20 0.20 0.41∗∗ 0.14 0.16 0.17 0.31∗

Nurse 0.20 0.20 0.25 0.30∗ 0.24∗ 0.13 0.22 0.13 0.24
Medical Practitioner 0.25 0.19 0.25 0.33∗∗ 0.30∗ 0.29∗∗ 0.18 0.20 0.20
Medical Supervisor 0.22 0.17 0.20 0.19 0.17 0.17 0.25 0.26 0.20
Comedian 0.32∗∗∗ 0.24 0.36∗∗∗ 0.26 0.23 0.12 0.23 0.24 0.20
Robot From The Future 0.15 0.26∗ 0.31∗∗ 0.23 0.18 0.16 0.23 0.25 0.24
NeurIPS Reviewer 0.28∗∗ 0.28∗ 0.30∗∗ 0.17 0.19 0.13 0.24 0.17 0.28
Child 0.27 0.33∗∗ 0.19 0.27∗ 0.14 0.28∗∗ 0.20 0.19 0.37∗∗

and Dx′
i
. Fix a significance level α. We declare “change

detected” for perturbation i if pi < α. Then FPR :=
1
|C|

∑
i∈C I

[
pi < α

]
and TPR := 1

|T |
∑

i∈T I
[
pi < α

]
.

Clearly, this can be extended by varying α ∈ [0, 1]. This,
first, allows the user to trace the trade-off between FPR and
TPR for a given desired error level. Second, it enables to
obtain a global view of a model’s sensitivity to FPR and TPR
by summarizing the performance in a single scalar. After
obtaining the dataset (FPR(α),TPR(α)) for α ∈ [0, 1], the
LLM overall trade-off is given by the simple integral

AUC =

∫ 1

0

TPR(α)d[FPR(α)].

For our purposes, a higher AUC suggests the LLM can better
distinguish target perturbations from control perturbations
within the user-defined setting of what is target and control.
In practice, we compute it with the standard trapezoidal sum
over threshold levels. Now, we empirically demonstrate
how to use this for evaluating LLMs.

• Setup. We create healthcare prompts with pa-
tient varying patient features sampled from a distri-
bution and query the LLMs for assessing the cardio-
vascular disease (CVD) recommendations for the
given patient based on the NICE guidelines. We
create two types of perturbations: (1) control per-
turbations that should not change medical recom-
mendations (e.g. changing the patient’s name or
modifying a covariate that should not affect the
guidelines) and (2) target perturbations that should
change recommendations (e.g. changing a patient’s
cholesterol or diabetes information to move them
into a different risk level which requires a different
recommendation). For each perturbation type, we
calculate the p-values and obtain TPR and FPR
rates.
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AUC = 0.65
A Mistral 7B Instruct

ROC curve
Chance
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False positive rate

AUC = 0.56
B Phi 3 mini 4k

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
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C MagicPrompt

*Higher curves (upper left) indicate better discriminatory power

Figure 1: TPR/FPR trade-offs for three selected language
models. The figure shows three panels: A, B, and C, de-
scribing the relationship between TPR and FPR for three
models together with the AUC score evaluated based on
the methodology in Sec. 4.2. The ROC-AUC describes the
changing performance of the model as we vary α ∈ [0, 1].
Models with higher AUC are better because they can detect
true changes and fail to answer differently with irrelevant
changes.

• Goal. We aim to show that our method can
be used to assess LLM reliability for perturbations
by quantifying their true positive and false positive
rates for custom-designed scenarios.

We run our TPR/FPR analysis and present three models in
Fig. 1. We find that not all models are equally strong for the
selected cases. For our example, we have demonstrated the
best, middle, and worse performing models. A person want-
ing the highest ROC-AUC over TPR/FPR should choose
the model in Panel A. However, we find that while this is
an intuitive way to choose a single model, the best model
might depend on the exact error rate. For instance, in Fig. 2,
we show that in the same example, for an allowed FPR of
1%, we would choose Phi-3 whereas an allowed FPR of 5%
would suggest Mistral-7B.

