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ABSTRACT

Learning unknown ordinary differential equations (ODEs) from a single trajectory
of scarce, noisy data is challenging, especially with partial observability. We
introduce MAGI-X, an integration-free framework that couples a neural vector
field with a Gaussian process prior over trajectories and enforces ODE consistency
via a GP manifold constraint, thereby circumventing traditional numerical integra-
tion. Across canonical examples (FitzHugh–Nagumo, Lotka–Volterra, and Hes1),
MAGI-X achieves better accuracy in both fitting and forecasting while requiring
comparable or less computation time than benchmark methods NPODE and Neural
ODE, with runtime scaling linearly in state dimension. MAGI-X offers a practical
solution for partially observed systems without bespoke priors or imputation heuris-
tics, where existing methods struggle. The GP posterior further yields calibrated
uncertainty, and experiments demonstrate robustness across initial conditions. We
show practicality on seasonal flu data with rolling multi-week forecasts from noisy
signals. These properties establish MAGI-X as a fast, accurate, and robust tool for
data-driven discovery of nonlinear dynamics from a single noisy trajectory.

1 INTRODUCTION

Systems of coupled ordinary differential equations (ODEs) are a fundamental tool for modeling
complex mechanisms in science and engineering (FitzHugh, 1961; Nagumo et al., 1962; Lotka, 1932;
Hirata et al., 2002). A well-known example is infectious disease prediction, where compartmental
models such as SIR have long provided robust and interpretable descriptions of epidemic spread
(Kermack and McKendrick, 1991). However, during pandemics or in multi-year endemic cycles with
evolving interactions, simple compartmental models often fall short of capturing the true dynamics
(Arik et al., 2020; Karlen, 2020; Yang et al., 2021b; Zou et al., 2020). Building more accurate ODE
models by hand requires substantial domain expertise and repeated trial-and-error tuning. Similar
challenges arise in systems biology and many other domains where the governing equations are only
partially known (Hirata et al., 2002). These difficulties motivate a data-driven approach to learn ODE
dynamics directly from one-single observation trajectories, especially when the true mechanisms are
unknown or too complex to postulate a priori.

Problem formulation. Consider the dynamics governed by a system of ODEs:

ẋ(t) = f∗(x(t), θ, t), t ∈ [0, T ], (1)

where x(t) = (x1(t), . . . , xD(t))⊤ ∈ RD is the state of the D-component system at time t, ẋ(t) ∈
RD its time derivative, and f∗ the unknown vector field with parameters θ. The state at time t is
obtained by integration; in one dimension,

x(t) = x0 +

∫ t

0

f∗(x(s), θ, s) ds, (2)

with initial condition x0 = x(0). We assume f∗ is completely unknown, with no prior information
about its form or parameters. Observations are noisy samples y(τ) = x(τ) + ϵ(τ) at discrete times τ
from one single trajectory, where ϵ denotes measurement noise. Given only these observations, the
goal is to infer the black-box function f∗.
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Related work. Traditional approaches assume a parametric form for f∗ and estimate θ by mini-
mizing misfit between simulated and observed trajectories, requiring repeated numerical integration
(Bard, 1975; van Domselaar and Hemker, 1975; Benson, 1979). To avoid repeated solves, gradient-
matching methods align derivative estimates from smoothed data with those given by f∗, using
splines (Varah, 1982; Ramsay et al., 2007), RKHS models (González et al., 2014; Niu et al., 2016),
or Gaussian processes (GPs) (Calderhead et al., 2009; Dondelinger et al., 2013; Wang and Barber,
2014; Macdonald et al., 2015; Wenk et al., 2019). Unified GP formulations resolve inconsistencies
and extend to higher dimensions (Yang et al., 2021a; Wenk et al., 2020), but typically requires a
pre-specified functional form or basis.

More flexible methods remove parametric assumptions. NPODE learns f∗ nonparametrically with a
GP (Heinonen et al., 2018), while Neural ODE parameterizes f∗ with a neural network (NN) and
trains via adjoint sensitivity (Chen et al., 2018). These established strong baselines but suffer from
the cost of repeated integration, particularly in stiff or partially observed systems. Integration-free
alternatives include two-step gradient matching with nonparametric f∗ (Heinonen and d’Alché Buc,
2014; Ridderbusch et al., 2020), distributional or Bayesian gradient matching for Neural ODEs
(Treven et al., 2021; Bonnaffé and Coulson, 2022), and GP-based identification with guarantees
from sparse time series (Batko et al., 2024). These avoid ODE solves but typically lack a unified
probabilistic objective, limiting robustness under irregular sampling or partial observability. We
focus our experiments on NPODE and Neural ODE as representative, state-of-the-art baselines for
single-trajectory ODE learning, since they cover the two dominant paradigms (GP-based and neural
network–based integration methods). Other approaches are either variations of these or operate under
different assumptions, as discussed below.

Another line of work pursues explicit equation discovery (Brunton et al., 2016) or probabilistic solvers
for known ODEs (Hennig et al., 2015; Schober et al., 2019). While these provide interpretability
or uncertainty in integration, they either require a predefined basis for f∗ or assume the ODE is
known, making them less applicable to our setting of learning a completely unknown vector field
from scratch.

There are also operator-learning approaches (e.g., DeepONet ((Lu et al., 2021)), Fourier Neural
Operator ((Li et al., 2021)), and variants incorporating physics (Wang et al., 2021) that learn mappings
from initial conditions to solution trajectories across many systems. However, these require extensive
training data across system families and thus do not address our one-trajectory learning setting.

Positioning. Our proposed MAGI-X method unifies different perspectives. Like gradient match-
ing, it circumvents numerical integration; like GP frameworks, it provides a probabilistic treat-
ment of trajectories and partial observability; and by learning f∗ with a neural network within a
manifold-constrained GP objective, it unifies trajectory smoothing and vector-field learning in a
single optimization, yielding robustness under sparse/irregular sampling and favorable scaling.

Our contribution. We propose MAGI-X, a cost-efficient and theoretically principled framework
for learning unknown dynamical systems. Our contributions are:

• Efficiency and scalability: By avoiding integration, MAGI-X outperforms integration-based
methods while requiring comparable or less amount of runtime (Table 1) while scaling linearly in
system dimension (Table 5).

• Robust coupled inference and GP augmentation: By using a feedback loop that incorporates
information from f∗ in adapting the smoothing trajectory, MAGI-X improves the robustness over
the two-step gradient constrained approach. By proposing a novel optimization algorithm that
utilizes the generative mechanism inherently built in the Gaussian process for data augmentation,
MAGI-X could avoid over-fitting of neural network even when the training data is sparse.

• Principled uncertainty and partial-observations handling: The GP prior yields uncertainty-
aware trajectories and naturally imputes missing data, crucial in applications such as multi-year
infectious disease forecasting.

• Single-trajectory learning: From one noisy trajectory of a single system, MAGI-X achieves
strong fit and forecast accuracy and shows empirical evidence of learning the system’s internal
dynamics (faithful vector fields; see Sec. 3.4).This one-shot capability is a core novelty that enables
stable forecasts in low-data settings.
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2 METHOD OF MAGI-X

Intuition. We consider the setting where the derivative function f∗ is unknown. Prior work
(Heinonen et al., 2018; Ridderbusch et al., 2020) models f∗ with a vector-valued GP defined over a
grid of inducing locations, but this entails O((DM)3) cost from repeated covariance inversions (with
the rule-of-thumb M ≈10D (Loeppky et al., 2009)), which becomes prohibitive as D grows. We
therefore parameterize f∗ with a neural network and learn it by first-order optimization—avoiding
these cubic costs while remaining compatible with our manifold constraint. This choice is not only
practical (fast first-order optimization, automatic batching) but also theoretically appropriate for
our use of a manifold constraint: we show a quantitative, uniform approximation guarantee for
ReLU networks on the compact input set actually used in training, and we use it to argue that the
manifold constraint we impose is feasible on any discretization. For completeness, GP preliminaries
are included in App. A (Rasmussen and Williams, 2006). By coupling the NN fθ with a GP prior on
trajectories, our manifold-constrained objective jointly smooths x(·) and enforces ODE consistency
without numerical integration.

