
Published as a conference paper at ICLR 2021

A TEACHER-STUDENT FRAMEWORK
TO DISTILL FUTURE TRAJECTORIES

Alexander Neitz1, * Giambattista Parascandolo1, 2, * Bernhard Schölkopf1, 2

1MPI for Intelligent Systems, Tübingen, 2ETH, Zürich,
∗equal contribution

ABSTRACT

By learning to predict trajectories of dynamical systems, model-based methods
can make extensive use of all observations from past experience. However, due to
partial observability, stochasticity, compounding errors, and irrelevant dynamics,
training to predict observations explicitly often results in poor models. Model-free
techniques try to side-step the problem by learning to predict values directly. While
breaking the explicit dependency on future observations can result in strong per-
formance, this usually comes at the cost of low sample efficiency, as the abundant
information about the dynamics contained in future observations goes unused.
Here we take a step back from both approaches: Instead of hand-designing how
trajectories should be incorporated, a teacher network learns to extract relevant
information from the trajectories and to distill it into target activations which guide
a student model that can only observe the present. The teacher is trained with
meta-gradients to maximize the student’s performance on a validation set. Our
approach performs well on tasks that are difficult for model-free and model-based
methods, and we study the role of every component through ablation studies.

1 INTRODUCTION

The ability to learn models of the world has long been argued to be an important ability of intelligent
agents. An open and actively researched question is how to learn world models at the right level of
abstraction. This paper argues, as others have before, that model-based and model-free methods lie
on a spectrum in which advantages and disadvantages of either approach can be traded off against
each other, and that there is an optimal compromise for every task. Predicting future observations
allows extensive use of all observations from previous experiences during training, and to swiftly
transfer to a new reward if the learned model is accurate. However, due to partial observability,
stochasticity, irrelevant dynamics and compounding errors in planning, model-based methods tend
to be outperformed asymptotically (Pong et al., 2018; Chua et al., 2018). On the other end of the
spectrum, purely model-free methods use the scalar reward as the only source of learning signal.
By avoiding the potentially impossible task of explicitly modeling the environment, model-free
methods can often achieve substantially better performance in complex environments (Vinyals et al.,
2019; OpenAI et al., 2019). However, this comes at the cost of extreme sample inefficiency, as only
predicting rewards throws away useful information contained in the sequences of future observations.

What is the right way to incorporate information from trajectories that are associated with the inputs?
In this paper we take a step back: Instead of trying to answer this question ourselves by hand-
designing what information should be taken into consideration and how, we let a model learn how
to make use of the data. Depending on what works well within the setting, the model should learn
if and how to learn from the trajectories available at training time. We will adopt a teacher-student
setting: a teacher network learns to extract relevant information from the trajectories, and distills it
into target activations to guide a student network.1 A sketch of our approach can be found in Figure 1,
next to prototypical computational graphs used to integrate trajectory information in most model-free
and model-based methods. Future trajectories can be seen as being a form of privileged information
Vapnik and Vashist (2009), i.e. data available at training time which provides additional information
but is not available at test time.

1Note that the term distillation is often used in the context of “distilling a large model into a smaller one”
(Hinton et al., 2015), but in this context we talk about distilling a trajectory into vectors used as target activations.

1

Published as a conference paper at ICLR 2021

Contributions The main contribution of this paper is the proposal of a generic method to extract
relevant signal from privileged information, specifically trajectories of future observations. We
present an instantiation of this approach called Learning to Distill Trajectories (LDT) and an empirical
analysis of it.

x

h1

h2

h3

ŷy

f1

f2

f3

f4

(a) Model-free

x

x̂1

x̂2

...
x̂n−1

x̂n

x∗1

x∗2

x∗n−1

x∗n

ŷ1

ŷ2

ŷn−1

ŷn

ŷ

y1

y2

yn−1

yT

Σ

f

f

f

f

f

r

r

r

r

(b) Vanilla model-based

x

h1

h2

h3

x̂∗ x∗ŷy

f1

f2

f3

f4
faux

(c) Auxiliary task

x x∗

h1

h2

h3

h∗
1

h∗
2

h∗
3

ŷ y

f1

f2

f3

f4

T

(d) Teacher

Figure 1: Comparison of architectures. The data generator is a Markov reward process (no actions) with an
episode length of n. x denotes the initial observation. y =

∑
i yi is the n-step return (no bootstrapping).

x∗ = (x∗1, x
∗
2, ..., x

∗
n) is the trajectory of observations (privileged data). Model activations and predictions are

displayed boxed. Losses are displayed as red lines. Solid edges denote learned functions. Dotted edges denote
fixed functions.

2 RELATED WORK

Efficiently making use of signal from trajectories is an actively researched topic. The technique
of bootstrapping in TD-learning (Sutton, 1988) uses future observations to reduce the variance of
value function approximations. However, in its basic form, bootstrapping provides learning signal
only through a scalar bottleneck, potentially missing out on rich additional sources of learning
signal. Another approach to extract additional training signal from observations is the framework of
Generalized Value Functions (Sutton et al., 2011), which has been argued to be able to bridge the gap
between model-free and model-based methods as well. A similar interpretation can be given to the
technique of successor representations (Dayan, 1993).

A number of methods have been proposed that try to leverage the strengths of both model-free
and model-based methods, among them Racanière et al. (2017), who learn generative models of
the environment and fuse predicted rollouts with a model-free network path. In a different line of
research, Silver et al. (2017) and Oh et al. (2017) show that value prediction can be improved by
incorporating dynamical structure and planning computation into the function approximators. Guez
et al. (2019) investigate to what extent agents can learn implicit dynamics models which allow them
to solve planning tasks effectively, using only model-free methods. Similarly to LDT, those models
can learn their own utility-based state abstractions and can even be temporally abstract to some extent.
One difference of these approaches to LDT is that they use reward as their only learning signal
without making direct use of future observations when training the predictor.

The meta-gradient approach presented in this paper can be used more generally for problems in the
framework of learning using privileged information (LUPI, (Vapnik and Vashist, 2009; Lopez-Paz
et al., 2016)), where privileged information is additional context about the data that is available at
training time but not at test time. Hindsight information such as the trajectories in a value-prediction
task falls into this category.

There are a variety of representation learning approaches which can learn to extract learning signal
from trajectories. Jaderberg et al. (2016) demonstrate that the performance of RL agents can be

2

Published as a conference paper at ICLR 2021

improved significantly by training the agent on additional prediction and control tasks in addition to
the original task. Du et al. (2018) use gradient similarity as a means to determine whether an auxiliary
loss is helpful or detrimental for the downstream task. Oord et al. (2018) introduce a method based
on contrastive learning. They, as well as multiple follow-up studies, show that the representations
learned in this way are helpful for downstream tasks in a variety of settings.

