
Under review as a conference paper at ICLR 2023

EFFICIENT EXPLORATION VIA FRAGMENTATION AND
RECALL

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient exploration and model-building are critical for learning in large state-
spaces. However, agents can face problems like getting stuck in local optima during
exploration, and catastrophic forgetting when constructing models in heterogenous
environments. Here, we propose and apply the concept of Fragmentation-and-
Recall to solve spatial (FarMap) and reinforcement learning problems (FarCurios-
ity). Agents construct local maps or local models, respectively, which are used to
predict the current observation. High surprisal points lead to a fragmentation event.
At fracture points, we store the current map or model fragment in a long-term
memory (LTM) and initialize a new fragment. On the other hand, Fragments are
recalled (and thus reused) from LTM if the observations of their fracture points
match the agent’s current observation during exploration. The set of fracture points
defines a set of intrinsic potential subgoals. Agents choose their next subgoal
from the set of near and far potential subgoals in the current fragment or LTM
respectively. Thus, local maps and model fragments guide exploration locally
and avoid catastrophic forgetting when learning in heterogeneous environments,
while LTM promotes global exploration. We evaluate FarMap and FarCuriosity
on complex procedurally-generated spatial environments and on reinforcement
learning benchmarks to demonstrate that the proposed methods are more efficient
from a memory usage standpoint, and achieve better task performance overall.

1 INTRODUCTION

Human episodic memory breaks our continuous experience of the world into episodes or fragments
that are divided by event boundaries that involve large changes of place, context, affordances, and
perceptual inputs (Baldassano et al., 2017; Ezzyat & Davachi, 2011; Newtson & Engquist, 1976;
Richmond & Zacks, 2017; Swallow et al., 2009; Zacks & Swallow, 2007). The episodic nature of
memory is a core component of how we construct models of the world. It has been conjectured that
episodic memory makes it easier to perform memory search, and to use the retrieved memories in
chunks that are relevant for the current context. Humans also continue to learn and memorize new
information throughout their lives, without needing to reconfigure all previously stored memories.
These observations suggest a certain locality or fragmented nature to how we model the world.

Chunking of experience has been shown to play a key role in perception, learning and cognition
in humans and animals (De Groot, 1946; Egan & Schwartz, 1979; Gobet et al., 2001; Gobet &
Simon, 1998; Simon, 1974). In the hippocampus, place cells appear to chunk spatial information
by defining separate maps when there has been a sufficiently large change in context or in other
non-spatial or spatial variables, through a process called remapping; see Colgin et al. (2008); Fyhn
et al. (2007). Grid and place cells in the hippocampal formation have also been shown to fragment
their representations when the external world or their own behaviors have changed only gradually
rather than discontinuously (Derdikman et al., 2009; Low et al., 2021). Recently, Klukas et al. (2021)
proposed how such remapping could occur in even during continuous navigation through a continuous
environment, modeling the process as one of online clustering based on observational surprisal.

Similarly, when fitting complicated manifolds or functions, it is common to build a set of simpler
local models of the manifold or function. Inspired by these ideas, here we propose building models
for complicated spaces by fitting a sequence of local models, and using local models obtained through
an online process of fragmentation to aid in the the exploratory process of moving through a large
space and building a model of the space.

1



Under review as a conference paper at ICLR 2023

model fragment

model fragment

Environment Agent
Long-Term 
Memory

Recall

Fragmentation

Action

Observation

CONCEPT FIGURE

Figure 1: Overview of our approach. Given an observation from the environment, the FarMap
or FarCuriosity agent decides whether to fragment the space based on how well it can predict the
observation. If fragmentation occurs, the current map (or model) fragment is stored in long-term
memory (LTM); the agent then initializes a new map (or model) fragment. Conversely, if the current
observation closely matches with the observations stored in LTM, the agent loads an existing map (or
model) fragment from there (recall). Based on the current fragment, the agent selects an action to
explore the environment.

We propose a new framework for exploration based on a concept of online Fragmentation-and-Recall,
schematized in Figure 1. This model combines two ideas: 1) when faced with a complex world, it
can be more efficient to build and combine multiple (and implicitly simpler) local models than to
build a single global (and implicitly complex) model, and 2) boundaries between local models should
occur when a local model ceases to be predictive.

In what follows, as an agent explores, it predicts its next observation. Based on a measure of surprisal
between its observation and prediction, there can be a fragmentation event, at which point the agent
writes the current model into long-term memory (LTM) and initiates a new local model. While
exploring the space, the agent consults its LTM, and recalls an existing model if it matches its
observations. For the spatial domain, this is very similar to Klukas et al. (2021). The agent uses
its current local model to act locally, and its LTM to act more globally. We apply this concept to
solve spatial exploration and more general reinforcement learning exploration problems, and call the
corresponding approaches FarMap and FarCuriosity, respectively.

We evaluate the proposed framework on procedurally-generated spatial environments and reinforce-
ment learning benchmarks. Experimental results support the effectiveness of the proposed framework;
FarMap explores the spatial environment with much less memory usage and is faster than its base-
lines (Yamauchi, 1997) by large margins, and FarCuriosity achieves better performance than the
baseline fragmentation-less curiosity module (Burda et al., 2019) on standard heterogeneous Atari
game benchmarks1. The contribution of this paper is three-fold as follows:

• We propose a new framework for exploration based on Fragmentation-and-Recall that di-
vides the exploration space into multiple fragments and recalls previously explored ones.

• We implemented our framework in spatial exploration tasks, referring to it as FarMap with
short and long-term memory. Our experiments showed that FarMap reduces online memory
size and wall-clock time relative to baselines.

• We implemented our framework in a curiosity-driven reinforcement learning exploration
setting, referring to it as FarCuriosity. FarCuriosity avoids catastrophic forgetting and
achieves better performance compared to the baseline in heterogenous environments.

2 RELATED WORK

Frontier-based spatial exploration in SLAM SLAM (simultaneous localization and mapping)
agents must efficiently explore spaces to build maps. A standard approach to exploration in SLAM
is to define the frontier between observed and unobserved regions of a 2d environment, and then
select exploratory goal locations from the set of frontier states (Yamauchi, 1997). Frontier-based
exploration has been extended to 3d environments (Dai et al., 2020; Dornhege & Kleiner, 2011)
and used as a building block of more sophisticated exploration strategies (Stachniss et al., 2004).
Although conceptually simple, frontier-based exploration can be quite effective compared to more
sophisticated decision-theoretic exploration (Holz et al., 2010). A cost of frontier-based exploration is

1Heterogeneous environment is an environment that has diverse states that require the larger model capacity
to memorize visited states for generating intrinsic reward. Please refer to Section 4.2 for more details.

2



Under review as a conference paper at ICLR 2023

the use of global maps and global frontiers, which makes the process memory-expensive and search
intensive. In contrast to frontier-based exploration, our approach learns the surprising parts of an
environment as intrinsic subgoals, selecting among those as the exploratory goals.

Submap-Based SLAM Submap-Based SLAM algorithms involve mapping a space by breaking it
into local submaps that are connected to one another via a topological graph. Such Submap-Based
SLAM methods are usually designed to avoid the problems of accruing path integration errors when
building maps of large spaces (e.g. SegSLAM) (Fairfield et al., 2010) and to reduce the computational
cost of planning paths between a start and target position (Maffei et al., 2013; Fairfield et al., 2010;
Klukas et al., 2021). Segmented DP-SLAM (Maffei et al., 2013) adds DP-SLAM (Eliazar & Parr,
2003) to SegSLAM for reducing the search space, generating segments periodically at fixed time-
intervals. Topological SLAM (Choset & Nagatani, 2001) generates new landmarks in an environment
to build a topological graph of the landmarks, and navigates based on the graph. Our Fragmentation
and Recall method, in particular FarMap, is closely related to these methods in that we build multiple
submaps. However, FarMap divides space based on properties of the space (how predictable the
space is based on the local map or model), and does so in an online manner using surprisal.

Curiosity-Driven Reinforcement Learning Motivated by the insufficiency of rewards alone to
guide exploration in sparsely rewarded RL environments, several works construct intrinsic rewards
encouraging agents to explore unfamiliar parts of an environment. Count-based methods provide
intrinsic rewards for reaching infrequently visited states. These methods have strong theoretical guar-
antees for multi-arm bandits (Auer, 2003), and can be effective for reinforcement learning (Bellemare
et al., 2016; Tang et al., 2017; Ecoffet et al., 2021). Prediction-based methods estimate where the
agent cannot predict some aspect of the environment, and provide intrinsic rewards for visiting those
states (Burda et al., 2019; Choshen et al., 2018; Houthooft et al., 2017; Pathak et al., 2017; Raileanu
& Rocktäschel, 2020). Pathak et al. (2017), for instance, learns a forward model to predict the next
state given the current state-action pair, and provides rewards scaling with the state’s prediction error.

