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ABSTRACT

Post-training quantization (PTQ) is essential for deploying large diffusion-based
transformers on resource-constrained hardware. However, aggressive 4-bit quan-
tization introduces significant degradation in generative performance. While ex-
isting solutions mitigate quantization error through outlier smoothing or rotation
techniques, low-rank approximation methods that add auxiliary linear branches to
each quantized layer represent a promising new paradigm. Yet, these approaches
suffer from computational overhead due to the data movement required by full-
precision (W16A16) branches, limiting practical deployment. In addition, data-
based calibration contributes to the complexity of the quantization process and in-
volves risks such as potential accuracy degradation. We propose LoRaQ (low-rank
approximated quantization), a data-free calibration approach to optimize quanti-
zation error compensation. This method can be used in composition with other
PTQ models. LoRaQ further enables mixed-precision configurations by quantiz-
ing the low-rank branch itself, overcoming the limitations of prior work. While
LoRaQ achieves superior quantization performance than state-of-the-art methods
in their native W4A4 setting on PixArt-Σ and SANA, it also allows for config-
urations such as W8A8,W6A6 and W4A8 for low-rank branch alongside a W4
main layer. This reduces data movement overhead and enables a fully quantized,
hardware-efficient solution.

1 INTRODUCTION

The proliferation of large-scale generative models, particularly diffusion-based transformers such as
Black-Forest-Labs (2024); Esser et al. (2024), has precipitated an urgent need for efficient inference
strategies. Quantization has emerged as a pivotal technique for reducing computational and memory
costs, thereby enabling the deployment of these models on diverse hardware platforms, including
edge devices, consumer platforms, and data center accelerators. However, aggressive quantization
often leads to pronounced degradation in generative fidelity, primarily due to the sensitivity of these
architectures to minute perturbations in weights and activations and their iterative denoising.

Recent advances have sought to ameliorate quantization-induced errors through channel-wise scal-
ing and low-rank approximations (Xiao et al., 2023; Li et al., 2025). In particular, low-rank branches
appended to quantized linear layers have demonstrated the capacity to preserve critical information
at higher precision, justifying the use of 16-bit representations for these components. However, the
retention of full-precision activations in these branches requires 16-bit operations such as matrix
multiply and data movement of 16-bit activations. This introduces substantial computational over-
head, exacerbated by increased data movement and limited by the scope of fused GPU kernels. This
bottleneck impedes the generalization of such methods to broader hardware ecosystems and model
architectures.

Furthermore, prevailing approaches rely on resource-intensive, data-dependent calibration to find
quantized representations. The lack of lightweight alternatives imposes a substantial computational
overhead, creating a barrier for quantizing large-scale models with limited resources and complicat-
ing integration into production workflows. In this work, we address these limitations by introduc-
ing a data-free optimization framework that directly minimizes quantization error via the low-rank
branch, enabling more aggressive and efficient quantization of both weights and activations.
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Figure 1: Overview of the LoRaQ pipeline. A lin-
ear layer’s weight W is decomposed into two parallel
branches. The residual branch contains the quantized
residual matrix P = W −Q2(LΩ)Q2(Ω

TR), quan-
tized with operator Q1. The low-rank branch contains
the matrices L and R, which are themselves quantized
using operator Q2. We show that inserting a learned ro-
tation matrix Ω between L and R minimizes quantiza-
tion error. Activations can be quantized independently
for each branch.

Our contributions are threefold. First, we present the first post-training quantization (PTQ) scheme
for transformer-based diffusion models (DiTs) that achieves sub-8-bit quantized path for both
weights and activations without floating scales, maintaining high generative quality. Second, we
propose a mixed-precision quantization strategy, leveraging micro-scaling formats and block-wise
power-of-two scales to enhance computational efficiency, particularly for GEMM-based architec-
tures. Third, we release an open-source, hardware-agnostic PTQ library for transformer blocks,
facilitating systematic benchmarking across methods and configurations and supporting scalable
quantization of large models in multi-GPU environments.

After reviewing related work, we introduce our method, LoRaQ represented in Figure 1, which
splits a linear layer into a low-rank and a residual branch. Our approach optimizes the low-rank
matrices, which in turn defines the residual weights and enables the quantization of the low-rank
matrix itself. In the experiments section, we compare LoRaQ against SVDQuant using equivalent
configurations for a fair comparison across different datasets, models, and metrics. We also analyze
various mixed-precision configurations of our method, considering the support for such operations
in modern hardware.