Buesing et al. (2018) present ways to learn efficient dynamical models which do not need to predict
future observations at inference time. Recently, Schrittwieser et al. (2019) introduced an RL agent
that learns an abstract model of the environment and uses it to achieve strong performance on
several challenging tasks. Similarly to our motivation, their model is not required to produce future
observations. Meta-learning approaches have recently been shown to be successful as a technique
to achieve fast task adaptation (Finn et al., 2017), strong unsupervised learning (Metz et al., 2019),
and to improve RL (Xu et al., 2018). Similar to this paper in motivation is the recent work by Guez
et al. (2020) which also investigates how privileged hindsight information can be leveraged for value
estimation. The difference to LDT is how the trajectory information is incorporated. Their approach
has the advantage of not needing second-order gradients. At the same time, LDT naturally avoids
the problem of the label being easily predictable from the hindsight data — the teacher is trained
to present it to the student in such a way that it empirically improves the student’s performance on
held-out data. Veeriah et al. (2019) use meta-gradients to derive useful auxiliary tasks in the form
of generalized value functions. In contrast, we use a teacher network that learns to provide target
activations for a student neural network based on privileged information.

3 META-LEARNING A DYNAMICS TEACHER

Here we describe our approach of jointly learning a teacher and a student.2 While our approach
applies to the generic setting of learning using privileged information (Vapnik and Vashist, 2009),
here we will focus on the special case of a prediction task with an underlying dynamical system.

3.1 LEARNING TASK

We are considering learning problems in which we have to make a prediction about some property
of the future state of a dynamical system, given observations up to the current state. Our method
particularly applies to systems in which both the function that relates the current observation to the
label as well as the function that predicts the next observation from the current one are hard to learn,
making it difficult for both model-free and model-based methods respectively.

To make the explanation more concrete, we will use the practical problem of medical decision-making
as a running example to which we can relate the definitions we used, similar to a motivating example
from Vapnik and Vashist (2009): given the history of measurements (biopsies, blood-pressure, etc.)
on a given patient and the treatment assignment, we want to predict whether the patient will recover
or not.

The input x ∈ X of our learning task is some observation of the system state st ∈ S before and
including time step3 t ∈ Z. In our running example, st can be considered the detailed physical state
of the patient, which is not directly observable. The observations x include potentially multi-modal
data such as x-ray images, vital sign measurements, oncologist reports, etc. The system is governed
by an unknown dynamical law f : S→ S — in our example, the dynamics are physical equations
that determine the evolution of all cells in the body. The prediction target y ∈ Y is some function
of a future state sT = fT−t(st), separated from t by T − t time steps: y = g(sT). In our running
example, a prediction target could be the binary indicator of whether the patient will recover within
some time frame. Note that T could vary from one example to the next. In addition to the initial
observation, we have access to the trajectory x∗ = (xτ)τ=t+1..T at training (but not test) time. In
our running example, the trajectory includes all measurements from the patient after the treatment
decision has been made. This information is available in a dataset of past patients (in hindsight), but
not in any novel situation.

2Note that unlike in some related work, the teacher in our task is not a copy of the student network, but can
have a completely different architecture.

3For simplicity, our dynamical system is time-discrete, but this assumption is not important for what follows.

3

Published as a conference paper at ICLR 2021

Validation

x

x∗

h

S
θ1

h∗

φ

T

y

ŷ

Ly

Lh

Σ

xv

SGD

θ2
S

yv

ŷv

Lv

Meta-gradient

Figure 2: Visualization of the LDT framework for the special case of n = 1. Circled nodes are part of the
dataset. x denotes the input, x∗ is the privileged data, y is the label. S is the student network with parameters θ,
T is the teacher network with parameters φ.

3.2 SUPERVISION OF INTERNAL ACTIVATIONS

A straightforward approach to solve the learning task which takes into account the trajectory in-
formation, would be to train a state-space-model (SSM) f̂ , consisting of a dynamical model and a
decoder. The SSM is trained to maximize the likelihood of the observed trajectories in the training
set, conditioned on the observed initial observation. Ideally, the induced f̂ closely resembles f , such
that at test time, we can use it to generate an estimate of the rollout and infer the label from it. A
potential drawback of this approach is that learning a full SSM could be more difficult than necessary.
There may be many details of the dynamics that are both difficult to model and unimportant for
the classification tasks. One example for this is the precise timing of events. As argued by Neitz
et al. (2018); Jayaraman et al. (2019), there are situations in which it is easy to predict a sequence of
events where each event follows a previous one, but hard to predict the exact timing of those events.
Moreover, an SSM typically requires rendering observations at training time, which may be difficult
to learn and computationally expensive to execute.

In the running example from Section 3.1, it seems challenging and wasteful to predict all future
observations in detail, as it would require modeling a complicated distribution over data such as X-ray
images or doctor reports written in natural language. Ideally, we would like a model to learn how to
extract the relevant information from these data efficiently.

We propose to relax the requirement of fitting the dynamics precisely. The teacher can decide to
omit properties of the observations that are not needed and omit time steps that can be skipped. It
could also change the order of computation and let the student compute independently evolving
sub-mechanisms sequentially, even if they evolved in parallel in the actual data generating process.
In addition to potentially simplifying the learning problem, this could have the additional benefit
of gaining computational efficiency. For example, modeling detailed pixel observations may be
computationally wasteful, as argued by Buesing et al. (2018) and Oord et al. (2018).

3.3 STUDENT-TEACHER SETUP

We propose a student-teacher setup with two neural networks, as shown in Figure 2. The student
network S , parameterized by weights θ, is the network that attempts to predict the quantity of interest
y (for instance a cumulative reward or value). Its input is x ∈ X , and its output is S(x) = ŷ ∈ Y .
In computing ŷ, it produces a sequence of internal activations (h1, ..., hN), one for each of its N
hidden layers. Each hk is a vector whose size is the number of neurons of the corresponding hidden
layer. The student’s goal is to minimize the generalization loss Ex,y∼Ptest

[Ly(S(x), y)] for some loss
function Ly : Y × Y → R.

The teacher network T , parametrized by weights φ, is only used at training time, not at test time.
It reads the observations of the rollout x∗ = (xτ)τ=t+1..T corresponding to the current training
example, and outputs supervision signals (h∗1, ..., h

∗
N).

The target activations produced by the teacher’s supervision result in another loss for the student, the
teaching loss, defined as Lh =

∑
k Lh(hk, h∗k). Lh denotes the teaching loss function which, given

4

Published as a conference paper at ICLR 2021

a pre-activation and a supervision signal, produces a scalar value. It can be chosen to be any common
loss function. Note however that in general, Lh could combine its inputs in an arbitrary way, as long
as it is differentiable and produces a scalar. In particular, hk and h∗k are not required to have the
same dimensionality. For example, in our specific instantiation described in Section 4, h∗ contains
masking weights to gate the teaching signal. The total student training loss is Ltrain = αLh + Ly,
where Ly is the label loss, e.g. the cross-entropy error between predictions and true labels. α ∈ R+

is the teaching coefficient, a coefficient weighting the losses against each other.

3.4 TRAINING THE TEACHER USING META-GRADIENTS

We train the teacher’s weights φ using the the technique of meta-gradient optimization. This is done
as follows: At the beginning of training, we split the dataset into a training and a validation set4. This
split is kept during the entire duration of training. The split ratio is a hyperparameter.

