
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADADIM: DIMENSIONALITY ADAPATION FOR SSL REP-
RESENTATIONAL DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

A key factor in effective Self-Supervised learning (SSL) is preventing dimen-
sional collapse, where higher-dimensional representation spaces (R) span a lower-
dimensional subspace. Therefore, SSL optimization strategies involve guiding a
model to produce R with a higher dimensionality (H(R)) through objectives that
encourage decorrelation of features or sample uniformity in R. A higher H(R)
indicates that R has greater feature diversity which is useful for generalization to
downstream tasks. Alongside dimensionality optimization, SSL algorithms also
utilize a projection head that maps R into an embedding space Z. Recent work
has characterized the projection head as a filter of noisy or irrelevant features from
the SSL objective by reducing the mutual information I(R;Z). Therefore, the
current literature’s view is that a good SSL representation space should have a high
H(R) and a low I(R;Z). However, this view of SSL is lacking in terms of an
understanding of the underlying training dynamics that influences the relationship
between both terms. For this reason, we directly oppose the current literature’s
view of SSL representation spaces and instead assert that the best performing R
is one arrives at an ideal balance between both H(R) and I(R;Z). Our findings
reveal that increases in H(R) due to feature decorrelation at the start of training
lead to correspondingly higher I(R;Z), while increases in H(R) due to samples
distributing uniformly in a high-dimensional space at the end of training cause
I(R;Z) to plateau or decrease. Furthermore, our analysis shows that the best
performing SSL models do not have the highest H(R) nor the lowest I(R;Z), but
effectively arrive at a balance between both. To take advantage of this analysis,
we introduce AdaDim, a training strategy that leverages SSL training dynamics
by adaptively balancing between increasing H(R) through feature decorrelation
and sample uniformity as well as gradual regularization of I(R;Z) as training
progresses. We show performance improvements of up to 3% over common SSL
baselines despite our method not utilizing expensive techniques such as queues,
clustering, predictor networks, or student-teacher architectures.

1 INTRODUCTION

Self-supervised learning (SSL) (44) algorithms approach or surpass fully supervised strategies on
a wide variety of benchmark tasks (8; 7; 14; 50; 3; 9). SSL optimization generally involves an
invariance loss that ensures the representations of similar samples align with each other and a
mechanism to prevent dimensional collapse (21). Dimensional collapse refers to the phenomena
where high dimensional representations span a lower-dimensional subspace. Therefore, to prevent
dimensional collapse, a wide variety of works (17; 2; 41) suggest that good SSL representations (R)
have a higher overall dimensionality. In this work, we analytically measure dimensionality of the
representation H(R) through the effective rank metric (35). Effective rank quantifies the distribution
of singular values of R and provides a matrix approximation of dimensionality (46; 34). In practice,
optimizing for higher dimensionality is either done through a dimension contrastive approach (18)
that encourages feature decorrelation or through a sample-contrastive method that promotes a uniform
spread of sample representations (47). Alongside a term to promote dimensionality, all SSL methods
utilize a projection head that maps R into a lower dimensional embedding space Z where the SSL
optimization objective is applied. Recent work (32) has characterized the purpose of the projection
head as a filter that removes spurious features thus lowering the mutual information I(R;Z). In

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

general, lower I(R;Z) reflects representations varying only in feature directions that correspond
well with task-relevant semantic concepts, while higher H(R) corresponds to a greater degree of
feature diversity. Together, these works imply that a good SSL representation space should have a
high dimensionality H(R) and low I(R;Z).

(c)

Figure 1: a) This figure shows how performance varies for 20 different pre-trained ResNet-50 models
as a function of H(R) and I(R;Z). b) The first three figures show how H(R) and I(R;Z) vary
across training of a ResNet-18 encoder with SimCLR (7) for 1000 epochs on three different datasets.
c) This toy graphic shows how the representation space (R) and embedding space (Z) of a 3D dataset
changes when following SSL training dynamics. We also demonstrate how these changes effect
H(R) and I(R;Z).

However, this view of SSL is lacking in terms of an understanding of the underlying training dynamics
that influences the relationship between both terms. For example, in part a) of Figure 1, we show how
the final H(R) and I(R;Z) arrived at the end of training influences downstream performance. In this
Figure, we train 20 different models with slightly different hyperparameters with a ResNet-50 (20)
model for 400 epochs on Cifar-100. We find that the best performing models are not the ones with
the highest H(R) or lowest I(R;Z), but instead approach a specific H(R) and I(R;Z) value where
downstream performance is maximized. Thus, our first claim is that the best performing SSL
representations arrive at a balance between both H(R) and I(R;Z) such that there is enough
feature diversity for the task of interest, but not so much that R contains irrelevant noise. This
claim directly opposes existing literature (17; 2; 41) that only considers the H(R) value reached at
the end of training as an indicator of downstream model performance.