Evidently, there is nothing special about the chosen model or
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Figure 2: TPR by selected FPR for multiple models. We
show how we can select the best model with the highest
TPR for a selected FPR. The best model for an allowed
false positive rate is highlighted in a black box. We find
that the best model to choose might depend on the allowed
false-positive rate. Higher TPR for a given FPR is better.

setup. Such analyses can be performed within any selected
language model and any setup. The important requirement
for the end user is to specify when a language model should
(and should not) have their responses changed. Because the
results depend on both the model and the problem setup, we
do not find any meaningful interpretation in the AUC-score
alone and recommend it merely as a comparative system
while evaluating multiple models or systems.

4.3. Case study 3: Can we evaluate alignment with a
reference language model

Thus far, we have changed the input prompt while holding
the model constant. We can also do the opposite—hold our
prompt constant while we change the model. This coincides
with two formulations in Sec. 2.1. We can use this as a way
to evaluate alignment between different language models.
The results are presented in Fig. 3.

• Setup. We evaluate alignment between two lan-
guage models by sampling responses from a given
language model and fixing the input prompt but
swapping out the model. Then, the differences be-
tween the output distributions correspond to the
distance between model responses. We evaluate
this across multiple open- and closed-source mod-
els.

0.0 0.1 0.2 0.3 0.4
Distance from Reference

Llama-3.1-8B

SmolLM-135M

GPT-2

GPT-3.5

MagicPrompt

Phi-3-mini-4k

Mistral-7B

Gemma-2-9B

p=0.02

p=0.02

p=0.10

p=0.24

p=0.37

p=0.28

p=0.50

p=0.67

Figure 3: Distance of responses from a reference lan-
guage model. We collect k responses from a base model
(GPT-4) and evaluate the responses from multiple other lan-
guage models reported on the left, compute their ω and
p-values using Alg. 1. Higher distance implies greater dif-
ferences in similarity distributions.

• Goal. We aim to show that we can understand
how well two language models answer across their
response distributions.

The results in Fig. 3 suggest that we can quantify differ-
ences in response distributions between models, providing
a concrete measure of inter-model alignment that could be
useful for comparative analysis of language model outputs.
Given the number of Monte Carlo samples used, only two
models—SmolLM and LLama-3.1—had significantly differ-
ent responses with other models showcasing less divergence.
Clearly, what is “better” depends on the use case: if we aim
to ensure that the outputs do not diverge between language
models, we desire a low ω; the opposite is true if we ex-
pect outputs to change, such as after iterations of applying
reward modeling on a language model.

4.4. Other evaluations

The case studies above show what we consider to be the
most important use cases of hypothesis testing for audit-
ing robustness in language models. Here, we showcase
some other use cases and present some analyses we have
conducted. Language models struggle to work with long
contexts, a phenomenon dubbed “lost in the middle” (Liu
et al., 2023) We investigated the effect of having longer input
lengths on our Persona experiment (Sec. C.1) and found that
it is more difficult to detect changes due to an input perturba-
tion within longer context windows. We evaluate alternative
distance measures (Sec. C.2) and find that the evaluations
are sensitive to the chosen distance measure but stay com-
paratively consistent on the significance of the effect sizes.
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Because this framework relies on Monte Carlo sampling as
well as embedding models, we evaluate the costs of using
various embedding models and find that even at large scales,
performing such perturbation analyses remains cost efficient
(Sec. C.3). We evaluate our model compared to other tradi-
tional alternatives which do not operate in semantic space,
such as BLEU or ROUGE metrics (Sec. C.4) and evaluate
the effect of using different embedding models (Sec. C.5),
generally finding that the results are generally sensitive to
the embedding for calculating p-values and effect sizes.

5. Related work
There are three primary approaches to quantifying text-
based outputs that relate to our approach. They include
measuring unintended biases in model outputs, developing
counterfactual fairness methods, and text summarization
metrics.

