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Abstract—This study proposes a new approach for coopera-
tive pursuit of dynamic targets under communication coverage
involving multi-unmanned aerial vehicles (UAVs). This approach
combines the ant colony optimization algorithm with the multi-
agent twin delay deep deterministic policy gradient, called ACO-
MATD3. The ACO-MATD3 algorithm dynamically adjusts hyper-
parameters based on varying stages and requirements, greatly
enhancing the stability and performance of cooperative multi-
UAV pursuit tasks, especially under strong communication cov-
erage. Experimental results demonstrate that the ACO-MATD3
algorithm significantly outperforms other algorithms in terms of
mean reward and communication return.

Index Terms—Multi-UAV, Pursuit, Communication coverage,
Ant colony optimization algorithm, Multi-agent reinforcement
learning

I. INTRODUCTION

In recent years, multi-unmanned aerial vehicles (UAVs)
have found extensive applications in fields like agriculture [1],
environmental monitoring [2], and communication [3], [4], due
to their flexibility and ease of deployment. As technology pro-
gresses, UAVs are tasked with more complex challenges such
as pursuing dynamic targets, where UAVs need to consistently
pursue and approach a moving target in complex environments
through strategic adjustments. This pursuit involves a strategic
interaction between the UAVs and the targets, where effective
decision-making is vital for success and showcases the UAV’s
intelligence. Therefore, developing effective pursuit strategies
is crucial.

Significant research has been conducted on the pursuit of
UAVs using traditional methods. For instance, the study in [5]
developed a cooperative pursuit-evasion strategy for UAVs in a
complex 3D environment, utilizing a heterogeneous system to
enhance spatial perception and decision-making. However, this
approach encounters challenges related to scalability, compu-
tational demands, and robustness in dynamic environments. In
[6], the problem of minimizing the time for a UAV to pursuit a
moving ground target by optimizing the pursuit strategy using
sensor data. Additionally, a hierarchical game structure was
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proposed in [7] to enhance the cooperative pursuit-evasion
capabilities of UAVs in dynamic environments. Despite these
advancements, the high computational complexity of these
methods and the necessity to predefine the UAVs’ flight paths
limit their applicability in unknown environments.

Fortunately, advancements in deep reinforcement learning
(DRL) have introduced new methods for addressing UAV
pursuit problems. Techniques such as the deep deterministic
policy gradient (DDPG) [8] and twin delay deep deterministic
policy gradient (TD3) [9] enable simultaneous learning of
value and policy functions, thereby enhancing algorithm effi-
ciency and stability. However, in multi-agent environments, in-
teractions between agents can lead to policy non-convergence
when DRL algorithms are applied directly. To address this
issue, multi-agent reinforcement learning (MARL) algorithms,
including the multi-agent deep deterministic policy gradient
(MADDPG) [10] and multi-agent twin delay deep determinis-
tic policy gradient (MATD3) [11], have been developed. The
MATD3 is an improvement based on MADDPG. These algo-
rithms improve stability and collaboration among agents by
employing a centralized training and decentralized execution
(CTDE) mechanism [10].

Based on these DRL methods mentioned above, several
studies have attempted to utilize DRL to solve UAV pursuit
tasks. An approach proposed for UAV pursuit-evasion games
utilizes hierarchical maneuvering decision-making with soft
actor-critic algorithm [12] to enhance autonomy and strategic
flexibility in complex environments. However, this method
needs to work on high-dimensional state spaces. Another study
[13] proposed a UAV pursuit policy combining DDPG with
imitation learning to improve sample exploration efficiency,
resulting in better performance and faster convergence than
traditional DDPG method. A multi-UAV pursuit-evasion game
was also explored in [14], utilizing online motion planning and
DRL to enhance UAV interactions in complex environments.
However, these studies still do not address the challenge of
maintaining communication among UAVs while performing
their tasks.

Based on the above related research, we propose an al-
gorithm that combines MATD3 and ant colony optimization
(ACO) algorithm to address the multi-UAV cooperative pursuit
problem under communication coverage, called ACO-MATD3.



The algorithm can adaptively select the optimal hyperpa-
rameters at different stages during the training process. As
a result, the multi-UAV system learns a policy that allows
it to pursuit dynamic targets in the airspace without prior
knowledge, while maintaining strong communication coverage
from base stations (BSs). The main contributions of this paper
are as follows:

(1) In contrast to non-learning based approaches [5], [6], [7],
the problem of multi-UAV cooperative pursuit problem under
communication coverage is formulated as a Markov game.
Each UAV operates as an independent agent while cooperating
with others to maximize cumulative rewards and optimize their
policies.