In this work, we also analyze the representational dynamics that cause this behavior. In parts b.1)
- b.3) of Figure 1 we show how H(R) and I(R;Z) evolve over the course of SimCLR (7) training
on a ResNet-18 model for 1000 epochs across 3 distinct datasets. While H(R) generally increases
throughout training, as expected by the current literature, I(R;Z) does not directly decrease and
instead goes through distinct phases of increasing, plateauing, and decreasing. In part c), we show a
toy example to visualize the dynamics causing this behavior. In this Figure, we have 200 samples
distributed within a fictitious 3D spherical representation space. At the start of training, H(R)
increases by projecting R onto a higher dimensional space by mapping from a 2D plane to the surface
of the sphere. Z correspondingly projects from a 1D to 2D space. This phase corresponds to feature
decorrelation where both R and Z increase the number of dimensions in which they vary which
causes I(R;Z) to increase as both spaces are projecting to a higher dimension. However, later in
training, H(R) starts having fewer dimensions in which to project into and further increases in H(R)
are caused by samples distributing uniformly within the space that it arrives at. This change in sample
spread is not reflected to the same degree in Z which causes I(R;Z) to decrease. Thus, our second
claim is that feature decorrelation at the start of training leads to higher I(R;Z), while samples
uniformly spreading across higher dimensions at the end of training causes I(R;Z) to plateau
or decrease.

Based on our first two claims, we propose an SSL training strategy called AdaDim. AdaDim
takes advantage of the discussed training dynamics to adaptively balance increasing H(R) through
feature decorrelation and sample uniformity as well as gradual regularization of I(R;Z) as training
progresses. This adaptation is done in a manner that is specific to the dimensionality characteristics of
the dataset of interest. This method implies our third claim which is SSL optimization objectives

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

should be constructed to allow adaptation to the evolving dynamics of their representation
space.

1. We theoretically and empirically demonstrate that the relationship between H(R) and
I(R;Z) can characterize SSL training dynamics through both a gaussian and information
theoretic analysis.

2. We show that the best performing SSL models use the discussed dynamics to arrive at an
ideal balance for both H(R) and I(R;Z) by the end of training and empirically demonstrate
this behavior across a wide variety of data settings.

3. We develop a dimension adaptive (AdaDim) method that exploits our discovered training
dynamics to arrive at a better balance between H(R) and I(R;Z). We demonstrate perfor-
mance improvements across a wide variety of data settings and in comparison with state of
the art methods without needing expensive training techniques such as queues, clustering,
predictor networks, or student-teacher architectures.

2 RELATED WORKS

SSL Methods (18) categorizes SSL methods as dimension-contrastive or sample-contrastive. Sam-
ple contrastive methods involve enforcing sample uniformity by projecting sample augmentations
(positives) closer to each other than that of other samples in a batch (negatives) (7). Other methods
are derived from simple alterations to the definition of positive and negative sets. Research directions
include using a momentum queue (8), using nearest neighbors as positives (14), enforcing cluster
assignments (5), enforcing hierarchical structures (29; 26), and using label information (23). Dimen-
sion contrastive approaches enforce feature decorrelation through various methods. Examples of
methods include regularizing the embedding covariance matrix (3; 50; 15) or introducing architec-
tural constraints (9; 19; 6) that implicitly regularize the dimensions. Our method differs due to the
introduction of an adaptive mechanism to interpolate between both sample and dimension contrastive
approaches and I(R;Z) based on SSL training dynamics.

Understanding SSL Training Dynamics A subset of works have also attempted to understand
the training dynamics of SSL models. (21) analyzed the dimensional collapse phenomenon within
contrastive learning settings. (38) explored the idea that SSL training dynamics involve learning
one eigenvalue at a time. (42; 39) analyzed the learning dynamics of dimension contrastive methods
in the context of simple linear networks. In general, there is a much more in depth literature for
understanding training dynamics within supervised settings (1; 16; 37) while SSL understanding is
relatively more limited. Our work attempts to understand SSL through the lens of training dynamics
that influence the relationship between I(R;Z) and H(R).

