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ABSTRACT

We present Banyan, a model that efficiently learns semantic representations by
leveraging an inductive bias towards explicit hierarchical structure. Although
typical transformer-based models excel at scale, they struggle in low-resource
settings. Recent work on models exploiting explicit structure has shown promise
as efficient learners in resource-constrained environments. However, these models
have yet to demonstrate truly competitive performance. Banyan bridges this
gap, significantly improving upon prior structured models and providing, for the
first time, a viable alternative to transformer embeddings for under-represented
languages. We achieve these improvements through two key innovations 1) A
novel entangled tree structure that resolves multiple constituent structures into a
single shared one, explicitly incorporating global context. 2) Diagonalized message
passing functions that increase the influence of the inductive bias. Our final model
has just 14 non-embedding parameters yet is competitive with baselines many
orders of magnitude larger. Banyan outperforms its structured predecessors and
competes with large unstructured models across various semantic tasks in multiple
languages. Notably, it excels in low-resource settings, highlighting its potential
for efficient and interpretable NLP in resource-constrained environments. These
results underscore the value of appropriate inductive biases in capturing semantic
relationships and open new avenues for efficient, interpretable NLP models.

1 INTRODUCTION

Semantic representations of text are important for many NLP applications such as retrieval augmented
generation (Lewis et al., 2020), question answering, and summarisation (Abdalla et al., 2023; Wang
et al., 2022). They are also useful for clustering and organising textual data when labelled training
sets are not available. At the time of writing such representations are primarily generated by large
scale transformer models (Vaswani et al., 2017). These models are incredibly effective, but training
them usually requires scale, both in terms of data and compute.

An alternative approach is to take inspiration from linguistics/cognitive science and explicitly in-
corporate structured compositions. Put simply, composition states that all you need to understand
the semantics of a whole are the meanings of its parts and the structure that dictates how they fit
together (Chomsky, 1956; Crain & Nakayama, 1987; Pallier et al., 2011; de Marneffe et al., 2006).
This is a very efficient principle, because novel utterances can broken down into familiar parts
using systematic rules, rather than having to store the meaning of each utterance individually. It
is thought that this principle lets humans generalise from (comparatively) little data and makes us
efficient learners (Fodor & Pylyshyn, 1988; Lake et al., 2016; Ito et al., 2022; Wiedemer et al., 2023).
In order to explicitly incorporate an inductive bias of this kind we need to change the modelling
process somewhat. Rather than keeping all the information flow internal, models must now learn
representations for the atomics, operate on (and/or learn) a discrete graph that dictates the mode of
combination, and learn functions that control information flow through such a graph. Models of this
kind have demonstrated improved language modelling perplexity at cognitively plausible scales (Hu
et al., 2021; 2022); better systematic generalisation (Sartran et al., 2022; Murty et al., 2023); and,
importantly for this paper, the ability to efficiently acquire semantics (Opper et al., 2023).

Opper et al. (2023) introduce a model called the Self-StrAE, which learns to representations which
have to explicitly model compositional semantics. This demonstrated very promising performance
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while requiring minimal resources. Both in terms of data and model size. Opening the door to
investigate whether more compute efficient solutions can be found for learning semantic representa-
tions. This would be particularly useful for low resourced languages where relying on scale is not a
generally feasible solution. However, the Self-StrAE, while promising, still lags behind large scale
pre-trained transformers, even in langauges which fall outside of standard pre-training corpora. In
this paper we introduce a model called Banyan, which significantly improves performance over that
of (Opper et al., 2023), while simultaneously achieving even greater resource efficiency. We achieve
this by changing the form of the structure optimised to a graph that models global relations between
nodes which we call an entangled trees, as well as a message passing regime based on diagonal
functions which reduces parameters while producing more expressive representations. Our model,
Banyan, achieves competitive performance with transformer based baselines, and for the first time
represents a low cost yet viable alternative for producing representations for low resource languages,
measured using semantic textual similarity (STS) tasks. By leveraging cognitively inspired inductive
biases we can achieve performance comparable or better than large scale pre-trained LLMs but with
only 14 non-embedding parameters.

2 BACKGROUND AND RELATED WORK

Banyan is a graph neural network, specifically a recursive neural network (RvNN), that learns both
structure and representations. Before detailing the model, we unpack these terms in this section.

Recursive Neural Networks: Like their recurrent cousins, recursive neural networks operate by
repeatedly applying a function to update a the network state in an ordered fashion. However, rather
than utilising temporal ordering (i.e. over a sequence), RvNNs operate according to some hierarchical
structure, typically this given as input and most often it is a binary tree. They can be applied bottom-up
(traversing from leaves to root) or top-down (from root to leaves) or both. First popularised by Socher
et al. (2011; 2013), they have inspired numerous successor frameworks which differ in how the
recursive function is defined. These successors include the Tree-LSTM (Tai et al., 2015), IORNN (Le
& Zuidema, 2014; Ji & Eisenstein, 2015) and also Banyan.

Learning Structure: RvNNs typically require structure as input, sometimes such structure is
available or can be obtained using existing tools, but generally this is quite a limiting factor, because
it limits model flexibility. A solution is to incorporate a mechanism within the model that is
able to induce the structure during the recursive computation. Prior approaches include the use
of differentiable chart parsing (Drozdov et al., 2019; 2020; Hu et al., 2021; 2022), beam search
(Ray Chowdhury & Caragea, 2023), continuous relaxation (Chowdhury & Caragea, 2021; Soulos
et al., 2024), or reinforcement learning (Havrylov et al., 2019). While successful these solutions
can suffer from memory issues and hyperparameter sensitivity. In this paper we adopt the approach
of Opper et al. (2023) and utilise representation similarity to dictate merge order. This is both
computationally inexpensive and surprisingly effective.