The student’s weights θ are updated n times using Stochastic Gradient Descent on randomly sampled
training batches, resulting in updated weights θn. The student S is then evaluated on a validation set,
producing a validation loss Lval. This validation loss is optimized by the teacher. This validation
loss does not contain a term for the internal activation loss, but consists only of the label-loss
L (S(xval), yval). The teacher is optimized via the meta-gradient

dLval
dφ

=
∂L
∂ŷ

(S(xval; θn), yval)
∂S
∂θ

(xval; θn)
dθn
dφ

(1)

where xval and yval are the inputs and targets from the validation set.

Algorithm 1 Teacher update
Require: θ : Student parameters
Require: φ : Teacher parameters
Require: η : Inner-loop learning rate
Require: α : Teaching coefficient
Require: n : Number of inner-loop steps

1: θ0 ← θ . θ is unchanged in teacher update
2: for i in {1..n} do
3: x, x∗, y ← next training batch
4: ŷ, h← S(x; θi)
5: h∗ ← T (x∗;φ)
6: Lh ← Lh(h, h∗)
7: Ly ← Ly(ŷ, y)
8: Ltrain ← Ly + αLh

9: θi ← SGD(θi−1, Ltrain, η)

10: xval, yval ← validation data
11: Lval ← Ly(S((xval; θn), yval)
12: Update φ to reduce Lval . Eq. 1

We omit the summation over individual loss
components to avoid cluttering the notation. The
crucial quantity dθn

dφ describes how the final
student’s weights θn depend on the teachers
weights φ. It can be computed in linear com-
putation time and space in the number of steps
in the inner optimization loop using automatic
differentiation5. The meta-gradient is then used
for one step of stochastic gradient descent of the
teacher’s weights φ. The student’s weights are
reset to what they were at the beginning of the
step, since θn was only a hypothetical parame-
terization used to determine the meta-gradient.
Then, the student is actually trained using the
newly updated teacher for a certain number of
steps. In our experiments, every step of meta-
training is followed by N steps of training the
student’s weights where N is a hyperparameter.
Alg. 1 describes the teacher update formally.

4 EXPERIMENTS

We implemented LDT in PyTorch (Paszke et al., 2019) using higher by Grefenstette et al. (2019).
Note that in all experiments, we distinguish between a validation set and a test set. The validation
set is used to train the teacher’s parameters. Therefore, in order to allow for fair comparison with
non-meta-learning baselines, we train baselines with the full training set and for LDT we split this set
into a training and a validation portion. The test set is separate from the validation set and is used
only passively to track generalization metrics.

4Note that the validation set is separate from the test set, which is an independently sampled dataset used
only to evaluate the generalization performance of all methods.

5See Baydin et al. (2018) for a survey of Automatic Differentiation in Machine Learning.

5

Published as a conference paper at ICLR 2021

linear
XOR

∗

-1 1

x ∼ N (0, I)

h

x∗

y

si∼

(a)

64 12
8

25
6

51
2

Input dim.

1024

512

256

128Tr
ai

ni
ng

 s
et

 s
iz

e

No teacher

64 12
8

25
6

51
2

Input dim.

LDT

0.5 1.0Accuracy

(b)

linear sample

linear

x ∼ N (0, I)

h

x∗

y

(c)

0 8 16
Epoch

5e-2

1e-1

5e-1

Te
st

-s
et

 D
KL

(p
y||

y)

= 0.0 = 0.1

= 1.0

= 10.0

LDT

(d)

Figure 3: (a) Data generation diagram of task A. (b) Test accuracies on task A. For every combination, we report
the maximum test accuracy achieved, averaged over 5 random seeds. (c) Data generation diagram of task B.
(d) Test losses on task B achieved by LDT and the no-teacher baselines with different entropy regularization
coefficients β.

4.1 TOY EXAMPLES

Before moving on to datasets of dynamical systems, we study two toy tasks in order to give a better
intuition for situations where privileged data can improve learning even though it is unavailable at
test time, and at the same time to examine whether LDT can make use of the privileged data.

Task A This task demonstrates a situation where the privileged information x∗ predicts the label y
perfectly and is lower-dimensional than the input x. At the same time, x∗ is not deterministically
predictable from x. Formally, we construct the distribution over x, x∗, and y such that the conditional
expectation E [x∗|x] = 0 for all x, and the conditional entropies H(y|x) = H(y|x∗) = 0. This is
intended to correspond to a real-world setting where we observe training-time privileged data which
gives us a low-dimensional explanation of the label, but this explanation has been obfuscated by noise
and is hence unnecessarily difficult to predict directly (here impossible with a deterministic model).

We first sample a D-dimensional input x with independent Gaussian components. This vector gets
mapped to a 2-dimensional vector h using a random but fixed linear transformation A ∈ R2×D. The
label is obtained by applying XOR to h > 0. The privileged vector x∗ is constructed by independently
sampling another two-dimensional vector s which is multiplied with h and concatenated to it. See
Figure 3 for a diagram and Appendix B.1 for a detailed description of the dataset.

Using an MLP to predict x∗ from x fails because the optimal predictor of x∗ from x always outputs
0. However, in principle LDT can help in this situation: the teacher could learn to invert the
stochastic mapping from h to x∗. We set up a study to examine whether LDT automatically discovers
a suitable inversion in practice. As student- and teacher-models we use MLPs with one hidden
layer each. The teacher gets x∗ as input and produces target activations for the student’s hidden
layer. To investigate the sample efficiency, we let both the unguided student and LDT learn for a
grid of different input dimensionalities D and dataset sizes. The achieved test-set accuracies are
shown in Figure 3, indicating that using a privileged data and a teacher makes this learning problem
substantially more sample-efficient.

Task B In this task (Figure 3c), instead of using deterministic labels and stochastic privileged
data, we construct deterministic privileged data and noisy labels. A large neural network trained
on these labels will tend to fit them exactly. As we discover empirically, this leads to ill-calibrated
out-of-sample predictions.

An example for a practical situation where this applies is learning a value function in reinforcement
learning using Monte Carlo or n-step temporal difference learning: environments and policies are
typically stochastic, resulting in noisy empirical value targets. However, the trajectory of observations
and actions as privileged data, can in principle explain away part of the influence of chance in the
observed value target. We model this situation by providing as privileged data a transformed view of
the logits that were used to sample the target. This transformation is unknown to the learner, and we
investigate whether LDT can still use x? to make the student learn a well-calibrated mapping.

6

Published as a conference paper at ICLR 2021

We again sample the D components of each input x i.i.d. from N (0, 1). The random linear
transformation A ∈ Rdh×D now transforms x into a dh-dimensional space. The privileged data
x∗ ∈ Rdp is obtained via another linear transformation B ∈ Rdp×dh of h. In our experiment we set
D = 128, dh = 4 and dp = 32, and use 1000 training examples. The teacher gets x∗ as input and
only needs to supervise the student’s output layer. As baseline we train the student without a teacher
or privileged data, but regularize its output predictions by subtracting βH(ŷ) from the training loss of
each example, where H(ŷ) is the entropy of the model’s prediction, and β is a scalar coefficient. As
shown in Figure 3d, learning the mapping from stochastic labels alone never learns a well-calibrated
map from x to y, while LDT learns to interpret the privileged information at training time, leading to
a student that generalizes well at test time.