Prior. Following the Bayesian framework, we can view the D-component system response x(t)
as a realization of the stochastic processes X(t) = (X1(t), . . . , XD(t)). We model the unknown
f∗ by neural network, denoted as f̂NN , where its bias and weight parameters are denoted as θ, a
realization of random variable Θ. The goal is to compute the posterior distribution of X(t) and Θ,
which requires first defining the prior and the data likelihood.

We assume a a non-informative prior on Θ, that is πΘ(θ) ∝ 1. For the stochastic process X(t), we
impose an independent GP prior on each component, that is,

Xd(t) ∼ GP(µd,Kd), t ∈ [0, T ], (3)

with mean function µd : R → R and positive definite covariance function Kd : R × R → R
parameterized by hyperparameters ϕd.

Likelihood. Let us denote the observations y(τ) = (y1(τ1), . . . , yD(τD)) where τd =
(τd,1, . . . , τd,Nd

) is the set of Nd observation time points for the d-th component. We allow dif-
ferent components to be observed at different sets of time points, but none of the component can be
completely missing, that is Nd > 0 ∀d. For simplicity, we assume the observation noise for the d-th
component are i.i.d. zero mean Gaussian random variable with variance σ2

d. Also, the noise variance
σ2 is generally not known apriori, so a non-informative prior can also be assigned, that is p(σ2) ∝ 1.
Then, the observation likelihood is

Yd(τd)|Xd(τd) = xd(τd) ∼ N (xd(τd), σ
2
dINd

). (4)

Next, we introduce W that quantifies the difference between the time derivative Ẋ(t) of GP and the
ODE imposed gradient f̂NN (X(t), θ, t) with any given θ,

W = sup
t∈[0,T ],d∈{1,...,D}

∣∣∣∣Ẋd(t)− {f̂NN (X(t), θ, t)}d
∣∣∣∣. (5)

Having W ≡ 0, the ideal case where the derivative function f defined by θ is fully satisfied by
X(t), is to impose a manifold constraint on the GPs that model X(t). However, W defined in
equation 5 cannot be computed analytically since it is a supremum over an uncountable set. Thus, we
approximate WT by finite discretization on T = (t1, . . . , tn) ⊂ [0, T ],

WT = max
t∈T ,d∈{1,...,D}

∣∣∣∣Ẋd(t)− {f̂NN (X(t), θ, t)}d
∣∣∣∣. (6)

It follows that a computable closed-form likelihood associated with the manifold constraint is

p{WT = 0 | X(T ) = x(T ),Θ = θ}
= p{Ẋ(T ) = f(x(T ), θ, t) | X(T ) = x(T ),Θ = θ}.

(7)

Since the time derivative of GP is also again GP with specific mean and covariance function (see sup-
plementary materials for details), equation 7 is the p.d.f. of some multivariate Gaussian distribution.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: MAGI-X
Input: (i) observations y(τ) = {yd(τd)}Dd=1; (ii) discretized time points T = (t1, . . . , tn); (iii) neural

network architecture with parameters θ.
Initialization:;
time standardization (see supplementary material for details);
for d = 1, . . . , D do

Fit GP regression on yd(τd) to identify hyperparameters ϕd and noise variance σ2
d;

Initialize xd(T ) using the predictive mean of the trained GP evaluated at T ;
end
Initialize θ by optimizing equation 8 w.r.t. θ only, fixing x(T ) and {σ2

d}Dd=1 at initial values;
Optimization (block-wise updates alternating between θ, x(T ), and {σ2

d}Dd=1):;
for l = 1, . . . , L do

Gradient ascent on θ with learning rate η
(θ)
l = 0.005 l−0.6;

Gradient ascent on x(T ) with learning rate η
(x)
l = 0.05 (500 + l)−0.6;

Closed-form update for {σ2
d}Dd=1;

end
Return: optimized θ, x(T ), and {σ2

d}Dd=1;

Furthermore, WT → W monotonically as T becomes dense (Yang et al., 2021a), suggesting the
choice of a finer discretization of T than the observation time points, where |T | > Nd, ∀d. However,
this leads to stronger emphasis on the GP prior equation 3 and the manifold constraint likelihood
equation 7 in the posterior function of X(t) and Θ, especially if we allow the cardinality of T to be
arbitrarily large for a precise approximation. To balance out the influence from the observations and
the discretization points, we introduce tempering parameters on the observation likelihood equation 4.

Posterior and Objective Function. We therefore have the following Maximum a Posteriori (MAP)
estimation objective function (log-posterior function):

argmax
θ,x(T ),σ2

log p{Θ = θ,X(T ) = x(T ) |WT = 0, Y (τ) = y(τ)}

∝ argmax
θ,x(T ),σ2

log p{X(T ) = x(T )}︸ ︷︷ ︸
equation 3

+ log p{WT = 0 |X(T ) = x(T ),Θ = θ}︸ ︷︷ ︸
equation 7

+

D∑
d=1

|T |
Nd

log p{Yd(τ) = yd(τ) | Xd(τ) = xd(τ), σ
2
d}︸ ︷︷ ︸

equation 4

,

(8)

where equation 3, equation 4, and equation 7 are all p.d.f. of some multivariate normal distributions.

Optimization procedure. MAGI-X uses two functional approximations: the manifold-constrained
GP approximation of the trajectory and the neural network approximation of the derivative function
f∗. This makes optimizing equation 8 difficult, so a robust initialization is essential. We first
standardize time to ensure numerical stability across different ranges. Then, for each component
yd(τd), we fit an independent GP regression and initialize xd(T ) with its predictive mean at T .
The GP hyperparameters {ϕd}Dd=1 and noise variances {σ2

d}Dd=1 are set via empirical Bayes. To
initialize θ, we optimize equation 8 only over θ, holding x(T ) and {σ2

d}Dd=1 fixed. This matches
the two-step approach of Ridderbusch et al. (2020), but with a neural model for f∗. However, the
resulting dynamics can generalize poorly, weakening forecasts, requiring a subsequent feedback loop
alternating between x(T ) and θ. For efficiency, {ϕd}Dd=1 remain fixed after initialization.

In the main optimization, we alternate updates of θ, x(T ), and σ2. Before each θ update, block ascent
on x(T ) is performed, yielding fresh input/output pairs {x(T ), ẋ(T )} for gradient computation. The
GP framework thereby acts as an implicit data-augmentation mechanism, producing infinitely many
plausible, slightly noisy training pairs. Because these resemble samples from the trajectory posterior,
we use a polynomially decayed learning rate ηl = a(b + l)−γ (e.g., l−0.6 as in Algorithm 1) to
encourage convergence. Moreover, each new set of pairs also serves as a moving validation signal,
improving generalization and mitigating neural overfitting under sparse observations. Algorithm 1
outlines the procedure; numerical-stability details are in the supplement.

4
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3 RESULTS

We evaluate MAGI-X on three systems: FitzHugh–Nagumo (FN) FitzHugh (1961); Nagumo et al.
(1962), Lotka–Volterra (LV) Lotka (1932), and Hes1 Hirata et al. (2002). (Funtional forms are
given in the Supplementary Materials) We analyze LV and Hes1 in log space since they are strictly
positive. We first consider the fully observed case (Sec. 3.1), followed by the partially observed
setting straightforwardly applies without imputation/bespoke priors (Sec. 3.2). We then demonstrate
robustness to different ODE initial conditions (Sec. 3.3), examine the learned derivative vector field
(Sec. 3.4), and the uncertainty quantification with calibration (Sec. 3.5). Finally, a real-world influenza
data study (Sec. 3.6) will conclude this section. Our objective is to learn the unknown dynamics, so
only noisy observations are fed to MAGI-X for inference; the parametric forms are not available to
the method.

Groundtruth data are simulated by numerical integration. To generate noisy observations y(τ), we
use 41 points with i.i.d. Gaussian noise σ2

d = 0.12 during the first half of the period, which we call
the fitting phase. The second half is for the forecasting phase. See Figure 1 for illustration. We report
trajectory root mean squared error (RMSE) across components and phases (fitting and forecasting).
Numerical integration is only used for evaluation and forecast, while MAGI-X requires no numerical
integration during fitting.

For comparisons, we include NPODE (Heinonen et al., 2018) and Neural ODE (Chen et al., 2018),
both integration-based methods. NPODE uses its default GP and runs for 500 iterations. Neural ODE
is matched to MAGI-X in NN architecture and employs the O(1)-memory adjoint; due to its longer
runtime, we cap training at 500 iterations for fairness. MAGI-X implementation details are given in
App. C.2.

