
Data-Efficient Model Learning for Control with
Jacobian-Regularized Dynamic-Mode Decomposition

Brian E. Jackson
Robotics Institute

Carnegie Mellon University
brianjackson@cmu.edu

Jeong Hun Lee
Robotics Institute

Carnegie Mellon University
jeonghunlee@cmu.edu

Kevin Tracy
Robotics Institute

Carnegie Mellon University
ktracy@cmu.edu

Zachary Manchester
Robotics Institute

Carnegie Mellon University
zacm@cmu.edu

Abstract: We present a data-efficient algorithm for learning models for model-
predictive control (MPC). Our approach, Jacobian-Regularized Dynamic-Mode
Decomposition (JDMD), offers improved sample efficiency over traditional Koop-
man approaches based on Dynamic-Mode Decomposition (DMD) by leverag-
ing Jacobian information from an approximate prior model of the system, and
improved tracking performance over traditional model-based MPC. We demon-
strate JDMD’s ability to quickly learn bilinear Koopman dynamics representations
across several realistic examples in simulation, including a perching maneuver for
a fixed-wing aircraft with an empirically derived high-fidelity physics model. In
all cases, we show that the models learned by JDMD provide superior tracking and
generalization performance within a model-predictive control framework, even in
the presence of significant model mismatch, when compared to approximate prior
models and models learned by standard Extended DMD (EDMD).

1 Introduction

In recent years, both model-based optimal-control [1, 2, 3, 4] and data-driven reinforcement-learning
methods [5, 6, 7] have demonstrated impressive success on complex, nonlinear robotic systems.
However, both approaches suffer from inherent drawbacks: Data-driven methods often require ex-
tremely large amounts of data and fail to generalize outside of the domain or task on which they were
trained. On the other hand, model-based methods require an accurate model of the system to achieve
good performance. In many cases, high-fidelity models can be too difficult to construct from first
principles or too computationally expensive to be of practical use. However, low-order approximate
models that can be evaluated cheaply at the expense of controller performance are often available.
With this in mind, we seek a middle ground between model-based and data-driven approaches in
this work.

We propose a method for learning bilinear Koopman models of nonlinear dynamical systems for use
in model-predictive control that leverages derivative information from an approximate prior dynam-
ics model of the system in the training process. Given the increased availability of differentiable
simulators [8, 9], this approximate derivative information is readily available for many systems of
interest. Our new algorithm builds on Extended Dynamic Mode Decomposition (EDMD), which
learns Koopman models from trajectory data [10, 11, 12, 13, 14], by adding a derivative regular-
ization term based on derivatives computed from a prior model. We show that this new algorithm,
Jacobian-regularized Dynamic Mode Decomposition (JDMD), can learn models with dramatically
fewer samples than EDMD, even when the prior model differs significantly from the true dynamics

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

of the system. We also demonstrate the effectiveness of these learned models in a model-predictive
control (MPC) framework. The result is a fast, robust, and sample-efficient pipeline for quickly
training a model that can outperform MPC controllers using both approximate analytical models as
well as models learned using traditional Koopman approaches.

Our work is most closely related to the recent works of Folkestad et. al. [13, 15, 16], which learn
bilinear models and apply nonlinear model-predictive control directly on the learned bilinear dy-
namics. Other recent works have combined linear Koopman models with model-predictive control
[12] and Lyapunov control techniques with bilinear Koopman models [17]. Our contributions are:

• A novel extension to Dynamic Mode Decomposition, called JDMD, that incorporates gra-
dient information from an approximate analytic model

• A recursive, batch QR algorithm for solving the least-squares problems that arise when
learning bilinear dynamical systems using DMD-based algorithms, including JDMD and
EDMD

The remainder of the paper is organized as follows: In Section 2 we provide some background
on the application of Koopman operator theory to controlled dynamical systems and review some
related works. Section 3 then describes the proposed JDMD algorithm. In Section 4 we outline
a memory-efficient technique for solving the large, sparse linear least-squares problems that arise
when applying JDMD and other DMD-based algorithms. Section 5 then provides simulation results
and analysis of the proposed algorithm applied to control tasks on a cartpole, a quadrotor, and a small
foam airplane with an experimentally determined aerodynamics model, all subject to significant
model mismatch. We also discuss the suitability of the conventional open-loop prediction error as
a metric for evaluating dynamics model used in closed-loop control frameworks. In Section 6 we
discuss the limitations of our approach, followed by some concluding remarks in Section 7.

2 Background and Related Work

2.1 Koopman Operator Theory

The theoretical underpinnings of the Koopman operator and its application to dynamical systems
has been extensively studied [11, 18, 19, 20, 21, 22]. Rather than describe the theory in detail,
we highlight the key concepts employed by the current work and refer the reader to the existing
literature on Koopman theory for further details.

