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Abstract

Few-shot learning methods have achieved notable performance in recent years.
However, few-shot learning in large-scale settings with hundreds of classes is still
challenging. In this paper, we tackle the problems of large-scale few-shot learning
by taking advantage of pre-trained foundation models. We recast the original
problem in two levels with different granularity. At the coarse-grained level, we
introduce a novel object recognition approach with robustness to sub-population
shifts. At the fine-grained level, generative experts are designed for few-shot
learning, specialized for different superclasses. A Bayesian schema is considered
to combine coarse-grained information with fine-grained predictions in a winner-
takes-all fashion. Extensive experiments on large-scale datasets and different
architectures show that the proposed method is both effective and efficient besides
its simplicity and natural problem remodeling. The code is publicly available at
https : //github.com/mohamadreza99/divide_and_conquer.

1 Introduction

Thanks to the success of deep neural networks, the visual object recognition problem has reached
human performance in the past decade. However, traditional solutions require large datasets with
hundreds of instances for each object. Moreover, the generalization capability of these methods is
restricted and they cannot easily generalize to unseen classes of objects. In contrast, humans can
learn and generalize about novel objects with considerably fewer samples. This challenge has been
somewhat addressed in the few-shot learning paradigm using knowledge transfer mechanisms like
meta-learning [23, 4]. Most of the existing few-shot learning methods have focused on problems with
a limited number of target classes. Nevertheless, there is a recent growth of interest in large-scale
few-shot learning as it covers a more realistic setting with a large number of target classes [12, 6, 2].
This framework could be more challenging since distinguishing different categories in the learned
feature space becomes harder when there are hundreds of object categories with few samples.

Usually, large-scale few-shot learning problems encounter more particular objects with minimal
variety in each class. Fine-grained object categories can naturally be grouped in larger clusters,
forming coarse-grained superclasses with a higher variety of objects. Superclasses also can be
recursively grouped and create a hierarchy of classes in a tree-like structure. This hierarchical
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structure is provided in large-scale datasets like iNaturalist [25] and ImageNet [3] and could be
used as an additional inductive bias for large-scale few-shot classification problems to improve
their performance. Considering this hierarchical nature of object categories, humans can categorize
the same object with different granularity corresponding to the different levels of this hierarchy.
Interestingly, it is not required to treat all superclasses as unseen classes, since humans already know
most of the coarse-grained categories. For example, consider showing a picture of a lynx to an adult
person. One may face this species for the first time but it can easily be categorized as Feliformia, so
other animal types and their descendants are completely excluded during inference.

Pre-trained foundation models have shown remarkable performance on visual object recognition tasks
and have gained noticeable attention in the past few years [20, 1]. Their rich feature embedding space
could be used for few-shot or even zero-shot learning tasks without additional training. However,
the direct use of these pre-trained models in the large-scale few-shot setting is still challenging, and
further considerations should be taken into account. Especially, when fine-grained object categories
are very specific and differ from each other with few attributes, distinguishing a large number of
unseen object categories becomes difficult.

Motivated by the aforementioned aspects, we propose a novel large-scale few-shot classifier using pre-
trained foundation models. For simplicity, in this work, we consider only two levels of hierarchy. At
the coarse-grained level, we apply a classifier to recognize superclasses. Although object superclasses
are considered to be the same between train and evaluation, there exists a major subpopulation shift
since evaluation base-classes are completely distinct from those of train. We design a new approach
to improve the robustness to this subpopulation shift in the few-shot learning setting. The primary
prediction task of large-scale few-shot learning should be taken at the fine-grained object categories.
All of the extra information about the hierarchy structure and superclass inference is used to improve
this final prediction. In this work, inspired by the human cognition system, we develop a Bayesian
approach to incorporate superclass information as a prior for more precise inference at the base-class
level. Figure 1 demonstrates the overall procedure of the proposed method during inference time.

Evaluating on large-scale datasets with different backbones shows that the proposed method is simple
yet effective for large-scale few-shot classification problems. The main contributions of this paper are
summarized as follows:

• We propose a novel large-scale few-shot learning method by leveraging the natural hierarchy
of object categories and designing further inductive biases based on that.