Semantic Representations of Text: Systems like Word2Vec (Mikolov et al., 2013) and GLoVe
(Pennington et al., 2014) model the semantics of words using the distributional hypothesis (Harris,
1954). This hypothesis states that the context a word is used in defines its meaning. Consequently,
representations are learned by setting a context window of some fixed size and then using that to
predict the missing word. This approach proved very effective for a long time, but words don’t all
have one meaning - it changes in context. A natural solution is to use transformers. Initially smaller
(relative to today) encoder only models produced poor representations (Reimers & Gurevych, 2019).
However, at time of writing transformers with optional contrastive finetuning (Gao et al., 2021) have
become the model of choice for producing semantic representations.

Semantic Representation Learning through Structure: Transformer embeddings are more success-
ful than static word embeddings because they are allow for flexible contextualisation. The meaning
of a word can change in context and will more strongly influenced by certain neighbours rather than
others. A transformer can model this phenomenon by routing information between specific tokens via
its attention. An alternative approach is to use structure, where rather than attention dictating routing,
it is done by an explicit graph. Early work in this area focused on lexical semantics, using dependency
parses to determine a more focused context window (Levy & Goldberg, 2014; Vashishth et al., 2019).
More recent work by Opper et al. (2023) use constituency parses in order to learn embeddings at both
the word and the sentence level. They introduce two variants of their model. StrAE: which takes
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structure as input, and Self-StrAE: which learns its own structure with the representations. This later
model, the Self-StrAE, is the starting point from which we build Banyan, and will be outlined in
more detail in the subsequent section.

3 PRELIMINARY: SELF-STRAE
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Figure 1: Self-StrAE operation. Red
lines indicate cosine similarity. Shared
colours imply shared parameters.

Self-StrAE involves three main components that acts
over a sentence w = ⟨wn⟩Nn=1 represented as a sequence
of tokens. These are: (a) a procedure to determine
which tokens to merge and in what order, (b) message
passing functions—composition and decomposition—that
merge and split embeddings respectively, and (c) a
reconstructive objective that leverages both the induced
structure and embeddings. While we refer the reader to
Opper et al. (2023) for a detailed description of these
components, we briefly recap its operation to provide
sufficient background for the development of Banyan (§ 4).

At a high-level, Self-StrAE learns representations that both define their own structure and are in
turn defined by it. This is achieved by first embedding tokens to form an initial frontier using an
embedding matrix ΩΨ. Next it then takes the adjacent tokens with the highest cosine similarity
to each other (ate and doughnuts in Figure 1) and merges them into a single embedding using a
parametric composition function CΦ. This procedure is repeated until the sequence reduces to a
single root embedding. The resulting merge history is then treated as the induced binary tree for
the sentence. Self-StrAE then traverses back down the structure, recursively splitting embeddings
at every node using a parametric decomposition function DΘ to recover embeddings for the leaves.
Finally, the model can optionally use a dembedding function ΛΓ to predict tokens ŵn from these leaf
embeddings. Figure 1 illustrates the autoencoding process.

Intuitively, this means that the model starts from random embeddings, and therefore an essentially
random merge order. Throughout training, tokens which are often part of the same merges will have
their representations drawn together, so the representation reflects what they are likely to compose
with. The model can then leverage any regularities to better perform reconstruction. This leads the
representations to further reflect likely compositions and consequently increases the regularity in the
structure. Ultimately, this leads to representations which must, by virtue of the training procedure,
reflect the compositional semantics learned by the model.

For a more formal description of the operation of the model we begin by noting that the model
generates two sets of embeddings. One set going up from leaves to root, and another coming back
down from root to leaves. We denote these ē and e respectively We also note that an embedding
is typically viewed as e ∈ RU×K with K independent channels—of particular relevance to the
composition and decomposition functions which act independently over the channels. Tokens are
denoted as the vertices wi ∈ ∆V in a V -simplex for vocabulary size V . All together, the functioning
of the model is then characterised by:

ΩΨ(wi) = wi Ψ, Ψ ∈ RV×(U⋆K) (1)

CΦ(ēi, ēi+1) = HCAT(ēi, ēi+1) Φ + ϕ Φ ∈ R2U×U , ϕ ∈ RU (2)

DΘ(ei) = HSPLIT(ei Θ+ θ) Θ ∈ RU×2U , θ ∈ R2U (3)

ΛΓ(ei) = ei Γ Γ ∈ R(U⋆K)×V (4)

Given the nature of the model, a straightforward objective would be to simply reconstruct the
tokens, formulated for sentence w and prediction ŵ as LCE(w, ŵ) = − 1

N

∑N
n=1 wn · log ŵn.