4.2 GAME OF LIFE

We performed an additional experiment aimed at evaluating whether LDT can help to extract
dynamical information from trajectories. For that reason we created a dataset based on the cellular
automaton Game of Life by John Conway. The input is a random initial state x, the output is the
state of one particular cell after n evolution steps. The privileged data x∗ consists of the trajectory
of n states after the first one. To make the task more difficult, x∗ is temporally permuted randomly,
but consistently across examples. A detailed description is provided in Appendix C. As shown in
Fig. 4, LDT can learn from the scrambled trajectory and help the student learn with less data than a
model-free method.

Initial state (x) Trajectory (Privileged data x*)

Label (y) 128 256 512 1024 2048
Training set size

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

Model free
LDT
Perfect teacher
Fixed teacher

Figure 4: A datapoint in the Game-of-Life task (left) and the results of the experiment (right).

4.3 MUJOCO

In order to evaluate whether LDT can improve learning efficiency in continuous control tasks, we set
up a prediction task using the MuJoCo simulator (Todorov et al., 2012). As an objective we choose
learning an n-step reward model: such a model has to predict the sum of rewards along a trajectory
of n steps, given only access to the current state and n (open-loop) actions. We fix n = 16 in all
experiments.

We collect a dataset of size 4000 for each of the environments Swimmer-v2, Walker2d-v2, Hopper-v2,
and HalfCheetah-v2. For each training example, the input x = (st, at:t+n) contains both an initial
state and an action sequence. The initial state st is obtained by executing a random policy for a short
number of time steps after resetting the simulator. The action sequence at:t+n consists of random
actions. The label y is the cumulative return of exectuting actions at:t+n in state st. See Appendix
B.2 for more details on the dataset.

Models We evaluate the following methods:

• Model-free (MF): This baseline resembles the architecture shown in Fig. 1a. We use a five-layer
fully connected MLP with ReLU activations and 128 neurons per layer. This baseline is trained
with x as input and y as output.

• Auxiliary task (Aux): As shown in Fig. 1c, this baseline augments the model-free method with
an auxiliary task-head, which is trained to fit the full trajectory x∗ in order to shape the model’s
internal representation.

• LDT: Using the same MLP architecture as in the model-free baseline for the student, LDT
additionally uses a teacher, which uses a network with a 1D-convolutional torso and an MLP-head
to embed the trajectory x∗ and provide training signals for the student activations. The teaching

7

Published as a conference paper at ICLR 2021

1 10 50 100
Epoch

0.01

0.02

0.03
Te

st
 M

SE

Swimmer-v2

1 10 50 100
Epoch

0.02

0.03

0.04
Walker2d-v2

1 10 50 100
Epoch

0.002

0.004

0.006
Hopper-v2

1 10 50
Epoch

0.05

0.06

HalfCheetah-v2

MF
Aux
LDT

Figure 5: Test losses for the MuJoCo reward prediction task. Evolution of mean squared error between predicted
and true normalized n-step reward on a held-out test set. We ran each configuration with 8 different random
seeds and show the aggregated curves.

loss is a gated mean squared error Lh ∝
∑
k σ(mk)(hk − h∗k)2, where σ is the logistic sigmoid

function, m and h∗ are the outputs by the teacher, and h are the student’s internal pre-activations.

For all networks we follow Schrittwieser et al. (2019) in how we turn the regression task of predicting
rewards into a classification task by binning the reward space (see Appendix for details). Hyperpa-
rameters for each method are optimized independently (see Appendix for ranges) for each method
and task. We select the configuration with the lowest mean-squared-error on test data and re-run it 8
times with different random seeds.

Results In Figure 5 we report the mean squared error between predicted and true cumulative reward.
The student trained with LDT achieved lower MSE than both the MF and Aux baselines in all tasks.
Moreover, we found the generalization gap to be significantly smaller for LDT (Figure 6). This can
be explained as follows: If the student is overfitting to the training set, its performance will degrade
on the validation set. Since this loss only affects the teacher, the teacher can provide teaching targets
h∗ that steer the student away when it starts to severely overfit to the training data.

We acknowledge that there could be strong baselines from the literature that we have not considered.
Many of these approaches have complex pipelines of operations (e.g. Chua et al. (2018)), or use
domain-specific knowledge to extract good representations (e.g. CPC (Oord et al., 2018)). As the
main point of this paper is to investigate and understand a new framework to incorporate trajectory
information, we decided to keep our evaluation setting simple and consistent, e.g. by using the same
student architecture for all models.

4.4 ABLATIONS

PT RT-8 RT-16 AR FT
Ablation type

2 × 10
2

3 × 10
2

Te
st

 M
SE

Walker2d-v2

MF
LDT

Figure 7: Ablation study results

We perform several ablation studies, in order to test the
role of every component in our set-up. We describe
every experiment set-up and show the results for the
environment Walker2d in Figure 7. Results for the
other environments are consistent with these, and are
shown in Appendix B.2.4.

In the following list, we describe the different ablation
studies in detail.

1 10 50 100
Epoch

0.00

0.01

0.02

G
en

er
al

iz
at

io
n

ga
p Swimmer-v2

1 10 50 100
Epoch

0.00

0.02

Walker2d-v2

1 10 50 100
Epoch

0.000

0.001

0.002

0.003 Hopper-v2

1 10 50
Epoch

0.00

0.05

HalfCheetah-v2

MF
Aux
LDT

Figure 6: Generalization gaps (Test-set MSE minus Training-set MSE) for the different approaches and domains.)

8

Published as a conference paper at ICLR 2021

(i) Fixed untrained teacher (FT): The teacher still provides target activations for the student, but we
keep the teacher’s weights fixed to the initial random weights. Using no meta-gradient updates,
the student essentially fails to learn, validating the need to train the teacher.

(ii) Time-permuted x∗ (PT): we independently and randomly permute the time order of x∗ for each
example. Interestingly, the performance only degrades slightly. Two possible interpretations of
this result are the following: either the teacher architecture does not make sufficient use of the
temporal structure, or this structure is not so relevant for the task. Since we did not heavily tune
our teacher network, we tend to lead towards the first explanation.

(iii) Random x∗ (RT-n): each entry of the last n frames of all trajectories x∗ are replaced by noise
sampled i.i.d. fromN (0, 1). When the trajectories are completely irrelevant to the task, the teacher
can in principle learn to ignore them. However, since LDT trains with a smaller effective training
set (because a portion is split off for validation), we expect a slightly weaker performance. Indeed,
the results show that LDT with fully randomized trajectories (RT-16) tends to be comparable to,
but slightly worse than the model-free network.