We start by assuming a controlled, nonlinear, discrete-time dynamical system,

x+ = f(x, u), (1)

where x ∈ X ⊆ RNx is the state vector, u ∈ RNu is the control vector, and x+ is the state at the next
time step. Assuming the dynamics are control affine, the nonlinear finite-dimensional system (1) can
be represented exactly by an infinite-dimensional bilinear system through the Koopman canonical
transform [22]. This bilinear Koopman model takes the form,

y+ = Ay +Bu+

m∑
i=1

uiCiy = g(y, u), (2)

where y = ϕ(x) is a nonlinear mapping from the finite-dimensional state space X to the infinite-
dimensional Hilbert space of observables Y . In practice, we approximate (2) by restricting Y to be a
finite-dimensional vector space, in which case ϕ becomes a finite-dimensional nonlinear function of
the state variables that can be either chosen heuristically based on domain expertise or by learning
[23, 24, 25].

Intuitively, ϕ “lifts” our state x into a higher dimensional space Y where the dynamics are approx-
imately bilinear, effectively trading dimensionality for bilinearity. Similarly, we can perform an
“unlifting” operation by projecting a lifted state y back into the original state space X . In this work,

2

since we embed the original state within the nonlinear mapping [11, 15, 26, 27, 28], ϕ is constructed
in such a way that this unlifting is linear:

x = Gy. (3)
We note that our proposed method does not require this assumption: any mapping could be used.
The problem of finding an optimal mapping is itself a major area of research, and many recent
studies have focused on jointly learning both the model and the mapping [23, 24, 25, 29, 30]. While
clearly advantageous, learning an optimal mapping is not the focus of this paper. Instead, we focus
on incorporating prior information from an approximate model in a way that is applicable to any
lifting function, and we rely on simple mappings that are chosen heuristically in all of our examples.

2.2 Extended Dynamic Mode Decomposition

A lifted bilinear system of the form (2) can be learned from P samples of the system dynamics
(x+

j , xj , uj) using Extended Dynamic Mode Decomposition (EDMD) [15, 21]. We first define the
following data matrices:

Z1:P =

y1 y2 . . . yP
u1 u2 . . . uP

u1
1y1 u1

2y2 . . . u1
P yP

...
...

. . .
...

um
1 y1 um

2 y2 . . . um
P yP

 , Y +
1:P =

[
y+1 y+2 . . . y+P

]
, (4)

where ui
k is the i-th element of the control vector at time k. We then concatenate all of the model

coefficient matrices from (2) as follows:
E =

[
A B C1 . . . Cm

]
∈ RNy×Nz . (5)

The model learning problem can then be written as the following linear least-squares problem:

minimize
E

∥∥EZ1:P − Y +
1:P

∥∥2
2

(6)

EDMD is closely related to classical feature-based machine learning approaches like the “kernel
trick” used in support vector machines [31], but extends these ideas to bilinear models of controlled
dynamical systems.

3 Jacobian-Regularized Dynamic Mode Decomposition

We now present JDMD as a straightforward adaptation of the original EDMD algorithm described
in Section 2.2. Given P samples of the dynamics (x+

j , xj , uj), and an approximate discrete-time
dynamics model,

x+ = f̃(x, u), (7)
we can evaluate the Jacobians of our approximate model f̃ at each of the sample points: Ãj =
∂f̃
∂x , B̃j = ∂f̃

∂u . After choosing a nonlinear mapping ϕ : RNx 7→ RNy our goal is to find a bilinear
dynamics model (2) that matches the Jacobians of our approximate model, while also matching
our dynamics samples. We accomplish this by penalizing differences between the Jacobians of
our learned bilinear model with respect to the original states x and controls u, and the Jacobians
we expect from our analytical model. These projected Jacobians are calculated by differentiating
through the projected dynamics:

x+ = G

(
Aϕ(x) +Bu+

m∑
i=1

uiCiϕ(x)

)
= f̄(x, u). (8)

Differentiating (8) with respect to x and u gives us

Āj =
∂f̂

∂x
(xj , uj) = G

(
A+

m∑
i=1

ui
jC

i

)
Φ(xj) = GEÂ(xj , uj) = GEÂj , (9a)

B̄j =
∂f̂

∂u
(xj , uj) = G

(
B +

[
C1xj . . . Cmxj

])
= GEB̂(xj , uj) = GEB̂j , (9b)

3

where Φ(x) = ∂ϕ/∂x is the Jacobian of the nonlinear map ϕ, and

Â(x, u) =

INy

0
u1INy

u2INy

...
umINy

Φ(x) ∈ RNz×Nx , B̂(x, u) =

0
INu

[ϕ(x) 0 ... 0]
[0 ϕ(x) ... 0]

...
[0 0 ... ϕ(x)]

 ∈ RNz×Nu . (10)

We then solve the following linear least-squares problem:

minimize
E

(1− α)
∥∥EZ1:P − Y +

1:P

∥∥2
2
+ α

P∑
j=1

(∥∥∥GEÂj − Ãj

∥∥∥2
2
+
∥∥∥GEB̂j − B̃j

∥∥∥2
2

)
. (11)

Problem (11) has (Ny +N2
x +Nx ·Nu) · P rows and Ny ·Nz columns. Given that the number of

rows in this problem grows quadratically with the state dimension, solving it can be computationally
challenging. The next section proposes an algorithm to address this challenge without resorting to
a distributed-memory system. This solution method also has the benefit of allowing incremental
updates to the bilinear system, enabling online model learning.

