
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADADIM: DIMENSIONALITY ADAPATION FOR SSL REP-
RESENTATIONAL DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

A key factor in effective Self-Supervised Learning (SSL) is preventing dimen-
sional collapse, where higher-dimensional representation spaces (R) span a lower-
dimensional subspace. Therefore, SSL optimization strategies involve guiding a
model to produce R with a higher dimensionality (H(R)) through objectives that
encourage decorrelation of features or sample uniformity in R. A higher H(R)
indicates that R has greater feature diversity which is useful for generalization to
downstream tasks. Alongside dimensionality optimization, SSL algorithms also
utilize a projection head that maps R into an embedding space Z. Recent work
has characterized the projection head as a filter of noisy or irrelevant features from
the SSL objective by reducing the mutual information I(R;Z). Therefore, the
current literature’s view is that a good SSL representation space should have a high
H(R) and a low I(R;Z). However, this view of SSL is lacking in terms of an
understanding of the underlying training dynamics that influences the relationship
between both terms. For this reason, we directly oppose the current literature’s
view of SSL representation spaces and instead assert that the best performing R is
one that arrives at an ideal balance between both H(R) and I(R;Z). Our findings
reveal that increases in H(R) due to feature decorrelation at the start of training
lead to a correspondingly higher I(R;Z), while increases in H(R) due to samples
distributing uniformly in a high-dimensional space at the end of training cause
I(R;Z) to plateau or decrease. Furthermore, our analysis shows that the best
performing SSL models do not have the highest H(R) nor the lowest I(R;Z), but
effectively arrive at a balance between both. To take advantage of this analysis, we
introduce AdaDim, a method that leverages SSL training dynamics by adaptively
balancing between increasing H(R) through feature decorrelation and sample
uniformity as well as gradual regularization of I(R;Z) as training progresses.
We show that AdaDim results in performance exceeding common SSL baselines
without necessitating expensive architectural strategies. However, in settings where
we integrate these techniques, we demonstrate even further performance gains
exceeding the state of the art in standard benchmark tasks.

1 INTRODUCTION

Self-supervised Learning (SSL) (48) algorithms approach or surpass fully supervised strategies on
a wide variety of benchmark tasks (8; 7; 15; 56; 3; 9). SSL optimization generally involves an
invariance loss that ensures representations of similar samples align with each other and a mechanism
to prevent dimensional collapse (22). Dimensional collapse refers to the phenomena where high
dimensional representations span a lower-dimensional subspace. Therefore, to prevent dimensional
collapse, a wide variety of works (18; 2; 45) suggest that good SSL representations (R) should have a
higher overall dimensionality. These works arrive at this conclusion through some measurement of the
uniformity of the eigenvalue spectrum of a matrix derived from its representation space. In this work,
we analytically measure the dimensionality of the representation space H(R) through the effective
rank metric (38). Effective rank quantifies the entropy of singular values of R and provides a matrix
approximation of entropy (50; 37). It is for this reason that we refer to dimensionality as H(R) since
eigenvalues approaching a uniform distribution reflect the spread of samples along higher dimensional
feature directions.(Additional discussion and details of all metrics can be found in Section A.6.) In
practice, optimizing for higher dimensionality is either done through a dimension contrastive approach

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(19) that encourages feature decorrelation or through a sample-contrastive method that promotes
a uniform spread of sample representations (51). Alongside a term to promote dimensionality, all
SSL methods utilize a projection head that maps R into a lower dimensional embedding space Z
where the SSL optimization objective is applied. Recent work (35) has characterized the purpose of
the projection head as a filter that removes spurious features thus lowering the mutual information
I(R;Z) that we measure through a matrix entropy approximator (37; 58). In general, lower I(R;Z)
reflects representations varying only in feature directions that correspond well with task-relevant
semantic concepts, while higher H(R) corresponds to a greater degree of feature diversity. Together,
these works imply that a good SSL representation space should have a high H(R) and low I(R;Z).

(c)

Figure 1: a) This figure shows how performance varies for 20 different pre-trained ResNet-50 models
as a function of H(R) and I(R;Z). b.1) - b.3) shows how H(R) and I(R;Z) vary across training
of a ResNet-18 encoder with SimCLR (7) for 1000 epochs on three different datasets. c) This toy
graphic shows how the representation space (R) and embedding space (Z) of a toy 3D dataset changes
when following SSL training dynamics. We also visualize the impact on H(R) and I(R;Z).

However, this view of SSL is lacking in terms of an understanding of the underlying training dynamics
that influences the relationship between both terms. For example, in part a) of Figure 1, we show how
the final H(R) and I(R;Z) arrived at the end of training influences downstream performance. In this
Figure, we train 20 different models with slightly different hyperparameters with a ResNet-50 (21)
model for 400 epochs on Cifar-100. We find that the best performing model is not the one with the
highest H(R) or lowest I(R;Z), but instead approaches a specific H(R) and I(R;Z) value where
downstream performance is maximized. Thus, our first claim is that the best performing SSL
representations arrive at a balance between both H(R) and I(R;Z) such that there is enough
feature diversity for the task of interest, but not so much that R contains irrelevant noise. This
claim directly opposes existing literature (18; 2; 45) that only considers some associated measurement
of the H(R) reached at the end of training as an indicator of downstream model performance.

In this work, we also analyze the representational dynamics that cause this behavior. In parts b.1)
- b.3) of Figure 1 we show how H(R) and I(R;Z) evolve over the course of SimCLR (7) training
on a ResNet-18 model for 1000 epochs across 3 distinct datasets. While H(R) generally increases
throughout training, as expected by the current literature, I(R;Z) does not directly decrease and
instead goes through distinct phases of increasing, plateauing, and decreasing. In part c), we show a
toy example to visualize the dynamics causing this behavior. In this Figure, we have 200 samples
distributed within a fictitious 3D spherical representation space. At the start of training, H(R)
increases by projecting R onto a higher dimensional space by mapping from a 2D plane to the surface
of the sphere. Z correspondingly projects from a 1D to 2D space. This phase corresponds to feature
decorrelation where both R and Z increase the number of dimensions in which they vary which
causes I(R;Z) to increase as both spaces are projecting to a higher dimension. However, later in
training, H(R) has fewer dimensions in which to project into and further increases in H(R) are
caused by samples distributing uniformly within the space. This change in sample spread is not
reflected to the same degree in Z which causes I(R;Z) to decrease. Thus, our second claim is that
feature decorrelation at the start of training leads to higher I(R;Z), while samples uniformly
spreading across higher dimensions at the end of training causes I(R;Z) to plateau or decrease.

Based on our first two claims, we propose an SSL method called AdaDim. AdaDim takes advantage
of the discussed training dynamics to adaptively balance increasing H(R) through feature decorrela-
tion and sample uniformity as well as gradual regularization of I(R;Z) as training progresses. This

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

adaptation is done in a manner that is specific to the dimensionality characteristics of the dataset of
interest. This method implies our third claim which is SSL optimization objectives should be
constructed to allow adaptation to evolving H(R) and I(R;Z) dynamics.

1. We theoretically and empirically demonstrate that the relationship between H(R) and
I(R;Z) can characterize SSL training dynamics through both a gaussian and information
theoretic analysis.

2. We empirically validate that the best performing SSL models use the discussed dynamics to
arrive at an ideal balance for both H(R) and I(R;Z) by the end of training.

3. We develop a dimension adaptive (AdaDim) method that exploits our discovered training
dynamics to regularize the training process towards balancing both H(R) and I(R;Z). We
demonstrate performance improvements in comparison with state of the art methods without
needing expensive architectural strategies. However, we also show that our method is also
able to leverage these techniques for further performance gains.

2 RELATED WORKS

SSL Methods (19) categorizes SSL methods as dimension-contrastive or sample-contrastive.
Sample contrastive methods work by projecting sample augmentations (positives) closer to each
other than that of other samples in a batch (negatives) (7). Other methods are derived from simple
alterations to the definition of positive and negative sets. Research directions include using a
momentum queue (8), using nearest neighbors as positives (15), enforcing cluster assignments (5),
enforcing hierarchical structures (30; 27), and using label information (24). Dimension contrastive
approaches enforce feature decorrelation through various methods. Examples include regularizing
the embedding covariance matrix (3; 56; 16) or introducing architectural constraints (9; 20; 6)
that implicitly regularize dimensions. Our method differs due to the introduction of an adaptive
mechanism to take advantage of the underlying training dynamics of both sample and dimension
contrastive approaches at different points of training. We also note that (19) discussed conditions
under which both sample and dimension contrastive approaches are equivalent from an optimization
perspective. However, the authors of this work also acknowledge that neither approach can be used
interchangeably. More recent work (41) identified differences in the entropy characteristics of both
approaches and suggested that it may be possible to devise methods that are able to take advantage
of the characteristics of both. Therefore, our work can also be understood from the perspective
of identifying the underlying dynamics where both approaches contribute meaningfully to SSL
optimization.

Understanding SSL Training Dynamics A subset of works has also attempted to understand the
training dynamics of SSL methods. (22) analyzed the dimensional collapse phenomenon within
contrastive learning settings. (42) explored the idea that SSL training dynamics involves learning one
eigenvalue at a time. (46; 43) analyzed the learning dynamics of dimension contrastive methods in the
context of simple linear networks. In general, there is much more depth of literature for understanding
training dynamics within supervised settings (1; 17; 40), while work into understanding the underlying
dynamics of SSL methods is limited. Our work understands SSL through the lens of characterizing
training dynamics by the relationship between I(R;Z) and H(R).

3 ANALYSIS OF TRAINING DYNAMICS

3.1 SIMULATED TRAINING DYNAMICS

Through the analyses of this section, we find that increases in H(R) due to feature decorrelation
causes a corresponding increase in I(R;Z) while increases in H(R) due to sample uniformity causes
I(R;Z) to plateau or decrease. To investigate these dynamics, we perform a simulation within a
Gaussian setting. Assume that Gaussian distributed data is represented by R ∼ N (µR,ΣR) where
R ∈ Rm. Additionally, assume that there is some projection of R represented by Z ∼ N (µZ ,ΣZ)
where Z ∈ Rn such that n < m. R and Z form a jointly multivariate normal distribution. Together,

this distribution is defined by a block covariance matrix of the form Σ =

[
ΣZ ΣZR

ΣRZ ΣR

]
. In this

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

setting, the closed form solution for I(R;Z) = 1
2 (ln(|ΣR|) + ln(|ΣZ |)− ln(|Σ|)). Applying Shur’s

complement to the block covariance matrix results in the following equation when all covariance
matrices are invertible:

I(R;Z) =
1

2
(ln(|ΣZ |)− ln(|V ar(Z|R)|)) = 1

2
(ln(|ΣR|)− ln(|V ar(R|Z)|)) (1)

In equation 1, V ar(Z|R) = ΣZ − ΣRZΣ
−1
R ΣZR and V ar(R|Z) = ΣR − ΣZRΣ

−1
Z ΣRZ . The

details of this derivation can be found in Section B.2. From this construction of the problem, several
trends emerge. I(R;Z) will increase or decrease depending on the relationship that the projection
produces between R and Z. Specifically, I(R;Z) will increase when the variance of the space
of interest increases while its corresponding conditional variance remains relatively lower. These
variance changes can occur through a larger number of features or through a more uniform spread
of data samples. Figure 2 demonstrates a simulation of the effect of each by generating a synthetic
gaussian dataset with 1000 samples, a defined variance for each of 5 generated clusters, and a defined
number of features m > 10 to simulate R. R is then projected with PCA to generate Z with either 2
components or 10 components denoted by n. This design choice is to simulate the difference between
early and late stage SSL training. Early in training, R and Z project closer to each other which is
represented by the 10 component Z space while later in training R and Z diverge to a greater degree
represented by the 2 component projection. Note that a gaussian assumption on the distribution of the
data space is standard practice within the analysis of SSL methods (41). Additionally, PCA serves
as a representative projection in this setting, since the information content of R is represented by
the variance parameter of an m-dimensional Gaussian. However, the same simulation is repeated
with similar conclusions in Section B.4 where the projector is replaced with a small neural network.
Further details of these experiments can be found in Section B.3.

10 20 30 40 50
Number of Features of R

60

80

100

120

140

160

I(R
;Z

)

(a) Z = 10 Components

Cluster Variance: 0.1
Cluster Variance: 1.0
Cluster Variance: 2.0
Cluster Variance: 4.0

10 20 30 40 50
Number of Features of R

20

21

22

23

24

25

26

27

I(R
;Z

)

(b) Z = 2 Components
Cluster Variance: 0.1
Cluster Variance: 1.0
Cluster Variance: 2.0
Cluster Variance: 4.0

0 2 4 6 8 10
Cluster Variance of R

80

100

120

140

160

180

I(R
;Z

)

(c) Z = 10 Components

Number of Features: 20
Number of Features: 30
Number of Features: 40

0 2 4 6 8 10
Cluster Variance of R

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

I(R
;Z

)

(d) Z = 2 Components

Number of Features: 20
Number of Features: 30
Number of Features: 40

Figure 2: a) and b) show how the I(R;Z) changes as the number of features of R is increased. c) and
d) show how I(R;Z) varies as the sample cluster variance increases. Both pairs of Figures show the
underlying dynamics under a large projection Z = 2 and lesser projection Z = 10 PCA components.