2 RELATED WORK

Diffusion models have rapidly advanced and transformed text-to-image synthesis (Sohl-Dickstein
et al., 2015; Ho et al., 2020). They generate high-quality samples via an iterative denoising process
starting from Gaussian noise. Recently, the core architecture shifted from U-Net (Ronneberger
et al., 2015) to transformer-based backbones known as DiTs, as pioneered by Peebles & Xie (2023)
and Bao et al. (2023). Enabled by the scalability of the transformer backbone (Vaswani et al.,
2017), this shift opened new opportunities for higher image quality. Key advances include MM-DiT
(Esser et al., 2024) and the FLUX.1 suite of models (Black-Forest-Labs, 2024) for efficient scaling
and high-resolution image synthesis; and PixArt-α (Chen et al., 2024b) and PixArt-Σ (Chen et al.,
2024a), which target training strategies and architecture efficiency.

The significant potential of DiTs has motivated the deployment of these models on many resource-
constrained devices. However, DiTs require substantial computation to achieve high image qual-
ity (Xie et al., 2025; Li et al., 2025), which makes deployment challenging, particularly with effi-
cient narrow data types. We focus on overcoming this barrier to enable low-precision inference on
resource-constrained devices while preserving image generation quality.

Quantizing DiTs presents several new challenges. Modern GPUs’ computational constraints neces-
sitate both weight and activation quantization, which is complicated by substantial data variation
across token, condition, timestep, and channel dimensions. Early quantization efforts struggled
with systematic activation outliers which contributed to a degradation of accuracy (Dettmers et al.,
2022; Wei et al., 2023). A notable breakthrough was achieved by Xiao et al. (2023), enabling
efficient 8-bit weight quantization (W8) and 8-bit activation quantization (A8) through the trans-
fer of quantization difficulty from activations to weights using per-channel scaling transformations.
Employing these techniques for diffusion models has evolved from 8-bit methods like PTQ4DM
(Shang et al., 2023) to more advanced strategies to employ sub-8-bit data types for the weights such
as timestep-aware calibration (Li et al., 2023), sample-wise dynamic activation quantization (Chen
et al., 2024c), salient channels (Wu et al., 2024), sensitivity-aware quantization (Yang et al., 2023),
timestep-conditioned methods (He et al., 2023); (Huang et al., 2024), as well as extensions to both
image (Tang et al., 2024; Zhao et al., 2024) and video models (Zhao et al., 2025).
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Aggressive 4-bit quantization (W4A4) requires new strategies to overcome outlier sensitivity. Ashk-
boos et al. (2025); Liu et al. (2025); Tseng et al. (2024) introduce the use of rotations matrices to
handle outliers of the activations. Zhang et al. (2025) achieved micro-scaling FP4 attention for
inference. Li et al. (2025) consolidated outliers from activations to weights via smoothing, then
decomposed updated weights using SVD into high-precision low-rank and 4-bit quantized residual
branches, with fused kernels eliminating memory access overhead for practical W4A4 deployment
on GPUs.

Our method improves offline quantization through calibration-free optimization that can be seam-
lessly integrated into existing quantization approach such as Xiao et al. (2023) and Liu et al. (2025).
Unlike Li et al. (2025)’s approach of maintaining a full-precision low-rank branch, we propose a
quantized low-rank branch to reduce data movement overhead, eliminating custom kernel require-
ments and enabling flexible mixed-precision weight matrices. In addition, we show that the combi-
nation of higher ranks with narrower data formats improves the model’s performance.

3 METHOD

3.1 QUANTIZATION ERROR AND UPPER BOUND

Following the formulation of Li et al. (2025), we examine a linear transformation with input matrix
X ∈ Rm×d and weight matrix W ∈ Rd×n, where m, n, and d correspond to the dimensions of
input, output and hidden features, respectively. We can express the quantization error as

E(X,W ) = ∥XW −Q(X)Q(W )∥F , (1)

where ∥·∥F represents the Frobenius norm and Q is a quantization operator. The quantization error
admits the following upper bound:

E(X,W ) ≤ ∥X −Q(X)∥F ∥W ∥F + ∥Q(X)∥F ∥W −Q(W )∥F . (2)

See Appendix A.3.1 for the proof. This reveals that the quantization error is constrained by the
quantization discrepancies in the original matrices ∥W−Q(W )∥F and ∥X−Q(X)∥F . Our method
focuses on reducing ∥W −Q(W )∥F in a more aggressive way than state-of-the-art methods (Xiao
et al., 2023; Li et al., 2025) and is therefore meant to be implemented along existing smoothing
methods that focus on reducing ∥X −Q(X)∥F .

3.2 ABSORBING THE QUANTIZATION ERROR

Following the emerging paradigm of incorporating full-precision low-rank branches into quantized
linear layers to mitigate quantization error (Li et al., 2025), we propose a novel approach that di-
rectly approximates the quantization error using a low-rank matrix that can be quantized. We argue
that this strategy is more effective than approximating the weight matrix itself with a low-rank de-
composition, as our method provides explicit quantization error compensation, which adapts to the
quantization operator and the chosen data format. Intuitively, the quantization function introduces
structure in the error space that previous methods fail to exploit.