4 Efficient Recursive Least Squares

In its canonical formulation, a linear least squares problem can be represented as the following
unconstrained optimization problem:

min
x

∥Fx− d∥22. (12)

We assume F is a large, sparse matrix and that solving it directly using a QR or Cholesky decom-
position requires too much memory for a single computer. While solving (12) using an iterative
method such as LSMR [32] or LSQR [33] is possible, we find that these methods do not work well
in practice for solving (11) due to ill-conditioning. Standard recursive methods for solving these
problems are able to process the rows of the matrices sequentially to build a QR decomposition of
the full matrix, but also tend to suffer from ill-conditioning [34, 35, 36].

To overcome these issues, we propose an alternative recursive method based. We solve (12) by
dividing rows of F into batches:

FTF = FT
1 F1 + FT

2 F2 + . . .+ FT
NFN . (13)

The main idea is to maintain and update an upper-triangular Cholesky factor Ui of the first i terms
of the sum (13). Given Ui, we can calculate Ui+1 using the QR decomposition, as shown in [37]:

Ui+1 =
√
UT
i Ui + FT

i+1Fi+1 = QRR

([
Ui

Fi+1

])
, (14)

where QRR returns the upper triangular matrix R from the QR decomposition. For an efficient
implementation, this function should be an “economy” or “Q-less” QR decomposition since the Q
matrix is never needed.

We also handle regularization of the normal equations, equivalent to adding quadratic or Tikhonov
regularization to the original least squares problem, during the base case of our recursion,

U1 = QRR

([
F1√
λI

])
, (15)

where λ is a scalar regularization weight. To ensure fair comparisons, the results presented in
the next section for both EDMD and JDMD correspond to the best-performing λ values found by
sweeping over a wide parameter range.

4

(a) Expert demonstration of a high angle-of-attack perching maneuver that minimizes velocity at the goal
position with complex, post-stall aerodynamic forces.

(b) E-Flite AS3Xtra airplane model used in
hardware data collection.

(c) Wind-tunnel experimental setup for collecting aerody-
namic data [38].

Figure 1: Complex dynamics of a perching fixed-wing airplane. High-angle-of-attack perching
maneuvers (top) require the modeling of complex post-stall aerodynamic effects. The simulated
aerodynamic forces were modeled using flight data collected from real-world hardware experiments
(bottom) [38].

5 Experimental Results

This section presents the results of several simulation experiments to evaluate the performance of
JDMD. We specify two models for each simulated system: a nominal model, which is simplified
and contains both parametric and non-parametric model error, and a true model, which is used
exclusively for simulating the system and evaluating algorithm performance.

All models were trained by simulating the “true” system with a nominal controller to collect data in
the region of the state space relevant to the task. A set of fixed-length trajectories were collected,
each at a sample rate of 20-25 Hz. The bilinear EDMD model was trained using the same approach
introduced by Folkestad and Burdick [15]. When applying MPC to the learned Koopman models, the
projected Jacobians (9) were used, since this projected system is much more likely to be controllable
than the lifted one and reduces the computational complexity of the MPC controller. This results
in a nonlinear model in the original state space, which is linearized about the reference trajectory
to create a linear MPC controller. All continuous-time dynamics were discretized with an explicit
fourth-order Runge-Kutta method. Code for all experiments is available at https://github.
com/bjack205/BilinearControl.jl.

5.1 Systems and Tasks

Cartpole: We perform a swing-up task on a cartpole system. The true model includes Coulomb
friction between the cart and the floor, viscous damping at both joints, and a deadband in the
control input that were not included in the nominal model. Additionally, the mass of the cart
and pole model were altered by 20% and 25% with respect to the nominal model, respec-
tively. The following nonlinear mapping was used when learning the bilinear models: ϕ(x) =
[1, x, sin(x), cos(x), sin(2x), sin(4x), T2(x), T3(x), T4(x)] ∈ R33, where Ti(x) is a Cheby-
shev polynomial of the first kind of order i. All reference trajectories for the swing up task were
generated using ALTRO [37, 39].