Memory-Based Reinforcement Learning Memory-based reinforcement learning aims to solve the
long-term credit assignment problem. Hung et al. (2019) combine LSTM (Hochreiter & Schmidhuber,
1997) with external memory along with an encoder and decoder for the memory. Lampinen et al.
(2021) use a hierarchical LTM with chunks and attention for long-term recall inspired by Transform-
ers (Vaswani et al., 2017); however, their chunks are formed periodically rather than based on content
and are not used as intrinsic options for exploration. Memory is also used for improving exploration:
Go Explore (Ecoffet et al., 2021) remembers promising states so that it can directly visit those states,
where the definition of promising can include rewarded states and frontiers. Similar to our proposal,
we may view promising states in GoExplore as intrinsic options; however, if the promising states
are frontiers, GoExplore becomes similar to frontier-based SLAM methods without fragmentation.
Savinov et al. (2019) memorizes visited states for calculating reachability to penalize to an action
that leads to reachable future states. While earlier memory-based exploration methods use memory
as a guide for evaluating the intrinsic reward of a state, we augment existing exploration methods
with memory, in combination with map or model fragmentation, to more efficiently explore.

3 FRAGMENTATION AND RECALL FRAMEWORK

The proposed framework is based on the notion of fragmentation and recall: While exploring an
environment, an agent builds a local model and uses the local model in short-term memory (STM) to
compute a surprisal signal that depends on the current observation and the agent’s local model-based
prediction. The surprisal can be any uncertainty estimate such as negative confidence or future
prediction error. When the surprisal exceeds some threshold, this corresponds to a fragmentation
event. At a fragmentation event, the local model is written to long-term-memory (LTM) building a
connectivity graph that relates model fragments to each other so that it can provide information across
the current local model without direct access to the stored models in LTM. The current (abstracted)
observation (fracture point) is also stored, and the agent initializes an entirely new local model. On
the other hand, if the current observation is sufficiently similar to a stored fracture point in LTM,
the agent recalls the corresponding model fragment (local model). Hence, the agent can preserve
and reuse previously acquired information. Sections 3.1 and 3.2 describe two application domains;
spatial exploration and curiosity-driven reinforcement learning, respectively.

3



Under review as a conference paper at ICLR 2023

Planner

Long-Term Memory (LTM)

Maps Connectivity Graph

Surprisal distribution

surprisal

Agent

Fragmentation

STM subgoal

Observation
(          )

Recall stored local map.

Choose a subgoal.

Store the current local map.Previous Action
(              )

LTM subgoal

Initialize a local map.

Actions

: fracture points

: agent’s current location

: STM subgoal : LTM subgoal

Navigation

Recall

Fragmentation

Local Map

FragSLAM (submitted)

Short-Term Memory (STM)

Figure 2: Illustration of the FarMap framework. Navigation (black arrow): Given the current
observation which is ego-centric top-down view with restricted field of view and previous action,
the agent updates its short-term memory (STM) and selects a subgoal from the current local map in
STM or the local map connectivity graph stored in LTM. The planner generates a sequence of the
actions for the shortest-path to the subgoal. Recall (dashed arrow): If the agent arrives at a fracture
point (circle in the map), a corresponding local map is recalled from LTM and the current local map
stored in LTM is updated. Fragmentation (gray arrow): If the current surprisal is higher than a
threshold, the current local map is stored in LTM and a new local map is initialized. o′t is spatially
transformed observation with the same size of the current local map to update the map.

3.1 FRAGMENTATION AND RECALL IN SPATIAL EXPLORATION (FARMAP)

SLAM algorithms explore space efficiently by aiming to explore frontier regions. They categorize
each region (cell) as known and unknown based on whether it is previously observed or not and
occupied and unoccupied (empty) based on its occupancy. Unknown cell adjacent to empty cells
is called frontier. Typically frontier-based exploration involves frequent consultation of a global
map. The memory and search cost of finding subgoals grows rapidly with environment size; for
agents exploring a very large space, the computational costs could explode. Here, we propose a
fragmentation-and-recall based exploration strategy for spatial exploration (FarMap). In FarMap,
each local model is a spatially local map built in short-term memory (STM). As Figure 2 shows,
given the observation and the previous action, the FarMap agent updates the current local map. The
agent decides its next subgoal, selecting a point within the current local map or a fracture point with
a different local map, based on the relative surprisal of the different locations and the connectivity
graph of maps in LTM (described below). Given sufficiently high surprisal at the current location,
a fragmentation will occur. Upon fragmentation, the local map in STM is stored as an episode in
LTM and then erased from STM. The STM begins a new local map. Stored local maps in LTM are
recalled whenever the agent reaches a location where a fragmentation event had occurred. Section A
and Algorithm 1 provide detailed procedures.

Local Map The STM has a local predictive spatial map, Mcur
t ∈ R(C+1)×H×W where the size

(H,W ) grows as the agent extends its observations in the local region by adding newly discovered
regions. The first C channels of Mcur

t denote color and the last channel denotes the agent’s confidence
in each spatial cell. For simplicity, in this paper, we will focus only on the update of confidence
channel (C-th channel). The local predictive map is simply a temporally decaying trace of recent
sensory observations, shifted by the agent’s actions (movement through space) (Klukas et al., 2021):

Mcur
t,C = γ ·Mcur

t−1,C + (1− γ) · o′t,C , (1)

where γ is the decaying factor and ot ∈ R(C+1)×h×w is the egocentric view input observation in the
environment at time t sized as (h,w). The last channel of the observation means visibility caused
by occlusion or restricted FOV; visible (1) or invisible (0) on each cell. The red region is visible
and others are invisible in Figure 2. o′t ∈ R(C+1)×H×W denotes a spatially transformed observation
to Mcur

t−1 to update the current observation to the local map in the correct position; rotation and
zero-padding (Figure 8). Please refer to Section A for further details of how the local map is updated.

4



Under review as a conference paper at ICLR 2023

Surprisal The scalar surprisal signal st = 1− ct is generated using the local map in STM and the
current observation, where ct quantifies the average similarity of the visible part of observation to the
local predictive map Mcur

t−1 before update:

ct =
Mcur

t−1,C · o′t,C
||o′t,C ||1

. (2)

The agent is assumed to maintain a running estimate of the mean µt and standard deviation σt of past
surprisals, stored as part of the current map.

Fragmentation Fragmentation occurs if the z-scored current surprisal ((st − µt)/σt) exceeds a
threshold, ρ. Initially on each new map, the agent collects surprisal statistics and is not permitted to
further fragment space until the number of samples is greater than 25 (for large sample condition).
We also store the ratio qc of the number of frontier cells to the number of known cells and the distance
between each fracture point in Mcur

t . qc keeps updating every time step until it is stored in LTM. The
ratio is used to guide agents on whether or not to move to other local maps. When Mcur

t is stored
in LTM, it is connected with an adjacent map fragment that shares the same fracture point in the
connectivity graph. In other words, the node of the graph is a model fragment and the connection
denotes both fragments share a fracture point.

Recall Each local map records the fracture points. At these points, there are overlaps with other
map fragments. When the agent moves to the point in the current local map, corresponding local map
is recalled from LTM and the current one is stored in LTM.

Subgoal Subgoal is decided by using either the current local map in STM or the connectivity graph
in LTM. The former enlarges the current local map while the latter helps find the next local map to
explore. An agent explores the local region in the environment unless the current surprisal is too
low (e.g., z-score is smaller than −1) and there is less explored local map nearby.

Subgoals made with the current local map are based on frontier-based subgoals (Yamauchi, 1997) for
exploring the local region. In the current local map, we first find all frontiers which are unknown
cells adjacent to the known unoccupied cells. A group of consecutive frontiers are called ‘frontier-
edge’ and Yamauchi (1997) uses the nearest centroid of the frontier-edge as a subgoal. Unlike
standard SLAM methods that employ the entire map, our map in STM only covers a subregion of
the environment. After fragmentation, the region, where the agent came from, has several frontiers
(border of two local models) forming a frontier-edge. It leads the agent to go back to the previous
area and recall the corresponding map fragment. This would lead to the agent moving between two
map fragments for a long time. Hence, we prioritize the frontier-edge that is not located spatially
behind the agent. The subgoal is sampled with the following weight wi for each frontier-edge Fi:

wi =
|Fi| · 1(Fi is not located spatially behind the agent)

di
, (3)

where di means the distance between the current position and the centroid of Fi and 1(·) is the
indicator function that is 1 if the condition is true otherwise 0.