Specifically, we seek to find a new point in the input space of the quantization function that shapes
the quantization error to a low-rank matrix such that the quantization error can be expressed as

Ŵ −W = Q(W +D)−W = LR (3)

where Ŵ is the quantized version of the new point in the input space. D ∈ Rd×n is a perturbation
matrix, L ∈ Rd×ρ and R ∈ Rρ×n for a fixed ρ << d, n. The key insight is that by strategically
shifting the original weight matrix W with D, we can obtain a quantization error that exhibits
inherent low-rank structure, thereby enabling efficient error approximation.

We can express the search of the new point as a gradient descent optimization problem where we
minimize the difference between the quantized version of the perturbed weight matrix Ŵ and the
original weight matrix W , subject to the constraint that the error is low-rank. However, consider-
ing that the derivative of the quantization function is zero almost everywhere, we cannot directly
compute the gradient of the quantization function with respect to the perturbation matrix D.

3
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Instead, we can reformulate the problem by considering the quantization function as an idempotent
operator. By definition, it means that applying the quantization function twice is equivalent to ap-
plying it once: we define the image of Q as I, then Q(X) = X , ∀X ∈ I. According to Equation 3,
the equality implies that (W +LR) ∈ I. Thus, Q(W +LR) = W +LR. Using this property, it is
sufficient to find a low-rank perturbation matrix D = LR in order to approximate the quantization
error as a low-rank matrix.

Thus, we propose to solve the optimization problem

L∗,R∗ = argmin
L,R

∥Q(W +LR)−W −LR∥F

∝ argmin
L,R

L(Q(W +LR)−W ,LR) ,
(4)

where L is the Mean Squared Error loss.

Indeed, using this approximation of D, we can now compute a gradient of our loss function with
respect to L and R as detailed in Appendix A.3.2.

This allows us to iteratively update the low-rank matrices L and R using gradient descent, effec-
tively absorbing the quantization error into a low-rank structure that can be efficiently handled during
inference with a fixed rank defined. This rank can be chosen based on the desired trade-off between
computational efficiency and quantization error correction, allowing for flexible deployment and
further improvements.

We initialize L and R using the Singular Value Decomposition (SVD) of W . This allows us to
find the matrix of a predefined rank ρ, M = L0R0, L0 ∈ Rd×ρ, R0 ∈ Rρ×n such that M =
minB /rank(B)=ρ ∥W −B∥F . As Li et al. (2025), we found it to be a good initialization for our
optimization algorithm, where L = −L0 and R = R0.

3.3 QUANTIZING HIGHER RANK MATRICES

Considering the data formats available in hardware architectures (Microsoft et al., 2023; Li et al.,
2025; Zhang et al., 2025), we can define a budget β as the maximum allowable memory and
computation resources for the low-rank branch in our approximation. β is defined by the num-
ber of bits we require per channel for the low-rank branch. For example, SVDQuant uses a
float16 low-rank branch with ρ = 32 for its 4-bit quantization, thus allocating a budget of
β = 16 bits/value × 32 values/channel = 512 bits/channel for the low-rank branch.

In our case, optimizing a low-rank matrix to find a solution easily leads to a local minimum. How-
ever, the higher the rank of the matrix, the better the lower local minimum we find. To respect a
budget β and leverage the benefits of higher rank representations, we also suggest quantizing the
low-rank branch. We find that the accuracy gains from using a higher rank outweigh the loss from
quantizing the low-rank matrices.

Reminding the description of the method in Figure 1, we now consider two quantization functions
Q1 for the residual branch and Q2 for the low-rank branch to be represented in n < 16 bits/value
such that

Q1(W +Q2(L)Q2(R))−W ≈ Q2(L)Q2(R) , (5)

where L ∈ Rd×ρ′
and R ∈ Rρ′×n with ρ′ = floor(βn ).

While this quantization leads to the intrinsic degradation of the low-rank branch, we will show that
it does provide significant improvements in approximating W in the quantized space thanks to the
increased rank of the branch.
Rotation aware method To maximize the performance of the method, inspired by Liu et al. (2025)
and their Cayley SDG method, we mitigate the quantization error induced by Q2 without any mem-
ory or computation overhead by using a rotation-aware optimization method. We define and opti-
mize a rotation matrix Ω ∈ Rρ′×ρ′

for each low-rank branch and attempt to solve the following
equation, knowing the optimal low-rank matrices L∗ and R∗:

Ω∗ = min
Ω

(∥Q2(L
∗Ω)−L∗Ω∥F + ∥Q2(Ω

TR∗)−ΩTR∗∥F ) . (6)
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Thus, we define the following loss function:

LΩ = L(Q2(L
∗Ω),L∗Ω) + L(Q2(Ω

TR∗),ΩTR∗) . (7)

3.4 QUANTIZING ACTIVATIONS

State-of-the-art methods consider an aggressive 4-bit quantization of the inputs of the linear layer
in each transformer block of the quantized model. As a consequence, a direct quantization of the
activations is not possible without a significant drop in accuracy. Following Li et al. (2025); Liu
et al. (2025), we adopt activation smoothing as a technique complementary to ours for activation
quantization.