• We utilize pre-trained foundation models as rich embedding networks to increase robustness
to the distribution shift and also data efficiency.

• We develop a simple strategy for alleviating sub-population shift at the superclass level.
• We show that the proposed method can be easily employed in the free-training setting.

2 Related Work

Few-shot learning problem has been widely studied in recent years. Most of these methods leverage
meta-learning approach to make learning from a few training samples feasible. Generally, these
methods can be divided into two main categories, metric-based methods [26, 23, 15] and optimization-
based methods [4, 21]. In this work, we utilize prototypical learning [23] which is one of the mostly
used metric-based methods for few-shot learning because of its simplicity, effectiveness, and also
being generative approach. Most of the classical few-shot learning methods are designed for small
datasets like Cifar [10], Omniglot [11], and miniImageNet [26]. In the past few years, large-scale
few-shot learning became more topical [12, 6]. To address data limitations, some works utilize
generators for data augmentation [7, 27]. Some other works have proposed methods to infer a good
initialization point for novel classes from a few training samples [18, 19, 2].

To increase data efficiency, some recent studies have focused on the power of transfer learning
and using large and expressive backbones on large datasets before few-shot learning [9, 29, 24].
In addition to standard supervised learning, unsupervised [29, 24] and self-supervised learning
[14] have shown to be effective approaches for providing a proper backbone for few-shot learning.
More recently, well-received large foundation models such as CLIP [20] and DINO [1] have gained
considerable attention for zero-shot [16, 5] and few-shot learning [30, 31]. For zero-shot settings,
normally multimodal models are used to infer a prototype for a class based on its label.

2



𝑔𝜃 𝑓𝜗{𝑆}

𝑔𝜙 𝑓𝜑
Aggregated 

pseudo-label

𝑔𝜙𝑓𝜑𝑔𝜃 𝑓𝜗𝑞 𝑞ො𝑦𝑞

Inactive prototypes

Query embedding

Active prototypes

{ , }

Figure 1: Overview of the proposed method. The coarse-grained (colored in blue) classifier restricts
the scope of plausible base-classes in a top-down manner and increases the accuracy of the fine-
grained classifier (colored in green) by reducing the number of active base-classes. Dark and light
colors are used to indicate foundation model backbones (gθ and gϕ) and classification heads (fϑ and
fφ) respectively.

Using some kind of knowledge graphs has shown to be an effective way to improve the performance
of few-shot learning methods especially in large-scale settings [12, 2, 6, 28]. In [12], different
classification heads are used for different levels of the hierarchy to learn a feature space that is suited
for different granularity. Then, a simple nearest-neighbor strategy is shown to be an effective way
for large-scale classification in the obtained feature space. Similar to these works, we also leverage
a hierarchical knowledge graph as an inductive bias for large-scale few-shot learning. However,
our work differs from the mentioned works as it utilizes a top-down Bayesian approach to provide
coarse-grained priors for final fine-grained classification.

3 Proposed Method

3.1 Preliminaries

In hierarchical large-scale few-shot learning, we assume to have access to a large-scale datasetDsource

and Dtarget respectively for the training and testing. Each dataset D = {(xi, yisuper, y
i
base)}

|D|
i=1 is

composed of three sets, (1) image samples X = {xi}, (2) superclass labels Ysuper = {yisuper} at
the coarse-grained level, and (3) base-class labels Ybase = {yibase} at the fine-grained level. For
the coarse-grained level, we assume that Ysuper,target ⊆ Ysuper,source, but for the fine-grained
level we assume Xsource ∩ Xtarget = ∅ and Ybase,source ∩ Ybase,target = ∅. Since the primary
task is the few-shot learning at the fine-grained level, each ytarget contains a few labeled samples.
Furthermore, the proposed method does not require sufficient training data samples and by leveraging
large foundation models we show that it is also possible to achieve acceptable performance in a
free-training manner.

For few-shot learning, we employ prototypical learning as a meta-learning approach. Meta-training
and meta-testing are performed in an episodic fashion. In each episode a random task T is sampled
from D, forming a N -way K-shot problem with N random classes and K support samples in each
class. In each task, the samples of class c are split into support set and query set which we denote by
Sc and Qc, respectively. The goal of meta-learning is to achieve good recognition performance on Q
by fast adaptation on a few support samples S .