▶ Measuring unintended bias. Overall, the closest related
works are in measuring unintended bias (Borkan et al., 2019;
Dixon et al., 2018; Park et al., 2018). Such metrics quan-
tify existing biases between subgroups for models. Broader
work in the field can be found in (Friedler et al., 2021; Klein-
berg et al., 2016; Menon & Williamson, 2018). However,
this requires human annotation, relates only to fairness, and
assumes the existence of reliable labels across subgroups.

▶ Counterfactual fairness. This approach (Garg et al.,
2019) examines how predictions would change if sensitive
attributes were different. It can compute effect sizes but can-
not be applied to black-box models, doesn’t allow arbitrary
perturbations, and doesn’t enable statistical inference. It
requires human input for labeling a specific attribute (e.g.
toxicity) of an answer and makes assumptions, e.g. that
non-toxic examples are less likely to contain asymmetric
counterfactuals relative to toxic examples.

▶ Text summarization metrics. These metrics (Bhandari
et al., 2020; Zhang et al., 2019; Zhao et al., 2019; Lin,
2004) evaluate the quality of text summarization. They
can compute effect sizes but are not applicable to black-
box models, don’t allow arbitrary perturbations, and don’t
enable statistical inference. They require human input and
make certain assumptions. Various metrics like BERTScore,
MoverScore, and ROUGE variants measure different aspects
of similarity between system and reference summaries.

To better explain how we differ, we compare each area
based on five important criteria: (i) whether the method
can be applied to any black-box model; (ii) whether any
perturbation can be applied and measured; (iii) whether
the approach enables statistical inference; (iv) whether the
approach allows to compute effect sizes of the change; (v)
whether there are any assumptions; (vi) whether humans are
required as a part of the input. We show this in Table 8.

6. Discussion
With the growing need to evaluate LLM systems, we require
statistics-based approaches to understand LLM outputs. We
know that we cannot simply ask language models to explain
whether their answer would be different under given circum-
stances, as they might not be truthful (Si et al., 2023). Are
there ways of having systematic approaches of evaluating
how model responses affect the outputs?

In our paper, we provide one way of achieving this. Specifi-
cally, we recognize that, in order to fully analyze language
models responses, we must consider the entire output distri-
bution of the LLM responses. Therefore, comparing single
two point estimates is insufficient. To address this, we intro-
duce distribution-based perturbation analysis as a method to
quantify the discrepancy between two outputs using Monte
Carlo sampling and frequentist-based inference. Impor-
tantly, our model has desirable statistical properties that
make it directly useful in many application areas, such as
being model-agnostic, supporting any input perturbation
that the user can specify, providing statistical estimates,
providing controlling error rates for multiple perturbation
testing, and enabling to compare how different perturbations
relate to each other via effect sizes.

We see this being directly useful in high-stakes areas, such
as model auditing, model transparency, regulatory com-
pliance, or in domains where language models require in-
terpretability and are used as parts of broader statistical
systems. Furthermore, a core component of the hypothe-
sis testing framework is the ability to select and quantify
true and false positive rates for a given user problem setup.
This gives incredible flexibility to select the best model for
a desired false positive rate, a setup extremely useful in
high-stakes settings.

Limitations. This paper presents the first approach to em-
ploying frequentist hypothesis testing to auditing language
models. However, the nature of this paper is conceptual
in its scope. Future work should add stronger empirical
evidence and test the method in other domains. Key de-
sign choices—such as distance metrics, embedding func-
tions, and their effect on generalization—would benefit from
deeper analysis and clearer selection guidelines that should
be established in future work. Additionally, although DBPA
offers valuable insights for model auditing, translating these
findings into practical strategies for enhancing model robust-
ness and aligning outputs with human preferences remains
a significant challenge.