An alternate approach developed by Opper et al. (2023) leverages the multi-level structure of the
model to define a contrastive objective over a batch of sentences {wb}Bb=1 with a total of M nodes
(internal + leaves). Noting that the up and down trees share the same underlying structure (modulo
reversed edges), this objective draws together corresponding up and down embeddings at a given
tree position, whilst pushing away other embeddings across the batch, using the cosine similarity
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Figure 2: Entangled trees: Example of disjoint trees being transformed into an entangled tree. We
leave out denoting functions from Eqs. (1) to (4) to avoid clutter and assume them implicitly present.

metric. Denoting the pairwise similarity matrix A ∈ RM×M between upward embeddings ⟨ēi⟩Mi=1

and downward embeddings ⟨ei⟩Mi=1, and Ai•, A•j , Aij the ith row, jth column, and (i, j)th entry of
the matrix respectively, the objective is defined as: LCO(ē, e) = −1

2M

∑M
i=1 log (στ (Ai•)στ (A•i))

with tempered softmax στ (·) (temperature τ ) normalising over the unspecified (•) dimension.

4 MODEL

A particularly interesting characteristic of learning with explicitly structured models such as
Self-StrAE or even earlier models such as the IORNN (Le & Zuidema, 2014) is the dichotomy
between the upward and downward embeddings. Given their construction, the upward embeddings
are always locally-contextual: they only encapsulate the context of the span they cover. For ex-
ample, following Fig. 1, the upward embedding ē for the span ‹ate doughnuts› is always the same
regardless of context, no matter who did the eating. In contrast, downward embeddings are always
globally-contextual: they must encapsulate the surrounding context by virtue of being decomposed
from larger spans. For our example, this implies that there are multiple downward embeddings ey for
the given span, one for each y ∈ {Lisa, Homer, . . .}. To learn effective embeddings then, one must
marginalise over these different downward embeddings to ensure that their meaning resolves over all
these contexts.

4.1 FROM TREES TO ENTANGLED TREES
Algorithm 1 Banyan: Entangled Compose

Input: Global frontier ⟨(sn, en)⟩Nn=1, compose
(◦), concat (⋄), similarity CSIM(e, e′)

1: A ← ⟨(sn, en)⟩Nn=1 ▷ initialise frontier

2: (V, E)← (∅,∅) ▷ initialise graph

3: while ∃i : si ⋄ si+1 ̸∈s V do
4: i⋆ ← argmaxi CSIM(ei, ei+1)

▷ location of closest adjacent pair

5: ep = ◦(ei⋆ , ei⋆+1) ▷ compute composition

6: V ← V ∪ {(si⋆ ⋄ si⋆+1, ep)}
7: E ← E ∪ {p ∼ i⋆, p ∼ (i⋆ + 1)}
8: J ← {j : (sj , sj+1) = (si⋆ , si⋆+1)}

▷ locations of all occurrences of this pair

9: A ← A \ {∀j∈J Aj ,Aj+1}
▷ delete occurrences from those locations

10: A ← A∪J {(si⋆ ⋄ si⋆+1, ep)}
▷ insert composition into those locations

11: return Graph (V, E)

We want to have the composition embeddings amortise
over all possible contexts, and simultaneously we want all
decompositions embeddings to resolve to the same thing.
The representation of an entity Lisa should encapuslate
everything she could possibly eat. Simulteanously if we
take the average of everything she could eat we should get
back to Lisa. Self-StrAE does not explicitly model this
behaviour in its structure. Decomposition embeddings of
the same entity only interact when we calculate the loss.
On top of this, because the loss is taken over the batch,
they are actually treated as false negatives to each other.
Even though they are terms that ought not be pushed
away, the objective ask them to be.

Our innovation here is to address both these issues to-
gether by formulating the process in terms of entangled
trees—where entangling refers to reduction of a set of disjoint tree structures into a single conjoined
graph structure. An example is shown in Fig. 2 with disjoint trees on the left and resulting entangled
tree on the right. Here, all instances of ‹night› and ‹some are born to› are captured by a single node
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representing that constituent. We call our model Banyan on account of this entangling, because, like
the tree, it can have many roots -consisting of nodes frequently reused across contexts.

Entangling: Constructing an entangled tree given a set of disjoint trees is a relatively straightforward
process and is formally specified in Algorithm 1. In contrast to the agglomerative clustering employed
in Self-StrAE, here we employ a global frontier spanning all leaf nodes across the given data. The
key differences to the prior methods are mainly to do with constructing a graph jointly with progressing
the frontier and ensuring that new nodes are never duplicated, for which we employ a node identity sn
in addition to the node embedding en.

some are born to

tobornare
(a) upward composition

some are born to

tobornare
(b) downward decomposition

Figure 3: Upward and downward traversals
for a section of the entangled tree from Fig. 2.

Incorporating context Following the entangling of
trees described, the model proceeds in a similar vein
to Self-StrAE, by composing upwards from leaves
to roots (multiple roots corresponding to multiple
trees), and then decomposing downwards back to the
leaves. With entangled trees, while traversing up-
wards each node is always composed from the same
two children, but on the way back down, things are
different as each separate context for a given node
provides a different downward embedding. This is
shown in Fig. 3 focussing on a subgraph of the en-
tangled tree from Fig. 2(right). Note that the node in question (in blue) corresponds to the span
‹some are born to›, and has downward embeddings that incorporate context both from ‹endless night›
and ‹sweet delight›. This is exactly as desired, as Banyan allows explicit aggregation to derive the
downward embedding that resolves over the contexts. For any upward embedding ē whose span
occurs in different contexts y ∈ Y , the corresponding downward embedding is derived by simply
averaging over the different contextual down embeddings; i.e., e = 1/|Y|

∑
y e

y .