4 EXPERIMENTS

4.1 SETUPS

Models We quantize SANA (Xie et al., 2025) with 1.6 billion parameters and PixArt-Σ (Chen et al.,
2024b) with 0.6 billion parameters.
Datasets Following previous work (Li et al., 2025), we benchmark our quantization methods on the
MJHQ-30K and sDCI (Li et al., 2024; Urbanek et al., 2024) datasets. We draw 5000 samples for
each dataset.
Data Formats We benchmark against baselines using SINT4 and also evaluate on OCP Microscal-
ing (MX) Formats (Microsoft et al., 2023), detailed in Appendix A.2.1. Our method flexibly com-
bines rank and bit-width for the low-rank branch, using various MX types (MXFP8e4, MXFP6e2,
MXFP4e2, MXINT8, MXINT4) without mixing INT and FP formats within a layer. MX for-
mats leverage efficient power-of-two scaling and are supported by modern hardware like the AMD
MI350/355 (Advanced Micro Devices, 2025), enabling native mixed-precision operations for which
our method is designed. We use the TensorCast library (Dellinger & Khodamoradi, 2025) for all
quantization procedures.
Baselines We compare our method against two baselines. For SANA, we use a simple round-
to-nearest (RTN) quantization strategy. Our primary baseline is the state-of-the-art method
SVDQuant (Li et al., 2025), which consistently outperforms other methods like Zhao et al. (2025)
on PixArt-Σ across various models and datasets.
Metrics Following existing benchmarks, we evaluate performance on two criteria. To measure
similarity to the 16-bit baseline, we use Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018) and Peak Signal-to-Noise Ratio (PSNR). To assess overall visual quality, we use Frechet
Inception Distance (FID) (Heusel et al., 2018), Image Reward (IR) (Xu et al., 2023), and Kernel
Inception Distance (KID) (Bińkowski et al., 2021).
Experimental Organization We first compare our calibration method for weight quantization to
SVDQuant’s in a W4A4 setting using the same data formats. As these results consider the activations
for the low-rank branches at full precision, we then analyze various sub-16-bit mixed-precision
configurations with our method, leveraging its flexibility to quantize low-rank matrices. We begin
by analyzing the trade-off between rank and bit-width within a fixed memory budget for the low-
rank matrices, while keeping activations at 8-bit precision. Subsequently, we configure both the
activations and the low-rank branch to be quantized to the same sub-16-bit data format and analyze
performance with respect to the rank, as this allows for larger low-rank matrices without increasing
latency. Finally, we analyze the influence of the rotation matrix we insert in the low-rank branch for
quantizing the low-rank matrices with minimal error.

4.2 MAIN RESULTS

4.2.1 QUANTITATIVE RESULTS

We report the results in Table 1 and Table 2, which show that at equivalent data format and dataset,
our method outperforms the baseline methods. We detail the configurations of SVDQuant and Lo-
RaQ in Appendix A.1.1. LoRaQ relies on the same smoothing calibration (Xiao et al., 2023) as
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Table 1: Quantitative quality comparisons across different models. Following SVDQuant, we use
SINT4 to ensure a fair comparison with methods that consider the data format as part of the method.

MJHQ sDCI

Model Format Precision (W-A) Method Quality Similarity Quality Similarity

FID (↓) IR (↑) LPIPS (↓) PSNR( ↑) FID (↓) IR (↑) LPIPS (↓) PSNR (↑)

PixArt-Σ
(20 Steps)

FP16 16-16 – 16.6 0.944 – – 24.8 0.966 – –

SINT4 4-4
VIDIT-Q 412 -2.27 0.854 6.44 425 -2.28 0.838 6.70

SVDQuant 19.2 0.878 0.323 17.6 25.9 0.918 0.352 16.5
Ours 16.9 0.898 0.309 17.6 24.1 0.919 0.346 16.2

SANA-1.6B
(20 Steps)

BF16 16-16 – 16.2 1.10 – – 22.4 1.07 – –

SINT4 4-4
RTN 20.5 0.894 0.339 15.3 28.6 0.807 0.371 13.8

SVDQuant 19.3 0.935 0.220 17.8 28.1 0.846 0.242 16.2
Ours 16.1 1.09 0.182 19.2 21.8 1.06 0.208 17.4

Table 2: Quantitative quality comparisons on PixArt-Σ. Using the MXINT4 format as the 4-bit
precision, we show that LoRaQ outperforms our 4-bit baseline with power-of-two scale, showing
that our method is data format agnostic and that our library can easily experiment on other data
formats.