3.1 FULLY OBSERVED SYSTEM

(a) FN (b) LV (log-transformed) (c) Hes1 (log-transformed)

Figure 1: Comparison of the inferred trajectory (solid line) to the ground truth trajectory (dotted
lines) after applying MAGI-X (Algorithm 1) on the 41-point fully observed data (circles).

Table 1: RMSE (mean ± std) over 100 runs with full observations. Runtime (RT, seconds) is shown
next to each dataset block. Lower is better. Boldface red highlights the best performance.

FN LV Hes1

Phase Model x1 x2 RT (s) x1 x2 RT (s) x1 x2 x3 RT (s)

Fitting
NPODE 0.24±0.02 0.06±0.02 36.02±1.82 0.10±0.02 0.13±0.03 36.01±1.42 1.78±1.72 1.44±1.45 2.40±1.88 85.23±0.66
Neural ODE (512) 1.14±0.37 0.52±0.20 424.05±22.54 0.29±0.03 0.37±0.05 332.22±13.02 0.61±0.12 0.54±0.08 1.23±0.06 1770.79±490.00
MAGI–X (512) 0.11±0.02 0.05±0.01 23.87±0.75 0.05±0.01 0.05±0.02 23.56±0.52 0.09±0.06 0.06±0.04 0.12±0.10 93.19±1.76

Forecasting
NPODE 0.26±0.07 0.08±0.04 36.02±1.82 0.16±0.10 0.21±0.13 36.01±1.42 1.93±1.87 1.57±1.63 2.62±2.04 85.23±0.66
Neural ODE (512) 1.40±0.43 0.65±0.25 424.05±22.54 0.48±0.16 0.68±0.27 332.22±13.02 0.65±0.10 0.53±0.05 1.30±0.05 1770.79±490.00
MAGI–X (512) 0.12±0.04 0.05±0.02 23.87±0.75 0.13±0.12 0.17±0.17 23.56±0.52 0.37±1.31 0.14±0.13 0.34±0.33 93.19±1.76

Across FN, LV, and Hes1, MAGI-X attains the lowest RMSE in both fitting and forecasting while
remaining competitive in runtime. On FN/LV, MAGI-X is both more accurate and faster than
NPODE (∼24 s vs. ∼36 s). On Hes1, NPODE’s runtime is slightly lower (∼85 s vs. ∼93 s) but its
errors are an order of magnitude larger, so MAGI-X still dominates the accuracy–time trade-off
(Table 1). To rule out undertraining, we extended NPODE to 2000 iterations; the accuracy–time
trade-off results were unchanged (App. D.1).
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3.2 PARTIALLY OBSERVED SYSTEM

Table 2: Means and standard deviations of trajectory RMSEs over 100 runs with partial observations.

FN LV Hes1

Phase Model x1 x2 x1 x2 x1 x2 x3

Fitting MAGI-X (512) 0.21± 0.02 0.06± 0.02 0.06± 0.02 0.07± 0.03 0.12± 0.04 0.07± 0.02 0.15± 0.04

Forecasting MAGI-X (512) 0.21± 0.04 0.06± 0.03 0.13± 0.10 0.19± 0.15 0.29± 0.14 0.17± 0.07 0.39± 0.18

MAGI-X also provides a full solution for systems with asynchronous observation times, a common
scenario in practice caused by sensor outages or human error. Through the Bayesian GP framework,
MAGI-X naturally handles such partial observations by principled probabilistic imputation, requiring
no modification.

To test robustness against partially observed systems, we simulate noisy data in an extreme setting.
For the two-component FN and LV systems, only one component is observed at each time point.
To match the fully observed case, we keep 41 observations, with τ1 = {t1, t5, . . . , t161} and τ2 =
{t3, t7, . . . , t159}, and i.i.d. Gaussian noise with variance σ2

d = 0.12 is added to obtain noisy y. From
100 independent partially observed datasets, Table 2 reports mean and standard deviation of trajectory
RMSEs. Results are comparable to the fully observed case (Table 1), showing MAGI-X maintains
accuracy even with partial data.

We consider an even more challenging setting with fewer, irregular observations for Hes1.
Specifically, τ1 = {t5, t9, t17, t21, . . . , t161}, τ2 = {t1, t9, t13, t21, . . . , t157}, and τ3 =
{t1, t5, t13, t17, . . . , t161}, where only two of three components are observable at any time, ob-
servation times are uneven, and each component has only ∼ 28 observations, one third fewer than
before. Simulating 100 datasets with i.i.d. Gaussian noise σ2

d = 0.12, Table 2 shows RMSEs about√
41/28 ≈ 1.21 worse than the fully observed case- precisely the expected degradation. This shows

MAGI-X’s robustness on partially observed systems, a setting no existing method can handle.

3.3 STARTING POINT ROBUSTNESS

We evaluate MAGI-X’s robustness to initial conditions on the FitzHugh–Nagumo system using four
distinct starting points: (−1.0, 1.0), (−0.5, 0.5), (0.0, 0.8), and (0.8,−0.2). For each initialization,
we generate 41 noisy observations per component and perform 100 independent trials.

Figure 2 shows consistent trajectory reconstruction across all starting points. The RMSEs remain
stable: fitting errors are tightly clustered (0.11–0.12 for x1, 0.04–0.05 for x2), and forecasting
performance shows similar consistency. This demonstrates that MAGI-X learns robust dynamical
representations independent of initialization choice.

Start Fitting Forecasting

(−1.0, 1.0) x1 0.11 ± 0.02 0.12 ± 0.04
x2 0.04 ± 0.01 0.05 ± 0.02

(−0.5, 0.5) x1 0.12 ± 0.02 0.17 ± 0.07
x2 0.05 ± 0.01 0.07 ± 0.03

(0.0, 0.8) x1 0.11 ± 0.02 0.18 ± 0.06
x2 0.05 ± 0.01 0.07 ± 0.03

(0.8, −0.2) x1 0.12 ± 0.02 0.17 ± 0.07
x2 0.05 ± 0.01 0.06 ± 0.02

Figure 2: Robustness to starting points on the FitzHugh–Nagumo system. Left: trajectory reconstruc-
tions (dotted = ground truth; transparent solid = MAGI-X). Right: trajectory RMSEs (mean ± std
over 100 runs).
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3.4 DERIVATIVE ANALYSIS

To assess learned dynamics beyond trajectory fit, we compare each method’s we analyze the derivative
fields by comparing predicted derivatives f̂(x) with the true field f∗(x) across the state space.

Figure 3 shows error magnitude heatmaps of |f̂(x)− f∗(x)|2 on a 40× 40 grid. For both FN and
LV systems, MAGI-X achieves lower errors, especially near the training data. Figure 4 visualizes
the learned vector fields, with arrow magnitude indicated by color. While all methods capture key
structures such as the limit cycles, MAGI-X most closely matches the true system, particularly
away from training observations, indicating better generalization. Table 3 reports the RMSE of the
derivative components (dx1/dt, dx2/dt), averaged over 100 independent runs. MAGI-X consistently
yields lower derivative errors.

Table 3: Derivative RMSEs for FitzHugh–Nagumo (FN) and Lotka–Volterra (LV) (mean ± std over
100 runs).

FN LV
MAGI-X Neural ODE NPODE MAGI-X Neural ODE NPODE

dx1/dt 6.46± 0.69 7.33± 1.03 7.82± 0.81 0.45± 0.05 0.87± 0.09 1.23± 0.11
dx2/dt 0.20± 0.07 0.62± 0.75 0.39± 0.05 2.99± 0.12 3.16± 0.18 4.44± 0.22

Figure 3: FN error heatmap: ∥f̂(x)− f∗(x)∥2 across the state space (lighter is lower).

Figure 4: FN learned vector field vs. true dynamics. Arrows indicate flow direction and magnitude.

These results show that MAGI-X not only reconstructs trajectories accurately but also learns faithful
derivative representations, which are essential for long-term forecasting and system understanding.