In Figures 2 a) and b), H(R) increases by increasing the number of generated features m while the
cluster variance is kept constant. This corresponds to the feature decorrelation setting. The second
experiment in Figures 2 c) and d) involves changing the sample variance while keeping the number
of features fixed which corresponds to the setting where the sample uniformity changes between
spaces. In parts a) and b), for different cluster variance values, increasing the number of features in R
corresponds to an increase in I(R;Z) regardless of the degree of projection. In parts c) and d), the
behavior of I(R;Z) varies significantly based on the degree of the projection. For the 10 component
projection case of part c), increasing the sample variance initially increases I(R;Z), but it gradually
plateaus as the sample variance increases further. This suggests that the projection cannot capture
the variance along certain dimensions after a specific point. In part d), in the 2 component case,
increasing the sample variance by any amount reduces I(R;Z). Overall, this Figure shows that
I(R;Z) increases with a greater number of decorrelated features in R regardless of the degree
of the projection. In contrast, I(R;Z) increases, plateaus, or decreases based on the degree
of sample variance and projection from space m to n. The exact choice of SSL optimization
objective and training procedures will influence the degree to which H(R) and I(R;Z) increases or
decreases, but the underlying representational dynamics will reflect our analysis.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Another important consideration is how downstream performance is influenced by the relationship
between H(R) and I(R;Z) at the end of training. To model this, the SSL information flow can be
described by: Y → X → R → Z → T . Y represents the semantic concept associated with the
data X . T represents the associated SSL task. The end goal of the SSL objective is to maximize
I(Y ;R) which is the mutual information between the semantics of the data and the representation
space. Recent work (35) showed that this information flow results in an upper bound on I(Y ;R):

I(Y ;R) ≤ I(Y ;Z)− I(R;Z) +H(R) (2)

Our objective is to show how this bound is effected by the training dynamics discussed in Section 3.1
and to show that simply reducing I(R;Z) and increasing H(R) to maximize this bound is not
possible given these dynamics. It is assumed that R and Z are drawn from a joint multivariate
Gaussian distribution. Furthermore, I(Y ;Z) is assumed to approach some constant G to isolate the
analysis with respect to I(R;Z) and H(R). The justification for this term acting as a constant is
from previous analyses (39) that assumed the information shared between semantic labels and the
target SSL task can be regarded as a constant. Equation 2 can then be rewritten as:

I(Y ;R) ≤ G+
1

2
(ln(|ΣR|)− ln(|ΣZ |))︸ ︷︷ ︸

K(Both)

+
1

2
ln(|V ar(Z|R)|)︸ ︷︷ ︸

V (I(R;Z))

+
m

2
(ln(2π) + 1)︸ ︷︷ ︸
D(H(R))

(3)

Equation 3 suggests that the bound on I(Y ;R) can be decomposed into three terms: a variance
differential term K, a conditional variance term V , and a total dimension term D. The derivation of
this bound is shown in Section B.5. Each term is labeled by its effect on I(R;Z) or H(R). Ideally,
increasing each of these terms together would result in a higher overall bound on I(Y ;R). However,
the SSL training dynamics discussed in Section 3.1 leads to the emergence of a dynamical system
where increasing one of these terms can potentially limit the growth of the others. For example, if
H(R) increases via feature decorrelation, then D will increase due to a greater number of features m.
This, in turn, causes feature decorrelation in Z, as discussed in our previous dynamics, which causes
I(R;Z) to increase and V to decrease which limits the upper bound in equation 3. Additionally,
K is limited in this setting due to both of its terms increasing together. In the setting where H(R)
increases due to sample uniformity, D is fixed in the number of dimensions which acts as a bound on
how large H(R) can grow. In contrast, K and V increase due to an increase in the variance of R
without the projection Z having a corresponding increase in variance which lowers I(R;Z). This
oscillatory behavior between each of these terms suggests that the downstream performance
represented by I(Y ;R) cannot be maximized by optimizing for each term individually and
requires a procedure that adaptively finds a balance.

3.2 EMPIRICAL DYNAMICS

500 1000 1500 2000
Epochs

0

500

1000

1500

Ei
ge

nv
al

ue
s a

bo
ve

 Ta
u (a) Eigenvalue Growth

VICreg_R
VICreg_Z
SimCLR_R
SimCLR_Z
NNCLR_R
NNCLR_Z
BYOL_R
BYOL_Z

500 1000 1500 2000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Cu
m

ul
at

iv
e

Va
ria

nc
e (b) Cumulative Variance

VICReg_R
VICReg_Z
SimCLR_R
SimCLR_Z
NNCLR_R
NNCLR_Z
BYOL_R
BYOL_Z

500 1000 1500 2000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Un
ifo

rm
ity

(c) Normalized Training Uniformity
VICReg_R
VICReg_Z
SimCLR_R
SimCLR_Z
NNCLR_R
NNCLR_Z
BYOL_R
BYOL_Z

500 1000 1500 2000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

I(R
;Z

)

(d) Training I(R;Z)

VICReg I(R;Z)
SimCLR I(R;Z)
NNCLR I(R;Z)
BYOL I(R;Z)

Figure 3: This is an analysis of the R and Z space for 4 different SSL models trained for 2000
epochs on Cifar-100 with ResNet-50. This analysis includes a) the number of eigenvalues above a
threshold of τ = .01, b) the cumulative explained variance ratio for the top 30% of eigenvalues, c)
the uniformity of each space, and d) I(R;Z).

To verify the theoretical dynamics discussed in Section 3.1, an empirical analysis within a real SSL
setting is shown in Figure 3. This experiment involves training a ResNet-50 model (21) with 4
different SSL methods for 2000 epochs on Cifar-100. The projector is designed such that R and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

550 575 600 625 650 675
Effective Rank (H(R))

0.055

0.060

0.065

0.070

0.075

0.080

I(R
;Z

)

(a) SimCLR Models

800 825 850 875 900 925
Effective Rank (H(R))

0.22

0.24

0.26

0.28

I(R
;Z

)

(b) VICReg Models

420 440 460 480 500 520
Effective Rank (H(R))

0.04

0.05

0.06

0.07

I(R
;Z

)

(c) NNCLR Models

370 380 390 400 410
Effective Rank (H(R))

0.00

0.25

0.50

0.75

1.00

I(R
;Z

)

BT

BYOL DCv2

Mocov2

NNCLR

RESSL

Mocov3

SimCLRSimSiamSwav

VICReg(d) Cifar-100 Models

48

50

52

54

Ac
cu

ra
cy

50

52

54

56

58

Ac
cu

ra
cy

53.5

54.0

54.5

55.0

55.5

56.0

Ac
cu

ra
cy

64

66

68

70

Ac
cu

ra
cy

Figure 4: In Figures a), b), and c), the H(R)
and I(R;Z) across 15 ResNet-50 models trained
with randomized hyperparameters with 3 differ-
ent SSL strategies are shown. In Figure d), we
show the same plot across 11 different SSL meth-
ods trained on ResNet-18 for 1000 epochs each.

Magnitude of Correlation with Performance Across Trained Models

Method Dataset Epochs # of Models H(R) I(R;Z) Ratio

SimCLR Cifar100 100 15 .082 .323 .462
VICReg Cifar100 100 15 .013 .772 .751
NNCLR Cifar100 100 15 .206 .229 .337

All-ResNet18 Cifar100 1000 11 .029 .372 .375
SimCLR Cifar100 400 10 .557 .543 .625
VICReg Cifar100 400 10 .351 .875 .894
SimCLR TinyImageNet200 400 10 .534 .507 .521
SimCLR Cinic-10 400 10 .029 .323 .421
SimCLR Cifar-10 400 10 .873 .841 .833
SimCLR OrganSMNIST 400 10 .0024 .435 .442

Table 1: This table shows the pearson corre-
lation coefficient between the performance
of a set of SSL models trained with different
hyperparameters on a specific dataset and the
effective rank (H(R)), I(R;Z), and the ratio
between them.

Z both have 2048 features. For all analytical experiments, the matrix being analyzed is the matrix
formed by passing each sample from the test set into the encoder network and then concatenating
all resulting representations into a single matrix. Details of these experiments can be found in
Section A.9. In part a), we analyze the evolution of feature decorrelation for both the R and Z space
across training by performing a count of the number of eigenvalues above a threshold τ = .01. It
is interesting to note that for the R space the number of eigenvalues consistently increases until
late in training while the Z space has a more pronounced plateauing behavior earlier in training.
This shows the behavior that the overall dimension of both spaces diverges from each other during
training. In part b), we analyze the uniformity of eigenvalues by measuring what percentage of the
variance in the space of interest is represented by the top 30% of eigenvalues. This is known as the
cumulative explained variance ratio (23). We observe that the cumulative explained variance of R for
all methods decreases during training which indicates that H(R) is increasing due to a more uniform
spread of eigenvalues and will gradually depend more on sample uniformity as training progresses.
However, in Z, this metric is near 1.0 for all epochs of training which means that most of the variance
of Z is contained within only a small number of top eigenvalues. This suggests that samples in Z
distribute uniformly along a restricted subset of dimensions which is in contrast to the behavior of
space R that tries to distribute uniformly on as many dimensions as possible. This discrepancy in
sample uniformity can also be visualized in part c) with the uniformity metric (51). We observe
that for all SSL methods the uniformity between both spaces diverges from each other as training
progresses. This divergent behavior is further confirmed in part d), where I(R;Z) increases at the
start of training, but gradually decreases for every method later in training.

We also empirically verify how the relationship between H(R) and I(R;Z) impacts the downstream
performance in Figure 4. In parts a), b), and c) we train 15 different models with randomized
hyperparameters specific to 3 different SSL methods with a ResNet-50 model on Cifar-100 for
100 epochs each. We observe that for each method, the best performing models cluster around
specific H(R) and I(R;Z) values. This trend also holds in part d), where all 11 models are trained
with entirely different SSL approaches. In Table 1, we compute the magnitude of the Pearson
correlation coefficient between the performance of each of the generated models across different
datasets and H(R), I(R;Z), and the ratio between both of them. We observe that generally the
performance correlates more with the ratio, rather than either of the terms individually. Again,
this result empirically shows the existence of an ideal balance between H(R) and I(R;Z) that
corresponds to the best performing SSL model.

4 METHODOLOGY

Based on the analysis of the previous section, we introduce a method to balance the training trajectory
of both H(R) and I(R;Z). Consider an image i drawn from a training pool i ∈ I . i is passed
into two random transformations a(i) = xi and a

′
(i) = x

′

i where a and a
′

are drawn from the
set of all random augmentations A. Both xi and x

′

i are passed into an encoder network e(·). This

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

results in the representations e(x) = ri and e(x
′
) = r

′

i. These representations are then passed into a
projection head g(·) that produces the embeddings g(xi) = zi and g(x

′

i) = z
′

i . The collection of all
representations and embeddings within a batch of b samples can be represented by the R, R

′
, Z, and

Z
′

matrices. In this case, all matrices are composed of b vectors with F features. From this setup,
we can compute LNCE used in SimCLR (7) and the LV ICReg (3) loss. Note for embeddings passed
into LNCE further normalization is applied on zi to produce ẑi. The main details of each loss are
provided in Section A.5. For the purposes of discussing AdaDim, we highlight the sample uniformity
term in LNCE and the feature decorrelation term in LV ICReg:

LNCE =
∑
i∈I

(−ẑi · ẑi
′
)/τ + log(

∑
k∈K(i)

exp(ẑi · ẑk/τ)))

︸ ︷︷ ︸
uniformity

LV ICReg = λs(Z,Z
′
) + µ[v(Z) + v(Z

′
)] + ν[c(Z) + c(Z

′
)]]︸ ︷︷ ︸

decorrelation

(4)

The second term in LNCE is a sample uniformity loss as it distances the image of interest ẑi away
from all other samples in the batch of interest k ∈ K(i). The final term in LV ICReg represents a
decorrelation loss as it tries to drive the covariance matrix towards an identity matrix. It takes the
form c(Z) = 1

F

∑
i̸=j [C(Z)]2i,j where C(Z) is the covariance matrix of Z. We then compute the

dimensionality of the current embedding space Z after every eα epochs (20 in this paper) of training.
This is done by computing the SVD of the representation space of 10 randomly chosen batches from
the training set and then calculating the average effective rank across these batches ER(Z) (38).
We then scale ER(Z) by the maximum possible dimensionality value which is D = min(b, F)

to produce the adaptive parameter α = ER(Z)
D . α will gradually transition from 0 to 1 during

training as the dimensionality of the space increases. Therefore, we can transition between optimizing
between feature decorrelation and sample uniformity with the loss (1 − α)LV ICReg + αLNCE .
However, we also want to gradually increase regularization on I(R;Z) to counter the decrease in
I(R;Z) that emerges later in SSL training. To do this, we compute an I(R;Z) loss Lmut(R,Z) that
encourages higher I(R;Z) with the α-Renyi entropy approximation technique (58; 35; 37). This
loss first computes the entropy of a matrix with the formula H(R) = −1

2 log[tr(
R
b)

2]. The mutual
information can then be computed as I(R;Z) = H(R) +H(Z)−H(R⊙ Z). For the purpose of
numerical stability, the I(R;Z) loss is computed as Lmut = I(R̂R̂T ; ẐẐT) where R̂ and Ẑ refer to
the normalized version of each space. We scale its regularization through the term β = γ ∗ α with
γ set as a constant. We provide PyTorch style pseudo-code of our method in Section A.3. We also
note that this general loss can be applied regardless of additional architectural overhead used in SSL
strategies such as a momentum encoder (8) or a predictor head (52). Our final loss is:

LAdaDim = (1− β)[(1− α)LV ICReg + αLNCE]− βLmut (5)

𝛼 = 0

𝛼 = 1

𝛼 = 𝐴𝑑𝑎

𝐿𝑚𝑢𝑡

(d)

Figure 5: This figure shows the impact of manually varying alpha on a) H(R) and b) I(R;Z) in the
setting where β is set as a constant 0. c) This figure shows how the adaptive α parameter varies during
training of a ResNet50 model for 400 epochs. d) This figure gives a toy example of the intuition
behind our loss that includes the adaptive α leading to an intermediate H(R) and I(R;Z) trajectory
alongside gradual increases in Lmut regularization.