Once the agent finishes exploring the local region, it should move to different subregions. However,
subgoals from the current local map can misguide the already explored region since the agent does
not have information beyond the map. Hence, we employ the connectivity graph of local maps
stored in LTM. We leverage the discovery ratio (the ratio of the number of frontier cells to the
number of known cells) q mentioned above to find the most desirable subregions to explore. We also
utilize the Manhattan distance between the current agent location and the fracture point between the
current (c-th) local map and the connected i-th local map, di,c where dc,c = 0 and dj,c =∞ if j-th
local map is disconnected to the current map. Then, the desirable local map is selected as

g = argmax
i

qi
di,c + ϵ

, (4)

where ϵ denotes the preference of staying in the current local map; smaller value encourages staying
in the current local map. If g is not equal to c, the fracture point between the current local map and
g-th local map is set to the subgoal. Once the agent arrives at the fracture point, the corresponding
local map is recalled and the agent recursively checks Eq. 4 until g is the arrived subregion. Note that
the distances between a new location and other fracture points stored in the recalled local map are
precomputed since they are fixed.

5



Under review as a conference paper at ICLR 2023

Surprisal Distribution

Short-Term Memory (STM)

FragCuriosity (submitted)

Surprisal

Store the current input observation. Store the 
current 
module.

Surprisal Distribution

Out-of-Distribution

Long-Term Memory (LTM)

Observations
(          )

Curiosity
Modules

(a) Fragmentation

Fragmentation

Current Observation
(          )

Initialize a 
module.

Update the 
current module

In LTM.

Long-Term Memory (LTM)

Observations
(          )

Curiosity
Modules

Current Observation
(          )

Recall a module from LTM.Compare with

(b) Recall

Short-Term Memory (STM)

Curiosity
Module

Curiosity
Module

Figure 3: Illustration of the proposed FarCuriosity framework. (a) Fragmentation. If the current
surprisal is out-of-distribution with high value (gray arrows), the current curiosity module and its
input are stored in LTM and a new module is initialized. (b) Recall. If the current observation is
similar to an observation in LTM, the corresponding curiosity module is recalled and we update the
current module in LTM.

Planner The planner takes a subgoal and the current spatial map in STM and finds the shortest-path
within the map from the current agent location to the subgoal. We use Dijkstra’s algorithm for
planning a path to the next subgoal. However, the planner can be any path planning method such as
A∗ algorithm (Hart et al., 1968) or RRT (LaValle, 1998).

3.2 FRAGMENTATION AND RECALL IN CURIOSITY-DRIVEN RL (FARCURIOSITY)

Like in spatial map building, exploration is a critical property of good reinforcement learning systems.
Unlike map building, deep RL can be applied to diverse tasks including manipulation (Lee et al.,
2021; Tassa et al., 2018), game playing (Bellemare et al., 2013; Küttler et al., 2020) and also spatial
foraging and navigation (Szot et al., 2021).

Intrinsic reward functions (in the form of curiosity modules) (Burda et al., 2019; Campero et al., 2021;
Pathak et al., 2017; 2019; Raileanu & Rocktäschel, 2020) are used for exploring novel spaces of an
environment by generating intrinsic rewards. The intrinsic reward can serve as the primary reward for
training policies in realistic scenarios where external rewards are sparse or absent. Since a curiosity
module is trained concurrently with the policy, it can suffer from catastrophic forgetting (French,
1999; Robins, 1995) over large and heterogeneous environments where the observation space is high
variance such as having multiple rooms/stages with different backgrounds. Hence, demanding on
larger model capacity to memorize what the model has seen for generating intrinsic rewards in these
environments. The catastrophic forgetting of a curiosity module leads to high prediction errors (high
intrinsic rewards) for already explored states, making agents less likely to explore unseen states.

We tackle this problem by applying our fragmentation-recall scheme to the problem of exploration in
deep RL settings, implementing multiple local models in the form of multiple curiosity modules (Far-
Curiosity). Similar to above, we now use surprisal to fragment the state space of an environment and
agent. In FarCuriosity, surprisal is based on the predictions of a curiosity module in STM in place of
the predictions using a local map in STM. While FarMap aims to efficiently build and use maps, the
goal of FarCuriosity is to better explore states so that the agent can solve a given task.

Fragmentation We use the prediction error generated by the curiosity module (Burda et al., 2019;
Pathak et al., 2017) for fragmentation. When fragmentation occurs — a fracture point (high prediction
error by the current curiosity module) — we store the current curiosity module and its input (usually
corresponding to the next observation) in LTM and initialize a new module.

Recall At every point, the agent can search LTM to select a curiosity module. The curiosity
module’s input observation (or an encoded feature of the current observation) is the key used to select
a module: Given the current input observation, oc, and the observations from past fracture points,
of which an element is of , and a fixed feature extractor ϕ(·), we define a recall score srec

f based on
cosine similarity as follows:

srec
f =

ϕ(oc) · ϕ(of )
||ϕ(oc)||2||ϕ(of )||2

. (5)

6



Under review as a conference paper at ICLR 2023

(a) Observation (b) Small (size: 3249) (c) Medium (size: 13689) (d) Large (size: 23868)

Figure 4: Environments. Empty cells (that can be occupied by the agent) are black; walls are randomly
colored. (a) Top-down visualization of the agent’s local field of view (FOV) (agent: red triangle;
shaded region: observation) within an environment (b). The agent has only a locally restricted
egocentric view. The right side is occluded by a wall. (b) Top-down view of one environment. the red
box marks the region shown in (a). (c), (d) Examples of medium and large environments.

0 5 10 15 20 25 30
Environment Size (x 1000)

0

5000

10000

15000

20000

25000

M
em

or
y 

Si
ze

0 5 10 15 20 25 30
Environment Size (x 1000)

0

1000

2000

3000

4000

W
al

l-C
lo

ck
 T

im
e 

(s
)

Frontier Frontier++ FarMap

Figure 5: Relative memory and wall-clock time advantage of FarMap to Frontier-based baselines
grows with environment size. Comparison of memory cost (left) and wall-clock time (right) as
a function of environment size (circles: experimental results; line: linear regression fit). FarMap
requires substantially less memory and is much faster than other methods.

If srec
f is equal to or greater than a recall threshold ψ for any element of , we store the current module

in LTM and recall the module corresponding to of . We choose the highest scoring f if multiple
modules meet the condition. The module just before recall of the module for of becomes a new
element of the set of modules in LTM.

4 EXPERIMENTS
In this section, we conduct experiments for FarMap and FarCuriosity comparing their baselines on
procedurally generated map environment and Atari games, respectively. Please refer to Section C for
the experimental settings.

4.1 FARMAP EXPERIMENTS

We measure the map coverage and memory usage for each environment at each time step as our
evaluation criteria and calculate the mean and standard deviation over all runs. The memory usage
in each environment is calculated as a ratio of local map size (memory size, H × W ) to the
environment size. Note that the local map size is the asymptotically dominant factor in the memory.
We also use wall-clock time for comparison. We compare FarMap with standard frontier-based
exploration (Frontier) (Yamauchi, 1997). We also consider an augmented baseline with heuristics
used in FarMap: prioritizing the frontier-edges not behind the agent, stochastically selecting subgoals
based on the number of frontiers and the distance to the centroid in each frontier-edge, mentioned in
Section 3.1 (Frontier++). Our experiments are conducted in procedurally generated environments
(See Section B). As shown in Figure 4, the walls in the environment are randomly colored and are
composed of various narrow and wide pathways. For each trial, the agent is randomly placed before
it begins to explore the environment. Figure 4a presents an example of the agent’s view in the small
environment shown in Figure 4b. The agent is presented as a red triangle and the observed cells are
shaded. The agent has the restricted field of view with occlusion (120◦).

Figure 5 and Table 1 analyze memory size and wall-clock-time changes depending on the environment
size. In Table 1, we divide the environments into three groups; small, medium and large based on their
sizes. FarMap requires significantly less memory than the baselines, with a small performance drop
as the environment size is increased. Moreover, since our agent only refers to the subregion of the
environment not using the entire map, it is much faster than other methods while planning. Especially,

7



Under review as a conference paper at ICLR 2023

Table 1: Comparison of average map coverage (%), memory use (%), and wall-clock time (s) for
small, medium, and large environments. The memory usage advantage of FarMap relative to its
counterparts grows with environment size. Frontier++ is Frontier (Yamauchi, 1997), augmented with
head direction, and with a subgoal selection weights given by the size of the frontier in each subgoal.
Although RND is much faster than others, it has much worse exploration performance. The numbers
in parentheses are the standard deviation.