3.5 UNCERTAINTY QUANTIFICATION CALIBRATION AND HIGH-DIMENSION SCALING

Gaussian processes provide natural uncertainty quantification. Across three systems, 90% intervals
achieve near-nominal coverage (94.6–95.9%), indicating reliable forecasts (Figure 5; details in
App.C.3)

Moreover, Magi-X preserves linear runtime scaling, completing a 40-component system in ≈270s.
This is orders faster than Neural ODEs, which require longer training even for small systems. This
highlights MAGI-X’s computational efficiency for high-dimensional inference (details in App.D.3).
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FN LV Hes1

Coverage@90 (Width) 85.6% (0.377) 95.9% (1.179) 84.6% (0.446)

(a) FN (per-dimension grid) (b) LV (per-dimension grid) (c) Hes1 (per-dimension grid)

Figure 5: GP-based UQ for FN, LV, and Hes1 (per-dimension grid views). Shown are mean inferred
trajectories (solid), ground truth (dotted), observations (points), and 90% credible bands (shaded).
The vertical dashed line marks the fit/forecast boundary.

3.6 REAL-WORLD APPLICATION: SEASONAL INFLUENZA ROLLING FORECASTS

We apply MAGI-X to U.S. influenza surveillance with two coupled signals: weekly hospitalizations
(hosp US) and outpatient influenza-like illness (weighted ili US), obtained from the U.S.
Centers for Disease Control and Prevention (CDC) influenza forecasting data portal (Centers for
Disease Control and Prevention, 2025). We perform iterative 4-week-ahead rolling forecasts across
two years (2023–2025), retraining the model every month on all data observed up to that point. The
configuration matches the simulation setup of App. C.2.

As shown in Figure 6, MAGI-X closely tracks the timing and shape of ILI peaks and captures the
hospitalization surge/decay patterns without mechanistic priors. Sudden hospitalization spikes (e.g.,
late 2024) are partially over- or under-shot, but the forecasts remain stable throughout the two-year
horizon, demonstrating that the integration-free GP–NN coupling supports rolling, multi-indicator
epidemiological forecasting.

Figure 6: Iterative 4-week-ahead rolling forecasts for U.S. influenza. Stitched forecasts from
MAGI-X, retrained every 4 weeks on all data observed up to that point, over calendar years
2023–2025. Rows correspond to weekly hospitalizations (hosp US, top) and outpatient influenza-
like illness (weighted ili US, bottom).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4 DISCUSSION

We propose MAGI-X to learn unknown ODE systems where the derivative function f∗ has no
known parametric form. To model this black-box f∗, we use a neural network—an expressive
universal approximator with strong practical performance, coupled with a Bayesian GP prior on
latent trajectories via a manifold constraint. Across our numerical studies (Sec. 3), MAGI-X not only
matches but typically improves upon state-of-the-art accuracy, while reducing computational time by
bypassing costly numerical integration. In addition, MAGI-X offers natural uncertainty quantification,
scales linearly with system dimension, and enables interpretability through visualization of the
learned vector field. Finally, the GP state model provides a principled treatment of partially observed
systems—an aspect largely neglected in prior work.

Robust optimization via a GP–NN feedback loop. Modeling f∗ with a neural network introduces
two layers of functional approximation: (i) the latent trajectory X(t) via a manifold-constrained GP,
and (ii) the unknown derivative f∗ via the network. We address the resulting optimization challenges
with a block-wise scheme that alternates between updating the inferred trajectory x(T ) and the
network parameters θ. Concretely, we apply a small perturbation to x(T ) and then update θ to better
fit the perturbed path. Training θ against many probable x(T ) samples mitigates overfitting to sparse,
noisy observations y(τ) and enforces a stable GP–NN feedback. Empirically (Figure 1), the learned
f recovers periodic dynamics without imposing a periodic GP prior, and it extrapolates without the
divergence that often appears in forecasting when this coupling is absent.

Accuracy, speed, and scalability. Relative to integration-based baselines (e.g., Neural ODE,
NPODE), MAGI-X achieves stronger accuracy–time trade-offs: it is frequently more accurate
at a fraction of the runtime. The synthetic large-system example confirms that runtime grows
approximately linearly with dimension, reinforcing the practicality of MAGI-X for high-dimensional
inference and enabling laptop-scale experimentation.

Partial observability and principled uncertainty. Within our Bayesian framework, independent
time–GPs per state naturally accommodate asynchronous or missing measurements. This yields
competitive reconstruction under partial observation and enables principled latent-trajectory uncer-
tainty quantification that cleanly separates measurement noise from model-induced uncertainty. In
practice, coverage and band widths reflect the uncertainty of the terminal state at the fit/forecast
split, producing conservative forecasts when that boundary is uncertain and tighter bands when it is
well-pinned.

Interpretability: from black box to vector-field insight. Although neural networks are often
labeled “black box,” MAGI-X estimates the entire vector field, which we can visualize directly
(e.g., phase portraits, vector-field arrows, etc). These diagnostic plots provide interpretable evidence
that the learned dynamics—not just the trajectory—are faithful. As a follow-up direction, one can
recover an explicit parametric form from the learned field (e.g., sparse/symbolic regression seeded by
MAGI-X predictions). Such structure discovery would address two classic concerns with powerful
nonlinears: (i) limited interpretability and (ii) weaker out-of-domain extrapolation, while offering an
end-to-end, data-driven path to mechanistic models without heavy domain priors.

Gray-box calibration via derivative-level discrepancy. A realistic setting is that portions of
the ODE are known but imperfect. Prior discrepancy modeling often acts on the trajectory level
(e.g., Kennedy–O’Hagan). With tools for learning unknown ODEs now in hand, we advocate
adapting this framework at the derivative level: combine a known parametric form with a learned
discrepancy for f , yielding a gray-box model that preserves interpretability where justified and
corrects misspecification where needed. We view this as a promising direction for robust extrapolation
and principled uncertainty in partially known systems.

LLM Usage Disclosure Portions of the text were assisted by Large Language Models. The authors
verified, edited, and take full responsibility for the final content.
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Reproducibility Statement. All experimental settings, model configurations, and dataset process-
ing steps are described in the main text and appendix. (Sec. 3, App. C) The code and scripts for
reproducing our results will be released on GitHub after the anonymous review process.
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Supplementary Materials

A GAUSSIAN PROCESS

We introduce the scalar-input scalar-output Gaussian process that is concerned in this paper. Following
the definition in Rusmassen and Williams (2006), a Gaussian Process is a collection of random
variables such that any finite number of which have a joint multivariate Gaussian distribution, denoted
by

X(t) ∼ GP(µ,Kϕ), t ∈ R, (9)
where µ : R → R is the mean function and Kϕ : R×R → R is a positive definite covariance function
parameterized by some hyperparameter ϕ. For any finite set of time points T = (t1, . . . , tn), we have

X(T ) ∼ N (µ(T ),Kϕ(T , T )). (10)

It is typical that we only have noisy observations of the function values, i.e., we observe Y (ti) =
X(ti) + ϵi where we assume additive i.i.d. Gaussian random noise ϵi ∼ N (0, σ2). It follows that

Y (T ) ∼ N (µ(T ),Kϕ(T , T ) + σ2In). (11)

Conditional on observing Y (T ) = y(T ), the predictive distribution of X at T ∗ = (t∗1, . . . , t
∗
m) is

X(T ∗)|T , Y (T ) = y(T ) ∼ N (µ̃(T ∗), ˜cov(T ∗)), (12)

where
µ̃(T ∗) = µ(T ∗) +Kϕ(T ∗, T )(Kϕ(T , T ) + σ2In)

−1(y(T )− µ(T )),

˜cov(T ∗) = Kϕ(T ∗, T ∗)−Kϕ(T ∗, T )(Kϕ(T , T ) + σ2In)
−1Kϕ(T , T ∗),

(13)

can be derived using the property of conditional multivariate Gaussian distribution.

Derivative of Gaussian process. Let us now derive the first order derivative Ẋ(t) with respect to
the input t. Since differentiation is a linear operator, the derivative of a Gaussian process is again a
Gaussian process with some mean µ̇ (see Appendix of Wenk et al. (2019)), and the joint distribution
of X(t) and Ẋ(t) is [

X(t)

Ẋ(t)

]
∼ GP

([
µ
µ̇

]
,

[
Kϕ K′

ϕ
′Kϕ K′′

ϕ

])
, (14)

where ′Kϕ = ∂
∂sKϕ(s, t), K′

ϕ = ∂
∂tKϕ(s, t), and K′′

ϕ = ∂
∂s∂tKϕ(s, t). Conditional on observing

X(T ) = x(T ), the distribution of Ẋ(T ) is

Ẋ(T )|X(T ) = x(T ) ∼ N ( ˙̃µ(T ), ˙̃cov(T )), (15)

where
˙̃µ(T ) = µ̇(T ) + ′Kϕ(T , T )Kϕ(T , T )−1(x(T )− µ(T )),

˙̃cov(T ) = K′′
ϕ(T , T )− ′Kϕ(T , T )Kϕ(T , T )−1K′

ϕ(T , T ),
(16)

are derived again by the property of conditional multivariate Gaussian distribution.