The design of this loss is based on our goal of naturally leading to an ideal balance between H(R)
and I(R;Z). To achieve this balance, the loss needs different components that both support and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

AdaDim Parameter Variation Ablation
Method α γ β Accuracy
AdaDim 0 0 0 72.14
AdaDim 1 0 0 69.57
AdaDim 0.5 0 0 72.23
AdaDim Ada 0 0 72.30
AdaDim Cosine 0 0 71.40
AdaDim Linear 0 0 71.59
AdaDim Ada 1e-04 1 72.00
AdaDim 1 1e-04 1 68.81
AdaDim 0 1e-04 1 72.10
AdaDim Ada 1e-04 Ada 72.73

SimCLR + λ (35) - - - 69.11
VICReg + λ (35) - - - 72.14

Table 2: This table studies the ef-
fect of variations to the α, β, and γ
parameters on performance. Exper-
iments use a ResNet-50 model on
Cifar-100 for 400 epochs with the
baseline hyperparameter setting.

AdaDim Diverse Dataset Comparison

Method Cifar100 TinyImageNet200 Cinic10 STL10 Blood OrganA OrganS OrganC

SimCLR (7) 69.06 46.66 78.77 86.73 93.10 88.04 77.98 91.13
VICReg (3) 72.18 48.47 82.70 87.92 93.77 92.21 80.37 91.84
Moco v2 (8) 71.01 46.78 81.48 92.41 93.74 90.49 75.96 90.81
BYOL (20) 71.72 32.96 80.00 89.96 92.45 92.26 78.53 91.45

Barlow Twins (3) 70.84 46.73 81.5 88.45 89.91 91.69 78.69 89.77
NNCLR (15) 70.72 39.66 77.28 87.16 93.15 92.93 79.92 91.71
SimSiam (9) 65.52 31.35 79.97 89.45 91.78 91.91 78.31 90.79

Deepcluster v2 (4) 65.70 41.87 74.80 82.93 93.56 92.21 77.93 74.31
Moco v3 (6) 63.96 37.56 74.71 85.25 93.33 92.27 78.69 91.84

AdaDim (γ = 0) 72.23 47.87 82.38 88.11 93.74 92.90 80.19 91.95
AdaDim (γ = 1e− 4) 72.73 48.76 82.77 89.01 94.24 92.77 80.80 91.95
AdaDim (γ=Tuned) 72.73 48.76 82.84 89.21 94.24 93.34 80.80 92.33

Resa (52) 72.06 50.73 84.23 92.56 88.71 93.20 78.81 91.50
AdaDim + momentum 75.38 54.68 84.99 92.70 95.21 93.67 78.83 91.82

Table 3: Comparison methods use the given parameters
from (11). Experiments involve a ResNet-50 model for
400 epochs with baseline hyperparameters as well as
comparisons with an additional momentum encoder and
the Resa method (52) under the expanded hyperparame-
ter setting. For the AdaDim baseline setting, we vary γ
to 0, 1e-4, and a value tuned to specific datasets.

oppose the growth of H(R) and I(R;Z) at different points during the training process by exploiting
the observed dynamics that we discuss in Section 3. The first set of components that are balanced
with the α term are LNCE and LV ICReg . In parts a) and b) of Figure 5, we show the impact on H(R)
and I(R;Z) when manually varying α from 0 to 1 while fixing β = 0 across 6 different datasets.
As a loss based on sample uniformity, LNCE supports lower H(R) and I(R;Z) while a feature
decorrelation based loss like LV ICReg supports higher I(R;Z) and H(R). This leads to the behavior
of parts a) and b), where gradually varying the loss from 0 (LV ICReg) to 1 (LNCE) consistently leads
to both a lower H(R) and I(R;Z). In part c), we show that the adaptive α term grows from 0 to 1 in
a manner that is specific to the unique dimensionality characteristics of each dataset. Therefore, the
adaptive α term encourages an intermediate H(R) and I(R;Z) training trajectory when compared
with α = 0 or α = 1 as shown in the toy intuition example of part d). However, at the end of
training, both LV ICReg and LNCE will demonstrate the SSL dynamic of lowering I(R;Z) in late
stage training. Therefore, to maintain balance in this dynamic system, we need an additional term
that explicitly opposes the decrease in I(R;Z) as shown by the magnitude of Lmut increasing as it
scales with α in part d). In this way, AdaDim dynamically balances both H(R) and I(R;Z).

5 RESULTS

200 400 2000
Epochs of Training

62

64

66

68

70

72

Ci
fa

r1
00

 A
cc

ur
ac

y

(a) Epochs vs. Performance

AdaDim
VICReg
SimCLR
BYOL
NNCLR

C10 C100 TIN200
Dataset

40

50

60

70

80

90

Ci
fa

r1
00

 A
cc

ur
ac

y

(b) 2000 Epochs Training
AdaDim
VICReg
SimCLR
BYOL
NNCLR

100 200 300 400
H(R)

0.2

0.4

0.6

0.8

1.0

1.2

I(R
;Z

)

(c) TinyImageNet 2000 Epochs
AdaDim
VICReg
SimCLR
NNCLR
BYOL

Figure 6: a) This figure demonstrates the performance of AdaDim under different amounts of training
epochs on Cifar-100 with a ResNet-50 model for 200 and 400 epochs and a ResNet-18 model for 2000
epochs. b) This figure shows how AdaDim performs under a long training setting of 2000 epochs
with a ResNet-18 encoder for Cifar-10 (C10), Cifar-100 (C100), and TinyImageNet200 (TIN200) c)
This shows the H(R) and I(R;Z) trajectory over 2000 epochs with a ResNet-18 encoder.

To thoroughly analyze AdaDim, we introduce two different sets of hyperparameters: the baseline
and expanded settings. In the baseline setting, we use the traditional joint embedding setup with a
single ResNet-50 (21) backbone in tandem with a simple 3-layer MLP projector that has an output

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Solo-Learn (11) Benchmark Comparison
Method M P Q C Cifar-10 Cifar-100 ImageNet-100

Barlow Twins (56) ✗ ✗ ✗ ✗ 92.10 70.90 80.38
BYOL (20) ✓ ✓ ✗ ✗ 92.58 70.46 80.16

Deep Cluster v2 (4) ✗ ✗ ✗ ✓ 88.85 63.61 80.32
DINO (6) ✓ ✗ ✗ ✗ 89.52 66.76 74.84

Moco v2 (8) ✓ ✗ ✓ ✗ 92.94 69.89 78.20
Moco v3 (10) ✓ ✓ ✗ ✗ 93.10 68.83 80.36
NNCLR (15) ✗ ✓ ✓ ✓ 91.88 69.62 79.80
ReSSL (59) ✓ ✗ ✓ ✗ 90.63 65.92 76.92
SimCLR (7) ✗ ✗ ✗ ✗ 90.74 65.78 77.64
SimSiam (9) ✗ ✓ ✗ ✗ 90.51 66.04 74.54

SwAV (5) ✗ ✗ ✗ ✓ 89.17 64.88 74.04
VICReg (3) ✗ ✗ ✗ ✗ 92.07 68.54 79.22

AdaDim (Ours) ✗ ✗ ✗ ✗ 92.81 71.20 80.78
Resa (52) ✓ ✗ ✗ ✓ 93.53 72.21 82.24

AdaDim (Ours) ✓ ✗ ✗ ✗ 93.61 74.31 83.10

Table 4: This table shows a comparison in the
solo-learn benchmark table with all methods using
a ResNet-18 model trained for 1000 epochs on
Cifar-10 and Cifar-100 with a batch size of 256.
ImageNet-100 experiments are performed with 400
epochs and a batch size of 128. (M = Momentum
Encoder, P = Predictor, Q = Queue, C = Clustering)

ImageNet SOTA Comparison
Method M P Q C Batch Size Accuracy

SimCLR (7) ✗ ✗ ✗ ✗ 4096 66.50
SwAV (57) ✗ ✗ ✗ ✓ 4096 66.50

Moco v3 (10) ✓ ✓ ✗ ✗ 4096 68.90
BYOL (20) ✓ ✓ ✗ ✗ 4096 66.50

Barlow Twins (56) ✗ ✗ ✗ ✗ 2048 67.70
VICReg (3) ✗ ✗ ✗ ✗ 2048 68.60
SimSiam (9) ✗ ✓ ✗ ✗ 256 68.10
INTL (53) ✗ ✗ ✗ ✗ 1024 69.70
MEC (32) ✗ ✓ ✗ ✗ 1024 70.60

Resa (52) ✓ ✗ ✗ ✓ 256 70.80
AdaDim (Ours) ✓ ✗ ✗ ✗ 256 71.01

Resa (52) ✓ ✓ ✗ ✓ 256 71.90
AdaDim (Ours) ✓ ✓ ✗ ✗ 256 71.42

Table 5: This table shows a state of the
art 100 epoch ImageNet comparison within
the single crop setting. For AdaDim, we
use the hyperparameters of our expanded
setting. All comparison results are taken
from their original papers or tables in (52).

dimension of 2048. The baseline setting also uses the LARS optimizer, batch size of 256, a learning
rate of 0.4, temperature of 0.1, and a weight decay of 1e-4. We also use the asymmetric augmentation
scheme of (11). Evaluation is performed with an online linear predictor that correlates with the offline
setting (19; 18). In the expanded setting, we use the same AdaDim loss function, but integrate the
architectural techniques of certain state of the art approaches such as momentum encoders. For these
experiments, we use the training hyperparameters of the state of the art Resa algorithm (52) which
uses the augmentation scheme of (59), an output projection size of 512, a SGD optimizer, batch size
of 256, learning rate of 0.4, SGD momentum term of 0.9, temperature of 0.1, and weight decay of
1e-4. Evaluation is performed in the offline manner of (16). All experiments generally use 20 epochs
between every α update and a default gamma of 1e− 4. Further details are in Section A.4.

In Table 2, we analyze the performance impact of different hypothetical design choices on α, γ, and
β. Note that while AdaDim only introduces a single hyperparameter γ, we individually tune each in
this table to validate the adaptive nature of our method. To start, we compare against methods that
make use of heuristic α scaling methods without an adaptive computation such as cosine or linear
schedules between 0 and 1 over the course of training. These methods underperform relative to the
adaptive case and highlights the importance of adapting the optimization based on the dimensional
characteristics of the dataset. We also compare against using a fixed γ term during training. We
observe that this regularization causes a slight decrease in performance. This result suggests that
I(R;Z) regularization should be applied selectively at specific points in SSL training, rather than a
constant term throughout. This intuition is further confirmed by comparing against the λ regularized
I(R;Z) reduction loss proposed in (35). This work argues that simply reducing I(R;Z) during
training without an adaptive mechanism can improve SSL representations. However, simply reducing
I(R;Z) doesn’t conform with the dynamics we discuss where I(R;Z) goes through periods of
growth and reduction during training. Consequently, we find that using their suggested λ parameter
results in little to no improvement in our baseline setting. The reason for this discrepancy with their
results may be that in their original paper their method only showed improvements with 200 epochs
of training. In this limited setting, fixed regularization may work as there is limited training time for
the discussed dynamics to emerge. We further validate these findings across more datasets and a
fixed parameter setting in Section C.9. We also note a performance improvement when transitioning
between training with α alone compared to β in tandem with α. This result confirms the importance of
balancing between both H(R) and I(R;Z) regularization in a manner consistent with the discussed
training dynamics. We confirm this ablation study across many different datasets in Table 3 and in
comparison with state of the art approaches. We find that our method out performs or is comparable
to other approaches across diverse settings with a fixed γ choice of 1e − 4. Additionally, further
performance improvements can be attained by tuning γ with respect to each dataset individually
which is a result of better tuning towards the different dimensionality characteristics of each dataset.
Furthermore, adding a momentum encoder as part of the AdaDim methodology leads to significant
performance improvements for the majority of datasets. This emphasizes that AdaDim can effectively
leverage the architectural techniques of other methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Since our method is motivated by adapting to training dynamics, we also analyze performance
under different amounts of training epochs in part a) of Figure 6. We observe that our method out-
performs competitive baselines regardless of training time. However, we also note that the margin of
improvement is higher with more epochs which indicates that AdaDim better adapts to the dynamics
of SSL methods. We further highlight this advantage in part b) of Figure 6 with 2000 epochs of
training across 3 different datasets. Again, our method is the only one that consistently out-performs
all others in the long training regime. We also visualize the H(R) and I(R;Z) trajectory across 2000
epochs for TinyImageNet in part c) of Figure 6. Our method does not have the highest H(R) nor
lowest I(R;Z), but arrives at a balancing point between both.