Model
Small (size < 5,000) Medium (5,000 ≤ size < 15,000) Large (size ≥ 15,000)

Coverage Memory Time Coverage Memory Time Coverage Memory Time

Frontier (Yamauchi, 1997) 97.2 (9.2) 80.4 (8.9) 360.5 (168.8) 76.3 (21.8) 73.3 (19.7) 871.9 (439.0) 41.4 (20.1) 44.4 (20.1) 1261.0 (676.5)
Frontier ++ 98.8 (6.7) 81.6 (7.5) 341.1 (191.1) 91.4 (17.4) 85.9 (15.2) 1099.5 (511.3) 60.8 (21.4) 68.1 (20.9) 1872.4 (782.7)

FarMap 99.0 (7.2) 79.1 (8.7) 278.2 (118.6) 86.4 (19.8) 62.9 (19.3) 321.4 (119.0) 56.6 (20.8) 31.4 (11.8) 352.5 (110.7)
RND (Burda et al., 2019) 73.7 (23.3) - 50.6 (22.4) 32.2 (16.2) - 48.8 (16.2) 13.3 (7.6) - 52.7 (43.6)

Tennis

Jamesbond

Beam Rider
River RaidAsteroids

Pong

Star Gunner

Seaquest

Boxing

Breakout

Space Invaders

Improvement 

Deteoriation

<latexit sha1_base64="10synzuBOhvsoABCpzBzXVXtwtI=">AAACQHicbVA9SwNBEN3z2/gVtbRZDIIWhjsRtRFERbQRDcYIuRD2NnO6uHd77M4Fw3E/zcafYGdtY6GIrZWbGMGvBwtv3pthZl+QSGHQdR+cgcGh4ZHRsfHCxOTU9Exxdu7cqFRzqHIllb4ImAEpYqiiQAkXiQYWBRJqwfVe16+1QRuh4jPsJNCI2GUsQsEZWqlZrFGL5QpIW7fBp0dRolUbIohxhW5TP9SMZ5Wmj3CD2QHTe6kWygjs5HSVfumV4/08z35UzWLJLbs90L/E65MS6eOkWbz3W4qn3cVcMmPqnptgI2MaBZeQF/zUQML4NbuEuqUxi8A0sl4AOV2ySouGStsXI+2p3ycyFhnTiQLbGTG8Mr+9rvifV08x3GpkIk5ShJh/LgpTSVHRbpq0JTRwlB1LGNfC3kr5FbOZoc28YEPwfn/5LzlfK3sbZe90vbSz249jjCyQRbJMPLJJdsghOSFVwskteSTP5MW5c56cV+fts3XA6c/Mkx9w3j8AyrawEg==</latexit>

(Relative Improvement) =
RFarCuriosity �RRND

RRND

Montezuma’s Revenge

GravitarPitfall

Private Eye

Figure 6: The relative performance improvement over RND performance (RRND) in various Atari
games. The average standard deviation is measured from each pixel in a trajectory generated by
trained RND. FarCuriosity is effective in visually high-variance (heterogeneous) games.

in large environments, it is approximately four times faster than the baseline with heuristics. We also
compare with Random Network Distillation (RND) (Burda et al., 2019) trained and evaluated on
each map separately without extrinsic reward. Although RND requires constant time for any size of
environment, its exploration performance is worse than other methods. We additionally show how
map coverage and memory usage change in exploration in Section D, conduct sensitivity analysis of
hyperparameters in Section E, and confidence interval of Table 1 in Section F.

4.2 FARCURIOSITY EXPERIMENTS

We present the empirical results that verify the problem of catastrophic forgetting (Section 3.2) of
intrinsic rewards in curiosity-driven deep reinforcement learning in this section. We implement our
FarCuriosity method based on RND (Burda et al., 2019) and compare against to the vanilla RND. Both
FarCuriosity and the vanilla RND train a policy using Proximal Policy Optimization (PPO) (Schulman
et al., 2017), as Burda et al. (2019) suggest. We follow the original RND paper and select Atari
(Bellemare et al., 2013) as the benchmark. We perform experiments over 15 Atari games: Asteroids,
Beam Rider, Boxing, Breakout, Gravitar, Jamesbond, Montezuma’s Revenge, River Raid, Pitfall,
Pong, Private Eye, Seaquest, Space Invaders, Star Gunner, and Tennis.

We measure the average across all pixels of the standard deviation of each pixel from trajectories
generated by trained RND (Burda et al., 2019) as the heterogeneity of each game. If the agent only
explores a small portion of the environment, the fragmentation is not needed although the environment
has hundreds of distinctive rooms. Therefore, we measure heterogeneity using our curiosity module,
RND. Figure 6 shows the relative performance improvement on multiple Atari games which is
defined as below:

(Relative Improvement) =
RFarCuriosity −RRND

RRND
, (6)

where RFarCuriosity and RRND denote the average extrinsic reward of FarCuriosity and RND, re-
spectively. Since both RFarCuriosity and RRND are negative in Tennis and Pitfall, we multiply the
improvement by -1 here. The negative improvement denotes the performance is worsened by FarCu-
riosity. FarCuriosity generally improves performance in heterogeneous environments while achieving
similar or even worse performance in homogeneous games. FarCuriosity achieves worse performance

8



Under review as a conference paper at ICLR 2023

(a) Starting observation

0 20 40 60 80 100
Learning Progress (million frames)

0.0

0.5

1.0

1.5

2.0

No
rm

ed
 In

tr 
Re

wa
rd

 (P
re

d 
Er

ro
r)

RND
FarCuriosity

(b) Intrinsic reward of starting observation

Figure 7: Intrinsic reward of the same observation (first observation in every episode) in Jamesbond
during training. Each reward is normalized by the average intrinsic reward across training separately,
in order to directly compare the magnitude of the change in intrinsic rewards during training. The
reward from RND is increasing while one from FarCuriosity is decreasing after 15 millions steps.

in Montezuma’s Revenge which might be due to its low heterogeneity since RND could not explore
many rooms. FarCuriosity has the worst deterioration in the least heterogeneous environment, Tennis.
We analyze the relationship between the number of fragments and the performance in Section G and
the experiments in each environment in Section H.

FarCuriosity does significantly better than RND in Jamesbond; to explain this, we measure the
intrinsic reward (prediction error) when the agent returns to the same observation (first frame of the
episode) during training as shown in Figure 7. The error of the FarCuriosity agent at the observation
remains the same after a short initial increase, regardless of how much subsequent learning the agent
performs elsewhere in the environment. On the other hand, RND generates a higher intrinsic reward
(higher prediction error) as training progresses, implying that this method suffers from catastrophic
forgetting. The prediction-based curiosity module assumes that infrequently visited states have high
prediction error and vice versa. However, due to catastrophic forgetting, this assumption is invalid
here. In summary, our fragmentation-and-recall concept is helpful for heterogeneous environments.

5 DISCUSSION

We proposed a new framework for exploration based on local models and fragmentation, inspired
by how natural agents explore space. Our framework fragments the exploration space based on the
current surprisal in real time and stores the current model fragment in long-term memory (LTM).
Stored fragments are recalled when the agent returns to the state where the fragmentation happened
so that the agent can reuse the local information. Accordingly, the agent can refer to longer-term
local information. We believe that the framework can be applicable to any tasks that use streaming
observations or data which are reused or recurring. We applied this framework to the settings of
spatial exploration (FarMap) and general reinforcement learning exploration (FarCuriosity). The
surprisal is generated by short-term memory (STM) using a local map in FarMap and a curiosity
module in FarCuriosity. Consequently, FarMap requires less memory and wall-clock time than
the baseline method (Yamauchi, 1997) without sacrificing exploration performance. On the other
hand, FarCuriosity learns better than its baseline (Burda et al., 2019) in standard deep reinforcement
learning benchmarks by appropriately recalling model fragments once fragmentation happens in the
environment. In principle, as in FarMap, LTM could include a connectivity graph that describes
the transition structure between recalled modules, which we believe will be useful for goal-directed
reinforcement learning. However, in what follows, we use only individual stored modules in LTM for
FarCuriosity and not the connectivity graph, which we leave for future work.

Our paper aims to be a proof-of-concept for fragmentation and recall; we have applied it to only two
domains with a relatively small number of environments, but the strong performance in these cases
suggests that the concept should provide improvements in many heterogeneous-environment learning
problems. On the contrary, FarCuriosity is not effective in homogenous environments or frequently
reset environments since the baseline agent does not suffer from catastrophic forgetting in those
environments. With this effort, we intend to bring to the attention of the machine learning community
the fragmentation-and-recall concept inspired by natural agents for heterogeneous environments.
This concept can make large-scale exploration, which typically requires a huge memory size and
long-ranged memory span, significantly more efficient.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. JMLR, 3:397–422,
2003.