Quadrotor: We track point-to-point linear reference trajectories from various initial conditions
on a full 3D quadrotor model. The true model includes aerodynamic drag terms not included
in the nominal model, as well as parametric error of roughly 5% on the system parameters (e.g.
mass, rotor arm length, etc.). The model was trained using a nonlinear mapping of ϕ(x) =

5

https://github.com/bjack205/BilinearControl.jl
https://github.com/bjack205/BilinearControl.jl

[1, x, T2(x), sin(p), cos(p), R
T v, vTRRT v, p× v, p×ω, ω×ω] ∈ R44, where p is the quadro-

tor’s position, v and ω are the translational and angular velocities respectively, and R is the rotation
matrix representation of the quadrotor’s attitude.

Airplane: We perform a post-stall perching maneuver on a high-fidelity model of a fixed-wing
airplane. The perching trajectory is produced using trajectory optimization (see Figure 1a). Perching
involves flight at high angles of attack, where the aerodynamic lift and drag forces are extremely
complex and difficult to model from first principles. We leverage previous works that fit post-stall
aerodynamics models using empirical data from wind-tunnel experiments [38, 40]. The true model
includes these empirical nonlinear flight dynamics [38], while the nominal model uses a simple flat-
plate wing model with linear lift and quadratic drag coefficient approximations. The bilinear models
use a nonlinear mapping ϕ ∈ R68, which includes the aircraft attitude (expressed as a vector of
Modified Rodriguez Parameters [41]), powers of the angle of attack and side slip angle, the body
frame velocity, various cross products with the angular velocity, and 3rd and 4th order Chebyshev
polynomials of the states.

5.2 Sensitivity to Model Mismatch

µ N
om

in
al

ED
M

D
JD

M
D

0.0 ✓ 3 2
0.1 ✓ 19 2
0.2 ✗ 6 2
0.3 ✗ 15 2
0.4 ✗ ✗ 3
0.5 ✗ ✗ 7
0.6 ✗ ✗ 12

Table 1: Training trajecto-
ries required to stabilize the
cartpole with given friction
coefficient.

While a significant amount of model mismatch is introduced in all
examples, a natural argument against model-based methods is that
they are only as good as the model’s ability to capture the salient
dynamics of the system. Therefore, we investigated the effect of in-
creasing model mismatch by incrementally increasing the Coulomb
friction coefficient µ between the cart and the floor for the cartpole
stabilization task (recall the nominal model assumed zero friction).
The results are shown in Table 1. As expected, the number of train-
ing trajectories required to find a good stabilizing controller increases
with µ. We achieved the results above by setting α = 0.01, corre-
sponding to a decreased confidence in our model, thereby placing
greater weight on the experimental data. The standard EDMD ap-
proach always required more samples, and was unable to find a good
enough model above friction values of 0.4. While this could likely
be remedied by adjusting the nonlinear mapping ϕ, the proposed ap-
proach works well with the given basis. Note that the nominal MPC controller failed to stabilize
the system above friction values of 0.1, so again, we demonstrate that we can improve MPC perfor-
mance substantially with just a few training samples by combining analytical derivative information
and data sampled from the true dynamics.

0 10 20 30

10−1

100

Number of Training Trajectories

Tr
ac

ki
ng

E
rr

or

Nominal
EDMD
JDMD

(a) Cartpole

0 20 40 60 80 100
0

0.1

0.2

Number of Training Trajectories

Tr
ac

ki
ng

E
rr

or

(b) Airplane

Figure 2: MPC tracking error vs training trajectories for both the cartpole (left) and airplane (right).
Tracking error is defined as the average L2 error over all the test trajectories between the reference
and simulated trajectories. The median error is shown as a thick line, while the shaded regions
represent the 5% to 95% bounds on the 10 test trajectories.

6

(a) Point-to-point trajectories and initial conditions for
testing MPC on a 6-DOF quadrotor.

(b) Closed-loop trajectories of nominal MPC (black),
EDMD (orange), and JDMD (cyan) for tracking a dy-
namically infeasible, point-to-point trajectory (red).

Figure 3: Visualizations of the tests on the full quadrotor model.

5.3 Sample Efficiency

We compare the sample efficiency of several algorithms on the cartpole swing-up task in Figure
2. As shown, JDMD achieves the best performance overall, and does so with only two training
trajectories. In comparison, traditional EDMD requires about 10 iterations to achieve consistent
performance. Similar results were obtained for the airplane perching example (see Figure 2b), where
EDMD requires over three times the number of samples (35 vs 10) compared to JDMD and never
achieves the same closed-loop performance.

5.4 Generalization

Nominal EDMD JDMD
Success Rate 82% 18% 80%

Median 0.30 0.63 0.11
5% Quantile 0.13 0.08 0.03

95% Quantile 0.38 2.62 0.23

Table 2: Performance summary of MPC tracking
of 6-DOF quadrotor. Other than success rate, all
values are the tracking error of the successfully
stabilized trajectories.