1e-2 1e-3 1e-4
Gamma Value

70

71

72

73

74

75

Ci
fa

r1
00

 A
cc

ur
ac

y

Gamma
Resa

20 30 40
Step Value

70

71

72

73

74

75
Ci

fa
r1

00
 A

cc
ur

ac
y

Epoch Update
Resa

512 1024 2048
Output Dimension

70

71

72

73

74

75

Ci
fa

r1
00

 A
cc

ur
ac

y

Projector Size
Resa

0.1 0.2 0.3
Temp Value

70

71

72

73

74

75

Ci
fa

r1
00

 A
cc

ur
ac

y

Temperature
Resa

1 2 4
Renyi Parameter

70

71

72

73

74

75

Ci
fa

r1
00

 A
cc

ur
ac

y

Renyi Value
Resa

Figure 7: This figure shows the impact of different hyperparameter choices on performance with
1000 epochs of training on Cifar-100 with a ResNet-18 model. Experiments are performed in the
expanded hyperparameter setting where AdaDim has an additional momentum encoder. For each
plot, we indicate where the performance of the Resa (52) baseline lies in relation.

We also compare our method in the expanded hyperparameter setting in Tables 4 and 5 on standardized
benchmarks (11; 13). We specify whether each comparison method utilizes additional SSL techniques
such as a momentum encoder(M), predictor head (P), queue (Q), or clustering technique (C). In
Table 4, we note that even without using any of these techniques, we are able to achieve performance
that out-performs many of the other methods with the only additional overhead being an SVD
calculation on 10 batches every 20 epochs. We validate the low compute cost of our method in
Section A.8. However, we also show that our method makes use of a momentum encoder particularly
well to out-perform all existing methods by a significant margin across all datasets. The reason for
this improvement may be due to the momentum encoder acting as a stable update of the representation
space thereby allowing AdaDim to better leverage the discussed training dynamics. We also observe
similar improvements over baselines on the large scale ImageNet dataset where AdaDim is comparable
to the most recent state of the art Resa algorithm (52) without requiring an additional clustering
step. We also find that these improvements are consistent even with perturbations to the base set
parameters in the expanded hyperparameter setting. In Figure 7, we alter a variety of parameters
that could impact the performance of our method which includes the γ value, the number of epochs
between α updates, the output projector size, the temperature in LNCE , and the renyi parameter
applied when computing Lmut. In all cases, we maintain a performance improvement over the Resa
method. Overall, this study demonstrates the experimental robustness of AdaDim.

6 CONCLUSION

This paper demonstrates theoretically and empirically that the best performing SSL models arrive at
a balance between the dimensionality H(R) of the representation space and the mutual information
between the representation and embedding spaces I(R;Z). Specifically, these dynamics indicate that
increases in H(R) due to feature decorrelation are preserved between R and Z, but increases due to
the samples spreading uniformly can cause I(R;Z) to increase, plateau, or decrease depending on
the stage of training of the SSL algorithm. We then introduce a method called AdaDim based on
adapting H(R) based on feature decorrelation and sample uniformity and gradual regularization of
I(R;Z). AdaDim results in improved performance over baseline SSL strategies without requiring
additional architectural overhead. However, further performance improvements are possible when
using an additional momentum encoder. This results in a significant margin of improvement over
state of the art benchmarks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

[1] Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep neural
networks. arXiv preprint arXiv:1711.08856, 2017.

[2] Kumar K Agrawal, Arnab Kumar Mondal, Arna Ghosh, and Blake Richards. alpha-req:
Assessing representation quality in self-supervised learning by measuring eigenspectrum decay.
Advances in Neural Information Processing Systems, 35:17626–17638, 2022.

[3] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regular-
ization for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

[4] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the European conference on
computer vision (ECCV), pages 132–149, 2018.

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020.

[8] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[9] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 15750–15758,
2021.

[10] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised
vision transformers. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9640–9649, 2021.

[11] Victor Guilherme Turrisi Da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and Elisa Ricci. solo-
learn: A library of self-supervised methods for visual representation learning. Journal of
Machine Learning Research, 23(56):1–6, 2022.

[12] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not
imagenet or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[14] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

[15] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman.
With a little help from my friends: Nearest-neighbor contrastive learning of visual representa-
tions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9588–9597, 2021.

[16] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for
self-supervised representation learning. In International conference on machine learning, pages
3015–3024. PMLR, 2021.

[17] Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
representations via multi-view information bottleneck. arXiv preprint arXiv:2002.07017, 2020.

[18] Quentin Garrido, Randall Balestriero, Laurent Najman, and Yann Lecun. Rankme: Assessing
the downstream performance of pretrained self-supervised representations by their rank. In
International conference on machine learning, pages 10929–10974. PMLR, 2023.

[19] Quentin Garrido, Yubei Chen, Adrien Bardes, Laurent Najman, and Yann Lecun. On the
duality between contrastive and non-contrastive self-supervised learning. arXiv preprint
arXiv:2206.02574, 2022.

[20] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[22] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse
in contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

[23] Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent devel-
opments. Philosophical transactions of the royal society A: Mathematical, Physical and
Engineering Sciences, 374(2065):20150202, 2016.

[24] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

[25] Jaeill Kim, Suhyun Kang, Duhun Hwang, Jungwook Shin, and Wonjong Rhee. Vne: An
effective method for improving deep representation by manipulating eigenvalue distribution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3799–3810, 2023.

[26] Kiran Kokilepersaud, Stephanie Trejo Corona, Mohit Prabhushankar, Ghassan AlRegib, and
Charles Wykoff. Clinically labeled contrastive learning for oct biomarker classification. IEEE
Journal of Biomedical and Health Informatics, 27(9):4397–4408, 2023.

[27] Kiran Kokilepersaud, Seulgi Kim, Mohit Prabhushankar, and Ghassan AlRegib. Hex: Hierar-
chical emergence exploitation in self-supervised algorithms. arXiv preprint arXiv:2410.23200,
2024.

[28] Kiran Kokilepersaud, Mohit Prabhushankar, and Ghassan AlRegib. Volumetric supervised
contrastive learning for seismic semantic segmentation. In Second International Meeting for
Applied Geoscience & Energy, pages 1699–1703. Society of Exploration Geophysicists and
American Association of Petroleum . . . , 2022.

[29] Kiran Kokilepersaud, Mohit Prabhushankar, Yavuz Yarici, Ghassan AlRegib, and Armin Par-
chami. Exploiting the distortion-semantic interaction in fisheye data. IEEE Open Journal of
Signal Processing, 4:284–293, 2023.

[30] Kiran Kokilepersaud, Yavuz Yarici, Mohit Prabhushankar, and Ghassan AlRegib. Taxes are all
you need: Integration of taxonomical hierarchy relationships into the contrastive loss. arXiv
preprint arXiv:2406.06848, 2024.

[31] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[32] Xin Liu, Zhongdao Wang, Ya-Li Li, and Shengjin Wang. Self-supervised learning via maximum
entropy coding. Advances in neural information processing systems, 35:34091–34105, 2022.

[33] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[34] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[35] Zhuo Ouyang, Kaiwen Hu, Qi Zhang, Yifei Wang, and Yisen Wang. Projection head is secretly
an information bottleneck. arXiv preprint arXiv:2503.00507, 2025.

[36] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[37] Alfréd Rényi. On measures of entropy and information. In Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability, volume 1: contributions to the theory of
statistics, volume 4, pages 547–562. University of California Press, 1961.

[38] Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In
2007 15th European signal processing conference, pages 606–610. IEEE, 2007.

[39] Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khande-
parkar. A theoretical analysis of contrastive unsupervised representation learning. In Interna-
tional Conference on Machine Learning, pages 5628–5637. PMLR, 2019.

[40] Johannes Schneider and Mohit Prabhushankar. Understanding and leveraging the learning
phases of neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 14886–14893, 2024.

[41] Ravid Shwartz-Ziv, Randall Balestriero, Kenji Kawaguchi, Tim GJ Rudner, and Yann LeCun.
An information-theoretic perspective on variance-invariance-covariance regularization. arXiv
preprint arXiv:2303.00633, 2023.

[42] James B Simon, Maksis Knutins, Liu Ziyin, Daniel Geisz, Abraham J Fetterman, and Joshua
Albrecht. On the stepwise nature of self-supervised learning. In International Conference on
Machine Learning, pages 31852–31876. PMLR, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[43] Manu Srinath Halvagal, Axel Laborieux, and Friedemann Zenke. Implicit variance regulariza-
tion in non-contrastive ssl. Advances in Neural Information Processing Systems, 36:63409–
63436, 2023.

[44] Zhiquan Tan, Jingqin Yang, Weiran Huang, Yang Yuan, and Yifan Zhang. Information flow in
self-supervised learning. arXiv preprint arXiv:2309.17281, 2023.

[45] Vimal Thilak, Chen Huang, Omid Saremi, Laurent Dinh, Hanlin Goh, Preetum Nakkiran,
Joshua M Susskind, and Etai Littwin. Lidar: Sensing linear probing performance in joint
embedding ssl architectures. arXiv preprint arXiv:2312.04000, 2023.

[46] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning
dynamics without contrastive pairs. In International Conference on Machine Learning, pages
10268–10278. PMLR, 2021.

[47] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

[48] Tobias Uelwer, Jan Robine, Stefan Sylvius Wagner, Marc Höftmann, Eric Upschulte, Sebastian
Konietzny, Maike Behrendt, and Stefan Harmeling. A survey on self-supervised methods for
visual representation learning. Machine Learning, 114(4):1–56, 2025.

[49] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig
Adam, Pietro Perona, and Serge Belongie. The inaturalist species classification and detection
dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 8769–8778, 2018.

[50] John Von Neumann. Mathematical foundations of quantum mechanics: New edition. Princeton
university press, 2018.

[51] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In International conference on machine learning,
pages 9929–9939. PMLR, 2020.

[52] Xi Weng, Jianing An, Xudong Ma, Binhang Qi, Jie Luo, Xi Yang, Jin Song Dong, and Lei
Huang. Clustering properties of self-supervised learning. arXiv preprint arXiv:2501.18452,
2025.

[53] Xi Weng, Yunhao Ni, Tengwei Song, Jie Luo, Rao Muhammad Anwer, Salman Khan, Fa-
had Shahbaz Khan, and Lei Huang. Modulate your spectrum in self-supervised learning. arXiv
preprint arXiv:2305.16789, 2023.

[54] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister,
and Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical
image classification. Scientific Data, 10(1):41, 2023.

[55] Leon Yao and John Miller. Tiny imagenet classification with convolutional neural networks. CS
231N, 2(5):8, 2015.

[56] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In International conference on machine learning,
pages 12310–12320. PMLR, 2021.

[57] Xiaohang Zhan, Jiahao Xie, Ziwei Liu, Yew-Soon Ong, and Chen Change Loy. Online deep
clustering for unsupervised representation learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 6688–6697, 2020.

[58] Yifan Zhang, Zhiquan Tan, Jingqin Yang, Weiran Huang, and Yang Yuan. Matrix information
theory for self-supervised learning. arXiv preprint arXiv:2305.17326, 2023.

[59] Mingkai Zheng, Shan You, Fei Wang, Chen Qian, Changshui Zhang, Xiaogang Wang, and
Chang Xu. Ressl: Relational self-supervised learning with weak augmentation. Advances in
Neural Information Processing Systems, 34:2543–2555, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX EXPERIMENTAL DETAILS

A.1 CODEBASE

We use the solo-learn codebase (11) and the codebase associated with the Resa algorithm (52). Code
for this paper will be released upon acceptance.

A.2 DATASETS

We show explicit details of all datasets used in this paper in Table 6. The datasets were chosen to
achieve as much diversity across a wide variety of data settings. This includes medical and natural
image datasets, datasets of varying sizes, datasets of varying class complexity, and datasets with
varying class imbalances.

Dataset Abbreviation & Link Description # of classes
CIFAR-100 (31) cifar100 100 classes of 32x32 color im-

ages, including animals, vehi-
cles, and various objects com-
monly found in the world.

100

CIFAR-10 (31) cifar10 10 classes of 32x32 color im-
ages featuring everyday objects
and scenes such as airplanes,
cars, and animals.

10

TinyImageNet200 (55) tinyimagenet200 200 classes of 64x64 images, a
smaller version of the ImageNet
dataset, used for object recogni-
tion and classification tasks.

200

BloodMNIST (54) blood 8 classes of 28x28 images, de-
signed for classification of dis-
eases in red blood cells.

8

OrganSMNIST (54) organs 11 classes of 28x28 images, de-
signed for classifying various
types of liver tumor problems.

11

OrganCMNIST (54) organc 11 classes of 28x28 images, de-
signed for classifying various
types of liver tumor problems.

11

OrganAMNIST (54) organa 11 classes of 28x28 images, de-
signed for classifying various
types of liver tumor problems.

11

STL10 (54) stl10 10 classes of 96x96 images, de-
signed for classifying various
types of images.

10

Cinic-10 (12) cinic10 10 classes of 96x96 images,
designed for developing unsu-
pervised feature learning, deep
learning, and self-taught learn-
ing algorithms.

10

iNaturalist 2021 (49) inat21 Large-scale dataset with over
10,000 species, collected from
photographs of plants and an-
imals in their natural environ-
ments for fine-grained classifi-
cation.

10,000

ImageNet (13) imagenet Large dataset with over 1,000
classes, used for image clas-
sification and object detection,
containing millions of images
across a wide variety of cate-
gories.

1,000

Table 6: Overview of the datasets used in this paper.