Christopher Baldassano, Janice Chen, Asieh Zadbood, Jonathan W Pillow, Uri Hasson, and Kenneth A
Norman. Discovering event structure in continuous narrative perception and memory. Neuron, 95
(3):709–721, 2017.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. JAIR, 47:253–279, 2013.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. NeurIPS, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In ICLR, 2019.

Andres Campero, Roberta Raileanu, Heinrich Kuttler, Joshua B. Tenenbaum, Tim Rocktäschel, and
Edward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals. In ICLR,
2021.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for gymnasium. https://github.com/Farama-Foundation/MiniGrid, 2018.

Howie Choset and Keiji Nagatani. Topological simultaneous localization and mapping (slam): toward
exact localization without explicit localization. TRA, 17(2):125–137, 2001.

Leshem Choshen, Lior Fox, and Yonatan Loewenstein. Dora the explorer: Directed outreaching
reinforcement action-selection. In ICLR, 2018.

Laura Lee Colgin, Edvard I Moser, and May-Britt Moser. Understanding memory through hippocam-
pal remapping. Trends in neurosciences, 31(9):469–477, 2008.

Anna Dai, Sotiris Papatheodorou, Nils Funk, Dimos Tzoumanikas, and Stefan Leutenegger. Fast
frontier-based information-driven autonomous exploration with an mav. ICRA, 2020.

Adrianus Dingeman De Groot. Het denken van den schaker, een experimenteelpsychologie studie.
1946.

Dori Derdikman, Jonathan R Whitlock, Albert Tsao, Marianne Fyhn, Torkel Hafting, May-Britt
Moser, and Edvard I Moser. Fragmentation of grid cell maps in a multicompartment environment.
Nature Neuroscience, 12(10):1325–1332, 2009.

Christian Dornhege and Alexander Kleiner. A frontier-void-based approach for autonomous explo-
ration in 3d. In SSRR, pp. 351–356, 2011.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Dennis E Egan and Barry J Schwartz. Chunking in recall of symbolic drawings. Memory & cognition,
7(2):149–158, 1979.

Austin Eliazar and Ronald Parr. Dp-slam: Fast, robust simultaneous localization and mapping without
predetermined landmarks. In IJCAI, 2003.

Youssef Ezzyat and Lila Davachi. What constitutes an episode in episodic memory? Psychological
science, 22(2):243–252, 2011.

Nathaniel Fairfield, David Wettergreen, and George Kantor. Segmented slam in three-dimensional
environments. Journal of Field Robotics, 27(1):85–103, 2010.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128–135, 1999.

10

https://github.com/Farama-Foundation/MiniGrid


Under review as a conference paper at ICLR 2023

Marianne Fyhn, Torkel Hafting, Alessandro Treves, May-Britt Moser, and Edvard I Moser. Hip-
pocampal remapping and grid realignment in entorhinal cortex. Nature, 446(7132):190–194,
2007.

Fernand Gobet and Herbert A Simon. Expert chess memory: Revisiting the chunking hypothesis.
Memory, 6(3):225–255, 1998.

Fernand Gobet, Peter CR Lane, Steve Croker, Peter CH Cheng, Gary Jones, Iain Oliver, and Julian M
Pine. Chunking mechanisms in human learning. Trends in cognitive sciences, 5(6):236–243, 2001.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Dirk Holz, Nicola Basilico, Francesco Amigoni, and Sven Behnke. Evaluating the efficiency of
frontier-based exploration strategies. In ISR, pp. 1–8, 2010.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration, 2017.

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale,
Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transporting
value. Nature communications, 10(1):1–12, 2019.

Mirko Klukas, Sugandha Sharma, YiLun Du, Tomas Lozano-Perez, Leslie Kaelbling, and Ila Fiete.
Fragmented spatial maps: State abstraction and efficient planning from surprisal. bioRxiv, 2021.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. In NeurIPS, 2020.

Andrew Lampinen, Stephanie Chan, Andrea Banino, and Felix Hill. Towards mental time travel: a
hierarchical memory for reinforcement learning agents. NeurIPS, 2021.

Steven M LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. 1998. URL https://cs.brown.edu/courses/cs1951r/assignments/
motionplanning/rrtpaper.pdf.

Youngwoon Lee, Edward S Hu, and Joseph J Lim. IKEA furniture assembly environment for
long-horizon complex manipulation tasks. In ICRA, 2021.

Isabel IC Low, Alex H Williams, Malcolm G Campbell, Scott W Linderman, and Lisa M Giocomo.
Dynamic and reversible remapping of network representations in an unchanging environment.
Neuron, 109(18):2967–2980, 2021.

Renan Maffei, Vitor Jorge, Mariana Kolberg, and Edson Prestes. Segmented dp-slam. In IROS, 2013.

Darren Newtson and Gretchen Engquist. The perceptual organization of ongoing behavior. Journal
of Experimental Social Psychology, 12(5):436–450, 1976.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In ICML, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In ICML, 2019.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. In ICLR, 2020.

Lauren L Richmond and Jeffrey M Zacks. Constructing experience: Event models from perception
to action. Trends in cognitive sciences, 21(12):962–980, 2017.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123–146, 1995.

11

https://cs.brown.edu/courses/cs1951r/assignments/motionplanning/rrtpaper.pdf
https://cs.brown.edu/courses/cs1951r/assignments/motionplanning/rrtpaper.pdf


Under review as a conference paper at ICLR 2023

Nikolay Savinov, Anton Raichuk, Damien Vincent, Raphael Marinier, Marc Pollefeys, Timothy
Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability. In ICLR, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Herbert A Simon. How big is a chunk? by combining data from several experiments, a basic human
memory unit can be identified and measured. Science, 183(4124):482–488, 1974.

C. Stachniss, D. Hahnel, and W. Burgard. Exploration with active loop-closing for fastslam. In IROS,
2004.

Khena M Swallow, Jeffrey M Zacks, and Richard A Abrams. Event boundaries in perception affect
memory encoding and updating. Journal of Experimental Psychology: General, 138(2):236, 2009.

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Vondrus,
Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun,
Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants to rearrange
their habitat. In NeurIPS, 2021.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. #exploration: A study of count-based exploration for deep
reinforcement learning. In NeurIPS, 2017.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
Deepmind control suite, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Brian Yamauchi. A frontier-based approach for autonomous exploration. In CIRA, 1997.

Jeffrey M Zacks and Khena M Swallow. Event segmentation. Current directions in psychological
science, 16(2):80–84, 2007.

12



Under review as a conference paper at ICLR 2023

APPENDIX

Algorithm 1 FarMap Procedure at time t. FarMap algorithm is colored in red and heuristics are
colored in blue on top of Frontier algorithm.

Require: a spatial map Mcurr
t−1, previous action at−1, current observation ot, short-term memory

STM, long-term memory LTM
Ensure: Updated map, Mcurr

t and a sequence of actions {a}
1: procedure STEP
2: Mcurr

t = γ ·Mcurr
t−1 + (1− γ) · o′t ▷ Update the current local map

3: Calculate st = 1− ct following Eq. 2.
4: if current position in Mcurr

t is fracture point then ▷ Recall
5: qc =Nfrontier / Nknown
6: Store Mcurr

t in LTM.
7: Recall a corresponding map fragment in LTM to STM (i.e., change Mcurr

t )
8: else if zt > ρ then ▷ Fragmentation
9: qc =Nfrontier / Nknown

10: Store Mcurr
t in LTM.

11: Initialize a new map Mcurr
t in STM.

12: end if
13: Update µt and σt.
14: g = argmaxi

qi
di,c+ϵ

15: if g ̸= c then ▷ Subgoal based on connectivity between fragments.
16: subgoal← the fragmentation location between current fragment c and a fragment g
17: else
18: Find frontier-edges {Fi} and their centroids.
19: Calculate distance between the current position and each centroid {di}.
20: wi = 1/di· |Fi| · 1(Fi is not located spatially behind the agent) ▷ 1(·) is 1 if the

condition is true else 0.
21: Select frontier-edge Fg based on the weighted sampling with {wi}.
22: subgoal← the nearest frontier ∈ Fg from its centroid.
23: end if
24: A sequence of actions, {a} ← Planner(subgoal; Mcurr

t ) ▷ Dijkstra’s algorithm.
25: end procedure

A OVERALL PROCEDURE OF SPATIAL NAVIGATION

Algorithm 1 presents the overall procedure of FarMap at time t. On top of Frontier algorithm (Ya-
mauchi, 1997), we colored heuristics that is used for Frontier++ and FarMap as blue (Line 20) and
FarMap algorithm as red. Given the previous action at−1, current observation ot, a local predictive
map Mcurr

t−1, we first update the map following Eq. 1 and calculate the surprisal st following Eq. 2.
Figure 8 shows the toy illustration of how to transform the current observation to update the local
map and how the map size grows. We first rotate the observation following the head direction of the
agent in the map and then zero-pad it so that it has the same size as the local map considering the
agent’s current location in the map. If the observation does not fit in the same size of the map due to
the agent’s location, we add zero-padding (gray in the figure) to both the transformed observation and
the local map. Then, we update the local map by adding the transformed observation.