The need for interpretable and statistics-grounded systems
to explain black-box behavior and provide guarantees is
growing. We hope our work provides a first step in this
direction and can be built upon for theoretical and practical
use.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning in the field of interpretability. We re-
cast a broad range of evaluation questions as formal hypoth-
esis tests and therefore supply practitioners, policymakers,
and independent auditors with a statistically principled tool
for detecting genuine behavioural shifts in large language
models. We recognize that this might have many great posi-
tive implications on safety and auditing of language model
systems. At the same time, we acknowledge the dual-use
risks, such as adversaries using the logic in the procedure to
evade detection or optimize adversarial attacks. However,
we think such risks are extremely unlikely in practice.
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A. MC-Sampling
To understand why we employ monte-carlo sampling, let’s consider the expectation of ω under both approaches. For
permutation testing, this yields:

E[ω(P ∗
0 , P

∗
1 )] = E[ω({s(zi, zj)}, {s(zi, zk)})] zi, zj , zj

i.i.d.∼ Z (10)

where Z = {yi, . . . , yk, y′1, . . . , y′k} is the combined set of 2k samples from S(x) and S(∆(x)). For resampling, the
expectation is:

E[ω(P ′
0, P

′
1] = E[ω({s(yi, yj)}, {(yi, y′k)})] yi, yj

i.i.d.∼ S(x), y′k
i.i.d.∼ S(∆(x)) (11)

Under H0, S(x) = S(∆(x)), so all samples in Z follow the same distribution. Therefore, randomly sampling from Z is
equivalent to sampling from either S(x) or S(∆(x)). Therefore, the expectations are identical, and the permutation testing
will produce the same distribution of ω values in the limit.

B. Examples of prompt inputs
B.1. Example inputs for treatment recommendations

In the exercise for treatment recommendations, we use the following input prompts (where characteristics can vary):

John has these features: Age: 70, BMI: 30, Blood Pressure: 114/61 mmHg, Total Cholesterol: 6.7 mmol/L, HDL Cholesterol:
1.0 mmol/L, Smoking Status: current smoker, Diabetes: no diabetes, Family History of CVD: yes, Ethnicity: Chinese.
Based on these characteristics alone, provide recommendations on CVD guidelines based on NICE for this person

John has these features: Age: 70, BMI: 29, Blood Pressure: 114/61 mmHg, Total Cholesterol: 6.7 mmol/L, HDL Cholesterol:
1.0 mmol/L, Smoking Status: current smoker, Diabetes: no diabetes, Family History of CVD: yes, Ethnicity: Chinese.
Based on these characteristics alone, provide recommendations on CVD guidelines based on NICE for this person

B.2. Example outputs for treatment recommendations

The following are example outputs:

1 ["Based on these characteristics, NICE guidelines for CVD recommend the following:\n\
n1. Encouraging John to quit smoking and providing support and resources to help him
do so.\n2. Promoting a healthy diet and regular physical activity to help lower his
BMI and improve his cholesterol levels.\n3. Monitoring and managing his blood pressure
to keep it within a healthy range.\n4. Considering his family history of CVD, it may

be advisable to assess his overall cardiovascular risk and consider interventions to
reduce that risk.\n5. Providing culturally sensitive and tailored support for his
Chinese ethnicity, taking into account any specific risk factors or considerations.\n\
nIt’s important for John to work with his healthcare provider to develop a
personalized plan for cardiovascular health and to address any individualized risk
factors or concerns.",

2 "Based on the provided characteristics, John’s CVD risk would be assessed as moderate to
high. The NICE guidelines recommend the following for individuals with similar

characteristics:\n\n1. Lifestyle changes: John should be advised to make lifestyle
changes such as quitting smoking, following a healthy diet to reduce cholesterol
levels and maintain a healthy weight, and engage in regular physical activity.\n\n2.
Assess CVD risk: John should undergo a formal assessment of CVD risk using a
cardiovascular risk assessment tool, taking into account his age, BMI, blood pressure,
cholesterol levels, smoking status, and family history of CVD to determine the need