Effectiveness and efficiency Beyond the ability to explicitly incorporate context across data,
entangled trees also help the contrastive objective by avoiding false negatives since they do not admit
duplicate nodes by construction. Furthermore, the lack of duplicate nodes also drastically impacts
the memory footprint of the model as one deals with the set of all nodes rather than counting each
instance as its own node. These effects becomes more pronounced when entangling a larger set of
instances as the likelihood of false negative and duplicates goes up together.

Practical estimation Given the advantages conferred by entangled trees, one would ideally want to
construct it over all the available data. This however is not practically feasible as the size of data
typically grows exponentially with time. To address this, we construct our model to estimate the
given objective by taking steps over batches of data that are of a more manageable size, noting that
this estimator is unbiased. To see this is the case, note that entangled trees only affects the downward
embeddings directly, and that batching simply means that the resolved embedding is an average over
samples instead of over all the data (population)—the sample mean is always an unbiased estimator
of the population mean.

4.2 SIMPLIFIED MESSAGE PASSING

Complementary to the development of entangled trees to incorporate context, we also explore avenues
to improve the message passing with the composition (C) and decomposition (D) functions. The
original formulations of these from Eqs. (2) and (3) employ concatenation and splitting along with
simple single-layer linear neural networks. The authors found that these simpler formulations led to
better representations than e.g., Tree-LSTM cells, because they forced the model to conform to the
compression order of the structure.

But if all we need for success is to respect the compression order, then we could possibly do better
with an even simpler solution that exploits diagonalised functions (Ba et al., 2016)? These have
become a hallmark of the recent resurgence in recurrent neural networks (Peng et al., 2023; Orvieto
et al., 2023; De et al., 2024), by introducing decayed memory in the temporal dimension. Such a
parameterisation means that rather than using full matrices as our C and D functions, we instead
define them as:
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C(ēi, ēi+1)=(ēi ·σ(Φl) + ēi+1 ·σ(Φr)) + ϕ Φl,Φr, ϕ ∈ RU (5)

D(ei) =
(
ei ·σ(Θl) + θl, ei ·σ(Θr) + θr

)
Θl,Θr, θl, θr ∈ RU (6)

with sigmoid non-linearity (σ) applied to parameters both for numerical stability and to make the
functions enforce a decayed memory over structure depth. The repeated application of the diagonal
composition function will decay the influence of nodes further down in the tree, thereby respecting
the compression order of the structure. In addition, during composition parent representations
can increase in magnitude as they are the sum of the two children. During decomposition child
representations will, by necessity, reduce back down in magnitude towards the core. In this way the
functions further mimic the information flow specified by the entangled trees.

These relatively simple changes have a pretty drastic effect, both in terms of performance (see
experiments) as well as memory footprint, with parameters now reduced by a factor of U compared
to the functions from Eqs. (2) and (3)

5 EXPERIMENTS:

5.1 WARMUP: ENGLISH LANGUAGE EVALUATION

Goal: Having outlined Banyan, we want to test whether it can efficiently learn semantics. We start
by evaluating on English, as there are far more test sets available than for low resource languages.

Evaluation: We want to evaluate how well Banyan is able to learn effective semantic representations.
Ideally we want to probe this at different levels of hierarchy, covering both the lexical and sentential
level. Our evaluation is unsupervised, both to directly probe the effect of pretraining with the inductive
bias, and because this setting has greater parity to what may be expected in a low resource domain,
where there are few labelled datasets. For these reasons, we turn to a series of tasks which measure
correlation between cosine similarity of embedding pairs for two examples and human judgements
of their semantic correspondence. On the word level, we use Simlex-999 (Hill et al., 2015) and
WordSim-S/R (Agirre et al., 2009). All tasks measure semantics, but do so on differing axes. To
understand this, we must first qualify the difference between semantic similarity and relatedness.
Semantic similarity measures the extent to which entities act the same way. For example, ‘running’
and ‘singing’ are similar as they share the role verb. Semantic relatedness measures conceptual
association. For example, ‘singing’ and ‘fame’ may be highly related. Simlex measures similarity at
the exclusion of relatedness. Wordsim S measures similarity without penalising relatedness. And
Wordsim R measures relatedness. On the sentence level, we use STS-12 through 16 (Agirre et al.,
2012; 2013; 2014; 2015; 2016), the STS-B (Cer et al., 2017), SICK-R (Marelli et al., 2014) and
SemRel (Ousidhoum et al., 2024). Each measures slightly different aspects of sentential semantics,
covering similarity, relatedness, equality and entailment. A good model should do well on all of them.

Baselines: We compare against the Self-StrAE, GloVe embeddings (Pennington et al., 2014) and
a RoBERTa (Liu et al., 2019) in the medium configuration from (Turc et al., 2019). Self-StrAE
stands as the closest point of comparison to Banyan. Self-StrAE indicates the performance level of
structured representation learning lies, as well as any improvements we are able to achieve. GloVe
lets us compare to traditional static embeddings. This comparison probes whether our model is
learning anything more than just simple bag of word features. To obtain sentence embeddings, we
report results using both the simple average of the word embeddings and the average with filler
words removed following (Reimers & Gurevych, 2019). These filler words contribute little semantic
information and their removal has been shown to improve performance. For RoBERTa, we report
results using both the standard model, and again after enhancing RoBERTa through an extra round of
contrastive SimCSE training (Gao et al., 2021), as a further STS baseline. In both cases, we generate
sentence embeddings through mean pooling. To produce static embeddings from RoBERTa to use in
lexical evaluation, we follow Bommasani et al. (2020) and average the contextualised representations
of all occurrences of the word in the training set. The RoBERTa is intended as a stronger baseline. It
has significantly more parameters than Banyan and is able to model meaning in context unlike GloVe.