MJHQ sDCI

Model Format Precision (W-A) Method Quality Similarity Quality Similarity

FID (↓) IR (↑) LPIPS (↓) PSNR( ↑) FID (↓) IR (↑) LPIPS (↓) PSNR (↑)

PixArt-Σ
(20 Steps)

FP16 16-16 – 16.6 0.944 – – 24.8 0.966 – –

MXINT4 4-4 SVDQuant 18.9 0.738 0.424 15.9 26.1 0.902 0.435 14.7
Ours 15.4 0.901 0.339 16.8 23.7 0.943 0.374 15.6

SVDQuant, but improves the quantization of the weights, which explains this consistent improve-
ment following our observations from Equation 2. Additionally, SVDQuant uses an unsigned data
type for the quantization of the inputs of a linear layer if a non-linear activation like ReLU precedes
it. If any input of that layer has a negative lower-bound, the inputs are shifted to a positive range
before quantization to use the unsigned data type. For fair comparison, in Table 1, we reproduced
the quantization scheme in Li et al. (2025), but ignored this method in any other experiment. Thus,
the increase in performance by LoRaQ is more important in Table 2 as no activation shifting is used
for MX formats.

When interpreting these results, we distinguish between image quality and image similarity. For
image quality metrics like FID, which compares the distribution of generated images against the
ground-truth dataset, our method is generally much closer to the full-precision models. This suggests
that our quantization method’s performance is not strictly bounded by the image quality of the full-
precision model. We also observe better performance with the Image Reward (IR) metric. Regarding
image similarity (PSNR, LPIPS), our results are closer to SVDQuant, which can be explained by the
constraints we imposed for a fair comparison: using a single sub-16-bit data format and maintaining
an equivalent memory footprint for the low-rank overhead. An exception is noted for PixArt-Σ
on the sDCI dataset, where our PSNR is slightly lower than SVDQuant’s. We attribute this to
minor local differences arising from our dataset-free weight quantization, which, however, does not
negatively impact overall image quality and, as suggested by the FID score, may even improve it.

Finally, the significant performance improvement of LoRaQ on SANA can be explained by archi-
tectural differences. SANA features larger weight matrices, for which SVDQuant’s fixed rank of
32 is too limiting to capture sufficient information for a small residual error. In contrast, LoRaQ’s
higher effective rank of 128, achieved at an equivalent memory footprint, allows it to capture more
dimensions, leading to a more accurate representation.

4.2.2 VISUAL QUALITY

We provide some examples for the configurations of SVDQuant and LoRaQ used in Section 4.2.1.
We respectively show in Figure 2 and Figure 3 some visual representations of the results from
Table 1 and Table 2. Consistently, we observe that our method helps reduce the visual difference
between the image generated by the full-precision model and the quantized model. Our method is

6
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Figure 2: Comparison of images generated by PixArt-Σ in different configurations: Full precision
model (FP16), SVDQuant with SINT4 residual branch quantization, and LoRaQ with SINT4 resid-
ual branch and low-rank matrices quantization.

FP16 SVDQuant Ours FP16 SVDQuant Ours

Figure 3: Comparison of images generated by PixArt-Σ in different configurations: Full precision
model (FP16), SVDQuant with MXINT4 residual branch quantization, and LoRaQ with MXINT4
residual branch and low-rank matrices quantization.

FP16 SVDQuant Ours FP16 SVDQuant Ours

able to generate images that are more detailed and closer to the original than SVDQuant, which
is consistent with the quantitative results we report in Section 4.2.1. Additional visual results are
provided in Appendix A.4.

4.3 MIXED PRECISION ANALYSIS

Motivated by the growing hardware support for mixed-precision kernels (Advanced Micro Devices,
2025), we analyze various MX format configurations to evaluate their impact on model performance.

4.3.1 RANK VS. BIT-WIDTH TRADE-OFF AT A FIXED MEMORY BUDGET

We fix the activations of the low-rank branch to 8-bit precision to analyze the impact of rank and bit-
width trade-offs under a constant activation quantization setting. The detailed configuration for each
experiment is provided in Appendix A.2. This ensures a consistent comparison across all setups and
highlights the robustness of LoRaQ under practical mixed-precision constraints.

We also report additional LoRaQ configurations to demonstrate robustness across a wider range of
settings. For each setup, we adjust the low-rank branch’s rank and bit width so that the effective
bit budget (bits per value × rank) matches the SVDQuant baseline, guaranteeing relevance to ap-
plications. The bit budget succinctly quantifies the memory overhead introduced by the low-rank
branch.

Table 3 demonstrates that, beyond the absolute results, how different rank/bit width trade-offs impact
model performance, measured using various metrics. Using integer data formats, the larger number

7
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Table 3: Mixed Precision Analysis : Evaluating the influence of the trade-off rank/precision with a
fixed memory budget for the low-rank branch. The activation is at a 8-bit precision on both low-rank
and residual branches.