(iv) Same training and validation data (AR): instead of fixing the split of the training data into disjoint
subsets for the student and for the teacher, we resample the split after every step of meta-training.
Results show that the performance is even slightly worse than the model-free baseline. This is
consistent with expectations, as the teacher’s loss can be minimized directly by the student in
training.

5 CONCLUSION

In this paper, instead of proposing a new hand-designed strategy to incorporate information from
previous trajectories, we proposed to let a model learn if and how to use them. A teacher network
learns to extract relevant information from a trajectory, and distills targets activations for a student
network that only sees the current observation. The teacher is rewarded for maximizing the student
performance on validation data, but can only achieve this indirectly by supervising the student
while it trains on the training data. The aim of this method is to preserve advantages from both
model-based as well as model-free methods: using the rich amount of information from observations
as a training signal instead of just reward signal, but is not capped in performance due to model bias.
One advantage that is not preserved from model-based approaches is the straightforward possibility
to change tasks by adapting the reward function only. As validated empirically by the experiments
and ablations presented in Section 4, this framework allows the model to choose where to sit in the
wide spectrum between model-based and model-free methods, adapting to the specifics of the task
at hand. An obvious drawback of LDT is — like many algorithms that learn how to learn — that
computing meta-gradients increases the time and space complexity at training time by a factor that is
linear in the number of inner steps. However, the computational cost of the student at test time is
exactly the same as for an equivalent student that did not make use of the privileged information at
training time, as the teacher does not play any role and can be discarded.

We believe that the general framework of teacher-student trained with meta-gradients to incorporate
privileged information can be a fruitful direction for future work, beyond learning from trajectories.
As the main limitation is the linear increase in time and space complexity at training time, increases
in computing power should allow for more and more complex teachers and students to be trained on
large tasks.

ACKNOWLEDGMENTS

We wish to thank Lars Buesing and Arthur Guez for the fruitful discussions on the topic of this project.
We thank the International Max Planck Research School for Intelligent Systems for supporting
Alexander Neitz, and the Max Planck ETH Center for Learning Systems for supporting Giambattista
Parascandolo.

9

Published as a conference paper at ICLR 2021

REFERENCES

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in
machine learning: a survey. Journal of Machine Learning Research, 18(153):1–43, 2018. URL
http://jmlr.org/papers/v18/17-468.html.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In Pro-
ceedings of the 24th International Conference on Neural Information Processing Systems, NIPS’11,
page 2546–2554, Red Hook, NY, USA, 2011. Curran Associates Inc. ISBN 9781618395993.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym, 2016.

L. Buesing, T. Weber, S. Racaniere, S. Eslami, D. Rezende, D. P. Reichert, F. Viola, F. Besse,
K. Gregor, D. Hassabis, et al. Learning and querying fast generative models for reinforcement
learning. arXiv preprint arXiv:1802.03006, 2018.

K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 4754–4765. Curran Associates, Inc., 2018.

P. Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural Comput., 5(4):613–624, July 1993. ISSN 0899-7667. doi: 10.1162/neco.1993.5.4.613.
URL https://doi.org/10.1162/neco.1993.5.4.613.

Y. Du, W. M. Czarnecki, S. M. Jayakumar, R. Pascanu, and B. Lakshminarayanan. Adapting auxiliary
losses using gradient similarity. arXiv preprint arXiv:1812.02224, 2018.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 1126–
1135, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL http:
//proceedings.mlr.press/v70/finn17a.html.

E. Grefenstette, B. Amos, D. Yarats, P. M. Htut, A. Molchanov, F. Meier, D. Kiela, K. Cho, and
S. Chintala. Generalized inner loop meta-learning. arXiv preprint arXiv:1910.01727, 2019.

A. Guez, M. Mirza, K. Gregor, R. Kabra, S. Racaniere, T. Weber, D. Raposo, A. Santoro, L. Orseau,
T. Eccles, G. Wayne, D. Silver, and T. Lillicrap. An investigation of model-free planning. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 2464–2473,
Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.
press/v97/guez19a.html.

A. Guez, F. Viola, T. Weber, L. Buesing, S. Kapturowski, D. Precup, D. Silver, and N. Heess.
Value-driven hindsight modelling. arXiv preprint arXiv:2002.08329, 2020.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In NIPS Deep
Learning and Representation Learning Workshop, 2015. URL http://arxiv.org/abs/
1503.02531.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, page 448–456. JMLR.org, 2015.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu.
Reinforcement learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

D. Jayaraman, F. Ebert, A. Efros, and S. Levine. Time-agnostic prediction: Predicting predictable
video frames. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=SyzVb3CcFX.

10

http://jmlr.org/papers/v18/17-468.html
https://doi.org/10.1162/neco.1993.5.4.613
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v97/guez19a.html
http://proceedings.mlr.press/v97/guez19a.html
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=SyzVb3CcFX
https://openreview.net/forum?id=SyzVb3CcFX

Published as a conference paper at ICLR 2021

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and Y. LeCun,
editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/
1412.6980.

D. Lopez-Paz, B. Schölkopf, L. Bottou, and V. Vapnik. Unifying distillation and privileged informa-
tion. In International Conference on Learning Representations (ICLR), Nov. 2016.

L. Metz, N. Maheswaranathan, B. Cheung, and J. Sohl-Dickstein. Learning unsupervised learn-
ing rules. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HkNDsiC9KQ.

A. Neitz, G. Parascandolo, S. Bauer, and B. Schölkopf. Adaptive skip intervals: Temporal abstraction
for recurrent dynamical models. In Advances in Neural Information Processing Systems, pages
9816–9826, 2018.

J. Oh, S. Singh, and H. Lee. Value prediction network. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 6118–6128. Curran Associates, Inc., 2017. URL http://papers.
nips.cc/paper/7192-value-prediction-network.pdf.

A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang. Solving rubik’s cube with a robot hand. CoRR, abs/1910.07113, 2019.
URL http://arxiv.org/abs/1910.07113.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

V. Pong, S. Gu, M. Dalal, and S. Levine. Temporal difference models: Model-free deep RL for
model-based control. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=Skw0n-W0Z.

S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. Jimenez Rezende, A. Puig-
domènech Badia, O. Vinyals, N. Heess, Y. Li, R. Pascanu, P. Battaglia, D. Hassabis,
D. Silver, and D. Wierstra. Imagination-augmented agents for deep reinforcement learn-
ing. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
5690–5701. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7152-imagination-augmented-agents-for-deep-reinforcement-learning.
pdf.

T. Salimans and D. P. Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 901–909. Curran
Associates, Inc., 2016.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,
D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a learned
model. arXiv preprint arXiv:1911.08265, 2019.

D. Silver, H. van Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley, G. Dulac-Arnold, D. Re-
ichert, N. Rabinowitz, A. Barreto, and T. Degris. The predictron: End-to-end learning and
planning. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
3191–3199, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL
http://proceedings.mlr.press/v70/silver17a.html.