for medication or further interventions.\n\n3. Regular monitoring: John should have
regular monitoring of his blood pressure, cholesterol levels, and overall
cardiovascular health to manage and reduce his risk of CVD.\n\n4. Consider medication:
Depending on the results of his CVD risk assessment, John may need to be considered

for medication such as statins to lower his cholesterol levels and reduce his overall
CVD risk.\n\nIt’s important for John to work closely with a healthcare professional to
develop a personalized plan for managing his CVD risk based on the NICE guidelines.",
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3 "Based on the provided characteristics, NICE guidelines for CVD prevention would
recommend the following:\n\n1. Encouraging John to quit smoking and providing support
and resources to help him quit.\n2. Recommending lifestyle modifications such as
regular physical activity and a healthy diet to help manage his BMI and cholesterol
levels.\n3. Monitoring and managing his blood pressure to keep it within a healthy
range.\n4. Consideration of cholesterol-lowering medication if lifestyle modifications
are not sufficient to achieve target cholesterol levels.\n5. Regular monitoring and

management of other CVD risk factors, especially considering his family history of CVD
.\n\nIt’s important for John to work closely with his healthcare provider to create a
personalized plan for CVD prevention and management based on his individual risk
factors and health needs.",

4 "Based on the provided characteristics, the following recommendations can be made for
CVD guidelines based on NICE:\n\n1. Lifestyle changes: John should be advised to quit
smoking and adopt a healthier lifestyle, including regular physical activity and a
balanced diet to help lower his BMI and cholesterol levels.\n\n2. Cardiovascular risk
assessment: John’s overall cardiovascular risk should be assessed using a validated
tool, taking into account his age, blood pressure, and cholesterol levels.\n\n3.
Medical assessment: John should be assessed for any potential risk factors for
cardiovascular disease, such as high blood pressure, and be offered appropriate
management and treatment as necessary.\n\n4. Family history: Given John’s family
history of CVD, he should be counseled on the potential genetic predisposition to
cardiovascular disease and the importance of managing other risk factors effectively.\
n\n5. Ethnicity: Being of Chinese ethnicity, John should be aware that certain
populations may have a higher risk for specific cardiovascular conditions, and this
should be taken into consideration when assessing his overall cardiovascular risk.\n\
nIt is important to note that these recommendations are general and may need to be
tailored specifically to John’s individual health needs and circumstances. It is
advisable for John to seek personalized medical advice and undergo a comprehensive
cardiovascular risk assessment and management plan under the care of a healthcare
professional.",
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C. Extended experiments
C.1. Impact of prompt length

Experimental Design. To address concerns about DBPA’s effectiveness on longer and more complex input sequences, we
conducted additional experiments varying prompt length from 100 to 900 tokens across different persona instructions. We
re-use the same eight distinct personas and vary the input prompt length.

Main results. We find that for token counts above 800 tokens, the persona counts do not indicate any significant shifts in the
output distribution. The observed pattern of stronger effects in shorter prompts followed by attenuation in longer sequences
aligns with well-documented empirical phenomena in large language models, where extended context can lead to more
consistent but potentially less distinctive outputs. If anything, this quantitative characterization of prompt length effects
could open new ways of looking into context-dependent model behavior and could be another way to provide practitioners
with guidance on optimal prompt engineering strategies for different applications.

Table 3: Effect-size estimates by persona across different token counts. Stars denote two-sided significance levels:
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Higher effect sizes indicate greater distributional shifts in model outputs given the
persona instruction. Medical personas (top) are expected to show stable, lower effect sizes, while creative/role-playing
personas (bottom) should demonstrate higher variability and stronger effects across token lengths.