MJHQ sDCI

Model Format
(Residual)

Format
(Low Rank Branch) Rank Quality Similarity Quality Similarity

FID (↓) KID (10−3) (↓) IR (↑) LPIPS (↓) PSNR( ↑) FID (↓) KID (10−3) (↓) IR (↑) LPIPS (↓) PSNR (↑)

PixArt-Σ
(20 Steps)

MXFP4e2

FP16 32 16.8 1.86 0.934 0.349 16.4 22.1 4.06 0.962 0.390 14.9
MXFP8e4 64 16.3 1.53 0.927 0.316 17.1 22.5 4.34 0.980 0.349 15.8
MXFP6e2 86 16.4 1.62 0.961 0.313 17.2 22.4 4.20 0.985 0.349 15.8
MXFP4e2 128 16.1 1.52 0.963 0.322 17.0 22.7 4.36 0.994 0.362 15.5

MXINT4 MXINT8 64 16.4 1.66 0.935 0.275 18.0 23.5 4.88 0.952 0.305 16.7
MXINT4 128 16.3 1.60 0.920 0.292 17.7 23.9 5.03 0.948 0.325 16.3

of mantissa bits in MXINT8 with a rank of 64 is the better choice for both MJHQ and sDCI. For
mini-float numbers, higher ranks (86 and 128) work better for MJHQ, while sDCI metrics do not
indicate a clear winner combination; instead, they suggest that the highest rank (128) can compete
in image quality metric, IR, and the 6- and 8-bit mini-floats utilize their ranks better when measured
for similarity metrics.

While some variability in performance exists across specific rank/bit width pairs, the results show
that, starting from the SVDQuant configuration (rank=32 at 16 bits per value), LoRaQ can achieve an
equivalent memory footprint with alternative rank/bit width pairs. In other words, LoRaQ maintains
better performance across configurations in a sub-16-bit low-rank branch quantization, allowing
practitioners to select a rank/bit width pairing that matches a target accelerator or latency constraint
without sacrificing model quality, especially the performance of the low-rank branch of LoRaQ.

We provide visual examples for this experiment in Appendix A.4.

Table 4: Evaluating the effect of rank in LoRaQ with a fixed MXFP4e2 residual branch. We evaluate
PixArt-Σ on 5k samples from MKHQ dataset.

Low Rank Branch
and Activations

Quality Similarity

Rank FID (↓) KID (10−3) (↓) IR (↑) LPIPS (↓) PSNR (↑)

MXFP8e4

32 16.6 1.64 0.912 0.365 16.6
64 16.3 1.51 0.948 0.320 17.1
96 16.1 1.41 0.966 0.311 17.2

128 16.2 1.47 0.956 0.292 17.7

MXFP6e2

32 16.8 1.82 0.889 0.374 16.5
64 16.2 1.57 0.924 0.315 17.4
96 16.3 1.56 0.926 0.321 17.5

128 15.9 1.46 0.956 0.286 18.0

4.3.2 PERFORMANCE SCALING WITH RANK AT A FIXED PRECISION

With detailed configurations provided in Appendix A.2, this experiment emphasizes a key feature
of our method: quantizing activations in the same data format as the low-rank branch. This unified
sub-16-bit precision for both activations and weights allows us to explore higher ranks without the
latency penalty of 16-bit operations. We analyze how increasing the rank impacts performance when
both the low-rank weights and activations share the same quantization format.

Analyzing the results in Table 4, we observe that increasing the rank does not always lead to a lin-
ear increase in image quality metrics, although image similarity metrics do tend to improve more
consistently with rank. This again highlights the distinction between perceptual quality and numer-
ical similarity. More importantly, it demonstrates the robustness of our method across a range of
ranks, showcasing that high performance can be achieved without maximizing rank. This flexibility
opens up significant opportunities for hardware co-design, allowing practitioners to tune the rank
for optimal latency on accelerators that support full sub-16-bit data format operations.

We provide visual examples for this experiment in Appendix A.4.

4.4 ABLATION STUDY

A key component of our LoRaQ pipeline, as shown in Figure 1, is the insertion of an optimized
rotation matrix between the low-rank factors to minimize quantization error. To validate the impact

8
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of this component, we conduct an ablation study where we remove the learned rotations from our
pipeline. In Table 5, we compare our full method against this ablated version. The results demon-
strate that removing the rotation, as defined in Equation 6, consistently increases the quantization
error. This confirms that the optimized rotation is a critical element for achieving high precision
in the quantized low-rank branch, without incurring any additional computational cost or memory
overhead.
Table 5: Evaluating the influence of the optimized rotation regularization between the low rank
matrices in LoRaQ. We evaluate PixArt-Σ on 3k samples from MKHQ dataset

Format (Low Rank Branch) Rank Rotations KID (10−3) (↓) LPIPS (↓) PSNR (↑)

MXFP8e4 64 ✓ 1.42 0.316 17.1
✗ 1.55 0.321 17.0

MXFP6e2 96 ✓ 1.29 0.305 17.4
✗ 1.34 0.308 17.2

MXFP4e2 128 ✓ 1.34 0.318 17.1
✗ 1.41 0.326 16.9

5 CONCLUSION AND FUTURE WORK

This work tackles post-training 4-bit quantization for large diffusion-based transformers, where ag-
gressive precision reduction can severely degrade generative quality. Prior approaches enhance ro-
bustness through outlier smoothing or rotations, while recent low-rank error-compensation meth-
ods introduce auxiliary full-precision branches. While effective, these methods still require full-
precision data movement, incur latency overheads, and necessitate complex calibration, which can
be resource-intensive.