14

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://tiny-imagenet.herokuapp.com/
https://medmnist.com/
https://medmnist.com/
https://medmnist.com/
https://medmnist.com/
https://cs.stanford.edu/~acoates/stl10/
https://github.com/BayesWatch/cinic-10
https://www.kaggle.com/c/inaturalist-2021
http://www.image-net.org/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 PSEUDO-CODE OF ADADIM

We note that AdaDim can be applied with an additional momentum encoder that is used in a variety
of works (8; 52). In this setting, the momentum encoder is a separate network that is effectively a
copy of the main backbone network. The difference is that a momentum encoder is not updated with
backpropagation, but is instead updated as an exponential moving average of the weights of the main
backbone network. During training, the encoder produces its own representation matrices that have
previously been shown to aid in representational stability when integrated with other SSL methods.
We can then perform the same AdaDim loss with the additional momentum encoding representations
and embeddings as shown in the pseudocode above. Note that our projector has an output dimension
of 512 and the final layer is passed through a 1D batch normalization step.

A.4 METHOD TRAINING DETAILS

A.4.1 BASELINE SETTING

We show the basic parameters for the baseline setting in Table 7 and the associated dataset specific
parameters in Table 9. This setting uses the basic joint embedding architecture setup without any
additional architectural techniques such as a momentum encoder or predictor head. In this setting,
we also use the LARS optimizer, a 256 batch size, 1e-4 weight decay, 10 epochs of warmup, a
γ = 1e− 4, a temperature of 0.1, projector output of 2048, and an α update every 20 epochs. The
augmentation scheme is the asymmetric augmentation scheme of (11) described in Table 11.

For evaluation of our method, we use the online linear evaluation setting of (11) where the classifier
is trained alongside the backbone and projector during SSL pre-training. Representations are fed to a
linear classifier while keeping the gradient of the classifier’s cross entropy loss from flowing through
the backbone. The linear classifier has its own separate learning rate of 0.1 that follows a cosine
annealing schedule based on the number of epochs of SSL training. The performance of the online
classifier correlates well with the offline setting, making it a reliable proxy as shown in (19; 7; 11).

A.4.2 EXPANDED SETTING

In the expanded setting, we use the same hyperparameters described in (52) who also borrow the
parameters of (53). These parameters are used when we integrate a momentum encoder or predictor
head on top of the standard joint embedding architecture that we use in the baseline setting. The
basic parameters for this setting are described in Table 7 with dataset specific alterations described
in Table 9. These parameters include a SGD optimizer, batch size of 256, base learning rate of 0.4,
cosine scheduler, weight decay of 1e-4, 2 warmup epochs, γ = 1e−4, temperature of 0.1, 512 output
projector size and 20 epochs between every α update. The attached momentum encoder also has a
momentum encoding update parameter of 0.996. This setting also uses the augmentation scheme of
(59) described in Table 11.

Another difference in this setting is that evaluation is done in an offline manner where a linear layer
is appended to the frozen SSL encoder and fine-tuned with specific hyperparameters. Specifically, we
use the linear fine-tuning approach of (52) and (53) described in Table 8. For small scale experiments
(i.e. datasets that are notImageNet), the linear layer is fine-tuned for 500 epochs, with an Adam
optimizer, a learning rate that drops from 1e-2 to 1e-6, and a weight decay of 5e-6. Training is
performed in a stochastic manner where subsets of the training set are used at each epoch. This setting
allows evaluation to take place in a few minutes and is suitable for analyzing smaller datasets. For
ImageNet and ImageNet-100 experiments, an SGD optimizer is used with a momentum parameter of
0.9, 100 epochs of training, a base learning rate and weight decay specified in Table 9, and step down
scheduler by a factor of 10 at epochs 60 and 80.

A.4.3 COMPARISON METHODS

All essential hyperparameters for comparisons with state of the art methods are shown in Table 10.
Note that these parameters are used to train comparisons for the ablation study of Table 2 and the
diverse data study of Table 3. For all other comparisons against past state of the art SSL methods, we
use the benchmark tables provided in (11) for comparisons with Cifar-10, Cifar-100, and ImageNet-
100. For comparisons with ImageNet, we copy the tables provided in (52) that is taken from the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 Pytorch style pseudocode for AdaDim
E, Em: encoder, momentum encoder (optional)
G, Gm: projector mlp, momentum projector mlp (optional)
T1, T2: augmentation1, augmentation2
temp: temperature = 0.1
gama: gamma = 1e-4
b: Batch size = 256
vicreg_loss with default weightings of 25,25,1
nce_loss
alpha_renyi_loss with parameter of 2
get_rank function computes effective rank
alpha_epoch: epoch where the alpha parameter is computed
current_epoch: Epoch of Current Training
import torch.nn.functional as F
############################
Loss without momentum encoder
############################
for x in loader: # load a minibatch x with b samples

x1, x2 = T1(x), T2(x) # two augmentation views
r1, r2 = E(x1), E(x2) # representation space
z1, z2 = G(h1), G(h2) # embeddings

if alpha_epoch % current_epoch == 0:
Z = torch.cat((z1,z2))
min_dim = min(Z.shape[0],Z.shape[1])
rank = get_rank(Z)
alpha = rank / min_dim
beta = alpha * gamma

v_loss = vicreg_loss(z1,z2)
z1_norm = F.normalize(z1)
z2_norm = F.normalize(z2)
n_loss = nce_loss(z1_norm,z2_norm,temperature)
ssl_loss = alpha * v_loss + (1-alpha) * n_loss
mut_loss = (alpha_renyi_loss(z1,r2) + alpha_renyi_loss(z2,r1)) / 2

return (1-beta) * ssl_loss - beta * mut_loss

############################
Loss with Momentum encoder
############################
for x in loader: # load a minibatch x with b samples

x1, x2 = T1(x), T2(x) # two augmentation views
r1, r2 = E(x1), E(x2) # representation space
z1, z2 = G(h1), G(h2) # embeddings

with torch.no_grad():
update_momentum_params(0.996 -> 1) # exponential moving average
r1m, r2m = Em(x1), Em(x2) # momentum encodings
z1m, z2m = Gm(h1m), Gm(h2m) # momentum embeddings

if alpha_epoch % current_epoch == 0:
Z = torch.cat((z1,z2m))
min_dim = min(Z.shape[0],Z.shape[1])
rank = get_rank(Z)
alpha = rank / min_dim
beta = alpha * gamma

v_loss = (vicreg_loss(z1,z2m) + vicreg_loss(z1m,z2)) / 2
z1_norm = F.normalize(z1)
z2_norm = F.normalize(z2)
z1m_norm = F.normalize(z1m)
z2m_norm = F.normalize(z2m)
n_loss = (nce_loss(z1_norm,z2m_norm,temperature) +

nce_loss(z1m_norm,z2_norm,temperature)) / 2↪→
ssl_loss = alpha * v_loss + (1-alpha) * n_loss
mut_loss = (alpha_renyi_loss(z1,r2) + alpha_renyi_loss(z2,r1))
mut_loss_momentum = (alpha_renyi_loss(z1m,r2m) +

alpha_renyi_loss(z2m,r1m))↪→
total_mut_loss = (mut_loss + mut_loss_momentum) / 4

return (1-beta) * ssl_loss - beta * total_mut_loss

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

AdaDim Baseline Parameters
Method Setting M P Optimizer Batch Size Base LR Weight Decay Warmup γ Temp Alpha Update Proj Output
AdaDim Baseline ✗ ✗ LARS 256 0.4 1e-4 10 1e-4 0.1 20 2048
AdaDim Expanded ✓ ✓or ✗ SGD 256 0.4 1e-4 2 1e-4 0.1 20 512

Table 7: This table shows the baseline parameters for most experiments. M refers to using a
momentum encoder. P refers to using an additional prediction head.

AdaDim Expanded Hyperparameter Specific Details

Method Setting M P Pretraining
Momentum Linear Optimizer Linear Base LR Linear Weight Decay Linear Scheduler Linear

Epochs
AdaDim Expanded ✓ ✓or ✗ .996 Adam 0.01 5e-6 Exponential 500

Table 8: This table shows the momentum parameter used during SSL pre-training within a momentum
encoder and the details of the offline linear evaluation setting for the momentum encoding experiments.
M refers to using a momentum encoder. P refers to using an additional prediction head.

results reported in the original paper for each method. In the case of method specific hyperparameters,
we use the parameters described in the solo-learn codebase as much as possible.

In Table 2, we also compare with the regularization technique of (35). This involves taking the matri-
ces R and Z and computing the mutual information estimate based on the α-Renyi approximation
discussed in Section A.6. This regularization term is scaled by a λ parameter that is set to 1e-4 for all
experiments. This specific choice of λ is based on the value that performed best in (35).

AdaDim Dataset Specific Training

Method Setting Dataset M P Tuned Gamma Epochs Model Batch Size Augmentation
Scheme Base Linear LR Pretrain LR WD

AdaDim Baseline Cifar100 ✗ ✗ 1e-4 400 ResNet-50 256 Asymmetric 0.1 0.4 1e-4
AdaDim Expanded Cifar100 ✓ ✗ 1e-4 400 ResNet-50 256 ReSSL 0.01 0.4 1e-4
AdaDim Baseline TinyImageNet200 ✗ ✗ 1e-4 400 ResNet-50 256 Asymmetric 0.1 0.4 1e-4
AdaDim Expanded TinyImageNet200 ✓ ✗ 1e-4 400 ResNet-50 256 ReSSL 0.01 0.4 1e-4
AdaDim Baseline Cinic10 ✗ ✗ 1e-2 400 ResNet-50 256 Asymmetric 0.1 0.4 1e-4
AdaDim Expanded Cinic10 ✓ ✗ 1e-4 400 ResNet-50 256 ReSSL 0.01 0.4 1e-4
AdaDim Baseline STL10 ✗ ✗ 1e-2 400 ResNet-50 256 Asymmetric 0.1 0.4 1e-4
AdaDim Expanded STL10 ✓ ✗ 1e-4 400 ResNet-50 256 ReSSL 0.01 0.4 1e-4
AdaDim Baseline BloodMNIST ✗ ✗ 1e-4 400 ResNet-50 256 Asymmetric 0.1 0.4 1e-4
AdaDim Expanded BloodMNIST ✓ ✗ 1e-4 400 ResNet-50 256 ReSSL 0.01 0.4 1e-4
AdaDim Baseline OrganSMNIST ✗ ✗ 1e-4 400 ResNet-50 256 Asymmetric 0.1 0.4 1e-4
AdaDim Expanded OrganSMNIST ✓ ✗ 1e-4 400 ResNet-50 256 ReSSL 0.01 0.4 1e-4
AdaDim Baseline OrganCMNIST ✗ ✗ 1e-2 400 ResNet-50 256 Asymmetric 0.1 0.4 1e-4
AdaDim Expanded OrganCMNIST ✓ ✗ 1e-4 400 ResNet-50 256 ReSSL 0.01 0.4 1e-4
AdaDim Baseline OrganAMNIST ✗ ✗ 1e-1 400 ResNet-50 256 Asymmetric 0.1 0.4 1e-4
AdaDim Expanded OrganAMNIST ✓ ✗ 1e-4 400 ResNet-50 256 ReSSL 0.01 0.4 1e-4
AdaDim Baseline Cifar100 ✗ ✗ 1e-4 1000 ResNet-18 256 Asymmetric 0.1 0.4 1e-4
AdaDim Baseline Cifar10 ✗ ✗ 1e-4 1000 ResNet-18 256 Asymmetric 0.1 0.4 1e-4
AdaDim Baseline ImageNet100 ✗ ✗ -1e-1 400 ResNet-18 256 Asymmetric 0.1 0.4 1e-4
AdaDim Expanded Cifar100 ✓ ✗ 1e-4 1000 ResNet-18 256 ReSSL 0.01 0.4 1e-4
AdaDim Expanded Cifar10 ✓ ✗ 1e-4 1000 ResNet-18 256 ReSSL 0.01 0.4 1e-4
AdaDim Expanded ImageNet100 ✓ ✗ 1e-4 400 ResNet-18 128 ReSSL 5 0.5 2.5e-5
AdaDim Expanded ImageNet ✓ ✗ 1e-4 100 ResNet50 256 ReSSL 2 0.5 1e-5
AdaDim Expanded ImageNet ✓ ✓ 1e-4 100 ResNet50 256 ReSSL 1 0.5 1e-5

Table 9: This table shows the details of specific choices made on a per dataset basis for the tables
generated in the main paper. M refers to using a momentum encoder. P refers to using an additional
prediction head.

A.5 COMPLETE SIMCLR AND VICREG LOSS

In this section, we go into more depth regarding the LNCE and LV ICReg losses. Suppose there
is an image i drawn from a training pool i ∈ I . i is passed into two random transformations
t(i) = x and t

′
(i) = x

′
where t and t

′
are drawn from the set of all random augmentations

T . Both x and x
′

are passed into an encoder network e(·). This results in the representations
e(x) = r and e(x

′
) = r

′
. These representations are then passed into a projection head g(·) that

produces the embeddings g(x) = z and g(x
′
) = z

′
. The collection of all representations and

embeddings within a batch of n samples can be represented by the R, R
′
, Z, and Z

′
matrices.