We utilize pre-trained deep networks to provide feature embeddings for classification or few-shot
learning tasks. The embedding networks of the superclass level and base-class level are denoted by
gϕ and gθ, respectively. We further employ additional MLP networks fφ and fϑ to perform desired
tasks (e.g. classification) based on raw features of the embedding backbones.

3.2 Coarse-Grained Classifier

Since target superclasses are not distinct from source superclasses, formal supervised learning
approaches can be applied at this level. In the first step, we apply the standard cross-entropy loss
to train classifier fφ on top of the backbone gϕ. Since we are using the pre-trained network gϕ as a
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feature extractor, it is not required training dataset to be large with sufficient samples. Furthermore,
base-classes from the same superclass are aggregated together for this task. So, even if the original
dataset is suited for few-shot learning, the aggregated dataset could be used for formal classification.

Although the set of superclasses is not novel in the testing phase, there exists a major challenge. The
set of base-classes in each superclass are completely distinct between train and test datasets. To
alleviate this challenge, we employ a semi-supervised learning approach. Using the fact that support
samples of each base-class share the same (unknown) superclass label, it is possible to enhance
coarse-grained prediction on each support sample, using the prediction probabilities of the other
support samples. To this end, by using conditional independence of data samples and applying the
Bayes rule two times, we obtain:

P (y|S) = P (y|x1, . . . , xK) =
P (y)

∏K
i=1 P (xi|y)

P (x1, . . . , xK)
=

P (y)
∏K

i=1 P (y|xi)P (xi)

P (y)KP (x1, . . . , xK)
. (1)

So, to estimate superclass pseudo-labels for support samples, it is enough to compare the logarithm of
conditional likelihoods for all superclasses and consider the highest one. Using Non-uniform prior for
different superclasses, argmax

ysuper

∑K
i=1 logP (ysuper|xi)− (K − 1) logP (ysuper) defines the winner

superclass. The prior probability of each superclass is considered to be proportional to the number of
its base-classes in the training set. We refer to the parameters of approximators by ϕ′ and φ′ after
fine-tuning on superclass pseudo-labels.

3.3 Fine-Grained Few-Shot Learner

The standard prototypical learning approach is used for few-shot object recognition at the fine-grained
level. The coarse-grained information is utilized through two separate mechanisms:

1. Fine-grained MLP fϑ is conditioned by the final prediction of coarse-grained MLP fφ.
Given this additional information, few-shot learning at the fine-grained level is performed in
a multi-task learning manner. We could consider superclasses as different tasks and employ
different experts, i.e. a shared MLP network with specific conditions for each task, to learn
these tasks in parallel.

2. To reduce the risk of misclassification in the large-scale setting, we restrict the possible
target base-classes for each query sample by defining the most probable superclasses first.
To this end, coarse-grained classification is first applied on the query sample, and top-w
relevant superclasses are estimated. Given these estimations, irrelevant base-classes could
be omitted by taking a winner-takes-all strategy.

Formally, we assign the probability of a query sample q belonging to the base class c by taking a
generative approach. By applying the Bayes rule and using conditional independency, the posterior
predictive probability can be calculated as follows (see Supplementary Materials 6 for more details):

P (ybase = c|q, {S}, fϑ, gθ, fφ′ , gϕ′) ∝
|Ysuper|∑
ŷsuper=1

P (q|Sc, fϑ, gθ, ŷisuper)P (ŷisuper|q, fφ′ , gϕ′). (2)

We observed that the conditional likelihood P (ŷsuper|q, fφ′ , gϕ′) for one class is usually dom-
inant to the others. So, to increase the computational efficiency we assign the probability of
zero to the dominated superclasses and approximate the final summation in 4 by the likelihood
of the winner superclass (or top-w winner superclasses), resulting the class conditional probabil-
ity P (q|Sc, fϑ, gθ, fφ, gϕ, ŷsuper,winner). We assume spherical Gaussian distribution for modeling
the likelihood of each base-class. Given episode supports samples and by calculating prototypes
as PSj = 1

|Sj |
∑

xi∈Sj

fϑ
(
gθ(x

i), fφ(gϕ(x
i))