11

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=HkNDsiC9KQ
https://openreview.net/forum?id=HkNDsiC9KQ
http://papers.nips.cc/paper/7192-value-prediction-network.pdf
http://papers.nips.cc/paper/7192-value-prediction-network.pdf
http://arxiv.org/abs/1910.07113
https://openreview.net/forum?id=Skw0n-W0Z
http://papers.nips.cc/paper/7152-imagination-augmented-agents-for-deep-reinforcement-learning.pdf
http://papers.nips.cc/paper/7152-imagination-augmented-agents-for-deep-reinforcement-learning.pdf
http://papers.nips.cc/paper/7152-imagination-augmented-agents-for-deep-reinforcement-learning.pdf
http://proceedings.mlr.press/v70/silver17a.html

Published as a conference paper at ICLR 2021

F. P. Such, A. Rawal, J. Lehman, K. O. Stanley, and J. Clune. Generative teaching networks:
Accelerating neural architecture search by learning to generate synthetic training data. arXiv
preprint arXiv:1912.07768, 2019.

R. S. Sutton. Learning to predict by the methods of temporal differences. Mach. Learn., 3(1):9–44,
Aug. 1988. ISSN 0885-6125. doi: 10.1023/A:1022633531479. URL https://doi.org/10.
1023/A:1022633531479.

R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Precup. Horde: A
scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction.
In The 10th International Conference on Autonomous Agents and Multiagent Systems - Volume
2, AAMAS ’11, page 761–768, Richland, SC, 2011. International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 0982657161.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In IROS,
pages 5026–5033. IEEE, 2012. ISBN 978-1-4673-1737-5.

V. Vapnik and A. Vashist. A new learning paradigm: Learning using privileged information. Neural
networks, 22(5-6):544–557, 2009.

V. Veeriah, M. Hessel, Z. Xu, J. Rajendran, R. L. Lewis, J. Oh, H. P. van Has-
selt, D. Silver, and S. Singh. Discovery of useful questions as auxiliary tasks. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 32, pages 9310–
9321. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
9129-discovery-of-useful-questions-as-auxiliary-tasks.pdf.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell,
T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350–354, 2019.

Z. Xu, H. P. van Hasselt, and D. Silver. Meta-gradient reinforcement learning. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 31, pages 2396–
2407. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7507-meta-gradient-reinforcement-learning.pdf.

12

https://doi.org/10.1023/A:1022633531479
https://doi.org/10.1023/A:1022633531479
http://papers.nips.cc/paper/9129-discovery-of-useful-questions-as-auxiliary-tasks.pdf
http://papers.nips.cc/paper/9129-discovery-of-useful-questions-as-auxiliary-tasks.pdf
http://papers.nips.cc/paper/7507-meta-gradient-reinforcement-learning.pdf
http://papers.nips.cc/paper/7507-meta-gradient-reinforcement-learning.pdf

Published as a conference paper at ICLR 2021

A IMPLEMENTATION DETAILS

We implemented Meta-LUPI using PyTorch (Paszke et al., 2019) and used the library higher (Grefen-
stette et al., 2019) to compute meta-gradients.

Our implementation of LDT contains a number of hyperparameters and settings which we describe
here.

• Inner-loop optimizer: The optimizer used on the student’s weights θk in the inner loop of
determining the meta-gradient (includes inner learning rate and inner momentum)

• Student optimizer: The optimizer used to actually update the student’s weights θ. (Includes
student learning rate and student momentum)

• Meta-optimizer: The optimizer used to optimize the teacher’s weights φ. (Includes meta
learning rate and meta momentum)

• Validation split: The fraction of the training set that is used to compute the meta-loss.

• Teacher architecture: The architecture of the teacher network.

B EXPERIMENT DETAILS

B.1 TOY DATASETS

Task A Construction of a training example:

• Sample x ∈ RD. x ∼ N (0, I)

• Sample A ∈ R2×D with Aij
i.i.d.∼ Uniform(1√

D
, 1√

D
) (default for torch.nn.Linear)

• Sample s ∈ {−1, 1}2. s i.i.d.∼ 2 · Bernoulli(0.5)− 1

• h = Ax

• y = I[h1 > 0]⊕ I[h2 > 0] where ⊕ denotes logical XOR.

• x∗ = [s1, s2, s1h1, s2h2]

• Observed at training time: (x, x∗, y)

• Observed at test time: only x.

We perform an experiment over a grid of values for D and n, where n is the number of training
examples in the dataset. The range of values for D is the set {64, 128, 256, 512}. The range of
values for n are 16 exponentially-spaced integers between 128 and 1024. The student is a multi-layer-
perceptron (MLP) with 32 and 128 neurons in the hidden layers, respectively. The architecture mirrors
the data-generating process with a bottleneck after the first linear transformation - in particular, there
is no activation function after the first hidden layer. We set up a baseline without a teacher, letting the
student learn to predict y from x. For the teacher T in LDT, we use an MLP with [256, 256] neurons
in the hidden layers, ReLU activations, and an output size of 32, matching the size of the student’s
first hidden layer. The teaching loss is the mean squared error between the teacher’s output and
the student’s first hidden activation. Additionally, the student is always trained to minimize binary
cross-entropy between its prediction and the training label. We use Adam with a learning rate of
10−3 as the optimizer for the student in both methods. For LDT, we use a validation split of 0.5.

Task B Construction of a training example:

• Sample x ∈ RD. x ∼ N (0, I)

• Sample A ∈ Rdh×D with Aij
i.i.d.∼ Uniform(− 1√

D
, 1√

D
)

• Sample B ∈ Rdp×dh with Bij
i.i.d.∼ Uniform(− 1√

dh
, 1√

dh
)

• h = Ax

13

Published as a conference paper at ICLR 2021

• Sample y ∈ {0..dh − 1}: y ∼ Categorical(Softmax(h))

• x∗ = Bh

• Observed at training time: (x, x∗, y)
• Observed at test time: only x.

For this experiment, we set D = 128 dh = 4, dp = 32, and use 1000 training examples.

The student is an MLP with input dimensionD, two layers of 256 hidden units each, ReLU activations,
and output dimension dh. The teacher is an MLP with input dimension dp, two layers of 256 hidden
units each, ReLU activations, and output dimension dh. As teaching loss, we use the KL-divergence
between the softmax of the teacher’s output and the softmax of the student’s output activations.

Other hyperparameters used in this experiment are summarized in Table 1.

Table 1: Hyperparameters for LDT in toy task B

Hyperparameter Value

Inner optimizer Adam
Inner learning rate 1e−3
Batch size 32
Meta-optimizer Adam
Meta-learning rate 1e−3
Teaching coefficient α 104

Inner loop optimization steps n 64
Validation split 0.5

B.2 MUJOCO

We now describe additional details for the MuJoCo reward-prediction experiments.

B.2.1 DATASET DETAILS

The datasets for the MuJoCo reward prediction task are generated as follows.

We use the MuJoCo environments implemented in OpenAI gym Brockman et al. (2016), Each training
set consists of 4000 examples generated as follows.