(2) Differently from other DRL-based approaches [12], [13],
[14], this study investigates the communication connectivity
between multi-UAV and BSs during pursuit tasks, and consid-
ers the effect of noise in the environment on communication.

(3) Compared with the MATD3 [11] algorithm, the ACO-
MATD3 algorithm proposed in this study can dynamically
optimize the hyperparameters according to the training stage,
reduce the impact of hyperparameters on performance, and
improve training efficiency and effectiveness.

The paper is organized as follows: Section 2 provides the
problem description and system modeling. Section 3 presents
the ACO-MATD3 algorithm proposed in this paper. Section
4 analyses the results of the experiment. Section 5 concludes
the paper.

II. PROBLEM DESCRIPTION AND SYSTEM MODELING

In this section, we describe the multi-UAV pursuit problem
under communication coverage. Then the BS antenna model
and the path loss model are introduced. Finally, we illustrate
the communication coverage model used in this experiment.

A. Problem Description

Obstacle Dynamic targetUAV

Fig. 1: Communication coverage strength map.

This experiment investigates the multi-UAV pursuit prob-
lem under communication coverage, consisting of multi-UAV,
obstacles and dynamic targets, as shown in Fig. 1. Their
initial positions are randomly generated. The BSs support UAV
communication, with the blue shading in Fig. 1 indicating the
strength of the communication coverage. During the pursuit

of dynamic targets, each UAV must avoid collisions with
obstacles and maintain strong communication coverage.

B. Antenna Model and Path Loss Model

This experiment formulates the antenna model of the BSs
through the 3GPP [15] specification. Each BS has the same
height hBS and divided into three sectors, each vertically
placed with a uniform linear array of 8 elements.

The radiation pattern of each element is determined by com-
bining its horizontal and vertical radiation patterns, defined as
follows:

AH = −min
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]
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]
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where ϕ is the azimuth angle indicating the angle of the
antenna in the horizontal plane, and θ is the elevation angle
indicating the angle of the antenna in the vertical plane. Both
are in degrees, ϕ3dB and θ3dB are the half-power beamwidths,
Am is the element gain threshold.

The total gain of the antenna elements is expressed in dB
as:

GeledB = Gmax +Aele

= Gmax + {−min[−(AH +AV ), Am]}
(3)

where Aele represents the power gain of the antenna element
and Gmax is the maximum directional gain of the antenna
element. For ease of computation, we convert GeledB to the
linear scale of Gele.

The combined gain of the antenna array is expressed in dB
as:

G = 10× log10|Fele ×AF |2 (4)

where Fele is the arithmetic square root of Gele, and AF is
the antenna array factor.

This experiment determines whether the communication
link between the UAV and the BS sector is a line of sight (LoS)
link or an non-line of sight (NLoS) link by assessing whether
buildings in the environment obscure the communication link.
The path loss of the LoS link from the UAV to sector m is
expressed in dB as:

hLoS
m (t) = 28 + 22 log10 dm(t) + 20 log10 fc (5)

where dm(t) represents the distance between the UAV and
sector m, and fc denotes the carrier frequency.

The path loss of the NLoS link between the UAV and sector
m is given in dB as:

hNLoS
m (t) =− 17.5 + (46− 7 log10 h(t)) log10 dm(t)

+ 20 log10(40πfc/3)
(6)

where h(t) is the height of UAV at time t.
In addition, the channel small-scale fading is Rician fading

in the case of LoS and Rayleigh fading in the case of NLoS.



C. Communication Model

The baseband equivalent channel between the UAV and the
communication BS sector m at time t is denoted by Hm(t),
where 1 ≤ m ≤ M , and M represents the total number of
communication BS sectors linked with the UAV throughout its
flight. The baseband equivalent channel Hm(t) is influenced
by the BS antenna array gain G, the path loss β, and the
small-scale fading h. The magnitudes of Hm(t) and β are
related to the position q(t) of the UAV at time t, while h is a
random variable. The signal power received by the UAV from
the communication BS sector m at time t can be expressed
as:

Pm(t) = P̄ |Hm(t)|2 = P̄Gm(q(t))β(q(t))h(t) (7)

where P̄ represents the transmit power of the BS sector
m, which is assumed to remain constant. The path loss is
calculated using the following equation:

β(q(t)) =

{
PLLoS , if LoS link
PLNLoS , if NLoS link (8)

where PLLoS and PLNLoS are the linear scales of hLoS
m (t)

and hNLoS
m (t), respectively.

In this experiment, the signal to interference plus noise
ratio (SINR) is used as a crucial criterion for evaluating the
communication coverage performance of UAVs. This criterion
can be expressed as:

SINRt =
Pm(t)∑

n ̸=m Pn(t) + σ2
(9)

where n represents the BSs not associated with the UAV at
time t. In this case, the communication of the UAV is affected
not only by interference from all non-associated BS sectors but
also by the environmental noise, which impacts the quality of
its communication.