Hyperparameter Tuning. We now discuss the tuning of the hyperparameters ϕ. Noted from
previous studies, the performance of the Gaussian process based gradient constrained methods rely
heavily on the quality of the hyperparameters ϕ. Following Wenk et al. (2019; 2020); Yang et al.
(2021a), we employ the empirical Bayes method to choose the hyperparameters ϕ and the noise
variance σ2 that maximizes the marginal likelihood of the observations y(τ) defined in equation 11,
that is to solve

argmax
ϕ,σ2

pN

(
y(τ);µ(T ),Kϕ(T , T ) + σ2In

)
(17)

where pN (·;µ,Σ) is the p.d.f. of multivariate Gaussian distribution with mean µ and variance Σ. If
µ(T ) is also not known apriori, we usually consider the prior mean function to be a constant function,
i.e. µ(·) = c for some unknown constant c ∈ R. This is employed in our implementation, and we find
c by optimizing over c along with ϕ and σ2 in equation 17. In the case where µ(·) = c is a constant
function, then µ̇(·) = 0 in equation 14.
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Matérn covariance function. In this paper, we use the Matérn kernel with degree of freedom
2.01. The Matérn covariance function between any two points t1 and t2 with euclidean distance
d = ∥t1 − t2∥2 is

Kν(t1, t2) = Kν(d) = ω2 2
1−ν

Γ(ν)

(√
2ν

d

ρ

)ν

Bν

(√
2ν

d

ρ

)
, (18)

where Γ is the gamma function, Bν is the modified Bessel function of the second kind, ν is the
associated degree of freedom, ω is the variance parameter, and ρ is the lengthscale parameter. The
hyperparameters are ϕ = {ω, ρ}. Note that the modified Bessel function of the second kind satisfies
the following recurrence relations:

−2ν

r
Bν(r) = Bν−1(r)−Bν+1(r),

B′
ν(r) = −Bν−1(r) +Bν+1(r)

2
,

(19)

and the following limit conditions:

lim
r→0

Bν(r) = ∞,

lim
r→0

rνBν(r) =
Γ(ν)

21−ν
.

(20)

Thus, it follows that

lim
d→0

Kν(d) = ω2 2
1−ν

Γ(ν)
× Γ(ν)

21−ν
= ω2. (21)

Let us now compute the partial derivative of Matérn covariance function with respect to r =
√
2νd/ρ,

∂Kν

∂r
= ω2 2

1−ν

Γ(ν)

{
νrν−1Bν(r) + rνB′

ν(r)

}
=

{
ω2 2

1−ν

Γ(ν)
rνBν(r)

}{
ν

r
+

B′
ν(r)

Bν(r)

}
= Kν(d)

{
ν

r
+

B′
ν(r)

Bν(r)

}
,

(22)

with limr→0 ∂Kν/∂r = 0 (see App. B.3). Given that we only consider one-dimensional inputs, the
euclidean distance function can be simplified to be d = |t1 − t2|, and thus we have

∂d

∂t1
=

t1 − t2
|t1 − t2|

if t1 ̸= t2 and 0 if t1 = t2,

∂d

∂t2
= − t1 − t2

|t1 − t2|
if t1 ̸= t2 and 0 if t1 = t2.

(23)

One can recognize that ∂d/∂t2 = −∂d/∂t1. By applying the chain rule, we can compute the first
order partial derivative with respect to t1 by

∂Kν

∂t1
=

∂Kν

∂r

∂r

∂d

∂d

∂t1
, (24)

where ∂r/∂d =
√
2ν/ρ, and we can then compute ∂Kν/∂t2 = −∂Kν/∂t1. Next, let us compute

the second order partial derivative with respect to both t1 and t2, that is

∂2Kν

∂t1∂t2
=

∂

∂t1

(
∂Kν

∂d

∂d

∂t2

)
=

∂2Kν

∂d2
∂d

∂t1

∂d

∂t2
+

∂Kν

∂d

∂2d

∂t1∂t2
= −∂2Kν

∂d2
, (25)

by the fact that ∂d
∂t1

∂d
∂t2

= −( ∂d
∂t1

)2 = −1 and ∂2d
∂t1∂t2

= 0. This leave us to compute ∂2Kν/∂d
2.

Similarly, by using chain rule, we have

∂2Kν

∂d2
=

∂

∂d

(
∂Kν

∂r

∂r

∂d

)
=

∂2Kν

∂r2
∂r

∂d

∂r

∂d
+

∂Kν

∂r

∂2r

∂d2
=

∂2Kν

∂r2

(
∂r

∂d

)2

, (26)
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where ∂2r/∂d2 = 0 from r =
√
2νd/ρ and

∂2Kν

∂r2
= ω2 2

1−ν

Γ(ν)

{
ν(ν − 1)rν−2Bν(r) + 2νrν−1B′

ν(r) + rνB′′
ν (r)

}
=

{
ω2 2

1−ν

Γ(ν)
rνBν(r)

}{
ν(ν − 1)

r2
+

2ν

r

B′
ν(r)

Bν(r)
+

B′′
ν (r)

Bν(r)

}
= Kν(d)

{
ν(ν − 1)

r2
+

2ν

r

B′
ν(r)

Bν(r)
+

B′′
ν (r)

Bν(r)

}
,

(27)

with limr→0 ∂
2Kν/∂r

2 = −ω2 1
2(ν−1) (see App. B.3).

B MODEL OBJECTIVE AND PROOFS

B.1 LOG POSTERIOR

In this supplementary material, we omit the superscripts on ODE derivative function f for simplicity.
Following the results in App. A, we have

Xd(T ) ∼ N
(
µd(T ), Cd

)
, (28)

where Cd = Kd(T , T ), and

Ẋd(T )|Xd(T ) = xd(T ) ∼ N
(
˙̃µd(T ),Kd

)
, (29)

where
˙̃µd(T ) = µ̇d(T ) + ′Kd(T , T )Kd(T , T )−1(xd(T )− µd(T )),

Kd = K′′
d(T , T )− ′Kd(T , T )Kd(T , T )−1K′

d(T , T ),
(30)

follows from equation 16. Thus,

p(WT = 0|X(T ) = x(T ),Θ = θ)

=

D∏
d=1

p

(
Ẋd(T ) = {f(x(T ), θ, tT )}d|X(T ) = x(T ),Θ = θ

)

=

D∏
d=1

pN

(
{f(x(T ), θ, tT )}d; ˙̃µd(T ),Kd

)
,

(31)

where pN (·;µ,Σ) is the p.d.f. of multivariate Gaussian distribution with mean µ and variance Σ.
Thus, the log posterior distribution function is

log p{Θ = θ,X(T ) = x(T )|WT = 0, Y (τ) = y(τ)}

= Const. + log πΘ(θ)−
1

2

D∑
d=1

{
log |Cd|+ ∥xd(T )− µd(T )∥2

C−1
d

+

Nd log(σ
2
d) + ∥yd(τd)− xd(τd)∥2σ−2

d INd

+ log |Kd|+ ∥{f(x(T ), θ, tT )}d − ˙̃µd(T )∥K−1
d

}
(32)

where ∥v∥2A = vTAv and |A| is the determinant of A.

B.2 DISCRETIZATION ERROR FOR THE MANIFOLD CONSTRAINT

Let T = {t1 < · · · < tn} ⊂ [0, T ] be a grid with mesh size h = maxi(ti+1−ti). For d ∈ {1, . . . , D}
define

sd(t) = Ẋd(t)− fd
(
X(t), θ, t

)
, W = max

d
sup

t∈[0,T ]

|sd(t)|, WT = max
d

max
ti∈T

|sd(ti)|.