In this case, all matrices are composed of n vectors with dimension D. This can be written as
R = [r1, r2, ..., rn], R

′
= [r

′

1, r
′

2, ..., r
′

n], Z
′
= [z

′

1, z
′

2, ..., z
′

n], and Z = [z1, z2, ..., zn]. From
this setup, the VICReg (3) and InfoNCE (34; 7) losses can be computed. In this case, VICReg
corresponds to a feature decorrelation loss that is better at promoting higher H(R) while InfoNCE
corresponds to a sample uniformity loss better at promoting lower I(R;Z) at the end of training.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Comparison Method Parameters

Method Setting Specific
Parameters Model Epochs Optimizer Learning

Rate
Batch
Size

Augmentation
Scheme

Projector
Output

SimCLR Baseline temp = 0.1 ResNet-50 400 LARS 0.4 256 Symmetric 128
VICReg Baseline Params= 25,25,1 ResNet-50 400 LARS 0.4 256 Asymmetric 2048
Moco v2 Baseline temp = 0.2, momentum = [0.9,0.99], queue = 32768 ResNet-50 400 SGD 0.3 256 weak_symmetric 256
BYOL Baseline momentum = 1.0, base = 0.99 ResNet-50 400 LARS 1.0 256 asymmetric 256

Barlow Twins Baseline scale_loss = 0.1 ResNet-50 400 LARS 0.3 256 asymmetric 2048
NNCLR Baseline queue = 65536, temp = 0.2 ResNet-50 400 LARS 0.4 256 asymmetric 256
SimSiam Baseline temp = 0.2 ResNet-50 400 LARS 0.5 256 weak_symmetric 512

DeepCluster v2 Baseline prototypes = [3000, 3000, 3000] ResNet-50 400 LARS 0.6 256 symmetric 128
Moco v3 Baseline momentum = [0.9, 0.99] ResNet-50 400 LARS 0.3 256 asymmetric 256

Table 10: This table shows the training details of the models we trained directly for the diverse dataset
study in the main paper. The same hyperparameters were maintained across all datasets.

Augmentation Details
Asymmetric Augmentation ReSSL Augmentation

Augmentation Type View 1 View 2 View 1 View 2
Crop 1 1 1 1

Color Jitter 0.8 0.8 0.0 0.8
Contrast 0.4 0.4 0.0 0.4

Brightness 0.4 0.4 0.0 0.4
Saturation 0.2 0.2 0.0 0.2

Hue 0.1 0.1 0.0 0.1
Grayscale 0.2 0.2 0.0 0.2

Gaussian Blur 1.0 0.1 0.0 0.0
Solarization 0.0 0.2 0.0 0.2
Equalization 0.0 0.0 0.0 0.0

Horizontal Flip 0.5 0.5 0.5 0.5

Table 11: In this table, we detail the augmentations applied to each view (View 1 and 2) during
pre-training of our algorithm. We divide the augmentations based on the type of scheme we are using.
Every value in the table represents the probability of a specific augmentation type being applied.

The InfoNCE (LNCE) loss is written as: LNCE = −
∑

i∈I log
exp(sim(zi,z

′
i)/τ)∑2N

k=1 1[k ̸=i]exp(sim(zi,zk))
where

sim refers to the cosine similarity, τ represents a temperature parameter, and the summation in
the denominator takes place over all samples from both transformations. The VICReg loss is
written as: LV ICReg = λs(Z,Z

′
) + µ[v(Z) + v(Z

′
)] + ν[c(Z) + c(Z

′
)]]. The invariance term

is s(Z,Z
′
) = 1

n

∑N
i=1 ||zi − z

′

i||22. The covariance term is c(Z) = 1
D

∑
i̸=j [C(Z)]2i,j where C(Z)

is the covariance matrix of Z. The variance term is v(Z) = 1
d

∑D
j=1 max(0, γ − S(zj , ϵ)) where

S(x, ϵ) is the regularized standard deviation, zj represents the vector of each value at dimension
j, and γ is a target value set to 1 for all experiments. For both LNCE and LV ICReg, we use the
conventions of the original papers which includes τ = 0.1, λ = µ = 25, and ν = 1.

A.6 METRIC ANALYSIS DETAILS

One possible mathematical description for the dimensionality of a representation space H(R) is the
von Neumann entropy of eigenvalues (50; 25) which takes the form H(R) = −

∑
i λilog(λi) where

each λi represents an eigenvalue of R. To increase H(R) in this formula, we can either increase
the total number of non-zero eigenvalues or maintain the same number of eigenvalues, but make the
eigenvalues more similar in value to each other (higher uniformity, lower variance). Increasing the
total number of eigenvalues corresponds to feature decorrelation in which an SSL algorithm discovers
a larger number of total dimensions along which R can vary. Decreasing the variance of eigenvalues
within a fixed dimensional space corresponds to sample uniformity where representations spread
more equally along all dimensions.

Throughout the paper, the dynamics between H(R) and I(R;Z) is discussed. However, this analysis
requires a variety of metrics that were not fully detailed in the main paper. For our analytical
experiments, the test set of interest is passed into the trained SSL model and its associated projection
head. This results in a matrix for the representation space R and a corresponding matrix for the
embedding space Z. These matrices are of size: number of test set samples × 2048. These matrices

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

are then used to compute the metrics used for analysis in the main paper. I(R;Z) is computed using
the α-Renyi matrix mutual information approximation discussed in (44). To calculate this quantity,
assume that normalized matrices A and B are both Rnxn. The entropy of matrix A can be represented
as Hα(A) = 1

1−α log[tr((
A
n)

α)] where α =2 for all experiments. This formulation results in a matrix
mutual information estimator of the form I(A;B) = Hα(A) +Hα(B)−Hα(A⊙B) where ⊙ is
the hadamard product. This formulation only works for positive semi definite matrices so during our
experiments the approximation of (44) is followed where the normalized covariance matrices RRT

and ZZT are used as inputs to calculate I(R;Z).

Note that there are a variety of ways to approximate H(R). In this paper, both Hα(R) and the effective
rank(38) are used at different points. The main reason for this choice is that the effective rank is
normalized with respect to the eigenvalues of the current distribution. This means that the lowest
possible value is 0 and the highest possible value is minimum dimension of the matrix of interest.
The advantage of the α-Renyi approximator is that the scale of the values will more closely match
the values used to calculate I(R;Z). However, both metrics result in the same balancing behavior
between H(R) and I(R;Z) and are correlated with each other. This correlation is observed in Figure
8. In general, any computation of H(R) can be thought of as an approximation of the dimensionality
of the representation space. This is because higher dimensionality has been characterized in terms of
eigenvalue distributions across a variety of works (19; 45; 2; 22). These metrics follow this trend
as they are based on measuring how closely the eigenvalue spectrum of a given matrix approaches
a uniform distribution. For example, another possible entropy estimator is discussed in (58). This
work states that for a positive semi definite (PSD) matrix A, matrix entropy (ME) can be defined as
ME(A) = −tr(Alog(A)) + tr(A) = −

∑
i λilog(λi) +

∑
i λi. The first term will increase with

the sample uniformity of the representation space i.e. as the eigenvalues become more uniformly
distributed. The second term will increase with more and larger eigenvalues i.e. as the features of the
space become more decorrelated.

Figure 8: We show versions of the same opening Figure with H(R) computed with a) the effective
rank and b) an α-Renyi matrix approximator.

The uniformity metric (51) is also used as part of our analysis. This metric acts as a measurement of
how uniformly distributed the points of a representation space are on a hypersphere. It takes the form
of the pairwise gaussian potential kernel and can be expressed as log(E(x,y)∼pdata

[e−2||e(x)−e(y)||22]).
In general, greater uniformity indicates a more negative value when this metric is computed empiri-
cally. We use the implementation from the original github of (51).

A.7 COMPUTE RESOURCES

Our resources included a personal PC with 8 Intel i7-6700K CPU Cores and 2 12 GB Nvidia GeForce
GTX Titan X GPUs. We also used a lab work station server with 12 Intel i7-5930K CPU cores and
2 24GB Nvidia TITAN RTX 3090 GPUs. We also used a server with compute resources based on
availability and priority queues. The vast majority of experiments use these resources and are found

19

https://github.com/ssnl/align_uniform.git

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Compute Analysis of 100 Epochs of Cifar-100 Training
SimCLR VICReg AdaDim AdaDim + momentum

s/epoch 22.01 19.09 25.48 30.82

Table 12: This table shows the compute cost of 100 epochs of training of Cifar-100 with a ResNet-18
model. We compute the total time for the experiment and divide by the number of epochs to get the
seconds/epoch metric (s/epoch). All experiments are performed in identical settings with the same
number of CPU cores and the usage of an RTX 3090 GPU. For these experiments, the same data
augmentation strategy was applied for ease of comparability.

in the main paper or the appendix. However, there may be early exploratory experiments in the
development of our method that were not included.

A.8 COMPUTE DISCUSSION OF OUR METHOD

Our method involves computing the eigenspectrum at different points in the training process. In
general, computing eigenvalues is an expensive operation with order O(n3). However, the number
of calculations is limited through a few mechanisms specific to AdaDim. This includes the usage
of the Eα parameter. This parameter dictates how many epochs must pass before the α parameter
is re computed. In Figure 7, performance improvements are maintained even when Eα is varied.
Additionally, for every Eα, eigenvalues are computed for only 10 training batches. This design choice
is based on the empirical observation that most batches have a similar effective rank as training
progresses. This limits the need to compute the eigenvalues across all batches in an epoch. The
averaging across 10 batches is done to ensure additional stability regarding the α update. However, it
may be possible to use even fewer batches in this computation.

To further analyze the compute cost of our method, we perform an experiment where we measure
the amount of time it takes to train a ResNet-18 model for 100 epochs on Cifar-100 with the same
compute resources across all methods of interest. This setup is similar to the compute analysis of
other papers such as (52). The results of this experiment are shown in Table 12. We observe that
AdaDim does cost more than the baseline SimCLR or VICReg methods. This cost requirement
increases further when adding an additional momentum encoder. However, the cost increase is not
so drastic to make training with AdaDim a prohibitive endeavor. We observe minor increases in
compute cost of 3 - 8 s/epoch above the baseline SimCLR approach, depending on whether we use
the baseline AdaDim strategy or an additional momentum encoder network.

A.9 EMPIRICAL EIGENVALUE ANALYSIS DETAILS

In Figure 3, we perform a variety of analyses on the eigenvalue distribution of the output matrices
of a ResNet-50 model. In part b), all eigenvalues are normalized before counting the number of
eigenvalues above a threshold τ that we set to .01 for all experiments. This normalization is done
by dividing all eigenvalues by the l-1 norm of the total eigenvalue spectrum. This is similar to the
normalization done in the computation of the effective rank. In part c), the cumulative explained
variance ratio metric is computed. To compute this metric, assume that there is a set of eigenvalues
λ = [λ1, λ2, ..., λN] where the eigenvalues are ordered from largest to smallest. Assume that there is

a percentage p of the largest eigenvalues. This results in the explained variance metric:
∑p∗N

i=1 λi∑N
i=1 λi

. This
metric increases as the subset of eigenvalues that we sum over constitutes more of the overall variance
of the data. However, it will decrease as the spread of this variance is distributed over eigenvalues
outside of the percentage that the numerator is summed over.

A.10 RANDOM PARAMETER ABLATION STUDY

In Figure 4, we show how accuracy varies as a function of H(R) and I(R;Z) for a variety of models
with different hyperparameters. We also compute the correlation of these results with metrics of
interest in Table 1. We generate 15 models for 3 different methods on Cifar-100 and display the exact
parameters for each of these methods in Table 13.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Method Dataset Epochs Parameters Learning Rate Temperature Weight Decay Effective Rank Mutual Info Accuracy
SimCLR Cifar-100 100 d=2048 0.6 0.05 10-6 673 0.073 47.15
SimCLR Cifar-100 100 d=2048 0.6 0.07 10-6 682 0.071 48.84
SimCLR Cifar-100 100 d=2048 0.6 0.1 10-6 684 0.079 49.43
SimCLR Cifar-100 100 d=2048 0.6 0.2 10-6 646 0.075 52.28
SimCLR Cifar-100 100 d=2048 0.6 0.3 10-6 594 0.076 54.39
SimCLR Cifar-100 100 d=2048 0.6 0.4 10-6 566 0.068 51.99
SimCLR Cifar-100 100 d=2048 0.5 0.05 10-6 658 0.064 48.65
SimCLR Cifar-100 100 d=2048 0.5 0.07 10-6 652 0.056 47.36
SimCLR Cifar-100 100 d=2048 0.5 0.1 10-6 670 0.055 54.56
SimCLR Cifar-100 100 d=2048 0.5 0.15 10-6 666 0.074 54.03
SimCLR Cifar-100 100 d=2048 0.5 0.2 10-6 637 0.078 54.98
SimCLR Cifar-100 100 d=2048 0.5 0.3 10-6 587 0.078 54.15
SimCLR Cifar-100 100 d=2048 0.5 0.4 10-6 556 0.07 53.1
SimCLR Cifar-100 100 d=2048 0.5 0.15 10-7 655 0.076 54.86
SimCLR Cifar-100 100 d=2048 0.5 0.15 10-5 666.67 0.076 53.59
VICReg Cifar-100 100 nu = 0.3 0.3 N/A 10-6 922 0.268 50.75
VICReg Cifar-100 100 nu = 0.4 0.3 N/A 10-6 914 0.265 50.83
VICReg Cifar-100 100 nu = 0.5 0.3 N/A 10-6 902 0.292 50.62
VICReg Cifar-100 100 nu = 0.6 0.3 N/A 10-6 892 0.263 52.29
VICReg Cifar-100 100 nu = 0.7 0.3 N/A 10-6 902 0.235 56.72
VICReg Cifar-100 100 nu = 0.8 0.3 N/A 10-6 903 0.24 56.27
VICReg Cifar-100 100 nu = 0.9 0.3 N/A 10-6 898 0.237 55.73
VICReg Cifar-100 100 nu = 1.0 0.3 N/A 10-6 883 0.244 52.37
VICReg Cifar-100 100 nu = 1.1 0.3 N/A 10-6 878 0.229 57.6
VICReg Cifar-100 100 nu = 1.2 0.3 N/A 10-6 877 0.232 52.28
VICReg Cifar-100 100 nu = 1.3 0.3 N/A 10-6 847 0.257 54.54
VICReg Cifar-100 100 nu = 1.4 0.3 N/A 10-6 868 0.212 55.09
VICReg Cifar-100 100 nu = 1.5 0.3 N/A 10-6 795 0.279 49.19
VICReg Cifar-100 100 nu = 1.6 0.3 N/A 10-6 867 0.209 54.48
VICReg Cifar-100 100 nu = 1.7 0.3 N/A 10-6 848 0.2107 58.69
NNCLR Cifar-100 100 d=2048 0.6 0.05 10-6 416 0.043 54.09
NNCLR Cifar-100 100 d=2048 0.6 0.07 10-6 417 0.038 54.27
NNCLR Cifar-100 100 d=2048 0.6 0.1 10-6 459 0.033 55.47
NNCLR Cifar-100 100 d=2048 0.6 0.2 10-6 493 0.058 55.9
NNCLR Cifar-100 100 d=2048 0.6 0.3 10-6 490 0.067 54.43
NNCLR Cifar-100 100 d=2048 0.6 0.4 10-6 519 0.067 55.07
NNCLR Cifar-100 100 d=2048 0.5 0.05 10-6 425 0.042 54.59
NNCLR Cifar-100 100 d=2048 0.5 0.07 10-6 439 0.036 55.16
NNCLR Cifar-100 100 d=2048 0.5 0.1 10-6 462 0.033 56.01
NNCLR Cifar-100 100 d=2048 0.5 0.15 10-6 474 0.05 56.09
NNCLR Cifar-100 100 d=2048 0.5 0.2 10-6 505 0.06 56.37
NNCLR Cifar-100 100 d=2048 0.5 0.3 10-6 518 0.074 55.02
NNCLR Cifar-100 100 d=2048 0.5 0.4 10-6 520 0.075 53.43
NNCLR Cifar-100 100 d=2048 0.5 0.15 10-7 492 0.048 56.19
NNCLR Cifar-100 100 d=2048 0.5 0.15 10-6 474 0.051 56.09