)
, the final prediction for base-classes is derived by
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normalizing through the softmax function:

P (ybase = c|q, {S}, fϑ, gθ, fφ, gϕ) ∝
P (q|Sc, fϑ, gθ, fφ, gϕ, ŷsuper,winner)∑

j∈Ybase

P (q|Sj , fϑ, gθ, fφ, gϕ, ŷsuper,winner)
=

exp
(
−∥fϑ (gθ(q), fφ(gϕ(q)))− PSc∥2

)∑
j∈Ybase

exp (−∥fϑ (gθ(q), fφ(gϕ(q)))− PSj∥2)
.

(3)

Finally, based on these probabilities, the cross-entropy loss is performed to optimize the parameters of
gθ and fϑ. Algorithms 1 and 2, formally summarize the procedure of training coarse and fine-grained
classifiers in Supplementary Materials 6.

4 Experiments

In this section, we demonstrate the effectiveness of our proposed method through extensive exper-
iments and compare them in different settings. We show that it is applicable for a range of model
architectures from light backbones to heavy foundation models. Moreover, we explain how we
redefined and used popular large-scale datasets to adapt them to our structure.

4.1 Datasets

In large-scale problems, preparing a proper large dataset with a large number of classes is a great
deal of work due to the difficulty of the annotation procedure. So there are limited computer vision
datasets that have more than 1000 labeled classes. Furthermore, there are additional challenges in
the formation and structure of large-scale datasets. These datasets are usually general purpose and
there is not enough coherence in class data points. Moreover, there is coupling among classes and
interdependency. Hence, we select two multi-granular datasets, iNat Animalia and iNat Plantae [25]
for evaluations. We take the finest granularity as the base-classes and one of the coarse-grained levels
as the superclasses. We split all base-classes into source domain and target domain data. In order to
better verify the performance of the proposed method, we limit our datasets to ones which were not
used in the training procedure of the pre-trained backbones. There is a detailed explanation of dataset
details in the Supplementary Material 6.3.

4.2 Backbones

Dino Giant is the largest model in the Dino v2 series [17]. Dino v2 models are trained in self-
supervised learning in a new way of using knowledge distillation. This model produces very
high-performance visual features in practice which could be used in different downstream tasks.
These models are trained on a dataset of 142 M images. Another backbone of this family which we
used is Dino Large with lower than 1

3 of the giant version parameters.

ConvNext v2 is a fully convolutional network with comparative performance to vision transformers,
introduced by Facebook research group [13]. We use their large backbone which is pre-trained on
ImageNet-21k. MobileNet v3 is a backbone we choose to illustrate the effectiveness of our method
on a relatively small backbone [8]. We select the pre-trained weights of this model from [22].

4.3 Coarse-Grained Classifier

This classifier consists of gϕ frozen backbone which is Dino v2 Giant and a learnable linear classifi-
cation layer with the output size of superclass labels |Ysuper|. It is trained on Dsource data with a
batch size of 64 in a supervised learning manner with their superclass labels Ysuper. After this, as the
second phase of the Algorithm 1, we perform our specific semi-supervised learning by using 5-shot
samples of target base-classes and estimating the group labels. Then we finetune the classification
head fφ on Dsuper,target with estimated pseudo-labels.
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4.4 Fine-Grained Classifier

In the fine level, we used all the pre-trained backbones introduced in 4.2 as gθ. Two fully connected
layers are used at the top of these backbones with a GELU activation between them as fϑ. During
training, gθ is frozen for the CLIP and DINO families. However, the MobileNet backbone is fine-
tuned since it is light. In the case of ConvNext, only normalization layer parameters are fine-tuned
and the others remain frozen during training. We adopt prototypical learning in an episodic way, so
we sample a 650-way 5-shot task T from Dsource in the meta-training phase. Since the problem is
large-scale, we examine to what extent the model can generalize by creating one task from Dtarget

which contains all the base classes. In other words, we perform meta-testing with a large-scale task of
|Ybase,target|-way 5-shot and evaluate the classification accuracy with query samples of each class.