Token Count

Persona 100 200 300 400 500 600 700 800 900

Act as a doctor 0.14 0.25 0.20 0.22 0.20 0.16 0.16 0.22 0.19
Act as a nurse 0.18 0.27∗∗ 0.23 0.20 0.25 0.37∗∗∗ 0.19 0.17 0.18
Act as a medical practitioner 0.16 0.23 0.22 0.23 0.21 0.45∗∗∗ 0.17 0.22 0.18
Act as a medical supervisor 0.24 0.25 0.21 0.26 0.21 0.33∗∗ 0.20 0.17 0.17
Act as a comedian 0.24 0.41∗∗∗ 0.34∗∗∗ 0.26 0.41∗∗∗ 0.18 0.28∗ 0.24 0.17
Act as a robot from the future 0.26 0.28∗∗ 0.32∗∗∗ 0.42∗∗ 0.29 0.19 0.22 0.19 0.20
Act as a NeurIPS reviewer 0.40∗∗∗ 0.36∗∗∗ 0.39∗∗ 0.35∗ 0.23 0.37∗ 0.26 0.25 0.17
Act as a child 0.34∗∗∗ 0.31∗ 0.32∗ 0.27 0.37∗∗∗ 0.26∗ 0.31∗∗∗ 0.18 0.23

C.2. Impact of distance measures

Experimental Design. To evaluate the robustness of DBPA across different distributional distance measures, we replicated
our core experiments using six measures: Energy distance with cosine similarity, Euclidean distance, Wasserstein distance,
Jensen-Shannon divergence (JSD), and Energy distances with L1 and L2 norms.

Main results. The results demonstrate that while different distance metrics yield different magnitudes due to their inherent
scales and sensitivity properties, the relative patterns across personas remain consistent. Medical personas consistently
show lower effect sizes across all metrics, while creative and role-playing personas exhibit substantially higher values. The
consistency of persona rankings across metrics validates the robustness of our approach, while the varying sensitivities
highlight how different distance measures can provide complementary insights into model behavior under different prompt
conditions.
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Table 4: Distributional distance measures across personas measuring deviation from baseline outputs. Values represent mean
distances with significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Higher values indicate greater divergence from
the model’s default response patterns.

Distance Measures

Persona Energy (Cosine) Euclidean Wasserstein JSD Energy (L1) Energy (L2)

Doctor 0.01∗∗∗ 31.95 2.72 0.20 1.97∗∗∗ 0.06∗∗∗

Nurse 0.01∗∗∗ 34.63 2.56 0.20 1.57∗∗∗ 0.05∗∗∗

Practitioner 0.01∗∗ 40.88 1.57 0.22 1.27∗ 0.04∗∗

Supervisor 0.01∗∗∗ 37.34 1.60 0.21 2.15∗∗∗ 0.07∗∗∗

Comedian 0.11∗∗∗ 54.99∗∗∗ 4.36∗∗∗ 0.31 9.11∗∗∗ 0.30∗∗∗

Robot 0.01∗∗∗ 40.95 2.47 0.22 1.71∗∗ 0.05∗∗∗

Reviewer 0.05∗∗∗ 52.63∗∗∗ 4.55∗∗∗ 0.30∗∗∗ 4.84∗∗∗ 0.15∗∗∗

Child 0.14∗∗∗ 57.03∗∗∗ 4.57∗∗∗ 0.31∗∗ 11.29∗∗∗ 0.36∗∗∗

C.3. Financial costs of running perturbation

Design. To address practical concerns about the computational cost of DBPA’s embedding requirements, we conducted a
cost analysis across different scales of perturbation studies. We evaluated three state-of-the-art OpenAI embedding models:
text-embedding-3-small (2¢ per million tokens), text-embedding-3-large (13¢ per million tokens), and text-embedding-
ada-002 (10¢ per million tokens). Our analysis assumes an average of 200 tokens per perturbation, encompassing both
input prompts and generated outputs, and scales from small-scale studies (100 perturbations) to extensive analyses (50,000
perturbations).