Table 13: This table shows all the parameters, accuracies, rank scores, and mutual information values
for the random parameter experiments shown in the main paper.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B APPENDIX THEORETICAL DETAILS

B.1 HIGH LEVEL INTUITION

Higher dimensionality in R is desirable because it counters the dimensional collapse effect discussed
in (22) and encourages a more diverse feature space. Lower I(R;Z) is also desirable because it
implies that the projection head is effective in removing uninformative features from the representation
space. However, we prove through information theoretic bounds that increasing the dimensionality
of R causes a corresponding increase in I(R;Z) thus necessitating a balance between the two for
an ideal representation space. This balancing act is illustrated in Figure 1 where an image is passed
through an encoder e(·) to produce a representation space R with 6 associated features. 3 features
are target-relevant and 3 are uninformative. The feature space is associated with an eigenvalue
distribution that indicates how relevant each feature is to the geometry of the representation space.
Ideally, the eigenvalue distribution should capture just the target-relevant features; however, a higher
dimensional space also captures uninformative features as shown in part a). To counter this, the
projector should act as an information bottleneck (47) during training that projects the features into
a lower dimensional space where only the target features are relevant. In part a), the distribution
of eigenvalues remains the same after projection so the projection head does not remove spurious
features from R which corresponds to a high I(R;Z). Part b) represents an ideal case where R has
sufficiently high dimensionality to capture mostly informative features while sufficiently low I(R;Z)
such that the projector guides the optimization towards target-relevant features.

Figure 9: Assume there is an image with 3 task relevant features and 3 spurious features. The
image is associated with a representation space R, projection space Z, and corresponding eigenvalue
distributions for both. a) This is an example of R and Z with high dimensionality and high I(R;Z).
b) This is an example of R and Z that has moderate dimensionality and moderate I(R;Z).

B.2 GAUSSIAN MUTUAL INFO DERIVATION DETAILS

We follow the assumptions of Section 3. The following closed form equations are needed for this
analysis:

I(R;Z) =
1

2
(ln(|ΣR|) + ln(|ΣZ |)− ln(|Σ|))

H(R) =
m

2
ln(2π) +

1

2
ln(|ΣR|) +

m

2

ln(|Σ|) = ln(|ΣZ ||ΣR − ΣRZΣ
−1
Z ΣZR|)

ln(|Σ|) = ln(|ΣR||ΣZ − ΣZRΣ
−1
R ΣRZ |)

Note that the ln(|Σ|) derivation originated from Shur’s complement formula.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

In this setting, I(R;Z) can be rewritten as:

I(R;Z) =
1

2
(ln(|ΣR|) + ln(|ΣZ |)− ln(|ΣR||ΣZ − ΣZRΣ

−1
R ΣRZ |)

I(R;Z) =
1

2
(ln(|ΣR|) + ln(|ΣZ |)− ln(|ΣZ ||ΣR − ΣRZΣ

−1
Z ΣZR|)

Using the law of logarithms, we can simplify this equation into:

I(R;Z) =
1

2
(ln(|ΣZ |)− ln(|ΣZ − ΣZRΣ

−1
R ΣRZ |)

I(R;Z) =
1

2
(ln(|ΣR|)− ln(|ΣR − ΣRZΣ

−1
Z ΣZR|)

This results in the form described in the main paper as:

I(R;Z) =
1

2
(ln(|ΣZ |)− ln(|V ar(Z|R)|)) = 1

2
(ln(|ΣR|)− ln(|V ar(R|Z)|))

We further analyze the specific terms that make up this equation in Figure 10. In parts a) and b),
the I(R;Z) curves from the main paper are repeated. In part c), each of the terms that make up
I(R;Z) are analyzed the number of features are fixed and the sample variance is increased. ln(|ΣR|)
and ln(|V ar(Z|R)|) increases as the variance increases. However, ln(|V ar(Z|R)|) increases at a
comparatively faster rate. This happens because ln(|ΣZ |) does not change in value. The end result is
a reduction in mutual information which shows that Z is not able to preserve the variance in R under
the conditions of its projection.

Figure 10: In a) and b), we show the I(R;Z) curves as the number of features is varied while the
cluster variance is kept constant. In c), we decompose each of the individual terms that make up
I(R;Z) and plot how their values vary during this same simulation .

B.3 GAUSSIAN SIMULATION DETAILS

In Figure 2, we perform a detailed simulation on data generated from a Gaussian distribution. To
generate this data, the make blobs dataset from the sklearn library(36) is used. This library generates
Gaussian isotropic clusters that are intended for clustering problems. However, for our purposes it
acts as a reliable generator of Gaussian distributed data. The cluster labels of this dataset are not used
in any capacity for our experiments to conform to the SSL setting. This dataset has the following
parameters:

1. n_samples: We set this to 1000 for all experiments.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

2. n_features: We set this based on the features required for the simulation of interest.

3. centers: This is set to 5 for all experiments. This describes the number of clusters generated.

4. cluster_std: This is the parameter we vary to control the variance of the generated data.

5. random_state: This can set the initial random seed for the generation. We do not set this
parameter. This is an intentional design choice so that we generate a slightly different
version of the dataset on every iteration of the simulation. We take the average and standard
deviation of 100 simulations for every set of parameters that we use in our experiments.

B.4 NEURAL NETWORK SIMULATION

In the main paper, PCA is used as a general projection between R and Z for the purposes of modeling
the interaction between a space and its projection without having to deal with the nuances of training
neural networks. However, the projector can also be replaced with a neural network and trained with
either the NCE (SimCLR) or VICReg loss. We show that even in this setting the same general trends
hold.

For this experiment, synthetic gaussian data is generated in the manner described in Section B.3. For
training, a small MLP is used composed of 5 layers and 20 hidden units per layer, followed by a small
projector with 2 layers and 5 hidden units per layer to output a dimension of size 5. The generated
data has 25 features and a cluster standard deviation of .01. It is trained for 1000 epochs with the
NCE (SimCLR) or VICReg loss. In this setting, augmentations are generated by adding randomly
distributed Gaussian noise with a standard deviation of 0.5 to the generated data. During training,
I(R;Z) is measured for every epoch where R is the original generated data and Z is the output of
the neural network. This value is computed using the closed form I(R;Z) for gaussian distributed
data. The Adam optimizer is used for these experiments with a learning rate of .0001 and a β of 0.9
to 0.999.

Figure 11 shows that the neural network simulation of our data exhibits the same trends as the
PCA experiments found in the main paper. At the start of training, I(R;Z) increases and gradually
plateaus by the end of training. Additionally, the dimension contrastive strategy VICReg approaches
a higher I(R;Z) than that of the sample contrastive strategy SimCLR.

Figure 11: We show the I(R;Z) curves across epochs of training for a gaussian dataset trained on a)
SimCLR and b) VICReg.

B.5 INFO THEORETIC BOUNDS

The upper bound on I(R;Y) described in the main text originated from a derivation performed in
(35). The exact details of these bounds can be found in the original paper. Below we show a complete
derivation of the bound described in equation 3. The original bound is described as:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

I(Y ;R) ≤ I(Y ;Z)− I(R;Z) +H(R)

The approximation I(Y ;Z) = G is used in the main paper which results in the following bound:

I(Y ;R) ≤ G− I(R;Z) +H(R)

We substitute in the equation 1
2 (ln(|ΣZ |)− ln(|V ar(Z|R)|)) for I(R;Z) and H(R) = m

2 ln(2π) +
1
2 ln(|ΣR|) + m

2 . This results in the bound:

I(Y ;R) ≤ G− 1

2
(ln(|ΣZ |)− ln(|V ar(Z|R)|)) + (

m

2
ln(2π) +

1

2
ln(|ΣR|) +

m

2
)

A simplification of terms results in the bound shown in the main paper as:

I(Y ;R) ≤ G+
1

2
(ln(|ΣR|)− ln(|ΣZ |))︸ ︷︷ ︸

K(Both)

+
1

2
ln(|V ar(Z|R)|)︸ ︷︷ ︸

V (I(R;Z))

+
m

2
(ln(2π) + 1)︸ ︷︷ ︸
D(H(R))

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C APPENDIX ANALYTICAL DETAILS

C.1 LIMITATIONS AND BROADER IMPACT

Our work focuses on finding an optimal point between H(R) and I(R;Z) and analyzing the training
dynamics that influence both terms. However, the notion of an “ideal“ optimal point is difficult to
prove with respect to a given data setting. Ideally, there should be a derived bound or ratio between
H(R) and I(R;Z) that we can claim with high probability to correspond to an “ideal“ optimal
relationship between the two terms. Despite this limitation, the broader impact of this work is that it
provides a general framework to develop SSL algorithms across diverse fields such as medicine (26),
seismology (28), and autonomous driving (29). Therefore, it provides an avenue for potential growth
of machine learning solutions in a wide variety of fields. We are unaware of any negative societal
impacts directly caused by our work.

C.2 VICREG VS. SIMCLR COMPARISON

The AdaDim methodology is based on the premise that VICReg better promotes higher H(R) and
the NCE loss used in SimCLR promotes lower I(R;Z). These same dynamics are observed in a real
SSL setting in Figure 12 where a ResNet-50 model is trained for 2000 epochs on Cifar-100 (31) using
the VICReg and SimCLR SSL methods. In part a), both methods have an increase in I(R;Z), but it
occurs at a slower rate for SimCLR. In part b), the overall dimensionality of the dataset increases
across all training epochs for R, but begins to plateau at the end of training, corresponding to the end
of the feature decorrelation stage. Z exhibits this same behavior, but plateaus much more noticeably
throughout training which contributes to the plateauing effect of I(R;Z). For both R and Z, the
overall dimensionality is lower for SimCLR than for VICReg. In part c), R and Z have a similar
uniformity for both methods at the start of training, but significantly diverge from each other by the
end of training.

Figure 12: We train models with two different SSL methods for 2000 epochs and then analyze
changes in a) I(R;Z), b) effective rank between R and Z, and c) uniformity between R and Z.

These observed trends for SimCLR and VICReg hold for a wide variety of datasets in parts a) and b)
of Figure 13. In part a), at the end of training for 6 different datasets, the H(R) and I(R;Z) values
of VICReg are higher than those of SimCLR. In part b), these trends are analyzed over the course of
manually setting the α parameter over the course of training from 0 to 1 in increments of 0.2. It is
observed that as the optimization changes from VICReg (α = 0) to SimCLR (α = 1), the I(R;Z)
and H(R) values monotonically decrease.

C.3 GENERATION OF H(R) VS I(R;Z) PLOTS

In part c) of Figure 13, empirical results demonstrate the existence of an optimal point between high
H(R) and low I(R;Z). The plots are generated by training each respective dataset with manually
chosen α parameters within the AdaDim framework. In this case, manual means that the adaptive α
computation is removed and a specific value of α from 0 to 1 is kept constant during training with
the γ parameter set to 0. These α values are α = [0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0]. The logic behind
this setup is to provide a controlled system where we can gradually transition between a feature
decorrelation based loss and a sample uniformity based loss. The plot in part a) of Figure 1 was
generated in a similar manner. However, in this case, the α increments are reduced to 0.05 In this
way, we can more easily observe the emergence of the H(R) and I(R;Z) balance regions without
needing to train as many models as is done in Figure 4.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 13: a) We compare the effective rank and I(R;Z) between the representation of the test set for
different datasets trained on VICReg and SimCLR. b) We show how the effective rank and I(R;Z)
vary after the introduction of the α parameter for each dataset. c) We show how performance varies
as a function of I(R;Z) and H(R) for a variety of datasets.