4.4.1 Baselines

To evaluate the effectiveness of two components introduced in 3.3, we make two different ablation
baselines of our method with a simple modification of fϑ. In the first baseline, we just use embeddings
as input but in the second one, the one-hot vector of the determined superclass is concatenated to
embeddings. The true labels are used as conditioned superclasses during the training but during
the testing phase superclasses are inferred from coarse-grained classifier. Furthermore, to assess
the effectiveness of imposing a hierarchical structure, we set our main baseline to flat prototypical
learning which lacks hierarchical knowledge. Lastly, we evaluate the richness of pre-trained networks
by omitting the meta-training phase. In this free-training setting, we do not apply fϑ on embedding
space, and prototypical learning is performed directly on raw embeddings.

4.5 Results

Table 1 shows the top-1 and top-5 accuracy of the Dino v2 Giant on iNat Animalia and iNat Plantae
datasets. Since the pseudo-label accuracy for support samples is higher than top-1 accuracy, by
fine-tuning on these pseudo-labels the overall accuracy is increased, especially in iNat Plantae dataset.

Table 1: Accuracy of the coarse-grained classifier on Dsuper,target, before and after semi-supervised
fine-tuning.

Dataset

Setting
Top-1 Top-5

Pseudo-Label

Acc.

Top-1

Fine Tuned

Top-5

Fine Tuned

Relative

Gain Top-1

Relative

Gain Top-5

iNat Animalia 87.38 97.26 95.86 88.88 97.83 +1.7 +0.6

iNat Plantae 79.68 92.45 90.51 87.86 97.1 +10.3 +5

Evaluation results at the fine-grained level of iNat Animalia and iNat plantae datasets are shown
in Tables 2 and 3. As seen, the proposed method is comparatively better than the flat baseline in
different backbones and settings. However, some differences are observed. Overall, the relative
gain is more considerable in weaker baselines. This indicates that large and expressive foundation
models are more robust, so even flat prototypical learning without additional conditioning may result
in high accuracy. Table 3 demonstrates the results of the free-training setting. By comparing these
results with those of Table 2, it is observed that stronger foundation models are more reliable to use
in free-training settings compared to weaker counterparts, especially in iNat Plantae dataset.

5 Conclusion

In this study, we have focused on large-scale few-shot learning problems by proposing a Bayesian
hierarchical approach. The proposed method has two main components designed for different levels
of hierarchy. The first component is a coarse-grained classifier equipped with a novel semi-supervised
learning method to alleviate the inherent sub-population shift problem. The second component is
a conditional fine-grained classifier which is designed for object recognition in the presence of a
large amount of novel base-classes. A Bayesian approach is considered to combine these components
through a top-down mechanism. More importantly, using pre-trained foundation models makes
large-scale classification in a low-data regime feasible by increasing data efficiency. Since in our
large-scale setting, the base-classes are very specific and their names or samples are almost new for
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Table 2: Top-1 accuracy of prototypical learning on Dbase,target.

Backbone

Dataset
iNat Animalia iNat Plantae

Top-W Superclass Top-W SuperclassBaseline

(Flat) 1 2 5 10

Relative

Gain

Oracle

Superclass

Baseline

(Flat) 1 2 5 10

Relative

Gain

Oracle

Superclass

DINO Large 50.95 52.83 53.55 53.56 57.31 68.48 71.44 72.68 72.94 77.91

DINO Large Cond.
53.52

54.83 56.33 56.87 56.8
+6.3

60.12
72.87

68.57 71.71 73.02 73.02
+0.2

77.99

DINO Giant 58.64 60.77 61.55 61.65 64.4 69.66 72.86 74.49 74.74 79.11

DINO Giant Cond.
61.68

60.07 62.19 62.89 62.92
+2

65.48
74.77

69.96 73.23 74.58 74.96
+0.3

79.54

CLIP 39.12 38.9 37.36 36.29 44.96 51.54 49.63 45.75 43.19 58.9

CLIP Cond.
33.88

39.48 39.53 39.57 39.61
+16.9

43.48
38.48

50.26 50.4 50.45 50.45
+31.1

52

Mobilenet V3 43.7 44.39 43.77 43.15 50.2 49.88 47.94 44.37 41.4 57.72

Mobilenet V3 Cond.
41.33

43.6 44.39 44.8 44.95
+8.8

47.88
37.15

48.22 48.46 48.49 48.47
+30.5

50.41

ConvNext V2 46.16 47.49 47.69 47.57 52.83 61.94 63.2 62.6 62.18 70.16

ConvNext V2 Cond.
46.09

45.85 47.75 48.81 49.19
+6.7

51.68
61.02

61.04 62.42 62.47 62.47
+2.4

68.08

Table 3: Top-1 accuracy of prototypical free-training on Dbase,target.