We demonstrate the generalizability of JDMD
on a quadrotor. The task is to return to the ori-
gin, given an initial condition sampled from a
uniform distribution centered at the origin. Test
initial conditions are sampled from a distribu-
tion larger than that of the training data. Given
the goal of tracking a straight line back to the
origin, we test 50 initial conditions, many of
which are far from the goal, have large veloci-
ties, or are nearly inverted (see Figure 3a). The
results using an MPC controller are shown in
Table 2, demonstrating the generalizability of JDMD, given that the algorithm was only trained on
30 initial conditions sampled relatively sparsely given the size of the sampling window. EDMD only
successfully brings about 18% of the samples to the origin, while the majority of the time resulting
in trajectories like those in Figure 3b. JDMD improves the tracking performance of nominal MPC,
which is subject to a constant-bias error due to model mismatch, as shown in Figure 3b.

5.5 Model Prediction Error vs. Controller Performance

Much of the previous literature focuses on open-loop prediction error for evaluating learned-
dynamics models [11, 12, 15, 19, 22, 42]. While intuitive, we argue that this is a poor metric
when the end goal is closed-loop control performance. As shown in the histogram of open-loop
prediction error in Figure 4a, the open-loop prediction error of JDMD (trained with 8 trajectories)
is significantly higher over 100 test trajectories, with 74% of tests resulting in a prediction error
of approximately 1.5 compared to 25% for EDMD (trained with 24 trajectories). Despite worse
open-loop prediction performance, the JDMD model outperforms the EDMD model in closed-loop

7

0 0.5 1 1.5

0

20

40

60

Prediction Error

N
um

be
ro

f
Tr

aj
ec

to
ri

es

(a)

0 0.5 1 1.5

0

20

40

Tracking Error

(b)

0.5 1 1.5

0

10

20

30

Jacobian Error

Nominal
EDMD
JDMD

(c)

Figure 4: Histograms displaying prediction, tracking, and Jacobian error over 100 test trajectories
with randomly sampled initial conditions for the airplane perching problem. The EDMD model is
trained with 24 trajectories and the JDMD model is trained with 8. While JDMD has poor open-
loop prediction (a), it has better closed-loop tracking performance (b) and better matching of the
dynamics Jacobians (c).

tracking (see Figure 4b). Given that MPC, like most closed-loop controllers, relies on the behav-
ior of the model under small perturbations (i.e. derivative information), the difference in tracking
performance may be explained by JDMD achieving a distribution with much lower Jacobian error
than EDMD (see Figure 4c). This suggests that open-loop prediction error is not necessarily a good
metric for evaluating models that will be used in control applications, and that models sufficient for
closed-loop control may be learned with far less data.

6 Limitations

Many of the limitations of the proposed approach derive from the limitations of Koopman ap-
proaches more broadly, such as the sensitivity to the nonlinear mapping selected and the limitation
to control-affine continuous dynamics. While the presented single rigid-body systems such as the
quadrotor or airplane have similar dimensionality to many autonomous systems of interest, exten-
sions to systems with many degrees of freedom may be difficult computationally, given that Jacobian
matrices grow in size with the square of the state dimension. As with most data-driven techniques,
it is difficult to claim that our method will increase performance in all cases. It is possible that hav-
ing an extremely poor prior model may hurt rather than help the training process, especially if the
derivative information from the approximate model has the incorrect sign.

7 Conclusions and Future Work

We have presented JDMD, a simple but powerful extension to EDMD that incorporates derivative
information from an approximate prior model. We have tested JDMD in combination with a simple
linear MPC control policy across a range of systems and tasks, and have found that the resulting
combination can dramatically increase sample efficiency over EDMD, often improving over a nom-
inal MPC policy with just a few sample trajectories. We also argued that the conventional open-loop
dynamics prediction error is a poor metric for evaluating models used in closed-loop control frame-
works. Substantial areas for future work remain: most notably, demonstrating the proposed pipeline
on hardware. Additional directions include applications on sytems with many degrees of freedom
such as those whose dynamics are governed by discretized PDEs, online learning or adaptive control
applications, combining simulated and real data through the use of modern differentiable physics
engines [9, 8], residual dynamics learning, as well as the development of specialized numerical
methods for solving nonlinear optimal control problems using the learned bilinear dynamics.

8

References

[1] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli. An efficient optimal planning
and control framework for quadrupedal locomotion. In 2017 {IEEE} International Conference
on Robotics and Automation ({ICRA}), pages 93–100. doi:10.1109/ICRA.2017.7989016.

[2] S. Kuindersma, F. Permenter, and R. Tedrake. An efficiently solvable quadratic program for
stabilizing dynamic locomotion. pages 2589–2594. ISSN 9781479936854. doi:10.1109/ICRA.
2014.6907230.