Hyperparameters and Pre-training Details: For all models we set the embedding size to 256. For
Self-StrAE we use the configuration of (Opper et al., 2023) and set embeddings as square matrices
(i.e., K=16 and U=16). For Banyan we set these values to K=128 and U=2, because the more
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Table 1: Sentence level results for models pretrained on English. Higher is better. Results represent
the average across four random initialisations. Only columns where there is no standard deviation
overlap between models are bolded. Spearman’s ρ is * 100 following convention.
Model STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R SemRel Score

Self-StrAE 31.98 ± 0.58 53.88 ± 0.68 37.73 ± 0.70 55.23 ± 0.58 55.55 ± 0.47 39.53 ± 1.61 51.78 ± 0.29 50.05 ± 0.92 46.59 ± 0.43

GloVe 31.61 ± 0.31 21.69 ± 0.12 27.37 ± 0.10 40.42 ± 0.09 29.27 ± 0.12 28.25 ± 0.08 50.20 ± 0.25 41.20 ± 0.43 33.75 ± 0.04
+ stopword rm 39.00 ± 0.57 41.61 ± 0.19 39.31 ± 0.18 51.06 ± 0.35 45.14 ± 0.14 48.40 ± 0.07 52.80 ± 0.04 42.37 ± 0.13 44.96 ± 0.10

RoBERTa 42.77 ± 1.27 51.70 ± 1.30 45.67 ± 1.42 63.97 ± 0.81 59.60 ± 0.61 39.97 ± 0.95 52.93 ± 0.23 52.73 ± 0.58 51.08 ± 0.61
+ SimCSE 50.63 ± 1.45 62.23 ± 2.51 54.17 ± 2.10 68.77 ± 3.00 66.67 ± 1.40 53.53 ± 1.18 56.87 ± 1.16 59.27 ± 0.93 59.02 ± 1.45

Banyan 51.20 ± 0.007 69.10 ± 0.002 63.20 ± 0.004 73.20 ± 0.002 66.60 ± 0.002 61.50 ± 0.002 55.50 ± 0.003 61.60 ± 0.002 62.70 ± 0.001

independent channels we allowed the better the model seemed to perform. We refer the reader to the
Appendix for ablations. We also note that because we can perform this reduction in channel size, the
number of non-embedding parameters for Banyan drops to just 14, as these are directly proportional to
U . We trained Self-StrAE and Banyan for 15 epochs (circa 15k steps and sufficient for convergence)
using the Adam optimizer (Kingma & Ba, 2015), with a learning rate of 1e-3 for Banyan and 1e-4
for Self-StrAE using a batch size of 512. We applied dropout of 0.2 on the embeddings and 0.1
on the composition and decomposition function outputs. The temperature hyper-parameter for the
Self-StrAE was set to 0.2. To process the graphs we used DGL (Wang et al., 2020). The GloVe
baseline was trained for 15 epochs with a learning rate of 1e-3, and a window size of 10. We used the
official C++ implementation. RoBERTa medium was trained for 200,000 steps, (10% of which were
used for warmup). We used a learning rate of 5e-5, and a linear schedule. Positional embeddings
are relative key-query. The configuration for RoBERTa medium is 8 layers, 8 attention heads and
2048 dimensional feedforward layers. We used the Transformers library to implement and train the
model (Wolf et al., 2020). For SimCSE training, we used the default parameters and the official
implementation for unsupervised RoBERTa training from Gao et al. (2021). As our pre-training corpus
we selected the WikiText-103 benchmark dataset (Merity et al., 2016). The RoBERTa and GloVe
baselines are trained on the full corpus (103 million tokens), representing the upper-middle end of
the level of data scale that might be available for a language. Whereas we trained Self-StrAE and
Banyan on a uniform subsample of 10 million tokens, representing the lower end of how many tokens
might be available, because these explicit structure models are supposed to be efficient learners.

Table 2: Word level results analogous to Table 1.
Model Simlex Wordsim-S Wordsim-R Score

Self-StrAE 13.80 ± 0.41 54.38 ± 0.78 52.85 ± 1.27 40.34 ± 0.66

GloVe 27.47 ± 0.25 62.53 ± 0.42 51.00 ± 0.56 47.00 ± 0.38

RoBERTa 29.23 ± 0.64 61.97 ± 2.38 46.00 ± 2.13 45.73 ± 1.71

Banyan 16.57 ± 0.02 63.25 ± 0.03 69.00 ± 0.01 49.61 ± 0.02

Results: Results are shown in Tables 1 and 2.
On both the word level and sentence level
Banyan does much better than Self-StrAE. We
ablate the reasons for this in more detail later in
the manuscript. Both models suffer on SimLex
because they need to model both similarity and
relatedness as the latter dictates merge (related
concepts often compose together). However, the important thing to note is that the structured models
effectively transfer the same performance from the word level to the sentence level. They can take
advantage of composition, and transfer the meaning of the parts to understanding the meaning of the
whole. The GloVe baseline is good on the word level, but does not generalise to the sentence level as
well as the transformer, even when we give it stopword removal. It cannot transfer semantic knowl-
edge seamlessly to different levels of complexity. Banyan can, and is able to achieve comparable or
better performance than the SimCSE RoBERTa despite being much smaller and exposed to 10x less
pre-training data. This means we have a structured model that remains efficient and cheap, and also
effective at representation learning.