3 ANALYSIS OF TRAINING DYNAMICS

3.1 SIMULATED TRAINING DYNAMICS

Through the analyses of this section, we find that increases in H(R) due to feature decorrelation
cause a corresponding increase in I(R;Z) while increases in H(R) due to sample uniformity cause
I(R;Z) to plateau or decrease. To investigate these dynamics between a representation space and its
projection, we perform a simulation within a Gaussian setting. Assume that the Gaussian distributed
data is represented by R ∼ N (µR,ΣR) where R ∈ Rm. Additionally, assume that there is some
projection of R represented by Z ∼ N (µZ ,ΣZ) where Z ∈ Rn such that n < m. R and Z
form a jointly multivariate normal distribution. Together, this distribution is defined by a block

covariance matrix of the form Σ =

[
ΣZ ΣZR

ΣRZ ΣR

]
. In this setting, the closed form solution for

I(R;Z) = 1
2 (ln(|ΣR|)+ ln(|ΣZ |)− ln(|Σ|)). Applying Shur’s complement to the block covariance

matrix results in the following equation when all covariance matrices are invertible:

I(R;Z) =
1

2
(ln(|ΣZ |)− ln(|V ar(Z|R)|)) = 1

2
(ln(|ΣR|)− ln(|V ar(R|Z)|)) (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In equation 1, V ar(Z|R) = ΣZ − ΣRZΣ
−1
R ΣZR and V ar(R|Z) = ΣR − ΣZRΣ

−1
Z ΣRZ . The

details of this derivation can be found in Section B.2. From this construction of the problem, several
trends emerge. I(R;Z) will increase or decrease depending on the relationship that the projection
produces between R and Z. Specifically, I(R;Z) will increase when the variance of the space
of interest increases while its corresponding conditional variance remains relatively lower. These
variance changes can occur through a larger number of features or through a more uniform spread
of data samples. Figure 2 demonstrates a simulation of the effect of each by generating a synthetic
gaussian dataset with 1000 samples, a defined variance for each of 5 generated clusters, and a defined
number of features m > 10 to simulate R. This data is then projected with PCA to generate Z with
either 2 components or 10 components. This design choice is to simulate the difference between
early and late stage SSL training. Early in training, R and Z project closer to each other which is
represented by the 10 component Z space while later in training R and Z diverge to a greater degree
represented by the 2 component projection.

10 20 30 40 50
Number of Features of R

60

80

100

120

140

160

I(R
;Z

)

(a) Z = 10 Components

Cluster Variance: 0.1
Cluster Variance: 1.0
Cluster Variance: 2.0
Cluster Variance: 4.0

10 20 30 40 50
Number of Features of R

20

21

22

23

24

25

26

27

I(R
;Z

)

(b) Z = 2 Components
Cluster Variance: 0.1
Cluster Variance: 1.0
Cluster Variance: 2.0
Cluster Variance: 4.0

0 2 4 6 8 10
Cluster Variance of R

80

100

120

140

160

180

I(R
;Z

)

(c) Z = 10 Components

Number of Features: 20
Number of Features: 30
Number of Features: 40

0 2 4 6 8 10
Cluster Variance of R

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

I(R
;Z

)

(d) Z = 2 Components

Number of Features: 20
Number of Features: 30
Number of Features: 40

Figure 2: a) and b) show how I(R;Z) in a gaussian setting changes as the number of features of R is
increased. c) and d) show how I(R;Z) varies as the sample cluster variance increases.

In Figure 2 a) and b), the H(R) is increased through increasing the number of generated features
while the cluster variance is kept constant. This corresponds to the feature decorrelation setting.
The second experiment in Figure 2 c) and d) involves varying the sample variance while keeping
the number of features fixed which corresponds to the setting where the sample uniformity changes
between spaces. Note that within this Gaussian setting, PCA serves as a representative projection
due to most of the information content of this data being represented by the variance parameter of an
m-dimensional Gaussian. However, the same simulation is repeated in Section B.4 with the projector
replaced with a small neural network. Further details of these experiments can be found in Section
B.3. In parts a) and b), for different cluster variance values, increasing the number of features in R
corresponds to an increase in I(R;Z) regardless of the degree of projection. In parts c) and d), the
behavior of I(R;Z) varies significantly based on the degree of the projection. For the 10 component
projection case, increasing the sample variance initially increases I(R;Z), but it gradually plateaus
as the sample variance increases further. This suggests that the projection cannot capture the variance
along certain dimensions after a specific point. In part d), in the 2 component case, increasing the
sample variance by any amount reduces I(R;Z). Overall, this Figure shows that I(R;Z) increases
with a greater number of decorrelated features in R regardless of the degree of the projection.
In contrast, I(R;Z) increases, plateaus, or decreases based on the degree of sample variance
and projection from space m to n. The exact choice of SSL optimization objective and training
procedures will influence the degree to which H(R) and I(R;Z) increases or decreases, but the
underlying representational dynamics will reflect our analysis.