To ensure communication coverage while the UAV is air-
borne, the SINR of the UAV should not drop below a minimum
threshold α. That is, the UAV is not under the communication
coverage of the BS when SINR(t) < α. Each UAV has an
independent SINR at time t.

III. MULTI-UAV COOPERATIVE PURSUIT USING
ACO-MATD3

In this subsection, we characterize the UAV’s state space,
action space, and reward function within a Markov game
framework and detail our proposed ACO-MATD3 algorithm.

A. Markov Game with Multi-UAV

This subsection explores the framework of the Markov game
as applied to multi-UAV systems. It details the state and action
spaces for UAVs and defines the reward function guiding their
interactions in a complex environment.

The state space for each UAV i at time t is defined as
sit = (sut, sot, SINRt), where sut = (xt, yt, vxt, vyt) is a
combination of the position and the speed. Additionally, sot =
(luu, luo, lut) represents the distance from the UAV to other

UAVs, obstacles and dynamic targets, respectively. SINRt

denotes the SINR of the UAV at that moment.
The action space for each UAV is discrete. The action of

UAV i is defined as Vu= (Vx, Vy), which denotes the vector
velocity on the x-axis and y-axis, respectively. It also changes
its own speed when the UAV collides.

The reward function for the UAVs in this experiment has
three components. It encourages the UAV to quickly pursuit
the dynamic target by considering the distance between them,
providing a reward Rgoal upon successful pursuit. It also
penalizes collisions to ensure safe flight and rewards higher
SINR to promote flying in areas with better communication
coverage. The reward function can be expressed as:

r(st, at) = Rdist +Rgoal +Rcoll +RSINRt
(10)

B. Fundamental of the ACO-MATD3 Approach
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Fig. 2: Framework of ACO-MATD3 algorithm.

The ACO algorithm is an optimization algorithm that sim-
ulates the foraging behavior of ants. It directs the ant colony
towards the optimal path in complex search spaces through
pheromone accumulation and evaporation, combined with a
probabilistic selection mechanism. This experiment combines
the ACO algorithm with the MATD3 algorithm, aiming to
dynamically choose the most appropriate learning rate α,
discount factor γ, and batch size B based on the current
situation at different stages. This integration enhances the
adaptability and robustness of the ACO-MATD3 algorithm.
The framework of the algorithm is illustrated in Fig. 2.

We define a search space containing three hyperparameters:
α, γ, and B. Each hyperparameter has multiple candidate
values, and the range of values for these hyperparameters is
given in detail in the next chapter. Additionally, we initialize
a pheromone matrix.

In the initialization phase, we establish an initial colony of
100 ants. Each ant’s hyperparameter configuration is derived
by calculating selection probabilities based on the current
values in the pheromone matrix. These probabilities then guide
the random selection of hyperparameters from the correspond-



ing spaces. The selection probability for each hyperparameter
value is calculated as follows:

p(vi) =
τ(vi)∑n

k=1 τ(vk)
(11)

where p(vi) represents the probability of selecting the i-th
value, τ(vi) denotes the pheromone level associated with the
i-th value, and n is the total number of possible values for the
hyperparameter. This approach ensures that the search space
is thoroughly explored, enabling the algorithm to evaluate a
wide array of potential solutions right from the start.

In the multi-UAV system, each UAV uses hyperparameters
derived from the current ant’s configuration to execute a
pursuit task, and the resulting reward values are recorded. If
the reward from a particular set of hyperparameters exceeds
the highest reward recorded in previous iterations, that config-
uration is designated as the optimal set for the current phase.

After each iteration, the pheromone level is adjusted accord-
ing to the optimal hyperparameter configuration determined
during the evaluation process. During this update process,
the pheromone level for the chosen optimal configuration
is increased to reinforce its selection in future iterations.
Simultaneously, the pheromone levels for the other hyper-
parameters are reduced in accordance with the evaporation
rate to ensure diversity in the search process and prevent
premature convergence. This pheromone updating method can
be succinctly described as follows:

τ(vi)← τ(vi) + ∆τ (12)

τ(vi)← τ(vi)× (1− ρ) (13)

where ∆τ represents the increment added to the pheromone
level upon a successful iteration, ρ is the evaporation rate
that moderates the decrease in pheromone levels to facilitate
sustained exploration and exploitation balance. This dynamic
adjustment ensures that the search algorithm not only intensi-
fies exploration around proven successful parameters but also
explores new potential areas effectively.