More plots are provided for more datasets in part c) of Figure 13. Note that potentially more models
need to be generated in order for the balance trend to be more salient for specific datasets. However,
for many of these datasets, such as TinyImageNet, OrganSMNIST, and Cifar-10, the trend is clear
that performance depends on a balance between H(R) and I(R;Z).

We also have experiments in which the H(R) and I(R;Z) plots are generated by completely random
parameters. This is shown in Figure 4. In these cases, the trend of a balancing point is not as smooth,
but it is clear that there exists a cluster of points around specific H(R) and I(R;Z) values that
perform better than those points outside the discussed region. The exact parameters used to generate
these graphs are provided in Table 13.

The same list of results is used to compute the correlation experiments in Table 1. In this table,
we compute the results for a specified number of models and their corresponding results. We then
compute the pearson correlation coefficient between the list of results for each model and the metric
of interest that includes H(R), I(R;Z), or the ratio between them. In this case, the ratio is computed
as simply I(R;Z)

H(R) . In the table, we report the magnitude of the correlation coefficient as we are only
interested in the existence of a linear relationship between both terms, not whether it is positively or
negatively correlated. In general, for all metric parameters, it is dataset dependent as to whether the
correlation is positive or negative. This agrees with the analysis of our paper since each dataset has its
own dimensionality characteristics and may favor a specific relationship between H(R) and I(R;Z).

C.4 DISCUSSION OF RELATIONSHIP WITH LITERATURE

One surprising observation of this paper is that it opposes a variety of recent works (2; 45; 19). In
these papers, the authors argue that some measure of dimensionality can be used as an unsupervised
surrogate of representational quality. In other words, higher dimensionality should correspond to
a better performing model on potentially any downstream task. However, our work suggests that
both H(R) and I(R;Z) should be considered for an unsupervised assessment of model quality.
However, our result is not surprising when we consider how these works justify their conclusions.
For example, (18) based their rank estimates off of pre-trained ImageNet models which may not
reflect the dynamics of training an SSL method on any given dataset. (45) showed a wide range
of coefficient correlation values (0.2 - 0.8) between different dimensionality based metrics and
performance values derived from various sources. This suggests that in some settings dimensionality
is a good surrogate for performance while in others I(R;Z) needs to be considered. This corresponds
to the dynamics discussed in this paper, where the best performing model is often not the one with
the highest dimensionality. It is the one that reaches a suitable intermediate point between both
H(R) and I(R;Z). Our work suggests that future unsupervised estimators of representational quality
should have some mechanism to detect this balance between the two terms of interest.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.5 MANUAL α USAGE

Dataset
Method Alpha Cifar100 Cifar10 TinyImageNet200 Cinic10 Blood OrganS iNat21
SimCLR N/A 64.00 88.59 44.78 78.54 92.54 77.67 23.96
VICReg N/A 64.70 90.02 45.54 78,25 92.48 76.50 24.24
AdaDim 0.2 65.18 90.07 46.75 78.27 93.36 78.41 -
AdaDim 0.4 66.15 90.18 47.00 78.57 93.04 78.46 -
AdaDim 0.5 66.53 90.43 46.26 79.35 92.98 78.50 24.56
AdaDim 0.6 66.11 89.87 48.06 79.58 93.56 78.23 -
AdaDim 0.8 66.32 89.25 47.83 78.54 93.71 78.26 -
AdaDim Ada 66.90 90.72 47.81 79.53 92.86 78.55 24.81

Table 14: This shows the performance of AdaDim under different α parameters on several different
datasets. γ is set to 0 for this study.

In Table 14, an ablation study is performed where the α parameter is varied and the γ parameter
is set to 0. In this table, we use the symmetric augmentation scheme of (11) and pre-train each
method for 400 epochs on a ResNet-50 model. This specific training setting is used as it allows us to
better isolate changes in performance due to the specific optimization objectives and not due to other
considerations such as the applied augmentation. We find that our adaptive methodology without
γ either outperforms or is consistent with the best result that we obtain from manually choosing a
hyperparameter for α. This highlights the importance of adaptively shifting between losses over the
course of training to match the dynamics of SSL training.

Figure 14: We show how a) H(R) and b) I(R;Z) varies for both SimCLR and VICReg under
different optimization settings.

C.6 VARIATION IN OPTIMIZATION PROCEDURE

In Figure 14, we vary the optimization setting for both SimCLR and VICReg. It is observed that
the effective rank and I(R;Z) curves have similar trends for both the adam and lars optimizers.
However, the difference is that for the adam optimizer, the effective rank has a more pronounced
upper limit on the values it can reach. Additionally, for I(R;Z), the adam trained optimizer begins
to decrease or plateau quicker. This result highlights that the trends of this paper are general, but its
exact manifestation across training will vary based on the setup of the experiment.

C.7 γ ANALYSIS

In part a) of Figure 15, we perform an analysis of varying γ. We find that increasing γ causes an
increase in both I(R;Z) and H(R) while decreasing γ causes the opposite effect. It is interesting to
note that the same trend of an ideal balance emerges through the choice of the γ parameter. In this
case, performance is maximized when choosing γ that results in more intermediate values between

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

𝜸 = 𝟏𝒆 − 𝟒

𝜸 = 𝟎. 𝟏

𝜸 = 𝟎. 𝟎𝟏

𝜸 = 𝟎. 𝟎𝟎𝟏

𝑺𝒊𝒎𝑪𝑳𝑹

𝑽𝑰𝑪𝑹𝒆𝒈

Figure 15: a) This figure shows how performance, H(R), and I(R;Z) change as γ is varied. b) This
figure shows how the effective rank of AdaDim varies compared to baseline methods. c) This figure
shows how the I(R;Z) for AdaDim varies compared to baseline methods.

ViT Cifar-100 Comparison
Method Swin-Small (33) ViT-Large (14)
SimCLR 53.91 63.92
VICReg 56.83 63.91
AdaDim 58.07 66.35

Table 15: This table shows the the performance of AdaDim under a vision transformer setting
(33; 14).

both H(R) and I(R;Z). This illustrates the potential importance of tuning γ for specific data settings
as each dataset will have a specific balance between H(R) and I(R;Z) that is optimal.

In parts b) and c), we compare the growth of H(R) and I(R;Z) over the course of training a
ResNet-50 model for 400 epochs on Cifar-100. We find that the adaptive regularization technique of
our method leads to AdaDim reaching a trajectory that attempts to balance between both terms when
compared with the more biased trajectories of SimCLR and VICReg.

We also note that the trajectory of AdaDim follows a similar trajectory to that of VICReg. In the
design of our method, VICReg is used much more heavily at the start of training which is when much
of the structure of the representation space is learnt. However, the gradual introduction of the NCE
loss of SimCLR is an important aspect gradually introduce sample uniformity at the end of training.
This importance is reflected in the significant performance improvements throughout the paper even
if its introduction only lowers the corresponding H(R) and I(R;Z) values slightly.

C.8 VISION TRANSFORMER EXPERIMENTS

In Table 15, we provide comparisons of AdaDim when trained with a vision transformer backbone.
Specifically, we perform a comprehensive study of a smaller scale transfomer (33) and a larger scale
ViT model (14). We train these networks on Cifar-100 for 400 epochs, with an AdamW optimizer,
batch size of 256, learning rate of 2e-4, weight decay of 0.05, and betas of 0.9 to 0.95. For these
experiments, we use the asymmetric augmentation setting. We find that AdaDim out performs
standard VICReg and SimCLR baselines for both models. The reason for this improvement may
be due to specific properties regarding transformers. Specifically, transformers benefit from longer
training times compared to traditional CNNs. When training with more epochs, there is a greater
ability for the model to go through the training dynamics dynamics discussed in this paper. It is
possible that AdaDim is advantageous in this setting due to providing explicit regularization based on
these emergent dynamics.

C.9 COMPARISON AGAINST ALTERNATE TRAINING STRATEGIES

In Table 2, we provide an ablation study of the impact of the different components of our method
and hypothetical ways our method could be applied. This includes strategies such as a fixed β
parameter during training and a heuristic scheduler of the α parameter. Possible schedules include
cosine or linear scaling from 0 to 1. To further validate the importance of adaptive scaling of both

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

AdaDim Standardized Hyperparameter Ablation Study

Method α Type Cifar100 Cifar10 TinyImageNet200 Cinic10 Blood OrganS iNat21

SimCLR (7) N/A 64.00 88.59 44.78 78.54 92.54 77.67 23.96
VICReg (3) N/A 64.70 90.02 45.54 78.25 92.48 76.50 24.24

SimCLR + λ (35) N/A 64.37 88.00 45.54 76.96 92.86 77.98 23.51
VICReg + λ (35) N/A 64.54 89.77 45.83 78.47 92.43 77.16 24.01

SimCLR +VICReg α = 0.5 66.53 90.43 46.26 79.35 92.86 78.50 24..56
SimCLR +VICReg cosine 65.78 88.85 45.45 78.87 92.57 78.46 -
SimCLR +VICReg linear 66.99 89.53 45.94 78.60 92.07 78.61 -

AdaDim (α = Ada) Ours 66.90 90.72 47.81 78.55 93.10 78.55 -
AdaDim (α = Ada, β = Ada) Ours 67.15 90.81 48.24 79.53 93.24 79.19 24.81

Table 16: This table shows an ablation study of performance across a variety of datasets when varying
aspects of the construction of the AdaDim loss.

AdaDim Batch Size Comparison Experiments
Batch Size ImageNet-100 + LARS Cifar-100 + SGD + Momentum

128 79.30 -
256 79.64 74.31
512 80.06 71.67

1024 - 71.02

Table 17: In this table, we compare the performance as batch sized is varied for two different experi-
mental settings. Both methods are trained with a ResNet-18 encoder. ImageNet-100 experiments
are trained for 400 epochs while Cifar-100 experiments are trained for 1000 epochs. For these
experiments, the γ parameter is kept fixed at 1e-4. ImageNet-100 uses the baseline AdaDim strategy,
while Cifar-100 is trained with the AdaDim + momentum method.

the α and β terms, we provide a comprehensive study of these terms under a fixed hyperparameter
setting in Table 16. The experiments in this table are setup such that each method has the exact same
hyperparameters to ensure that any deviations in performance are caused solely by the optimization
objective. This includes 400 epochs of training with a ResNet-50 model, the symmetric augmentation
scheme of (11), a LARS optimizer, learning rate of 0.4, and a batch size of 256 for all experiments.
Again, we observe that our method that makes use of a dimensionality adaptation technique out
performs heuristic schedules as well as methods based on fixed regularization of I(R;Z) (35) across
a wide variety of data settings.

C.10 BATCH SIZE DISCUSSION

In the main paper, we conduct all our experiments with small batch sizes of 128 or 256 depending
on the context of the experiment. In all cases, we achieve state of the art performance without
necessitating large batch sizes as discussed in (7). However, we also wanted to assess how our method
would perform in large batch settings. We perform this analysis in Table 17 where we compare the
performance of our method in two divergent settings. This includes the baseline hyperparameter
setting with ImageNet-100 and the expanded hyperparameter setting with a momentum encoder
trained on Cifar-100. In the case of ImageNet-100 with the LARS optimizer, we find that performance
improves with larger batch sizes. However, with Cifar-100 and the SGD optimizer, performance
degrades with the introduction of larger batch sizes. We believe the reaction to batch size is largely a
matter of identifying optimal optimization settings for the large batch setting. For example, ImageNet-
100 possibly improved due to the LARS optimizer being better suited to scaling optimization with
respect to the large batch setting. However, for the SGD setting, further tuning of learning rates
and parameters such as γ may be needed for effective downstream performance on large batches.
Additionally, the batch setting improvements may also be dataset dependent with ImageNet-100
benefiting much more from large batches than Cifar-100. This may be the case as most batch size
results in SSL papers (7; 8) are benchmarked on large scale datasets such as ImageNet, rather than
Cifar-100. Regardless, we see the small batch size state of the art performance of our method as a
major advantage compared to the resource intensive nature of other methods.

30

	Introduction
	Related Works
	Analysis of Training Dynamics
	Simulated Training Dynamics
	Empirical Dynamics

	Methodology
	Results
	Conclusion
	Appendix Experimental Details
	Codebase
	Datasets
	Pseudo-Code of AdaDim
	Method Training Details
	Baseline Setting
	Expanded Setting
	Comparison Methods

	Complete SimCLR and VICReg Loss
	Metric Analysis Details
	Compute Resources
	Compute Discussion of our Method
	Empirical Eigenvalue Analysis Details
	Random Parameter Ablation Study

	Appendix Theoretical Details
	High Level Intuition
	Gaussian Mutual Info Derivation Details
	Gaussian Simulation Details
	Neural Network Simulation
	Info Theoretic Bounds

	Appendix Analytical Details
	Limitations and Broader Impact
	VICReg vs. SimCLR Comparison
	Generation of H(R) vs I(R;Z) Plots
	Discussion of Relationship with Literature
	Manual Usage
	Variation in Optimization Procedure
	 Analysis
	Vision Transformer Experiments
	Comparison Against Alternate Training Strategies
	Batch Size Discussion