If the current position in Mcurr
t is previously fragmented location with another fragment, we calculate

qc as the number of frontiers (Nfrontier) over the number of known cells (Nknown) in the map Mcurr
t

(Line 5). Then, we store the current map in LTM and recall the corresponding map fragment in LTM
to STM. If recall is not happened and zt is greater than a threshold ρ, we store the current map in
LTM and initialize a new map in STM.

After checking recall and fragmentation, we find the desirable local map fragment that is less explored
compared to other fragments mentioned in Section 3.1. If the current map is not the desirable map,
we set subgoal as the fracture point between the current map and the desirable map. Otherwise, we

13



Under review as a conference paper at ICLR 2023

(a) (b)

Agent’s location at t-1

Agent’s location at t

Rotate Fit Fit Pad

Unknown cell

Known cell

Figure 8: Toy example illustrations of how the local map is updated. In this figure, we only consider
the visibility of each cell without considering occupancy and the color for simplification. (a) We
first rotate the current observation ot,C based on the head direction of the agent in the local map.
Then, the observation is zero-padded to have the same size as the local map. Finally, the local map
is updated by adding transformed observation o′t,C . (b) If the current observation does not fit in the
local map due to the agent’s location, we add zero-padding (gray) to both observation and the local
map. Hence, the size of the local map has increased (H has changed).

first find frontier-edges and calculate a weight of each frontier-edge Fi for weighted sampling with
weight wi following Eq. 3 (wi is 1/di in Frontier model).

The subgoal is defined as the nearest frontier from the centroid of sampled frontier-edge. Finally, a
planner generates a sequence of actions to go to the subgoal. Note that while the agent moves based
on the sequence, it keeps update the map and checks fragmentation and recall.

B PROCEDURALLY-GENERATED ENVIRONMENTS

We use the procedurally-generated environment for the map building experiments in Section 4 in
the main paper. Figure 9 and Algorithm 2 show the procedure of map generation. We first generate
grid patterned square rooms and randomly connect and merge them. Then, we flip boundary cells of
empty or occupied multiple times for diversity. Formally, given the length of square S, the interval
between square rooms, L, and the size of the grid, (N,M), we first generate the binary square grid
mapM∈ {0 (empty), 1 (occupied)}(N ·S+(N+1)·L)×(M ·S+(M+1)·L) (Line 2 in Algorithm 2). Let si
be the i-th square as a row-major order inM. For each of adjacent square pairs, we connect two
squares with probability pconnect as a width w ∼ unif{1, 2, . . . , S − 1} (Line 7) or merge them with
probability pmerge (Line 11). Then, we flip all boundaries between occupied and empty cells K times
with probability pflip (Line 17). After flipping the boundaries, there are several isolated (i.e. not
connected to other submaps) submaps inM. We only use the submaps where the sizes are greater
than a threshold (3S2 in our implementation) (Line 20). After creating maps, we randomly colorize
each occupied cell and scale up by factor of 3. Note that the proposed environment has very complex
maps compared to existing environments (Chevalier-Boisvert et al., 2018; Küttler et al., 2020)

C EXPERIMENTAL DETAILS

Our models are implemented on PyTorch and the experiments are conducted on Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz for spatial exploration experiments and a single NVIDIA Tesla V100
GPU for reinforcement learning experiments. We will release the entire codebase once our paper gets
accepted. However, we attached the code for environment generation for FarMap experiments.

14



Under review as a conference paper at ICLR 2023

Algorithm 2 Spatial Exploration Environment Generation

Require: N,M,L, S,K, pconnect, pmerge, pflip
Ensure: A set of maps, {M}.

1: procedure MAPGENERATION
2: InitializeM∈ {0, 1}(N ·S+(N+1)·L)×(M ·S+(M+1)·L), (N,M) grid with interval L and each

square sized (S, S). ▷ Figure 9 (1).
3: for (si, sj) ∈ {(si, sj)|si and sj are adjacent, i ≤ j} do ▷ Get adjacent grid square pairs.
4: x ∼ B(1, pconnect) ▷ Connect adjacent squares with probability pconnect.
5: if x = 1 then
6: w ∼ unif{1, . . . , S − 1}
7: Connect si and sj with width w. ▷ Figure 9 (2).
8: end if
9: x ∼ B(1, pmerge) ▷ Merge adjacent squares with probability pmerge.

10: if x = 1 then
11: Merge si and sj by removing the interval. ▷ Figure 9 (3).
12: end if
13: end for
14: for k ← 1 toK do
15: for c ∈ {c|c ∈M,∃c′ c xor c′ = 1, c′ ∈ Adj(c)} do ▷ Get boundary cells in the map.
16: x ∼ B(1, pflip) ▷ Flip the cell with probability pmerge.
17: c = c xor x ▷ Figure 9 (4)-(6).
18: end for
19: end for
20: DivideM into a set of isolated maps {mi} ▷ Figure 9 (7).
21: Filter out a map in {mi}, where the size is smaller than 3S2.
22: Randomly colorize the occupied cell in each map. ▷ Figure 9 (8).
23: Scale up each map in {mi} by factor of X.
24: end procedure

Connect Merge Flip

Flip

Flip Colorization 
Remove

small maps

Flip

S = 4
N = M = 4
L = 1
K = 9
Pconnect = 0.25
Pmerge = 0.25
Pflip = 0.05

Flip

(2) (3) (4)

(6) (7) (8)

(1)

(5)

Figure 9: Procedure of map generation. (1) We first set square grid where black and white denote
empty and occupied, respectively. (2) We randomly connect and (3) merge adjacent grid. (4)-(6) We
also randomly flip the boundaries of empty and occupied cell recursively. (7) Then, we remove small
isolated subregions and (8) randomly colorize occupied cells. Finally, we increase the size of the
map.

C.1 FARMAP ENVIRONMENT GENERATION

To generate the environment, we run map generation (Algorithm 2) 200 times and then use the 300
largest sized maps. All maps are scaled up by a factor of 3 after colorization for the task. On every
trial, we sample S and N from {3, 4, 5, 6, 7} and set M = N . K,L ∈ N are sampled from [0, 10]
and [1, 3], respectively. We set pconnect, pmerge and pflip to 0.25, 0.25, 0.05, respectively.

15



Under review as a conference paper at ICLR 2023

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

M
ap

 C
ov

er
ag

e 
(%

)

All Environments

0 1000 2000 3000 4000 5000
0

20

40

60

80

100
Small Environments

0 1000 2000 3000 4000 5000
0

20

40

60

80

100
Medium Environments

0 1000 2000 3000 4000 5000
0

20

40

60

80

100
Large Environments

0 1000 2000 3000 4000 5000
Steps

0

20

40

60

80

100

M
em

or
y 

Us
ag

e 
(%

)

0 1000 2000 3000 4000 5000
Steps

0

20

40

60

80

100

0 1000 2000 3000 4000 5000
Steps

0

20

40

60

80

100

0 1000 2000 3000 4000 5000
Steps

0

20

40

60

80

100

Frontier Frontier++ FarMap

Figure 10: Growth in agent-explored map region as a function of number of steps from the first
step in the environment matches the performance of an augmented Frontier-based baseline with less
memory use. Mean spatial map coverage performance (up) and mean memory usage (down) as a
function of number of steps taken in various sizes of environment sets. FarMap achieves better or
comparable exploration as a Frontier-based exploration baseline (Frontier) (Yamauchi, 1997) and an
improved version of it (Frontier++) while using only about half the memory on average. The memory
benefit is increased as in larger environment.

C.2 FARMAP

We run the agent on 1500 different environments: 300 different maps with five random seeds and
the starting position and the color of map is changed on each random seed. We set γ, ρ and ϵ to 0.9,
2 and 5, respectively. The observation size (h,w) is (15,15). If the frontier-based exploring agent
is surrounded by a large frontier-edge in an open space, the centroid of the frontier can fall in the
interior of the explored space, leading to no new discovery. This causes the agent to become stuck.
We improve the agent by instead selecting the nearest unoccupied cell from the nearest frontier state
from the centroid. We train RND for 1 million steps without extrinsic reward for each environment
with five different random seeds, and other parameters are the same in Section C.3.