Clearly 0 ≤ W −WT since T ⊂ [0, T ].
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Theorem B.1 (Linear-rate bound). Assume sd ∈ C1[0, T ] and supt∈[0,T ] |s′d(t)| ≤ M1,d for each d.
Then

0 ≤ W −WT ≤ h

2
M1, M1 := max

d
M1,d.

Proof. Fix d and an interval [a, b] = [ti, ti+1] with b−a ≤ h. Let t⋆ ∈ [a, b] attain maxt∈[a,b] |sd(t)|
(exists by continuity). Choose the nearer endpoint e ∈ {a, b} so that |t⋆ − e| ≤ (b− a)/2. Then by
the reverse triangle inequality,

|sd(t⋆)| −max{|sd(a)|, |sd(b)|} ≤ |sd(t⋆)| − |sd(e)| ≤ |sd(t⋆)− sd(e)|.

By the mean value theorem and the bound on |s′d|, |sd(t⋆)−sd(e)| ≤ M1,d |t⋆−e| ≤ 1
2M1,d(b−a) ≤

h
2M1,d. Hence

sup
t∈[ti,ti+1]

|sd(t)| ≤ max{|sd(ti)|, |sd(ti+1)|}+ h
2M1,d.

Maximizing over intervals and then over d yields the claim.

B.3 PROOF FOR THE LIMIT OF MATÉRN COVARIANCE FUNCTION’S DERIVATIVE AT 0

Claim 1: limr→0
∂Kν

∂r = 0.

Proof. Follow from equation 22 and apply the recurrence relations equation 19 and the limit condi-
tions equation 20 of the modified Bessel function of the second kinds, we have

lim
r→0

∂Kν

∂r

=ω2 2
1−ν

Γ(ν)
lim
r→0

{
ν

r
rνBν(r) + rνB′

ν(r)

}
=ω2 2

1−ν

Γ(ν)
lim
r→0

{
ν

r
rνBν(r) + rν

(
− Bν−1(r) +Bν+1(r)

2

)}
=ω2 2

1−ν

Γ(ν)
lim
r→0

{
νrνBν(r)− 1

2
rν+1Bν+1(r)

r
− 1

2
rνBν−1(r)

}
=ω2 2

1−ν

Γ(ν)
lim
r→0

νrνBν(r)− 1
2
rν+1Bν+1(r)

r

=ω2 2
1−ν

Γ(ν)
lim
r→0

νrν{− r
2ν

(Bν−1(r)−Bν+1(r))} − 1
2
rν+1Bν+1(r)

r

=ω2 2
1−ν

Γ(ν)
lim
r→0

− 1
2
rν+1Bν−1(r)

r

=ω2 2
1−ν

Γ(ν)
lim
r→0

−1

2
rνBν−1(r)

=ω2 2
1−ν

Γ(ν)
lim
r→0

r

(
− 1

2
rν−1Bν−1(r)

)
=0

(33)

Claim 2: limr→0
∂2Kν

∂r2 = −ω2 1
2(ν−1) .

Proof. Recursively applying the recurrence relations equation 19, we can compute that

B′′(r) =
1

4

(
Bν−2(r) + 2Bν(r) +Bν+2(r)

)
. (34)
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Thus, applying the recurrence relations equation 19 and the limit conditions equation 20 to equation 27
as r → 0, we have

lim
r→0

∂2Kν

∂r2

=ω2 2
1−ν

Γ(ν)
lim
r→0

{
ν(ν − 1)

r2
rνBν(r) +

2ν

r
rνB′(ν) + rνB′′

ν (r)

}
=ω2 2

1−ν

Γ(ν)
lim
r→0

{
ν(ν − 1)

r2
rνBν(r) +

2ν

r
rν

(
− Bν−1(r) +Bν+1(r)

2

)
+

rν
1

4

(
Bν−2(r) + 2Bν(r) +Bν+2(r)

)}
=ω2 2

1−ν

Γ(ν)
lim
r→0

{
ν(ν − 1)

r2
rνBν(r)− νrν−1Bν−1(r)−

ν

r2
rν+1Bν+1(r)+

r2

4
rν−2Bν−2(r) +

1

2
rνBν(r) +

1

r2
1

4
rν+2Bν+2(r)

}
=ω2 2

1−ν

Γ(ν)
lim
r→0

{
− rν−1Bν−1(r) +

(
− (ν − 1)rν−1Bν−1(r) +

1

2
rνBν(r)

)
+

ν(ν − 1)rνBν(r)− νrν+1Bν+1(r) +
1
4
rν+2Bν+2(r)

r2

}
=ω2 2

1−ν

Γ(ν)
lim
r→0

{
− rν−1Bν−1(r)

}
=ω2 2

1−ν

Γ(ν)

{
− Γ(ν − 1)

21−(ν−1)

}
=− ω2 1

2(ν − 1)

(35)

where

lim
r→0

(
− (ν − 1)rν−1Bν−1(r) +

1

2
rνBν(r)

)
= −(ν − 1)

Γ(ν − 1)

21−(ν−1)
+

1

2
· Γ(ν)
21−ν

= 0 (36)

and

lim
r→0

ν(ν − 1)rνBν(r)− νrν+1Bν+1(r) +
1
4
rν+2Bν+2(r)

r2

= lim
r→0

ν(ν − 1)rν{− r
2ν

(Bν−1(r)−Bν+1(r))} − νrν+1Bν+1(r) +
1
4
rν+2Bν+2(r)

r2

= lim
r→0

− ν−1
2

rν+1Bν−1(r) +
ν−1
2

rν+1Bν+1(r)− νrν+1Bν+1(r) +
1
4
rν+2Bν+2(r)

r2

= lim
r→0

− ν−1
2

rν+1{− r
2(ν−1)

(Bν−2(r)−Bν(r))} − ν+1
2

rν+1Bν+1(r) +
1
4
rν+2Bν+2(r)

r2

= lim
r→0

− 1
4
rν+2Bν(r)− ν+1

2
rν+1Bν+1(r) +

1
4
rν+2Bν+2(r)

r2

= lim
r→0

− ν+1
2

rν+1Bν+1(r)− 1
4
rν+2(Bν(r)−Bν+2(r))

r2

= lim
r→0

− ν+1
2

rν+1Bν+1(r)− 1
4
rν+2{− 2(ν+1)

r
Bν+1(r)}

r2

= lim
r→0

− ν+1
2

rν+1Bν+1(r) +
ν+1
2

rν+1Bν+1(r)

r2

= lim
r→0

0

r2

=0

(37)

and the last equality follows from the L’Hôspital’s Rule.
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C IMPLEMENTATION DETAILS

In this section discuss our experiment settings(App. C.1 − C.3), and the implementation details that
we employ in implementation to avoid numerical instability(App. C.4 − C.5).

C.1 BENCHMARK REAL WORLD SYSTEMS

In this paper, we consider the following three benchmark real world systems:

• The FitzHugh-Nagumo (FN) system was introduced by FitzHugh (1961) and Nagumo
et al. (1962) for modeling the activation of an excitable system such as neuron. It is a
two-component system determined by the following ODEs,{

ẋ1 = c(x1 − x3
1/3 + x2)

ẋ2 = −(x1 − a+ bx2)/c
(38)

where a = 0.2, b = 0.2, c = 3, and x(0) = (−1, 1). The groundtruth trajectory from t = 0
to t = 40 obtained via numerical integration is presented in the left panel of Figure 7.

• The Lotka-Volterra (LV) system was introduced by Lotka (1932) for modeling the dynamics
of the predator-prey interaction. It is a two-component system determined by the following
ODEs, {

ẋ1 = ax1 − bx1x2

ẋ2 = cx1x2 − dx2
(39)

where a = 1.5, b = 1, c = 1, d = 3, and x(0) = (5, 0.2). Given that both x1 and x2 are
always strictly positive, we consider the log-transformation of the system in this paper. The
groundtruth trajectory from t = 0 to t = 12 obtained via numerical integration is presented
in the middle panel of Figure 7.

• The Hes1 system was introduced by Hirata et al. (2002) for modeling the oscillation
dynamic of Hes1 protein level (x1) and Hes1 mRNA level (x2) under the influence of a
Hes1-interacting factor (x3). It is a three-component system determined by the following
ODEs,  ẋ1 = −ax1x3 + bx2 − cx1

ẋ2 = −dx2 + e/(1 + x2
1)

ẋ3 = −ax1x3 + f/(1 + x2
1)− gx3

(40)

where a = 0.022, b = 0.3, c = 0.031, d = 0.028, e = 0.5, f = 20, g = 0.3, and
x(0) = (1.438575, 2.037488, 17.90385). Similarly, given that x1, x2, and x3 are always
strictly positive, we consider the log-transformation of the system in this paper. The
groundtruth trajectory from t = 0 to t = 480 obtained via numerical integration is presented
in the right panel of Figure 7.