• Reset the environment to an initial state drawn from the initial-state-distribution
• Sample an integer n uniformly from the range {10..30}
• Perform n steps following random policy π.
• Record the current state s.
• Sample a 16 step open-loop action sequence a1:16 from π.
• Set the example’s input x = (s, a1:16)

• Execute a1:16 starting from the current state s
• Record the trajectory of states s1:16 and rewards r1:16 as privileged data x∗

• Record the sum of rewards as label y =
∑
t rt

As random policy π we choose the policy that ignores the state and at each step and for each action
dimension, samples one of the numbers {−1, 0, 1} with equal probability, independently of each
other.

We did not investigate the effects of using a different policy π to generate the dataset.

The test sets consist of 10k examples distributed identically to their respective training sets.

Similarly to Schrittwieser et al. (2019) we turn the regression task of predicting rewards into a
classification task by binning the reward space. We first obtain a transformation ψ : R→ [0, 1] in

14

Published as a conference paper at ICLR 2021

such a way that it transforms training rewards to a uniform distribution in [0, 1], interpolating linearly
in-between values from the training set and clipping values outside the training-reward-range to
lie between 0 and 1. We apply this transformation to both training and test labels and afterwards
distribute the resulting values into 32 equally spaced bins between 0 and 1 to obtain categorical values.
This leads to an even label distribution on the training set, and a roughly-even distribution on the
test set. The label-loss-function is then the cross-entropy between predicted label probabilities and
the one-hot distribution of the true label. The normalized mean-squared-error reported in the curves
is obtained by first obtaining the expected value of the prediction by weighting the output-bucket
with the predicted probability and then determining the squared difference to the true bucket value
between 0 and 1.

Before training, we standardize all inputs along the dimensions individually, using empirical means
and standard deviations found in the training set. Each state along the trajectory is standardized with
the same normalization parameters.

B.2.2 CHOOSING HYPERPARAMETERS

In order to determine good general ranges of hyperparameters6, we first performed manual hyperpa-
rameter investigations and used a Tree-structured Parzen Estimator (Bergstra et al., 2011) search to
find good ranges for the hyperparameters. Hyperparameter searches are performed using different
random seeds from the final evaluation in order to reduce overfitting due to the hyperparameter-
optimization. The curves for LDT shown in Figure 5 are the result of re-running the best hyperpa-
rameter configurations eight times with different random seeds. The curves for the baselines are
obtained by performing a grid search on the hyperparameters shown in Tables 2 and 3, selecting the
configuration that yielded the lowest test-MSE at any point in training and re-running it eight times
with different random seeds.

We fix as architecture for the prediction model (the student in the LDT framework) a five-layer fully
connected MLP with ReLU activations and 128 neurons per layer.

LDT parameters Tables 5 and 6 show hyperparameters we determined to work well for the
MuJoCo reward prediction task.

As optimizers for the teacher and student weights, we use Adam (Kingma and Ba, 2015). For the
inner-loop student-optimizer we use SGD with momentum.

As the teacher network we use a 1D-convolutional Neural Network followed by a fully connected
network as follows: The 16 states of the trajectory x∗ (including rewards at every step) are fed
into nconv 1D-convolutional layers, each followed by a ReLU activation. The first nconv − 1
convolutional layers have c1 output-channels, the last one has c2 output-channels. The output of the
last convolutional layer is flattened and fed into a fully connected downstream model with one layer
of c3 neurons.

In our experiments we found that it did not help to feed the actions along the trajectory to the teacher
(additionally to the student who always gets to see the actions).

The output of the teacher is a vector that contains two entries for every neuron in the student network.
One of these values, h∗k, is the target-pre-activation, and mk is a gating parameter to weight that
particular neuron’s loss. We found it helpful to scale and shift the input to the gating-sigmoid by two
constant scalars that are used for the entire network: the loss for a given pre-activation is computed
as σ(mk

2 − 1)(hk − h∗k)2, where σ is the logistic sigmoid function, hk is the pre-activation in the
student’s network, h∗k is the target activation given by the teacher, and mk is the gating signal output
by the teacher.

We use batch-normalization (Ioffe and Szegedy, 2015) in the teacher network and weight-
normalization (Salimans and Kingma, 2016) in the student network, following the findings of
Such et al. (2019).

As a precaution against exploding meta-gradients, we clip each component of the meta-gradient to
the range [−1e8, 1e8], but did not investigate whether this was necessary.

6By hyperparameters we mean those parameters which are fixed over the course of a training run. They do
not consist of the teacher’s meta-parameters.

15

Published as a conference paper at ICLR 2021

Table 2: Hyperparameter ranges for the method ‘model-free‘ (MF)

Hyperparameter Range

Learning rate {1e−3, 1e−2}
Weight decay {0, 1e−5, 1e−4}
Batch size {8, 16, 32}

Table 3: Hyperparameter ranges for the method ‘auxiliary‘ (AUX)

Hyperparameter Range

Learning rate {1e−3, 1e−2}
Weight decay {0, 1e−5, 1e−4}
Auxiliary task weight {1, 2, 4}

Table 4: Hyperparameter ranges for our proposed method (LDT)

Hyperparameter Range

β1 of Meta-optimizer (Adam) {0.0, 0.9}
Learning rate of Inner-loop optimizer (SGD) {1e−3, 5e−3, 1e−2}
Teaching coefficient (log10) {2.0, 2.5, 3.0}
Validation split {0.3, 0.5, 0.7}

Table 5: Best hyperparameters found in grid search for LDT

Hyperparameter Swimmer-v2 Walker2d-v2 Hopper-v2 HalfCheetah-v2

β1 of Meta-optimizer (Adam) 0.9 0.9 0.0 0.0
Learning rate of Inner-loop optimizer (SGD) 1e−2 1e−2 1e−2 1e−2
Teaching coefficient (log10) 2.5 3.0 2.5 2.5
Validation split 0.3 0.5 0.3 0.7

Table 6: Other hyperparameters for LDT (all environments)

Hyperparameter Value (all envs)

Learning rate of Meta-optimizer (Adam) 5e−4
Learning rate of Student-optimizer (Adam) 1e−3
Batch size 24
Momentum of inner-loop optimizer (SGD) 0.75
Weight decay (L2) coefficient in inner-loop 1e−8
Number of inner-loop steps (ninner) 96
Teacher c1 96
Teacher c2 256
Teacher c3 768
Teacher nconv 4
Number of student training steps per meta-step 24

Performances When using the hyperparameters described above, we obtain the minimum test
MSEs in the eight evaluation runs shown in Table 7.