C.3 FARCURIOSITY

We run Atari experiments for 100 million frames, and we optimize in batches of 128 frames per
environment across 32 parallel environments with minibatch size, 4. The learning rate is 0.0001, the
reward discount factor γ is 0.99 and the number of epochs is 4. For other parameters, we use the
same values mentioned in PPO and RND: we set GAE parameter λ as 0.95, value loss coefficient as
1.0, entropy loss coefficient as 0.001, and clip ratio (ϵ in Eq. (7) in Schulman et al. (2017)) as 0.1. We
set the fragmentation parameter ρ to 10, and the recall parameter ψ is to 0.99. The maximum size of
the LTM is 800, and the least recently used fragment is substituted by a new fragment if LTM is fully
used. For fragmentation, we also add a cosine similarity constraint: if the cosine similarity sf with
any observation in the fragmentation moment is higher than 0.75, we skip the fragmentation to avoid
excessive fragmentation. We use a fixed random network in RND as a feature extractor ϕ(·) for Eq. 5
and all curiosity modules share the same fixed network.

D COMPARISON ON EACH STEP IN FARMAP EXPERIMENTS

Figures 10 summarizes the experimental results on 1500 environments on each step. The lines in
the plots are the average of all or a group of experiments and the shaded areas are standard errors of
the mean which are not visible due to large number of trials. In general, FarMap uses stable amount
of memory on average (40 %) over all exploration while other methods use much more memory as
map coverage increases. The average memory usage of FarMap is almost consistent in any group
of environments as the agent explores environments while the usages of Frontier and Frontier++
keep increasing. Moreover, as we already mentioned in Section 4.1, the memory usage gap between
FarMap and Frontier++ is dramatically increased while the map coverage gap is small.

16



Under review as a conference paper at ICLR 2023

Table 2: Sensitivity analysis about fragmentation threshold, ρ in FarMap.The numbers in parentheses
are the standard deviation.

ρ
Small (size < 5,000) Medium (5,000 ≤ size < 15,000) Large (size ≥ 15,000)

Coverage Memory Time Coverage Memory Time Coverage Memory Time

1.0 99.1 (7.0) 71.5 (11.3) 117.9 (34.1) 87.1 (19.4) 39.6 (13.7) 146.2 (61.5) 60.9 (19.8) 17.9 (6.6) 148.4 (36.1)
1.5 99.1 (7.1) 75.7 (9.9) 158.0 (653.5) 87.6 (19.0) 50.2 (17.2) 180.1 (60.3) 59.7 (20.1) 23.3 (9.3) 188.9 (51.3)

2.0 (ours) 99.0 (7.2) 79.1 (8.7) 278.2 (118.6) 86.4 (19.8) 62.9 (19.3) 321.4 (119.0) 56.6 (20.8) 31.4 (11.8) 352.5 (110.7)
2.5 98.8 (6.9) 80.7 (8.1) 207.1 (503.4) 89.0 (18.2) 79.7 (18.0) 557.3 (336.8) 58.4 (20.3) 56.9 (19.0) 770.5 (393.0)
3.0 98.8 (6.7) 81.5 (7.6) 296.1 (154.5) 91.0 (17.5) 85.0 (15.6) 698.2 (308.8) 60.9 (21.5) 67.9 (21.0) 1068.0 (413.1)

Table 3: Sensitivity analysis about decaying factor, γ in Eq. 1 in FarMap. The numbers in parentheses
are the standard deviation.

γ
Small (size < 5,000) Medium (5,000 ≤ size < 15,000) Large (size ≥ 15,000)

Coverage Memory Time Coverage Memory Time Coverage Memory Time

0.8 98.8 (7.2) 79.4 (8.5) 210.5 (104.2) 85.3 (20.6) 64.5 (20.7) 304.0 (228.4) 55.6 (19.7) 32.8 (11.3) 304.8 (112.1)
0.9 (ours) 99.0 (7.2) 79.1 (8.7) 278.2 (118.6) 86.4 (19.8) 62.9 (19.3) 321.4 (119.0) 56.6 (20.8) 31.4 (11.8) 352.5 (110.7)

0.95 99.1 (6.8) 79.0 (8.4) 178.3 (74.3) 87.3 (19.1) 61.3 (19.1) 507.5 (4564.6) 59.2 (20.2) 31.9 (12.5) 284.7 (87.7)
0.99 99.1 (6.8) 80.8 (7.9) 262.3 (232.4) 89.3 (18.3) 76.5 (18.3) 453.8 (210.3) 60.4 (20.2) 46.7 (18.4) 541.5 (231.6)

E SENSITIVITY ANALYSIS FOR HYPERPARAMETERS IN FARMAP

We test FarMap with various hyperparameters; fragmentation threshold (ρ), decaying factor (γ), and
ϵ. All experiments are conducted in the same environments. While comparing one hyperparamters,
we fix the remaining parameters as ρ = 2.0, γ = 0.9, ϵ = 5. Tables 2 presents the performance
of FarMap with different fragmentation threshold, ρ. The smaller value makes it more prone to
fragment the space, which means it can use less memory but it overly fragments the space. On the
other hand, bigger threshold makes use more memory without fragmentation. Hence, we choose 2 as
the threshold value (95% confidence interval if the distribution follows gaussian). On the other hand,
our FarMap is robust to the decaying factor and ϵ as shown in Table 3 and Table 4, respectively.

F STATISTICAL ANALYSIS OF FARMAP EXPEIRMENTS

Table 5 shows a 95 % confidence interval by using bootstrapping with one million samples on FarMap
experiments. The confidence interval is very wide since our metrics map coverage, memory usage,
and wall-clock time depend on the size and the complexity of the environment and each method
is evaluated on many varied environments. To reduce the effect of variance in environments, we
present the relative results comparing to Frontier (dividing the results of Frontier++ and FarMap by
the result of Frontier) in Table 6 and Figure 11. For Figure 11, we first sort the environments based
on their sizes, and then we partition the environments into groups of size 50 and calculate the average
and run bootstrapping to get a 95 % confidence interval for each group. The confidence intervals of
map coverage for both Frontier++ and FarMap are similar. On the other hand, memory usage and
wall-clock time are significantly different although there are some overlaps.

G EFFECT OF THE NUMBER OF FRAGMENTATION ON FARCURIOSITY
PERFORMANCE

Figure 12 shows the relation between the relative performance improvement and the average number
of fragments on multiple Atari games. In most games, the number of fragments is up to 50, but it
reaches the maximum capacity of LTM in Beam Rider. There is no clear global tendency between
performance improvement and the number of fragments.

17



Under review as a conference paper at ICLR 2023

Table 4: Sensitivity analysis about ϵ in Eq. 4 in FarMap. The numbers in parentheses are the standard
deviation.

ϵ
Small (size < 5,000) Medium (5,000 ≤ size < 15,000) Large (size ≥ 15,000)

Coverage Memory Time Coverage Memory Time Coverage Memory Time

1 99.0 (7.1) 79.1 (8.7) 198.0 (86.4) 86.8 (19.4) 63.0 (19.2) 275.3 (93.7) 56.6 (20.7) 31.5 (11.9) 294.8 (81.4)
3 99.0 (7.2) 79.1 (8.7) 198.1 (88.3) 86.7 (19.5) 63.0 (19.1) 271.3 (89.1) 56.5 (20.7) 31.5 (11.9) 294.5 (81.5)

5 (ours) 99.0 (7.2) 79.1 (8.7) 278.2 (118.6)) 86.4 (19.8) 62.9 (19.3) 321.4 (119.0) 56.6 (20.8) 31.4 (11.8) 352.5 (110.7)
10 99.0 (7.2) 79.1 (8.7) 197.1 (91.9) 86.6 (19.5) 62.9 (19.1) 272.5 (88.2) 56.3 (20.9) 31.4 (11.8) 294.9 (82.1)
15 99.0 (7.3) 79.1 (8.7) 198.5 (94.4) 86.6 (19.5) 63.0 (19.1) 288.7 (247.9) 55.9 (20.7) 31.1 (11.6) 295.7 (84.4)

Table 5: Comparison of average map coverage (%), memory use (%), and wall-clock time (s) for
small, medium, and large environments. The memory usage advantage of FarMap relative to its
counterparts grows with environment size. The numbers in parentheses are 95 % confidence interval
generated by bootstrap with one million samples.