5.2 MULTILINGUAL EVALUATION:

Goal: From the results in English we know that Banyan is an efficient learner: it can produce good
representations without requiring large-scale data or compute. This implies potential use for under
represented communities, whose languages are not well covered by current NLP approaches. Now
we have to test that.

Evaluation: Learning semantic representations for low resource languages remains an ongoing
challenge in NLP. A core problem is not just the lack of training data, but also the lack of evaluation
datasets. Recent work by Ousidhoum et al. (2024) has sought to address this issue, providing
semantic relatedness test sets for several low resource Asian and African languages. These test sets
are evaluated the same as before, comparing the cosine similarity between model embeddings for
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Table 3: Multilingual Results. Banyan performance is taken over four random seeds. Baselines
marked with † have been finetuned on supervised semantic similarity datasets. FT denotes unsuper-
vised finetuning using masked language modelling on the same corpora as Banyan.
Model Indonesian Arabic Telugu Marathi Mor. Arabic Kinyarwanda Hausa Afrikaans Spanish Amharic Hindi Score

XLM-R 46.7 31.6 46.3 55.7 17.4 13.2 4.1 56.2 68.9 57.3 52.7 40.92
Llama-3.1 (8B) 53.4 31.1 65.6 63.4 19.4 19.7 6.1 65.4 66.7 64.1 61.7 46.96
Mistral Nemo 50.7 20.1 57 52.3 15.1 16.3 1.8 58.3 66.2 53.2 55.8 40.62

MiniLM-L12† 39 16.1 34.8 39.5 13.5 35 32.7 74.1 58.8 9.6 43.8 36.08
Paraphrase XLM-R† 46.1 61 58.1 79.6 7.1 43.2 22.5 76.8 71.7 64.6 52 52.97

XLM-R (FT) 47.9 33.6 68.8 75.1 21.6 19.4 14.6 72.6 72.8 59.6 57.6 49.41

Banyan 44.17 ± 1.11 43.20 ± 1.82 71.13 ± 0.91 67.67 ± 0.64 52.00 ± 2.25 46.1 ± 0.32 43.7 ± 1.21 78.68 ± 0.30 60.95 ± 0.76 66.18 ± 0.46 61.83 ± 0.6 57.78

two sequences with human judgements of their semantic match. As before, evaluation is zero-shot
unsupervised. Allowing us to evaluate Banyan on Indonesian, Arabic, Telugu, Marathi, Moroccan
Arabic, Kinyarwanda, Hausa, Afrikaans, Spanish, Amharic and Hindi. These represent a spectrum in
terms how well resourced they are. For example, Spanish and Hindi are reasonably well represented,
while Moroccan Arabic and Kinyarwanda have extremely little training data.

Baselines: We select XLM-R (Conneau et al., 2019): a transformer encoder trained on 2TB of
multilingual data. Llama 3.1 8B (Dubey et al., 2024): a decoder only LLM trained on 15 trillion
tokens. Mistral Nemo 12B: a decoder only LLM designed with multi-lingual capacities in mind. In
addition we also compare against two specialised embedding models from the sentence transformers
range (Reimers & Gurevych, 2019): Mini-LM-L12-V2 and Paraphrase-XLM-R-Multilingual-V1.
These are pre-trained transformer encoders that have been finetuned on supervised datasets designed
to produce high quality semantic representations. The baselines we select here are emblematic of
the kind of models one might reach for in order to embed a corpus. For all models we use mean
pooling to produce the sentence representation following Reimers & Gurevych (2019); Li & Li
(2024). Finally, for parity we include an XLM-R baseline which is finetuned on the same corpora.

Banyan Pre-training and Hyperparameters: For Afrikaans, Spanish and Amharic we obtained
corpora from Leipzig Corpora Collection1 (Goldhahn et al., 2012). For Amharic we utilised a
MiT licenced pre-training set of 1 million sequences available on the Huggingface hub at this link.
Kinyarwanda and Hausa data was sourced from Opus (Nygaard & Tiedemann, 2003). Each dataset
consists of roughly 10 million tokens. We utilise a pre-trained BPE tokenizer for each language
from the BPEMB Python package (Heinzerling & Strube, 2018). Though the package also provides
pre-trained embeddings, we solely use the tokenizer and learn embeddings from scratch. For the
model hyperparameters we keep all the settings from the experiments on English. For XLM-R we
finetune for up to 100k steps with early stopping, using a linearly scheduled learning rate of 5e-5 with
10 percent of stepping serving as warmup. XLM-R runs at batch size 128 across 4xA40 45gb cards.

Results: See Table 3. In Spanish, a well resourced language with high coverage, the transformer
baselines almost all outperform Banyan. However, as languages become lower resourced the picture
changes, and Banyan outperforms or is comparable to the baselines. This even includes the multilin-
gual XLM-R that has undergone supervised training to produce better representations. While finetuning
XLM-R improves performance the amount of benefit it provides is not uniform and is insufficient
to prove viable in the very low resource cases. Banyan is able to learn competitive representations
consistently across languages, unsupervised and with very little data, meaning it provides a viable
alternative for producing embeddings cheaply and efficiently for low resource languages.

5.3 EFFICIENCY

Figure 4: Total #nodes in entangled trees
vs sentential trees as batch size grows.