(a) FN (b) LV (log-transformed) (c) Hes1 (log-transformed)

Figure 7: Groundtruth trajectory obtained using numerical integration.

However, we do observe some large standard deviations in the trajectory RMSEs from Table 1, e.g.,
the trajectory RMSE of x1 for the Hes1 system. This large standard deviation is due to one divergence
case where the small errors accumulate in the trajectory propagation via numerical integration in the
forecasting phase, and eventually push the trajectory to unseen domain where we do not have data for
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(a) Seed 1 (b) Seed 2

Figure 8: Comparison of the reconstructed trajectory (solid line) to the groundtruth trajectory (dotted
lines) after applying MAGI-X on the same set of 41-point noisy data (circles) from the LV system but
with two different initialized random seed for the optimization procedure.

the neural network to learn the correct behavior (left panel of Figure 8). However, using a different
initialized random seed for the optimization solves the problem (right panel of Figure 8). Thus, in
real world usage, we can actually restart MAGI-X with multiple random seeds and select the best one
to avoid the possible divergence, and this could still result in faster runtime than NPODE and Neural
ODE given the computational saving achieved by MAGI-X.

Nevertheless, improvements to the optimization procedure are still encouraged. One promising
solution is to provide a more variety of trajectories x(T ) but are still within some credible interval of
the true trajectory for training θ, so the model has data for learning about auto-correction once the
trajectory slightly deviates. Thus, one future direction is to replace SGD for the update of x(T ) by
the stochastic gradient Langevin dynamics (Welling and Teh, 2011) or stochastic gradient Markov
Chain Monte Carlo (Ma et al., 2015) that are both stochastic gradient based samplers with carefully
injected noise.

C.2 MAGI-X SETTINGS

First, for the discretization T , since y(τ) come from the fitting window, we evaluate on the first
161 equally spaced times T = {t1, . . . , t161}, which is four times denser than the observation grid
τ . This also makes it straightforward to compute the RMSE of the inferred trajectory. As a rule of
thumb, we recommend using a grid at least 4× finer than the number of available observations. For
the GP prior, we adopt a Matérn kernel with smoothness ν = 2.01 so the process is exactly twice
differentiable; in our setting this is more robust than an RBF kernel, whose derivative covariance
tends to be overly smooth. The neural network uses ReLU activation with a single hidden layer
of 512 units, motivated by links between wide networks and kernel methods (Wang et al., 2022);
comparisons of alternative architectures are provided in the supplement. We run MAGI-X for 2,500
iterations.

C.3 DETAILS OF GP-BASED UNCERTAINTY QUANTIFICATION

Setup. For each component d ∈ {1, . . . , D} we place an independent GP prior on the latent
trajectory xd(·) with Matérn kernel and SKI (KISS-GP) interpolation on the 1D inducing grid
G = {τ1, . . . , τT }. Let tfit be the last observation time and Gfit = {τj ≤ tfit}.

Posterior sampling on the fit grid. Compute the per-dimension GP posterior N (µd,Σd) at Gfit

using the standard formulas on the actual SKI grid. Draw N samples z(n)d ∼ N (µd,Σd) and stack
Z

(n)
fit ∈ RTfit×D.

Deterministic propagation. For each n, set x(n)
0 = Z

(n)
fit [Tfit, :] and propagate on a uniform

forecast grid Gfct = {τTfit
< · · · < τTfull

} with horizon chosen as a fraction β of the fit window
(default β = 1):

ẋ(t) = fθ̂(x(t)), x(tfit) = x
(n)
0 .
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Forecast uncertainty thus comes only from the terminal state; we do not inject process noise or
integrate over θ̂ (dropout disabled).

Pointwise bands. For α = 0.10, define empirical (1 − α) credible bands from the ensemble
{X̃(n)}Nn=1:

ℓj,d = Quantileα/2{X̃
(n)
j,d }, uj,d = Quantile1−α/2{X̃

(n)
j,d }, x̄j,d = 1

N

∑
n

X̃
(n)
j,d .

Bands target the latent x(t), not observation intervals.

Calibration metrics. For a region R ⊂ {1:Tfull} (fit/forecast) and reference trajectory x⋆:

Cov(R) =
1

|R|D
∑
j∈R

D∑
d=1

1{x⋆
d(tj) ∈ [ℓj,d, uj,d]}, Width(R) =

1

|R|D
∑
j∈R

D∑
d=1

(uj,d − ℓj,d),

Widthnorm(R) =
1

D

D∑
d=1

1
|R|

∑
j∈R(uj,d − ℓj,d)

maxj∈R x⋆
d(tj)−minj∈R x⋆

d(tj)
.

Implementation notes. Use the model’s SKI grid G; add jitter and, if needed, clip small eigenvalues
for SPD; propagate with a deterministic ODE solver (e.g., odeint) under fθ̂.

C.4 TIME STANDARDIZATION

Given that the FN, LV, and Hes1 examples share similar magnitude in their component values but have
very different time ranges (Figure 7), some time standardization might help improve the robustness of
the algorithm. Though different time unit would give theoretically equivalent system, we do observe
that NPODE of Heinonen et al. (2018) yields very bad performance on the Hes1 example, but such
problem does not exist for the FN and LV systems (time range in the scale of 10s). Same phenomenon
is also observed in MAGI-X without the time standardization. Given that both NPODE and MAGI-X
rely on gradient update for parameters optimization, the performance is sensitive to the learning
rate. Thus, the poor performance on the Hes1 example suggests that the learning rate chosen in
NPODE and MAGI-X is robust for system with time scale of 10s, but it could be too large for system
with time scales of 100s if the component values have similar magnitude. This leads to the need of
time standardization. From simulation studies on the three benchmark problems with the specified
learning rate, we suggest the following standardization scheme: standardize the data such that the
distance between any two nearby time points is 0.05. Given that T is the 161 equal spaced-out time
points from fitting phase, we are essentially standardizing the fitting phase time range to 8 for all
systems. What we propose now is an engineering solution, and a better standardization procedure
will be investigated in future works.

C.5 CHOLESKY DECOMPOSITION

Optimizing over x(T ) directly in the objective function of MAGI-X is usually not numerically
preferred as the entries of xd(T ) are supposed to be correlated by the GP prior. Now consider
U(T ) = (U1(T ), . . . , UD(T )) where

Ud(T ) = L−1
Cd

(Xd(T )− µd(T )) ⇔ Xd(T ) = µd(T ) + LCd
Ud(T ). (41)

LCd
is the Cholesky decomposition of Cd = Kd(T , T ), i.e., Cd = LCd

LT
Cd

. We can see that
Ud ∼ N (0, I|T |), where all the entries are independent. We make the change of variable from
X(T ) to U(T ) in the objective function, and optimize over u(T ) = (u1(T ), . . . , uD(T ) where
ud(T ) = L−1

Cd
(xd(T )−µd(T )) in the actual implementation. This leads to more robust performance

when gradient update is employed.
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D ADDITIONAL FIGURES AND ABLATIONS

D.1 ADDITIONAL NPODE ITERATIONS

Table 4: RMSE (mean ± std) over 100 runs with full observations. Runtime (RT, seconds) shown per
dataset block. NPODE: 2000 iterations. Lower is better.