[3] M. Bjelonic, R. Grandia, O. Harley, C. Galliard, S. Zimmermann, and M. Hutter. Whole-Body
MPC and Online Gait Sequence Generation for Wheeled-Legged Robots. pages 8388–8395.
ISSN 9781665417143. doi:10.1109/IROS51168.2021.9636371.

[4] J. K. Subosits and J. C. Gerdes. From the racetrack to the road: Real-time trajectory replanning
for autonomous driving. 4(2):309–320. doi:10.1109/TIV.2019.2904390.

[5] N. Karnchanachari, M. I. Valls, S. David Hoeller, and M. Hutter. Practical Reinforce-
ment Learning For MPC: Learning from sparse objectives in under an hour on a real robot.
pages 1–14. doi:10.3929/ETHZ-B-000404690. URL https://doi.org/10.3929/
ethz-b-000404690.

[6] D. . Hoeller, F. . Farshidian, M. Hutter, F. Farshidian, and D. Hoeller. Deep Value Model
Predictive Control. 100:990–1004. doi:10.3929/ETHZ-B-000368961. URL https://doi.
org/10.3929/ethz-b-000368961.

[7] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Reinforcement
Learning for Robust Parameterized Locomotion Control of Bipedal Robots. 2021-May:2811–
2817. ISSN 9781728190778. doi:10.1109/ICRA48506.2021.9560769.

[8] T. A. Howell, S. L. Cleac’h, J. Z. Kolter, M. Schwager, and Z. Manchester. Dojo: A differen-
tiable simulator for robotics. arXiv preprint arXiv:2203.00806, 2022.

[9] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–
5033. IEEE, 2012. doi:10.1109/IROS.2012.6386109.

[10] A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti. BiConMP: A Nonlinear
Model Predictive Control Framework for Whole Body Motion Planning. doi:10.48550/arxiv.
2201.07601. URL https://arxiv.org/abs/2201.07601v1.

[11] D. Bruder, X. Fu, and R. Vasudevan. Advantages of Bilinear Koopman Realizations for the
Modeling and Control of Systems with Unknown Dynamics. 6(3):4369–4376. doi:10.1109/
LRA.2021.3068117.

[12] M. Korda and I. Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator
meets model predictive control. 93:149–160. doi:10.1016/j.automatica.2018.03.046. URL
https://doi.org/10.1016/j.automatica.2018.03.046.

[13] C. Folkestad, D. Pastor, and J. W. Burdick. Episodic Koopman Learning of Nonlinear
Robot Dynamics with Application to Fast Multirotor Landing. pages 9216–9222. ISSN
9781728173955. doi:10.1109/ICRA40945.2020.9197510.

[14] H. J. Suh and R. Tedrake. The Surprising Effectiveness of Linear Models for Visual Foresight
in Object Pile Manipulation. 17:347–363. doi:10.48550/arxiv.2002.09093. URL https:
//arxiv.org/abs/2002.09093v3.

9

http://dx.doi.org/10.1109/ICRA.2017.7989016
http://dx.doi.org/10.1109/ICRA.2014.6907230
http://dx.doi.org/10.1109/ICRA.2014.6907230
http://dx.doi.org/10.1109/IROS51168.2021.9636371
http://dx.doi.org/10.1109/TIV.2019.2904390
http://dx.doi.org/10.3929/ETHZ-B-000404690
https://doi.org/10.3929/ethz-b-000404690
https://doi.org/10.3929/ethz-b-000404690
http://dx.doi.org/10.3929/ETHZ-B-000368961
https://doi.org/10.3929/ethz-b-000368961
https://doi.org/10.3929/ethz-b-000368961
http://dx.doi.org/10.1109/ICRA48506.2021.9560769
http://dx.doi.org/10.1109/IROS.2012.6386109
http://dx.doi.org/10.48550/arxiv.2201.07601
http://dx.doi.org/10.48550/arxiv.2201.07601
https://arxiv.org/abs/2201.07601v1
http://dx.doi.org/10.1109/LRA.2021.3068117
http://dx.doi.org/10.1109/LRA.2021.3068117
http://dx.doi.org/10.1016/j.automatica.2018.03.046
https://doi.org/10.1016/j.automatica.2018.03.046
http://dx.doi.org/10.1109/ICRA40945.2020.9197510
http://dx.doi.org/10.48550/arxiv.2002.09093
https://arxiv.org/abs/2002.09093v3
https://arxiv.org/abs/2002.09093v3

[15] C. Folkestad and J. W. Burdick. Koopman NMPC: Koopman-based Learning and Nonlinear
Model Predictive Control of Control-affine Systems. In Proceedings - IEEE International
Conference on Robotics and Automation, volume 2021-May, pages 7350–7356. Institute of
Electrical and Electronics Engineers Inc. ISBN 978-1-72819-077-8. doi:10.1109/ICRA48506.
2021.9562002.