Alongside its embedding matrix, Banyan has two central
components: the composition and decomposition func-
tions. We diagonalise these functions so that they are both
easier to compute and have fewer parameters than standard
weight matrices, (2U rather than 2U ×U ), achieving a fur-
ther order of magnitude reduction in parameters compared
with the already minimal Self-StrAE.

Secondly, by exploiting entangled tree structure the num-
ber of nodes grows at a significantly reduced rate with
batch size compared with standard sentential trees (see

1For Spanish and Hindi we select the mixed corpus and uniformly subsample to reduce size to ≈10M tokens.
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Table 4: Ablations of modelling changes made for Banyan. Higher is better. Results represent the
average across four random initialisations. Only columns where there is no standard deviation overlap
between models are bolded. Spearman’s ρ is * 100 following convention.
Model STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R SemRel Score

Standard Trees 31.98 ± 0.58 53.88 ± 0.68 37.73 ± 0.70 55.23 ± 0.58 55.55 ± 0.47 39.53 ± 1.61 51.78 ± 0.29 50.05 ± 0.92 46.59 ± 0.43
+ diag functions 35.13 ± 0.33 56.05 ± 0.24 40.58 ± 0.05 58.83 ± 0.10 56.78 ± 0.21 44.10 ± 0.14 53.35 ± 0.17 52.65 ± 0.17 49.68 ± 0.06
++ CE loss 47.10 ± 1.04 61.85 ± 1.44 58.60 ± 1.34 70.45 ± 0.57 62.45 ± 0.70 59.50 ± 0.53 59.00 ± 0.26 60.33 ± 0.26 59.91 ± 0.54

Entangled Trees 38.98 ± 0.39 61.75 ± 0.14 43.65 ± 0.46 58.21 ± 0.41 55.29 ± 0.23 46.15 ± 0.71 53.93 ± 0.16 52.53 ± 0.09 51.31 ± 0.13
+ diag functions 44.15 ± 0.002 62.80 ± 0.002 48.30 ± 0.001 64.60 ± 0.002 60.30 ± 0.001 49.80 ± 0.002 55.14 ± 0.001 57.70 ± 0.001 55.23 ± 0.001
++ CE loss 51.20 ± 0.007 69.10 ± 0.002 63.20 ± 0.004 73.20 ± 0.002 66.60 ± 0.002 61.50 ± 0.002 55.50 ± 0.003 61.60 ± 0.002 62.70 ± 0.001

Fig. 4). This is because the number of reused constituent nodes also grows as batch size increases,
and entangled trees capture the set of all constituents, which consequently does not grow as drastically.
In practical terms, because entangled trees requires fewer nodes, and each node requires two distinct
embeddings (ē and e) to be held for it, reducing the number of nodes required leads to radical
improvements in memory efficiency. Put together, these changes mean that we can train Banyan very
quickly as we can use large batches and its small number of parameters ensure quick convergence.
On a single Nvidia A40 GPU with a batch size of 1024, Banyan pretrains from scratch in under 50
minutes, meaning that the total cost of pretraining a Banyan model sits at around 30 cents2. Free-tier
Google Colab users can achieve similar results in about two hours with a smaller batch size. Inference
can also be performed on CPU on typical laptops, because the model is so small. Combined with
its data efficiency, we believe this provides a promising alternative for low resource languages and
communities.

5.4 ABLATIONS

We have shown that Banyan is more effective than its Self-StrAE predecessor, but what is the impact
of the different modelling changes we made? To test this we ablate our results from our first set of
experiments on English (see Table 4).

The simplest positive impacts to see are from the introduction of the diagonalised composition and
decomposition functions. These are sigmoided scalar values with which we multiply embeddings.
Therefore they act similarly to the fast weights of Ba et al. (2016), decaying in the influence of
embeddings further down in the tree on the root representation. This means that the embeddings
produced by the model are restricted to conform to the compression order dictated by the structure,
and we know from Opper et al. (2023), that the more we can enforce this constraint the better our
representations will end up. Secondly, such simple message passing functions bias the representa-
tion space towards informative separability. There has to be some signal from which to perform
reconstruction, and all the pressure is now on the representations.

Switching the objective to cross entropy over the vocabulary rather than the contrastive objective used
by Opper et al. (2023) also yields significant benefits. This is likely because the contrastive loss is
supposed to be beneficial because it enforces a pressure for representations to be uniformly distributed
in space (Wang & Isola, 2020). However, our other modelling changes already push towards this
quality. While it is a shame because the contrastive loss is conceptually elegant. It is known to have
problems and eventually lead to shortcut solutions (Robinson et al., 2021). Therefore having a more
robust objective grounded in data, like the cross entropy over the vocabulary, is actually quite nice.

Finally, changing to entangled trees is also beneficial. The effect is more pronounced before switching
to the cross entropy objective, as it removes the issue of false negatives as discussed in Section 4.
However, it also is beneficial beyond this. Entangling explicitly allows the model to take advantage of
shared constituency structure between complex sequences, because it combines the information from
all incoming parent messages. The fact that performance improves using the cross entropy objective
shows that explicitly allowing the model to take advantage of such systematicity is useful.

Table 5: Number of non-embedding parameters for models studied.