Model
Small (size < 5,000) Medium (5,000 ≤ size < 15,000) Large (size ≥ 15,000)

Coverage Memory Time Coverage Memory Time Coverage Memory Time

Frontier 97.2 (76.0, 100.0) 80.4 (61.8, 88.7) 360.5 (154, 773) 76.3 (15.6, 99.8) 73.3 (13.0, 92.3) 871.9 (290, 2020) 41.4 (6.1, 84.3) 44.4 (3.8, 84.3) 1261.0 (217, 3189)
Frontier ++ 98.8 (97.5, 100.0) 81.6 (71.1, 88.7) 341.1 (118, 852) 91.4 (15.2, 99.8) 85.9 (12.5, 93.3) 1099.5 (365, 2339) 60.8 (6.1, 98.7) 68.1 (3.8, 94.2) 1872.4 (421, 3785)

FarMap 99.0 (96.3, 100.0) 79.1 (61.4, 88.0) 278.2 (139, 538) 86.4 (15.6, 100.0) 62.9 (12.5, 90.2) 321.4 (191, 528) 56.6 (6.1, 97.7) 31.4 (3.8, 54.3) 352.5 (202, 633)

0.7 1.1 1.8 3.0 4.9 8.1 13.4 22.0
Environment Size (k)

1

2

3

4

5

Re
la

ti
ve

 C
ov

er
ag

e

0.7 1.1 1.8 3.0 4.9 8.1 13.4 22.0
Environment Size (k)

1

2

3

4

5

6

7

Re
la

ti
ve

 M
em

or
y 

U
sa

ge

0.7 1.1 1.8 3.0 4.9 8.1 13.4 22.0
Environment Size (k)

0

1

2

3

4

5

Re
la

ti
ve

 W
al

l-C
lo

ck
 T

im
e

Frontier Frontier++ FarMap

Figure 11: Relative map coverage, memory usage, and wall-clock time normalized by the results from
Frontier on each environment. The mean (line) and 95% confidence interval (shade) are calculated by
bootstrap with one million samples each from groups of 50 environments ordered by size.

H INDIVIDUAL PERFORMANCE IN ATARI GAMES

Figure 13 presents the mean cumulative extrinsic rewards (also known as extrinsic return) and its
standard errors at varying number of training data (frames) over three different random trials in fifteen
games including four hard Atari games: Gravitar, Montezuma’s Revenge, Pitfall and Private Eye.
FarCuriosity outperforms RND in ten environments and has worse performance in two environments.
In Breakout and Space Invaders, FarCuriosity outperforms RND by a smaller margin. This is because
the observations in those environments are more similar, and once the agent kills all enemies or
hits all of the bricks, the same enemies and bricks are revived. Hence, RND does not suffer from
catastrophic forgetting and achieves similar results with FarCuriosity. FarCuriosity shows similar
performance in Pong, Star Gunner, and Pitfall. We believe this is because the observation space is
less visually diverse in those games. In Pong for example, the only visually dynamic features are the
agent, the opponent, and the ball, all of which move over a fixed monotone background. Moreover,
no fragmentations occur in Star Gunner. Consequently, catastrophic forgetting does not happen and
FarCuriosity does not demonstrate a significant advantage in this environment. On the other hand,
FarCuriosity shows worse performance compared to RND in Tennis and Montezuma’s Revenge.
Tennis is the most homogeneous game in Atari as shown in Figure 6 and Montezuma’s Revenge is
also one of the most homogeneous games according to our measurement since RND agent is difficult
to explore many rooms. We hypothesize that this homogeneity can lead to wrong fragmentation,
which degrades the performance.

18



Under review as a conference paper at ICLR 2023

Table 6: Average and 95% confidence interval of relative map coverage, memory usage and wall-clock
time of Frontier++ and FarMap over Frontier. Confidence interval is calculated by bootstrap with one
million samples.

Model
Small (size < 5,000) Medium (5,000 ≤ size < 15,000) Large (size ≥ 15,000)

Coverage Memory Time Coverage Memory Time Coverage Memory Time

Frontier++ 1.02 (0.99, 1.20) 1.03 (1.10, 1.20) 0.95 (0.56, 1.60) 1.26 (0.99, 2.30) 1.24 (0.97, 2.20) 1.36 (0.68, 2.70) 1.65 (1.00, 3.30) 1.78 (1.00, 3.80) 1.75 (0.80, 4.80)
FarMap 1.03 (0.99, 1.20) 1.00 (0.72, 1.20) 0.85 (0.41, 1.70) 1.20 (0.79, 2.20) 0.90 (0.42, 1.60) 0.46 (0.16, 1.30) 1.56 (0.79, 3.20) 0.84 (0.37, 1.70) 0.37 (0.13, 1.30)

Tennis

Jamesbond

Beam Rider

River RaidAsteroids

Pong
Star Gunner

Seaquest

Boxing

Breakout

Space Invaders

Improvement 

Deteoriation

<latexit sha1_base64="10synzuBOhvsoABCpzBzXVXtwtI=">AAACQHicbVA9SwNBEN3z2/gVtbRZDIIWhjsRtRFERbQRDcYIuRD2NnO6uHd77M4Fw3E/zcafYGdtY6GIrZWbGMGvBwtv3pthZl+QSGHQdR+cgcGh4ZHRsfHCxOTU9Exxdu7cqFRzqHIllb4ImAEpYqiiQAkXiQYWBRJqwfVe16+1QRuh4jPsJNCI2GUsQsEZWqlZrFGL5QpIW7fBp0dRolUbIohxhW5TP9SMZ5Wmj3CD2QHTe6kWygjs5HSVfumV4/08z35UzWLJLbs90L/E65MS6eOkWbz3W4qn3cVcMmPqnptgI2MaBZeQF/zUQML4NbuEuqUxi8A0sl4AOV2ySouGStsXI+2p3ycyFhnTiQLbGTG8Mr+9rvifV08x3GpkIk5ShJh/LgpTSVHRbpq0JTRwlB1LGNfC3kr5FbOZoc28YEPwfn/5LzlfK3sbZe90vbSz249jjCyQRbJMPLJJdsghOSFVwskteSTP5MW5c56cV+fts3XA6c/Mkx9w3j8AyrawEg==</latexit>

(Relative Improvement) =
RFarCuriosity �RRND

RRND

Montezuma’s Revenge

Gravitar
Pitfall

Private Eye

Figure 12: The relative performance improvement over RND performance (RRND) in various Atari
games. The average number of fragments is at most 50 in most games.

0 20 40 60 80 100
Frames (millions)

0

5000

10000

15000

Ex
tri

sic
Re

wa
rd

Jamesbond

0 20 40 60 80 100
Frames (millions)

1000

2000

3000

4000
Beam Rider

0 20 40 60 80 100
Frames (millions)

0

5000

10000

15000

River Raid

0 20 40 60 80 100
Frames (millions)

1000

2000

3000

4000

Asteroids

0 20 40 60 80 100
Frames (millions)

500

1000

Ex
tri

sic
Re

wa
rd

Gravitar

0 20 40 60 80 100
Frames (millions)

0

1000

2000

Private Eye

0 20 40 60 80 100
Frames (millions)

0

200

400

600
Breakout

0 20 40 60 80 100
Frames (millions)

0

500

1000

1500

2000

Space Invaders

0 20 40 60 80 100
Frames (millions)

150

100

50

0

Ex
tri

sic
Re

wa
rd

Pitfall

0 20 40 60 80 100
Frames (millions)

0

25

50

75

100
Boxing

0 20 40 60 80 100
Frames (millions)

0

500

1000

1500

Seaquest

0 20 40 60 80 100
Frames (millions)

0

10000

20000

30000
Star Gunner

0 20 40 60 80 100
Frames (millions)

0

100

200

300

Ex
tri

sic
Re

wa
rd

Montezuma's Revenge

0 20 40 60 80 100
Frames (millions)

20

10

0

10

20
Pong

0 20 40 60 80 100
Frames (millions)

20

10

0
Tennis

RND
FarCuriosity

Figure 13: Mean extrinsic reward of RNN-based policies: RND and FarCuriosity with extrinsic
reward on fifteen Atari games. The environments are sorted by the heterogeneity measured in
Section 4.2: from highest to the lowest

19



Under review as a conference paper at ICLR 2023

(a) Asteroids (b) Beam Rider (c) Boxing (d) Breakout

(e) Gravitar (f) Jamesbond (g) Montezuma’s Revenge (h) Pitfall

(i) Pong (j) Private Eye (k) River Raid (l) Seaquest

(m) Space Invaders (n) Star Gunner (o) Tennis

Figure 14: Various Atari environments used for comparing FarCuriosity and RND.

20


	Introduction
	Related Work
	Fragmentation and Recall Framework
	Fragmentation and Recall in Spatial Exploration (FarMap)
	Fragmentation and Recall in Curiosity-Driven RL (FarCuriosity)

	Experiments
	FarMap Experiments
	FarCuriosity Experiments

	Discussion
	Overall Procedure of Spatial Navigation
	Procedurally-Generated Environments
	Experimental Details
	FarMap Environment Generation
	FarMap
	FarCuriosity

	Comparison on Each Step in FarMap Experiments
	Sensitivity Analysis for Hyperparameters in FarMap 
	Statistical Analysis of FarMap Expeirments
	Effect of the Number of Fragmentation on FarCuriosity Performance
	Individual Performance in Atari Games