Main results. The cost analysis demonstrates that embedding-based perturbation studies remain highly affordable even
at substantial scales. For typical research applications involving 1,000-5,000 perturbations, costs range from 4¢ to $1.30
depending on the chosen model. Even extensive studies with 50,000 perturbations require only $2.00-$13.00 in embedding
costs. The text-embedding-3-small model provides the most economical option while maintaining competitive performance,
making it particularly suitable for large-scale perturbation analyses. These findings support the practical viability of DBPA,
as embedding costs represent a minimal barrier to adoption compared to the computational expenses of generating model
outputs themselves.

Table 5: Cost analysis for embedding-based perturbation studies across different OpenAI embedding models. Costs
are calculated based on official API pricing as of January 2025. Values show the total cost for processing all tokens required
for the specified number of perturbations, assuming 200 tokens per perturbation on average. Dollar amounts are shown in
parentheses for costs exceeding 100¢ (1 USD).

OpenAI Embedding Models

# of Perturbations Total Tokens text-embedding-3-small text-embedding-3-large text-embedding-ada-002
(2¢/1M) (13¢/1M) (10¢/1M)

100 200,000 0.4¢ 2.6¢ 2.0¢
200 400,000 0.8¢ 5.2¢ 4.0¢
500 1,000,000 2.0¢ 13.0¢ 10.0¢

1,000 2,000,000 4.0¢ 26.0¢ 20.0¢
2,000 4,000,000 8.0¢ 52.0¢ 40.0¢
5,000 10,000,000 20.0¢ 130.0¢($1.30) 100.0¢($1.00)

10,000 20,000,000 40.0¢ 260.0¢($2.60) 200.0¢($2.00)
20,000 40,000,000 80.0¢ 520.0¢($5.20) 400.0¢($4.00)
50,000 100,000,000 200.0¢($2.00) 1,300.0¢($13.00) 1,000.0¢($10.00)
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C.4. Text similarity alternatives

Experimental Design. We investigated whether traditional NLP metrics such as BLEU and ROUGE could be incorporated
into the DBPA framework as alternatives to embedding-based similarities. We replicated our role-play experiments using
BLEU scores and three ROUGE variants (ROUGE-1, ROUGE-2, and ROUGE-L) as distance measures, computing effect
sizes across the same eight personas used in our main experiments. These metrics operate directly in text space rather than
semantic embedding space, providing a very different perspective on distributional shifts.

Main results. The analysis reveals that traditional NLP metrics can technically function within the DBPA framework,
though with important limitations. BLEU scores show particularly high sensitivity to persona-induced changes, with
creative personas like ‘comedia’ and ‘child’ achieving effect sizes of 0.65-0.66, substantially higher than corresponding
embedding-based measures. ROUGE metrics demonstrate more moderate but still significant effects, particularly for creative
personas. However, we caution against using such metrics as they primarily rely on text-based tokens.

Table 6: Effect-size estimates using traditional NLP metrics (BLEU and ROUGE) as distance measures within the DBPA
framework for role-play experiments. Stars denote significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. While these
metrics can technically replace embedding similarities in our framework, they are highly sensitive to small perturbations
and may not capture the null distribution effectively. Medical personas (top) generally show lower effect sizes, while
creative personas (bottom) demonstrate substantial effects, particularly for BLEU scores. These results should be interpreted
cautiously as BLEU/ROUGE operate in text space rather than semantic space.

Traditional NLP Metrics

Persona BLEU ROUGE-1 ROUGE-2 ROUGE-L

Act as a doctor 0.19 0.16 0.18 0.26
Act as a nurse 0.40∗∗∗ 0.36∗∗∗ 0.31∗ 0.28
Act as a medical practitioner 0.20 0.27∗ 0.20 0.19
Act as a medical supervisor 0.24 0.34 0.34∗∗ 0.26
Act as a comedian 0.65∗∗∗ 0.37∗∗∗ 0.38∗∗∗ 0.26
Act as a robot from the future 0.30∗∗ 0.26∗ 0.25 0.20
Act as a NeurIPS reviewer 0.26 0.22 0.21 0.24
Act as a child 0.66∗∗∗ 0.44∗∗∗ 0.49∗∗∗ 0.33∗∗∗

C.5. Impact of embeddings

Experimental Design. We evaluated four distinct embedding models: OpenAI’s text-embedding-ada-002 (Ada), alongside
three alternative models (Jasper, Stella, and Kalm). Each model represents different approaches to semantic representation.
We replicated our core persona experiments across all four embedding functions.