In the ACO-MATD3 algorithm, the target Q-value for UAV
i is calculated as:

yi = ri + γ min
j=1,2

Qw′
i,j
(x′, a′1, ..., a

′
N ) (14)

where ri is the reward received by UAV i, γ is the discount
factor, Qw′

i,j
is the j-th target critic network of UAV i, x is

the joint next state of all UAVs, and a′i represents the joint
actions of all UAVs at the next time.

The loss function for updating the critic networks is:

L(wi) = E(x,ai,r,x′)∼D

[
(yi −Qwi(x, a1, ..., aN ))

2
]

(15)

where wi represents the parameters of the critic network for
UAV i, D is the experience replay buffer.

The policy update rule for the actor networks is given by:

∇θiJ(θi) =

Ex,ai∼D

[
∇θiπθi(si)∇ai

Qwi
(x, a1, ..., aN )

∣∣∣∣
ai=πθi

(si)

]
(16)

where θi represents the parameters of the actor network for
UAV i, si is the state of ith UAV, πθi(si) is the policy of UAV
i.

IV. SIMULATION RESULTS AND DISCUSSION

A. Parameter Setting

In this experiment, we build a 2 km × 2 km urban area
scenario with numerous buildings, each with a maximum
height hbd of 90 meters. The presence of a LoS link is
determined by examining the linear connection between the
BSs and the UAVs, considering the distribution of buildings.
There are seven BSs in this area, totaling M = 21 sectors.
The transmit power of each sector is P̄ = 20 dBm. The half-
power beamwidth ϕ3dB and θ3dB both are 65°. The SINR
interruption threshold is γth = 1 dB. The noise power σ2 of
5 dBm.

The hyperparameter search spaces for the ACO-MATD3
algorithm are: learning rate = {0.005, 0.01, 0.015}, discount
factor = {0.93, 0.95, 0.97}, batch size = {512, 1024}. The
remaining algorithm parameters and the parameters for the
DRL algorithms are provided in Table I.

TABLE I: DRL algorithm parameters setting

Definition Value Definition Value

Max episodes 100000 Max step per episode 25
Replay buffer capacity 1000000 Batch size 1024
Learning rate 0.01 Gamma 0.95
R coll -2 R goal 8

B. Result Analysis

The experiment involves 3 UAVs, 3 dynamic targets, and 2
obstacles. To ensure fairness, all parameters were kept constant
except for the ACO-MATD3 hyperparameter search space.
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Fig. 3: Mean reward for different algorithms.

In Fig. 3, we compare the mean reward of the ACO-MATD3
algorithm with other algorithms. At the start of training,
reward values drop significantly as the algorithms explore the
environment to build awareness. It is clear from the figure that
after reaching the converged state, the ACO-MATD3 algorithm
achieves a higher mean reward than other algorithms. This



highlights the effectiveness of the ACO-MATD3 algorithm,
which can dynamically select optimal hyperparameters at
different stages, enhancing its performance in complex envi-
ronments with communication coverage challenges.
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Fig. 4: Communication return for different algorithms.

The communication return for several algorithms are shown
in Fig. 4. The final convergence values of the ACO-MATD3
algorithm are higher than those of the other algorithms,
indicating that the flight path selected by the ACO-MATD3 al-
gorithm for multi-UAV operations has stronger communication
coverage. This further verifies the effectiveness of the ACO-
MATD3 algorithm. In contrast, DDPG shows poor conver-
gence performance in communication return because the UAVs
operate independently and cannot learn a common policy.
DDPG has poor convergence performance in communication
return because the UAVs are all independent of each other
and cannot learn a common policy. This situation highlights
the improvement brought by the CTDE framework for multi-
UAV cooperation.
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Fig. 5: Mean reward of each UAV in ACO-MATD3 algorithm.

Fig. 5 demonstrates the mean rewards of the three UAVs
using the ACO-MATD3 algorithm in this environment. The
convergence state aligns with the overall mean reward con-
vergence of the ACO-MATD3 algorithm, demonstrating the
superiority of this algorithm with the CTDE mechanism in
coordinating the decisions of each UAV. This indicates that

the ACO-MATD3 algorithm effectively optimizes both overall
performance and individual UAV policies.

V. CONCLUSION

In this study, we have presented the ACO-MATD3 algorithm
to address multi-UAV pursuit of dynamic targets under com-
munication coverage. This algorithm has dynamically adjusted
hyperparameters for different stages to enhance performance
and stability. Experimental results have shown that ACO-
MATD3 outperforms other algorithms in mean reward and
communication return, demonstrating the significant enhance-
ment in task efficiency achieved through dynamically adjusting
hyperparameters. Future research will explore how to safely
conduct multi-UAV pursuit missions in more complex envi-
ronments, especially those with dynamic obstacles.
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