Model Banyan Self-StrAE RoBERTa (M) All-MiniLM-L12-V2 XLM-R Llama 3.1 Mistral Nemo

Params 14 1072 ≈10M ≈21M ≈85M ≈8B ≈12B

2Current cloud computing costs sourced from: https://www.runpod.io/pricing
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6 CONCLUSION, LIMITATIONS AND FUTURE WORK

We introduce Banyan, a Self-Structuring AutoEncoder. Banyan’s focus on global, entangled structure
and simplified message passing exploits the benefits of structured compositions inherent in language
data. It is more effective and efficient than prior work from which we draw three central conclusions.

Firstly, explicitly modelling structured compositions is an effective inductive bias. Table 5 shows
the parameters for the structured models versus the baselines. The structured models are far smaller,
with tens or thousands of parameters instead of millions or billions. And nonetheless, Banyan is still
competitive across several metrics, indicating we have found an efficient learning procedure.

Secondly, we have not yet fully exploited the potential of the inductive bias. Banyan still relies on
greedy agglomerative clustering to induce structure. This is effective, but sub-optimal. Future work
could make the structure induction procedure parametric and learnable. The type of structure models
are exposed to impacts the quality of learnt semantic representations (Opper et al., 2023). So if how
we induce structure improves, the model should learn significantly better representations.

Thirdly, while this paper focuses on recursive neural networks for the purposes of efficiency and low
resource applicability, the method could in principle be applied to representations from pre-trained
transformer models. Firstly, the transformers attention essentially defines a soft (fully connected)
graph between tokens, which could serve as a more flexible basis for constructing Banyan’s discrete
structures. Moreover, the entangled tree structure essentially serves as a map of the conceptual
associations learned by a model, and could provide an interesting probe into the representation space
of pre-trained LLMs.

Finally, good and cheap embedding models are useful for many applications. For example, the digital
humanities need to organise corpora of ancient languages, making it easier for researchers to access
texts they need. But these corpora are small, and these languages are unlikely to be present in pretrain-
ing corpora of larger models. Banyan provides an efficient solution for producing representations for
both these use cases and low resource languages and under represented communities more generally.
To conclude, Banyan addresses the problem of efficient learning in low-resource settings.
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Dyer. Transformer grammars: Augmenting transformer language models with syntactic inductive
biases at scale. Transactions of the Association for Computational Linguistics, 10:1423–1439,
2022. doi: 10.1162/tacl_a_00526. URL https://aclanthology.org/2022.tacl-1.81.

Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christopher D. Manning.
Semi-supervised recursive autoencoders for predicting sentiment distributions. In Empirical
Methods in Natural Language Processing (EMNLP), pp. 151–161, 2011.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Empirical Methods in Natural Language Processing (EMNLP), pp. 1631–1642, 2013.

Paul Soulos, Henry Conklin, Mattia Opper, Paul Smolensky, Jianfeng Gao, and Roland Fernandez.
Compositional generalization across distributional shifts with sparse tree operations. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=fOQunr2E0T.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations from
tree-structured long short-term memory networks. In Association for Computational Linguistics
(ACL), pp. 1556–1566, 2015.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
The impact of student initialization on knowledge distillation. CoRR, abs/1908.08962, 2019. URL
http://arxiv.org/abs/1908.08962.

16

https://proceedings.mlr.press/v202/ray-chowdhury23a.html
https://arxiv.org/abs/2106.11230
https://arxiv.org/abs/2106.11230
https://aclanthology.org/2022.tacl-1.81
https://openreview.net/forum?id=fOQunr2E0T
https://openreview.net/forum?id=fOQunr2E0T
http://arxiv.org/abs/1908.08962


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, and Partha
Talukdar. Incorporating syntactic and semantic information in word embeddings using graph
convolutional networks. In Association for Computational Linguistics (ACL), pp. 3308–3318,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 5998–6008, 2017.

Bin Wang, C.-C. Jay Kuo, and Haizhou Li. Just rank: Rethinking evaluation with word and sentence
similarities. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 6060–6077, Dublin, Ireland, May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-long.419. URL https://aclanthology.org/2022.acl-long.419.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang. Deep
graph library: A graph-centric, highly-performant package for graph neural networks, 2020.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. CoRR, abs/2005.10242, 2020. URL https:
//arxiv.org/abs/2005.10242.

Thaddäus Wiedemer, Prasanna Mayilvahanan, Matthias Bethge, and Wieland Brendel. Compositional
generalization from first principles, 2023. URL https://arxiv.org/abs/2307.05596.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.
6.

A APPENDIX

A.1 THE k AND u BALANCE

The change to diagonal composition functions allows us to reduce the number of total parameters
while maintaining performance. This is because the number of parameters is directly proportional to
channel size u. We show ablations for this finding in Table 6. Our findings are similar to those of
Opper & Narayanaswamy (2024) the smaller the channel size the better the model performs, although
in our case we keep things stable between seeds whereas for them when they simplified they faced
issues with extreme instability during training. This is thanks to the new message passing functions.

Table 6: Performance Depending on k and u values using new functions. Scores are the average of
four random seeds.

k u Lex Score STS Score

4 64 42.9 ± 0.01 43.5 ± 0.04
8 32 43.2 ± 0.02 48.6 ± 0.01
16 16 47.02 ± 0.03 62.2 ± 0.01
32 8 49.2 ± 0.01 62.9 ± 0.01
64 4 48.7 ± 0.01 62.9 ± 0.01
128 2 49.61 ± 0.02 62.7 ± 0.001
256 1 48.7 ± 0.01 62.9 ± 0.001
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