Main results. The analysis reveals that while absolute effect sizes vary significantly across embedding models, the
relative patterns remain quite consistent. Creative personas such as ‘Child’ and ‘Comedian’ consistently produce the
largest effect sizes across all embedding architectures, while medical personas demonstrate consistently smaller effects
regardless of the embedding choice. This stability indicates that DBPA captures genuine semantic shifts rather than
artifacts of specific embedding implementations. The variation in absolute values likely reflects differences in each model’s
sensitivity to contextual changes and semantic granularity. Notably, Ada embeddings show more conservative effect sizes for
medical personas but maintain strong discrimination between persona types, consistent with its design as a general-purpose
embedding optimized for broad semantic understanding.
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Table 7: Effect-size estimates by persona across different embedding models. Stars denote two-sided significance levels:
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Higher effect sizes indicate greater distributional shifts in model outputs given the
persona instruction. Medical personas (top) are expected to show stable, lower effect sizes, while creative/role-playing
personas (bottom) should demonstrate higher variability and stronger effects across embedding models. We find that creative
personas consistently produce larger effect sizes across all embedding architectures, with the Child persona showing the
strongest effects.

Embedding Model

Persona Ada Jasper Stella Kalm

Act as a doctor 0.21 0.07∗∗∗ 0.07∗∗∗ 0.03∗∗∗

Act as a nurse 0.20 0.03∗∗∗ 0.03∗∗∗ 0.02∗∗∗

Act as a medical practitioner 0.19 0.05∗∗∗ 0.04∗∗∗ 0.02∗∗

Act as a medical supervisor 0.17 0.09∗∗∗ 0.08∗∗∗ 0.05∗∗∗

Act as a comedian 0.24 0.36∗∗∗ 0.31∗∗∗ 0.23∗∗∗

Act as a robot from the future 0.26∗ 0.04∗∗∗ 0.04∗∗∗ 0.05∗∗∗

Act as a NeurIPS reviewer 0.28∗ 0.14∗∗∗ 0.13∗∗∗ 0.13∗∗∗

Act as a child 0.33∗∗ 0.48∗∗∗ 0.41∗∗∗ 0.35∗∗∗

D. Extended related work
Table 8 evaluates the primary related work via five criteria that are important in the context of distribution-based perturbation
analysis.

Method Example Works (I) (II) (III) (IV) (V) Representative Question

Measuring Unintended Bias (Borkan et al., 2019; Dixon et al., 2018; Park et al., 2018) ✓ ✗ ✓ ✓ ✗ Does this model have unintended biases in
certain subgroups?

Counterfactual Fairness (Garg et al., 2019) ✗ ✗ ✗ ✓ ✗ How would the prediction change if the
sensitive attribute were different?

Text Summarization (Bhandari et al., 2020; Zhang et al., 2019; Zhao et al., 2019;
Lin, 2004)

✗ ✗ ✗ ✓ ✓ How well is this text summarized?

Distribution-based perturbation analysis This work ✓ ✓ ✓ ✓ ✓ Do the responses change if we change any
input in the prompt? If so, how?

Table 8: Related metrics of quantifying text-based outputs. Abbreviations: (I): Usable on any black-box model; (II):
Any perturbation can be applied; (III): Enables statistical inference; (IV): Computes the effect size; (V): Assumption-free.
Distribution-based is the only method that can quantify the effect of any perturbation on an outcome by evaluating, in
expectation, the entire distribution of possible outputs. This is important, as single-point evaluations do not capture the
stochastic nature of large language models.
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