We introduce LoRaQ, a novel post-training quantization method that optimizes quantization error
by integrating quantized low-rank adaptation branches. This approach eliminates the need for full-
precision data movement during inference, while retaining strong error correction capabilities. By
design, LoRaQ leverages emerging hardware support for mixed-precision matrix multiplication with
sub-16-bit data formats, providing a flexible mixed-precision solution. Our method finds optimized
low-rank matrices that are themselves quantized, allowing for fine-grained adjustments to the 4-
bit weight matrices. To isolate the benefits of our approach and ensure a fair comparison with
prior work, we adopted the same smoothing calibration strategy as SVDQuant. A key advantage of
LoRaQ is its model-agnostic nature, which removes the need for a calibration dataset to determine
the low-rank matrices. This simplifies the quantization process significantly, in contrast to state-of-
the-art methods that often rely on complex and resource-intensive calibration procedures.

Our experimental results demonstrate that LoRaQ consistently improves image quality for 4-bit
quantized models across various datasets and architectures. While using the same SINT4 and MX-
INT4 data formats as baseline models, our method not only enhances the image quality from 4-bit
configurations but also preserves the visual fidelity of the original 16-bit models. Beyond direct
comparisons, we investigate the modularity and stability of LoRaQ under various configurations.
We explore the impact of quantizing activations in both the low-rank and residual branches to sub-
16-bit precision, a critical step for achieving latency improvements on future hardware. Our findings
show that with 8-bit activations, LoRaQ exhibits robustness to rank and bit-width trade-offs under
fixed memory constraints, highlighting its practical flexibility. Furthermore, we assess the method’s
limitations with respect to activation precision, demonstrating that it maintains high image quality
and similarity with activations quantized down to 6-bit data type for both branches.

Building on these promising results, future work will focus on several key research directions. A
primary objective is to develop fused kernels that leverage LoRaQ’s heterogeneous compute pat-
terns on specialized hardware such as GPUs and NPUs, which is essential for realizing end-to-end
latency improvements. Another priority is to quantize the low-rank activations to further reduce
computational overhead, building on our initial findings that full-precision activations are not a strict
requirement. We also plan to broaden our evaluations across a broader range of models, datasets, and
emerging data formats. Further research will explore adaptive rank and bit-width scheduling, more
sophisticated rotation strategies, and calibration-free workflows to continue pushing the boundaries
of the quality-efficiency trade-off and accelerate the deployment of quantized models.

9
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A APPENDIX

A.1 DETAILS: EXPERIMENTS CONFIGURATIONS

A.1.1 MAIN RESULTS CONFIGURATIONS

Quantization Considering Section 4.2, the activations forwarded to the low-rank branch are kept
at FP16 (full-precision). The activations forwarded to the residual branch and the residual weights
are quantized to a 4-bit data format. SVDQuant keeps the low-rank branch at full-precision for a
rank of 32. LoRaQ quantizes the low-rank branch using the same 4-bit data format used for the
residual branch, with a rank of 128.

Smoothing Calibration Following Li et al. (2025), the smoothing calibration, done prior to any
other calibration technique, finds a per-channel vector γ ∈ Rb where ∀i ∈ [0, d[ :

γi =
maxj(|Xj,i|)α

maxj(|Wi,j |)β

where α and β are migration strengths (Xiao et al., 2023). The best migration strengths are decided
for each layer to minimize the output mean squared error of a predefined module that the quantized
layer affects. The SVD with a rank of 32 is used at FP16 precision to quantize the weights of the
layer. The evaluation is done on a calibration dataset.
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Optimization LoRaQ optimizes Equation 4 with Adam (Kingma & Ba, 2014) using a learning
rate of 10−4. The optimization 1000 steps per weight. The rotations in Equation 7 are optimized
with a learning rate of 5 · 10−1 and 500 steps per weight.

A.2 MIXED PRECISION ANALYSIS AND ABLATION STUDY

Quantization For Section 4.3 and Section 4.4, we consider a fully quantized pipeline. In Sec-
tion 4.3.1 and Section 4.4, the activations forwarded to both branches, low-rank and residual, are
quantized to an 8-bit MX data format in. In Section 4.3.2 the activations are quantized to the same
data format as the low-rank branch. The residual weights are quantized and fixed to a 4-bit MX data
format. Our analysis then considers different configurations for the low-rank matrices.