FN LV Hes1

Phase Model x1 x2 RT (s) x1 x2 RT (s) x1 x2 x3 RT (s)

Fitting
NPODE 0.19±0.02 0.05±0.01 135.57±4.03 0.06±0.02 0.07±0.02 137.31±4.72 2.71±1.90 2.55±1.79 2.77±1.70 328.11±1.53
Neural ODE (512) 1.14±0.37 0.52±0.20 424.05±22.54 0.29±0.03 0.37±0.05 332.22±13.02 0.61±0.12 0.54±0.08 1.23±0.06 1770.79±490.00
MAGI–X (512) 0.11±0.02 0.05±0.01 23.87±0.75 0.05±0.01 0.05±0.02 23.56±0.52 0.09±0.06 0.06±0.04 0.12±0.10 93.19±1.76

Forecasting
NPODE 0.20±0.07 0.06±0.04 135.57±4.03 0.13±0.10 0.16±0.13 137.31±4.72 2.96±2.12 2.73±2.03 2.90±1.78 328.11±1.53
Neural ODE (512) 1.40±0.43 0.65±0.25 424.05±22.54 0.48±0.16 0.68±0.27 332.22±13.02 0.65±0.10 0.53±0.05 1.30±0.05 1770.79±490.00
MAGI–X (512) 0.12±0.04 0.05±0.02 23.87±0.75 0.13±0.12 0.17±0.17 23.56±0.52 0.37±1.31 0.14±0.13 0.34±0.33 93.19±1.76

Increasing NPODE to 2000 iterations improves its accuracy and, on LV forecasting, it matches or
slightly outperforms MAGI-X (tie on x1, marginal gain on x2); however, this comes with a 3–4×
longer runtime (about 135–328 s vs. 24–93 s), whereas MAGI-X remains superior on FN and Hes1.
Overall, MAGI-X offers the best accuracy–time trade-off.

D.2 ADDITIONAL DERIVATIVE PLOTS

We repeat the derivative analysis for LV (log space) using the same 40 × 40 grid and error metric
∥ f̂(x)− f⋆(x) ∥22 as in Sec. 3.4. Errors are smallest along the observed orbit and remain moderate
away from it; the learned vector field reproduces the phase-plane geometry seen in FN (limit cycle
and flow orientation).

(a) LV squared error heatmap ∥ f̂(x)− f⋆(x) ∥22

(b) LV learned vector field f̂θ̂(x) (color = ∥f̂θ̂(x)∥2)

Figure 9: Additional LV derivative analyses. Setup matches Sec. 3.4; patterns mirror FN results in
the main text.

D.3 SYNTHETIC HIGH DIMENSIONAL SYSTEMS

Table 5: Means and standard deviations of computational time (seconds) on the synthetic large system
example over 100 runs. All experiments are ran under the same CPU setting.

Component Dimension Computational Time

10 72.26± 3.43
20 135.33± 2.57
40 272.65± 3.77
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Table 6: Means and standard deviations of trajetory RMSEs over 100 runs on the synthetic large
system example after excluding the divergence cases.

Reconstructed Inferred

Dimension No. Divergence Imputation Forecast Imputation Forecast

10 4 0.08± 0.05 0.38± 0.40 0.06± 0.01 0.30± 0.25
20 10 0.07± 0.02 0.41± 0.35 0.06± 0.01 0.36± 0.28
40 11 0.07± 0.01 0.46± 0.29 0.07± 0.01 0.46± 0.30

For the ODEs parameter inference where the derivative function f has known parametric form,
Wenk et al. (2020) have demonstrated that the runtime of the gradient constrained approach scales
linearly in the number of components. We also want to show that such linear scaling computational
advantage can be preserved in MAGI-X, in which the parametric form of f is completely unknown.
For illustration, we apply MAGI-X on a synthetic Hamiltonian system ODEs dynamic with 10, 20,
and 40 components. Following the same data generation procedure, we again simulate 41-point noisy
observations for each component by adding i.i.d. 0.12 variance Gaussian random noise.

Table 5 shows that the experimental runtime of MAGI-X increases linearly in the number of com-
ponents. The linear scaling of MAGI-X is achieved by (i) its gradient constrained framework that
circumvents the costly numerical integration and (ii) the use of neural network for approximating
the derivative function f . If vector-valued GP is employed for learning f such as in Heinonen
et al. (2018) and Ridderbusch et al. (2020), the linear scaling would not be feasible due to the cubic
complexity required for computing the inverse of covariance matrix. More surprisingly, the runtime
of MAGI-X on the 40-component system is only about 270 seconds (Table 5), while Neural ODE
takes more than 300 seconds for training a two-component system (Table 1). Again, this demonstrate
the remarkable computational efficiency of MAGI-X on large system inference over the existing
state-of-the-art methods that is built upon numerical integration, i.e., the classical approach for ODEs
dynamic inference.

To study the performance of MAGI-X in the large system setting, we consider the following ODEs
derived from the Hamiltonian system H(q, p) = 1

2p
T p+ qT q,{

ṗ = −∂H
∂q = −2q

q̇ = ∂H
∂p = p

(42)

where q and p are both n-dimensional vector, and thus the system has total of D = 2n components.
The initial value of the system is simulated randomly from the standard Gaussian distribution. We
consider the ODEs system with n = 5, 10, 20, which corresponds to the number of components
D = 10, 20, 40 for demonstration. Similar to the data generation procedure in the three real world
systems, we again inject 0.12 variance i.i.d. Gaussian random noise to the groundtruth trajectory to
obtain the 41-point noisy observations for each component. MAGI-X is then ran for 5,000 iterations
with the default learning rate.

As presented in Table 5 runtime scales linearly in the component dimensions. Given that our
optimization could still once in a while stuck at local optimum and yield a divergent forecasting
trend as in the LV example (Figure 8), we would expect the same limitation in the larger system
example, and thus we include the number of divergence case as another measure for evaluating the
performance. We define the divergence to be the case if any component’s forecasting trajectory
RMSE is greater than 5, which indicates that the forecasting trend is far away from the observation
domain of equation 42. Table 6 shows the trajectory RMSEs excluding the divergence cases. We can
see that the recovery of the true dynamic is accurate for the imputation phase, but the performance
on the forecasting is not as good. Moreover, we do observe more divergence case as the number
of components increase, which is expected as the higher dimensional problem is harder. However,
even on the 40-component system, we only observe about 10% divergence case, showing that a few
restarts would be sufficient to avoid the divergence problem, which is still a significant computational
saving from the existing methods (e.g. runtime of MAGI-X on the 40-component system is 270
seconds, while runtime of Neural ODE on the 3-component system is more than 500 seconds).
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D.4 UNCERTAINTY QUANTIFICATION VIA DROPOUT AND A NOISE-FREE CALIBRATION CHECK

As a complement to the GP-based uncertainty in the main text, we estimate predictive uncertainty via
Monte Carlo (MC) dropout applied to the neural network parameterizing the derivative field f .1

Table 7 summarizes empirical coverage and (normalized) band widths across FN, LV, and Hes1.
Forecast PIs are well calibrated (90.8–99.4%), whereas fit-region coverage is lower (65.4–76.5%)
when training observations are noisy. This under-coverage indicates overconfidence in the presence
of measurement noise rather than a structural calibration failure.

To isolate the noise effect, we repeat the same procedure with noise-free training trajectories (σ = 0).
Coverage in the fit region improves markedly (FN: 65.4→85.5; LV: 66.0→98.1; Hes1: 76.5→96.3),
and forecast coverage remains near-nominal or conservative (FN 99.1, LV 99.7, Hes1 98.3), with
bands that are as tight or tighter than in the noisy case; see Table 8. Taken together, these results
indicate that the apparent miscalibration under noise is driven by measurement error, not by the
MAGI-X UQ mechanism. Overall, MAGI-X yields interpretable predictive uncertainty through both
the GP posterior (main text) and MC dropout (this appendix), adapting to system complexity and
forecast difficulty.

Table 7: Coverage and normalized width of 90% predictive intervals using MC dropout (p = 0.1,
N = 50).

System Region Coverage@90 Width Norm. Width

FN Fit 65.4% 0.166 0.054
Forecast 91.6% 0.301 0.102

LV Fit 66.0% 0.152 0.048
Forecast 99.4% 0.529 0.170

Hes1 Fit 76.5% 0.219 0.099
Forecast 90.8% 0.646 0.302

Table 8: Coverage and normalized width of 90% predictive intervals under noise-free training
(σ = 0).

System Region Coverage@90 Width Norm. Width

FN Fit 85.5% 0.167 0.054
Forecast 99.1% 0.278 0.093

LV Fit 98.1% 0.156 0.050
Forecast 99.7% 0.457 0.147

Hes1 Fit 96.3% 0.162 0.073
Forecast 98.3% 0.476 0.219

1At test time we retain dropout with rate p = 0.1, draw N = 50 stochastic rollouts from the learned initial
conditions, and form pointwise 90% predictive intervals (PIs) using the empirical 5th/95th percentiles.
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