Backbone

Dataset
iNat Animalia iNat Plantae

Top-W Superclass Top-W SuperclassBaseline

(Flat) 1 2 5 10

Relative

Gain

Oracle

Superclass

Baseline

(Flat) 1 2 5 10

Relative

Gain

Oracle

Superclass

DINO Large 38.1 38.17 38.48 38.28 38.17 +1 42.1 67.42 63.66 66.25 67.39 67.52 +0.2 72.55

DINO Giant 35 34.65 35.23 35.13 35.1 +0.7 38.44 64.37 60.64 63.06 64.13 64.4 +0.1 69.26

CLIP 17.09 24.52 23.04 21 19.61 +43.5 28.12 22.82 39.97 35.75 30.93 28.06 +75.2 45.45

ConvNext V2 34.65 36.48 36.84 36.37 36.2 +6.3 41.8 55.2 58.05 58.49 57.49 56.4 +6 65.57

foundation models, a zero-shot approach may result in significantly poor performance, and solving
this issue could be a good direction for future studies.
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6 Supplementary Material

6.1 Algorithms

Algorithms 1 and 2 demonstrate the pseudo-code of the training procedure in coarse-grained and
fine-grained classifiers.

Algorithm 1 Coarse-grained classifier (training)

Input: dataset Dsource and Dtarget, backbone gϕ, classification head fφ
Output: backbone gϕ′ , classification head fφ′

1: while not converged do ▷ Supervised learning
2: sample batch {(xi, yisuper)}Bi=1 ∼ Dsource

3: ŷisuper ← fφ(gϕ(x
i)) ▷ Do this for all of the batch samples

4: update ϕ and φ based on 1
B

B∑
i=1

L(yisuper, ŷisuper)

5: end while
6: initialize ϕ′ ← ϕ, φ′ ← φ
7: for c ∈ Ybase,target do ▷ Semi-supervised learning
8: take all support samples Sc
9: ỹsuper ← argmax

∏
xi∈Sc

fφ′(gϕ′(xi))

10: ŷisuper ← fφ′
(
gϕ′

(
xi
))

▷ Do this for all of the support samples

11: update ϕ′ and φ′ based on 1
|Sc|

|Sc|∑
i=1

L(ỹsuper, ŷisuper)

12: end for

Algorithm 2 fine-grained classifier (training)

Input: dataset Dsource and Dtarget, backbone gθ, classification head fϑ
Output: backbone gθ′ , classification head fϑ′

1: while not converged do ▷ Conditional prototypical learning
2: sample {Sj ,Qj}j ∼ Dsource and create a N -way K-shot task T
3: calculate class conditional probabilities based on Eq. 4
4: calculate class probabilities based on Eq. 3
5: update θ′ and ϑ′ based on cross-entropy loss
6: end while

6.2 Base-Class Probability Derivation

We assign the probability of a query sample q belonging to the base class c by taking a generative
approach. By applying the Bayes rule and using conditional independency, the posterior predictive
probability can be calculated as follows:

P (ybase = c|q, {S}, fϑ, gθ, fφ, gϕ) ∝∑
ŷsuper∈Ysuper

P (ybase = c|q, {S}, fϑ, gθ, fφ, gϕ, ŷsuper)P (ŷsuper|q, {S}, fϑ, gθ, fφ, gϕ) ∝∑
ŷsuper∈Ysuper

P (ybase = c|q, {S}, fϑ, gθ, ŷsuper)P (ŷsuper|q, {S}, fφ, gϕ) ∝∑
ŷsuper∈Ysuper

P (q|Sc, fϑ, gθ, ŷsuper)P (ŷsuper|q, fφ′ , gϕ′).