[16] C. Folkestad, S. X. Wei, and J. W. Burdick. Quadrotor Trajectory Tracking with Learned
Dynamics: Joint Koopman-based Learning of System Models and Function Dictionaries. URL
http://arxiv.org/abs/2110.10341.

[17] A. Narasingam, J. Sang, and I. Kwon. Data-driven feedback stabilization of nonlinear systems:
Koopman-based model predictive control. pages 1–12.

[18] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

[19] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Sparse identification of nonlinear dynam-
ics with control (sindyc). IFAC-PapersOnLine, 49(18):710–715, 2016. ISSN 2405-8963.
doi:https://doi.org/10.1016/j.ifacol.2016.10.249. URL https://www.sciencedirect.
com/science/article/pii/S2405896316318298. 10th IFAC Symposium on
Nonlinear Control Systems NOLCOS 2016.

[20] J. L. Proctor, S. L. Brunton, and J. Nathan Kutz. Generalizing koopman theory to allow for
inputs and control. 17(1):909–930. doi:10.1137/16M1062296. URL http://www.siam.
org/journals/siads/17-1/M106229.html.

[21] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. A Data–Driven Approximation
of the Koopman Operator: Extending Dynamic Mode Decomposition. 25(6):1307–1346.
doi:10.1007/S00332-015-9258-5/FIGURES/14. URL https://link.springer.com/
article/10.1007/s00332-015-9258-5.

[22] A. Surana. Koopman Operator Based Observer Synthesis for Control-Affine Nonlinear Sys-
tems; Koopman Operator Based Observer Synthesis for Control-Affine Nonlinear Systems.
ISBN 978-1-5090-1837-6. doi:10.1109/CDC.2016.7799268.

[23] C. Folkestad, D. Pastor, I. Mezic, R. Mohr, M. Fonoberova, and J. Burdick. Extended Dynamic
Mode Decomposition with Learned Koopman Eigenfunctions for Prediction and Control. In
2020 American Control Conference (ACC), pages 3906–3913. IEEE, 2020.

[24] C. Folkestad, S. X. Wei, and J. W. Burdick. Koopnet: Joint learning of koopman bilinear
models and function dictionaries with application to quadrotor trajectory tracking. In 2022
International Conference on Robotics and Automation (ICRA), pages 1344–1350. IEEE, 2022.

[25] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis. Extended dynamic mode decomposi-
tion with dictionary learning: A data-driven adaptive spectral decomposition of the koopman
operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10):103111, 2017.

[26] G. Mamakoukas, M. Castano, X. Tan, and T. Murphey. Local Koopman operators for data-
driven control of robotic systems. In Robotics: science and systems, 2019.

[27] B. Huang, X. Ma, and U. Vaidya. Feedback stabilization using koopman operator. In 2018
IEEE Conference on Decision and Control (CDC), pages 6434–6439. IEEE, 2018.

[28] X. Ma, B. Huang, and U. Vaidya. Optimal quadratic regulation of nonlinear system using
koopman operator. In 2019 American Control Conference (ACC), pages 4911–4916. IEEE,
2019.

10

http://dx.doi.org/10.1109/ICRA48506.2021.9562002
http://dx.doi.org/10.1109/ICRA48506.2021.9562002
http://arxiv.org/abs/2110.10341
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2016.10.249
https://www.sciencedirect.com/science/article/pii/S2405896316318298
https://www.sciencedirect.com/science/article/pii/S2405896316318298
http://dx.doi.org/10.1137/16M1062296
http://www.siam.org/journals/siads/17-1/M106229.html
http://www.siam.org/journals/siads/17-1/M106229.html
http://dx.doi.org/10.1007/S00332-015-9258-5/FIGURES/14
https://link.springer.com/article/10.1007/s00332-015-9258-5
https://link.springer.com/article/10.1007/s00332-015-9258-5
http://dx.doi.org/10.1109/CDC.2016.7799268

[29] R. Wang, Y. Han, and U. Vaidya. Deep koopman data-driven optimal control framework for
autonomous racing. Early Access, 5, 2021.

[30] E. Kaiser, J. N. Kutz, and S. L. Brunton. Data-driven discovery of koopman eigenfunctions for
control. Machine Learning: Science and Technology, 2(3):035023, 2021.

[31] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dynamic mode decomposition:
data-driven modeling of complex systems. SIAM, 2016.

[32] D. C.-L. Fong and M. Saunders. LSMR: An Iterative Algorithm for Sparse Least-Squares
Problems. 33(5):2950–2971. ISSN 1064-8275. doi:10.1137/10079687X. URL https:
//epubs.siam.org/doi/abs/10.1137/10079687X.