B.2.3 MODEL-BASED-BASELINES

A naive implementation of model-based could not fit the data. We trained the model within the same
teacher-student framework, with a fixed dummy teacher that supervises the output of the student
with the next observation (essentially mimicking a model-based setting). We ‘stacked’ the student
such that it takes as input its output observation on the previous timestep, and by feeding it only

16

Published as a conference paper at ICLR 2021

Table 7: Minimum mean squared errors on all environments

no-teacher auxiliary LDT

HalfCheetah-v2 0.0485 0.0477 0.0427
Hopper-v2 0.00270 0.00224 0.00132
Swimmer-v2 0.0169 0.0146 0.00964
Walker2d-v2 0.0238 0.0211 0.0164

PT RT-8 RT-16 AR FT
Ablation type

10
2

2 × 10
2

3 × 10
2

Te
st

 M
SE

Swimmer-v2

MF
LDT

PT RT-8 RT-16 AR FT
Ablation type

2 × 10
2

3 × 10
2

Te
st

 M
SE

Walker2d-v2

MF
LDT

PT RT-8 RT-16 AR FT
Ablation type

2 × 10
3

3 × 10
3

4 × 10
3

Te
st

 M
SE

Hopper-v2

MF
LDT

PT RT-8 RT-16 AR FT
Ablation type

5 × 10
2

6 × 10
2

7 × 10
2

8 × 10
2

Te
st

 M
SE

HalfCheetah-v2

MF
LDT

Figure 8: All results of ablation studies.

the first observation of the sequence, we supervise all of its intermediate targets. However, without
introducing the extra inductive bias of training the student on every step independently of the others
(instead of a single trajectory), the student’s output would tend to diverge as it got deeper into the
number of steps.

Training the student on pairs of consecutive transitions independently of the whole trajectory, makes
the model work much better. However, making a fair comparison to the model-free, Aux, and LDT
students is difficult, since the model-based student effectively uses n = 16 times more computation.
Note that the main objective of this paper is to compare to what extent the abstract models implicitly
learned by the same student architectures but with different techniques, can learn to incorporate the
trajectory information. On this basis, we exclude the model-based baselines from our comparisons.

B.2.4 ABLATION STUDIES

In Figure 8 we present the results of the ablation studies described in Section 4.4.

C GAME OF LIFE EXPERIMENT

Here we provide details about the Game of Life experiment mentioned in Section 4.2.

Dataset As the underlying dynamical system, we use the cellular automaton Game of Life by John
Conway. The rules of this cellular automaton are:7

1. Any live cell with fewer than two live neighbours dies, as if by underpopulation.

7Copied from https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life.

17

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Published as a conference paper at ICLR 2021

2. Any live cell with two or three live neighbours lives on to the next generation.

3. Any live cell with more than three live neighbours dies, as if by overpopulation.

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

Note that there is no linear decision boundary to determine the next cell state if the input space is
the cell’s neighborhood. However, with at least one hidden layer, it is possible to implement the
rules. We can therefore use a convolutional neural network with 2n layers to represent the system’s
dynamics unrolled over n steps.

We generate a binary classification task from the system as follows.

• A board of size 17 × 17 is initialized by setting each cell to “alive” with a probability of
pI = 0.4, independently of other cells. Alive cells are represented with a 1, all other cells
are represented with a 0. This first board state is the input x ∈ {0, 1}17×17 for the task.

• The Game-of-Life rules are applied three times in sequence, yielding three consecutive
states

• The classification target is the middle cell in the last state, i.e. a binary label

• All intermediate and final states in the trajectory are considered privileged information.

The initial alive-probability was chosen such that there typical rollouts are diverse. If the initial
configuration is much sparser or much denser, then the population quickly dies off.

Network architecture In early, unstructured experiments it seemed as though 3 layers per step
make it easier to train a CNN using internal supervision. Therefore, we fix three convolutional layers
per step for all experiments.

The student’s internal activations z are convolutional feature maps. We use zkl to denote the l’th
feature map of the k’th layer. Each zkl has the same dimensions as the map of the cellular automaton
(17× 17 in our experiments).

Implementation of the teacher We choose a simple parameterization of the teacher. The teacher’s
weights are a three-dimensional tensor φ ∈ RT×N×F , where T is the fixed number of steps in the
Game-of-Life trajectory, N is the number of convolutional hidden layers in the student network, and
F is the number of feature maps per hidden layer.

The internal activation targets are linear combinations of the cell states in the trajectory (x1, ..., xT):

h∗kl =
∑
t

atklxt (2)

where a•kl = softmax(φ•kl), i.e. the mixture weights are the teacher’s weights softmaxed-through-
time. More explicitly,

atkl =
exp(φtkl)∑
τ exp(φτkl)

(3)

We use Adam to update the inner weights and vanilla SGD+momentum to update the meta-parameters,
as we found these two choices to generally perform best.

Baselines

• Fixed oracle teacher: φ is initialized to the values such that it provides the frames in
the correct sequence to every third convolutional layer. It is held fixed over the course of
training.

• Fixed random teacher: φ is initialized randomly and held fixed over the course of training.

• No teacher: Classification task without privileged data

18

Published as a conference paper at ICLR 2021

Experimental protocol The questions that this experiment should help answer is: Does meta-
gradient training help with sample efficiency in the Game-of-Life task compared to using (a) no
teacher, (b) a fixed random teacher?

• Training set sizes: {128, 256, 512, 1024, 2048, 4096, 8192}, but in order to be resource-
efficient, try the approaches from fewer examples to more examples until they “max out”.
• Methods: meta-learned teacher (meta), fixed random teacher (fixed-teacher), perfect teacher

(perfect-teacher), no teacher (no-teacher)
• In meta-learning, the train-validation-split happens within the training set (no additional

validation data is provided).
• We use the same hyperparameter ranges for all experiments - ones that seem reasonable

based on initial experimentation.
• Train for 200 epochs.

Hyperparameter Distribution Min Max Methods

learning_rate LogUniform 10−4 10−2 all
adam_momentum 1.0 - LogUniform 10−1 100 all
weight_decay LogUniform 10−8 10−3 all
batch_size DiscreteUniform 32 128 all
weight_init_multiplier LogUniform 0.1 2.0 all
n_filters DiscreteUniform 16 32 all
internal_coef LogUniform 102 104 meta, fixed-teacher
teacher_weight_scale LogUniform 10−2 100 fixed-teacher
teacher_attention_scale LogUniform 10−3 10−1 fixed-teacher
n_inner DiscreteUniform 16 32 meta
meta_learning_rate LogUniform 10−6 10−3 meta
meta_momentum LogUniform 10−2 100 meta
validation_split LogUniform 10−2 100 meta

Hyperparameter ranges The parameters for the initial teacher weights are used exclusively by
the fixed-teacher method.

Note that while the meta-learning approach has more hyperparameters than the baselines, the overall
computational budget given to each method is the same - more hyperparameters are not advantageous
by default.

We run a hyperparameter search over the specified range for each combination of (method, n-training-
examples). As hyperparameter optimization algorithm we use a Tree-structured Parzen Estimator
(Bergstra et al., 2011) for each method.

19

	Introduction
	Related work
	Meta-Learning a Dynamics Teacher
	Learning task
	Supervision of internal activations
	Student-teacher setup
	Training the teacher using meta-gradients

	Experiments
	Toy examples
	Game of Life
	MuJoCo
	Ablations

	Conclusion
	Implementation details
	Experiment details
	Toy datasets
	MuJoCo
	Dataset details
	Choosing hyperparameters
	Model-based-baselines
	Ablation studies

	Game of Life experiment