(4)

The last equation is obtained by assuming uniform prior on base-class probabilities and applying the
Bayes rule and conditional independence:

P (ybase = c|q, {S}, fϑ, gθ, fφ, gϕ) ∝ P (q|ybase = c, {S}, fϑ, gθ, fφ, gϕ)P (ybase = c)

∝ P (q|Sc, fϑ, gθ, fφ, gϕ).
(5)
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6.3 Dataset Details

6.3.1 Collecting and Preparing Datasets

Our proposed method requires hierarchy at the meta-train stage, so we focus on large-scale datasets
with a pre-defined hierarchical structure. As we define in our problem setting in section 3.1, the
base-class sets in meta-train and meta-test datasets are disjoint but the superclasses of meta-test are a
subset of meta-train superclasses. In this way, we pose a sub-population shift between meta-train and
meta-test and measure the robustness of the model in the few-shot adaptations to meta-test data. So,
we make our datasets from large-scale hierarchical ones and adapt them to our problem setting as
follows.

iNat Animalia [25] is a part of iNaturalist-2021 dataset which has 10k classes. For each fine-grained
class, all of its ancestors in the hierarchy are presented according to taxonomic rank. The coarsest
level in the iNat is the kingdom and it contains Animalia, Plantae, and Fungi at its first level of
hierarchy. We do not include Fungi classes in our experiments since it does not contain sufficient
classes to be large-scale. We refer to the Animalia part of iNaturalist2021 as iNat Animalia which
contains a vast range of animal species. In order to define superclasses, we take the fifth depth of
the hierarchy tree known as the Family level, resulting in 74 superclasses. After pruning small-size
superclasses, 3228 base-classes remain in total which are divided into sets of meta-train with 1728
base-classes and meta-test with 1500 base classes.

iNat Plantae [25] is the Plantae part of the iNaturalist2021 dataset which we explain in the previous
paragraph. It contains a vast range of plant species including 2705 classes (after pruning small-size
superclasses) which we divide into sets of meta-train and meta-test with 1450 and 1255 classes,
respectively. There are 58 shared superclasses between meta-train and meta-test classes which we
select from the Family level of the taxonomic rank. Table 4 summarizes the details of datasets.

Table 4: Quantitative Details of iNat Animalia and iNat Plantae datasets.

# of

Superclasses

# of Source Domain

Base-Classes

# of Target Domain

Base-Classes

iNat Animalia 74 1728 1500

iNat Plantae 58 1450 1255

6.3.2 Dataset Challenges

Datasets with a large number of classes may possess many challenges. The overlap between classes,
interdependence, abstract classes, incorrectly annotated data, classes that share a concept, etc., are all
possible. This causes inevitable problems in large-scale object recognition and many curation efforts
are demanded to clean up datasets. Hence, most large datasets cannot be directly used, as the yielded
results cannot be reliable.

ImageNet-21k is among the most famous large-scale datasets. It is the full version of imageNet-1k
[3], however, there are a lot of failure cases that prevent us from using it. As illustrated in Figure 2,
in the banana class in this dataset there are, for example, images of ripe bananas, unripe bananas,
banana trees (without fruit), banana boxes, banana peels, and so on. In addition, there are classes
with the same identity and similar concepts. For instance, ImageNet-21k has distinct classes like
"dwarf banana", "edible banana", "japanese banana", and "plantain banana".

6.4 Additional Results and Visualizations

Figure 3 visualizes the t-SNE embeddings of all superclasses and base-classes from iNat Animalia
and iNat Plantae datasets using the Dino Giant backbone. Figure 4 summarizes the top-1 accuracy
diagrams of Tabels 2 and 3.
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Figure 2: A collection of samples in one of the imageNet-21k classes that relate to bananas samples

Figure 3: 2D visualization of iNat Animalia and iNat Plantae embeddings using t-SNE. Superclasses
are shown by convex hulls.
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Figure 4: Top-1 accuracy of different backbones in iNat Animalia (top) and iNat Plantae (bottom)
datasets. The right column demonstrates the free-training scenario.
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