[33] C. C. Paige and M. A. Saunders. LSQR: An Algorithm for Sparse Linear Equations and Sparse
Least Squares. 8(1):43–71. ISSN 0098-3500, 1557-7295. doi:10.1145/355984.355989. URL
https://dl.acm.org/doi/10.1145/355984.355989.

[34] P. Strobach. Recursive Least-Squares Using the QR Decomposition. In P. Strobach, edi-
tor, Linear Prediction Theory: A Mathematical Basis for Adaptive Systems, Springer Series
in Information Sciences, pages 63–101. Springer. ISBN 978-3-642-75206-3. doi:10.1007/
978-3-642-75206-3 4. URL https://doi.org/10.1007/978-3-642-75206-3_
4.

[35] A. Sayed and T. Kailath. Recursive Least-Squares Adaptive Filters, volume 20094251 of Elec-
trical Engineering Handbook, pages 1–40. CRC Press. ISBN 978-1-4200-4606-9 978-1-4200-
4607-6. doi:10.1201/9781420046076-c21. URL http://www.crcnetbase.com/doi/
abs/10.1201/9781420046076-c21.

[36] A. Ghirnikar and S. Alexander. Stable recursive least squares filtering using an inverse QR
decomposition. In International Conference on Acoustics, Speech, and Signal Processing,
pages 1623–1626 vol.3. doi:10.1109/ICASSP.1990.115736.

[37] T. A. Howell, B. E. Jackson, and Z. Manchester. ALTRO: A Fast Solver for Constrained
Trajectory Optimization. pages 7674–7679. ISSN 9781728140049. doi:10.1109/IROS40897.
2019.8967788.

[38] Z. Manchester, J. Lipton, R. Wood, and S. Kuindersma. A Variable Forward-Sweep Wing
Design for Enhanced Perching in Micro Aerial Vehicles. In AIAA Aerospace Sciences Meeting.
URL https://rexlab.stanford.edu/papers/Morphing_Wing.pdf.

[39] B. E. Jackson, T. Punnoose, D. Neamati, K. Tracy, R. Jitosho, and Z. Manchester. ALTRO-
C: A Fast Solver for Conic Model-Predictive Control; ALTRO-C: A Fast Solver for Conic
Model-Predictive Control. ISSN 9781728190778. doi:10.1109/ICRA48506.2021.9561438.
URL https://github.com/.

[40] J. Moore, R. Cory, and R. Tedrake. Robust post-stall perching with a simple fixed-wing
glider using LQR-Trees. Bioinspiration & Biomimetics, 9(2):025013, May 2014. doi:
10.1088/1748-3182/9/2/025013. URL https://doi.org/10.1088/1748-3182/9/
2/025013. Publisher: IOP Publishing.

[41] H. Schaub and J. Junkins. Analytical Mechanics of Space Systems. AIAA Education Series.
AIAA, Reston, VA, second edition, 2009. ISBN 1-60086-721-9.

[42] F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu. Neural networks with physics-
informed architectures and constraints for dynamical systems modeling. In Learning for Dy-
namics and Control Conference, pages 263–277. PMLR, 2022.

11

http://dx.doi.org/10.1137/10079687X
https://epubs.siam.org/doi/abs/10.1137/10079687X
https://epubs.siam.org/doi/abs/10.1137/10079687X
http://dx.doi.org/10.1145/355984.355989
https://dl.acm.org/doi/10.1145/355984.355989
http://dx.doi.org/10.1007/978-3-642-75206-3_4
http://dx.doi.org/10.1007/978-3-642-75206-3_4
https://doi.org/10.1007/978-3-642-75206-3_4
https://doi.org/10.1007/978-3-642-75206-3_4
http://dx.doi.org/10.1201/9781420046076-c21
http://www.crcnetbase.com/doi/abs/10.1201/9781420046076-c21
http://www.crcnetbase.com/doi/abs/10.1201/9781420046076-c21
http://dx.doi.org/10.1109/ICASSP.1990.115736
http://dx.doi.org/10.1109/IROS40897.2019.8967788
http://dx.doi.org/10.1109/IROS40897.2019.8967788
https://rexlab.stanford.edu/papers/Morphing_Wing.pdf
http://dx.doi.org/10.1109/ICRA48506.2021.9561438
https://github.com/
http://dx.doi.org/10.1088/1748-3182/9/2/025013
http://dx.doi.org/10.1088/1748-3182/9/2/025013
https://doi.org/10.1088/1748-3182/9/2/025013
https://doi.org/10.1088/1748-3182/9/2/025013

	Introduction
	Background and Related Work
	Koopman Operator Theory
	Extended Dynamic Mode Decomposition

	Jacobian-Regularized Dynamic Mode Decomposition
	Efficient Recursive Least Squares
	Experimental Results
	Systems and Tasks
	Sensitivity to Model Mismatch
	Sample Efficiency
	Generalization
	Model Prediction Error vs. Controller Performance

	Limitations
	Conclusions and Future Work