Smoothing Calibration As Appendix A.1.1 we adopt the smoothing calibration prior to LoRaQ.
Section 4.3.1 applies LoRaQ with different configuration using the same smoothing scales computes
with a low-rank approximation of rank 32. Section 4.3.2 increases the rank for a fixed data format
applied to the low-rank matrices. We thus increase the rank used during the smoothing calibration
proportionnaly to the rank of the low-rank matrices optimized by LoRaQ.

Optimization We optimize Equation 4 with Adam using a learning rate of 10−3 for FP formats
and 10−4 for INT format. The optimization 1000 steps per weight. The rotations in Equation 7 are
computed with a learning rate of 10−1 and 500 steps per weight.

A.2.1 BLOCKWISE FORMATS

In this section, we provide additional details on the block-wise formats used in our experiments.
Block-wise formats are essential for efficiently representing and processing the quantized weights
in our model. We explore various block sizes and their impact on performance and memory usage.

SINT4 is defined by Li et al. (2025) and we use it for comparison between SVDQuant and LoRaQ.
The matrices are quantized by block of 64 values with a FP16 scale per block. The rounding applied
on scaled values is round-to-nearest (RTN).

MX Formats quantize matrices by block of 32 values with a 8-bit power-of-two scale (8-bit ex-
ponent, 0 bit mantissa, or e8m0) (Microsoft et al., 2023). Different formats are used for each scaled
and rounded (by RTN) values :

• MXFP8e4 quantizes to a signed e4m3 format;

• MXFP6e2 quantizes to a signed e2m3 format;

• MXFP4e2 quantizes to a signed e2m1 format;

MXINT4 and MXINT8 respectively quantize to a signed int4 and int8 format.

A.3 PROOFS

A.3.1 ERROR UPPER BOUND

Using the sub-multiplicativity of the Frobenius norm we show Equation 2:

E(X,W ) =∥XW −Q(X)Q(W )∥F
=∥XW −Q(X)W +Q(X)W −Q(X)Q(W )∥F
=∥(X −Q(X))W +Q(X)(W −Q(W ))∥F
≤∥(X −Q(X))W ∥F + ∥Q(X)(W −Q(W ))∥F
≤∥X −Q(X)∥F ∥W ∥F + ∥Q(X)∥F ∥W −Q(W )∥F .
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A.3.2 DERIVATIVES

In this section, we show that the derivatives exist despite quantization operators to be non differen-
tiable. Since the derivative of the rounding function, Q, is zero almost everywhere:

∇LRL = ∇LR ∥Q(W +LR)−W −LR∥2F
= 2 · ∇LR(Q(W +LR)−W −LR)T · (Q(W +LR)−W −LR)

= −2(Q(W +LR)−W −LR)

(8)

Consequently,

∇LL = ∇LRL · (∇LLR)

= (−2(Q(W +LR)−W −LR)) · (∇LLR)

= −2(Q(W +LR)−W −LR) ·RT

(9)

Similarly,
∇RL = −2LT · (Q(W +LR)−W −LR) (10)

A.4 ADDITIONAL VISUAL RESULTS
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Figure 4: Comparison of images generated by PixArt-Σ across different quantization configurations
(Section 4.2). Columns show the full-precision model (FP16) against SVDQuant and LoRaQ using
both SINT4 and MXINT4 quantization.
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Figure 5: Visual results for different mixed-precision configurations of LoRaQ on PixArt-Σ, cor-
responding to Table 3. All configurations use MXFP4e2 for residual weights and MXFP8e4 for
activations. We vary the rank and data format of the low-rank branch.

Full Precision Rank: 32
(FP16)

Rank: 64
(MXFP8e4)

Rank: 86
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Figure 6: Visual results for different mixed-precision configurations of LoRaQ on PixArt-Σ, corre-
sponding to Table 3. All configurations use MXINT4 for residual weights and MXINT8 for activa-
tions. We vary the rank and data format of the low-rank branch.

Full Precision Rank: 64
(MXINT8)

Rank: 128
(MXINT4)
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Figure 7: Visual comparison of LoRaQ on PixArt-Σ, illustrating the impact of rank on generation
quality. These results correspond to the quantitative analysis in Table 4. In all configurations,
the residual branch is quantized to MXFP4e2, while the low-rank branch and its activations are
quantized to MXFP8e4.

Full Precision Rank: 32 Rank: 64 Rank: 96 Rank: 128
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Figure 8: Visual comparison of LoRaQ on PixArt-Σ, illustrating the impact of rank on generation
quality. These results correspond to the quantitative analysis in Table 4. In all configurations,
the residual branch is quantized to MXFP4e2, while the low-rank branch and its activations are
quantized to MXFP6e2.

Full Precision Rank: 32 Rank: 64 Rank: 96 Rank: 128
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