Another important consideration is how the H(R) and I(R;Z) arrived at the end of training influences
the subsequent performance of the model. To model this, the SSL information flow can be described
by: Y → X → R → Z → T . Y represents the semantic concept associated with the data X . T
represents the associated SSL task. The end goal of the SSL objective is to maximize I(Y ;R) which
is the mutual information between the semantics of the data and the representation space. Recent
work (32) showed that this information flow results in an upper bound on I(Y ;R):

I(Y ;R) ≤ I(Y ;Z)− I(R;Z) +H(R) (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Our objective is to show how this bound is effected by the training dynamics discussed in Section 3.1
and to show that simply reducing I(R;Z) and increasing H(R) to maximize this bound is not
possible given these dynamics. Again it is assumed that R and Z are drawn from a joint multivariate
Gaussian distribution. Furthermore, I(Y ;Z) is assumed to approach some constant G to isolate the
analysis with respect to I(R;Z) and H(R). The justification for this term acting as a constant is
from previous analyses (36) that assumed the information shared between semantic labels and the
target SSL task can be regarded as a constant. Equation 2 can then be rewritten as:

I(Y ;R) ≤ G+
1

2
(ln(|ΣR|)− ln(|ΣZ |))︸ ︷︷ ︸

K(Both)

+
1

2
ln(|V ar(Z|R)|)︸ ︷︷ ︸

V (I(R;Z))

+
m

2
(ln(2π) + 1)︸ ︷︷ ︸
D(H(R))

(3)

Equation 3 suggests that the bound on I(Y ;R) can be decomposed into three terms: a variance
differential term K, a conditional variance term V , and a total dimension term D. The derivation of
this bound is shown in Section B.5. Each term is labeled by its effect on I(R;Z) or H(R). Ideally,
increasing each of these terms together would result in a higher overall bound on I(Y ;R). However,
the SSL training dynamics discussed in Section 3.1 leads to the emergence of a dynamical system
where increasing one of these terms can potentially limit the growth of others. For example, if H(R)
increases via feature decorrelation then D will increase due to a greater number of features m, but
V will decrease due to corresponding feature decorrelation in the projection Z causing I(R;Z) to
correspondingly increase and limit the upper bound in equation 2. Additionally, K will be limited in
this setting due to both of its terms increasing together. However, if H(R) increases due to sample
uniformity, then D is fixed in the number of dimensions which acts as a bound on how large H(R)
can grow. In contrast, K and V increase due to an increase in the variance of R without the projection
Z having a corresponding increase in variance which lowers I(R;Z). This oscillatory behavior
between each of these terms suggests that the downstream performance represented by I(Y ;R)
cannot be maximized by optimizing for each term individually and requires a procedure that
adaptively finds a balance between the two.

3.2 EMPIRICAL DYNAMICS

500 1000 1500 2000
Epochs

0

500

1000

1500

Ei
ge

nv
al

ue
s a

bo
ve

 Ta
u (a) Eigenvalue Growth

VICreg_R
VICreg_Z
SimCLR_R
SimCLR_Z
NNCLR_R
NNCLR_Z
BYOL_R
BYOL_Z

500 1000 1500 2000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Cu
m

ul
at

iv
e

Va
ria

nc
e (b) Cumulative Variance

VICReg_R
VICReg_Z
SimCLR_R
SimCLR_Z
NNCLR_R
NNCLR_Z
BYOL_R
BYOL_Z

500 1000 1500 2000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Un
ifo

rm
ity

(c) Normalized Training Uniformity
VICReg_R
VICReg_Z
SimCLR_R
SimCLR_Z
NNCLR_R
NNCLR_Z
BYOL_R
BYOL_Z

500 1000 1500 2000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

I(R
;Z

)

(d) Training I(R;Z)

VICReg I(R;Z)
SimCLR I(R;Z)
NNCLR I(R;Z)
BYOL I(R;Z)

Figure 3: This is an analysis of 4 different SSL models R and Z space trained for 2000 epochs on
Cifar-100 with ResNet-50. This analysis includes a) the number of eigenvalues above a threshold of
τ = .01, b) the cumulative explained variance ratio for top 30% of eigenvalues, c) the uniformity of
each space, and d) I(R;Z).

To verify the dynamics discussed theoretically in Section 3.1, an empirical analysis within a real
SSL setting is shown in Figure 3. This experiment involves training a ResNet-50 model (20) with 4
different SSL methods for 2000 epochs on Cifar-100. The projector is designed such that R and Z
both have 2048 features. In part a), we analyze the evolution of feature decorrelation for both the R
and Z space across training by performing a count of the number of eigenvalues above a threshold
τ = .01. It is interesting to note that for the R space the number of eigenvalues consistently increases
until late in training while the Z space has a more pronounced plateauing behavior earlier in training.
This shows the behavior that the overall dimension of both spaces diverges from each other during
training. In part b), we analyze the uniformity of eigenvalues by measuring what percentage of the
variance in the space of interest is represented by the top 30% of eigenvalues. This is known as the
cumulative explained variance ratio (22). We observe that the cumulative explained variance of R
for all methods decreases during training which indicates that H(R) is increasing due to a more
uniform spread of eigenvalues and will gradually depend more on sample uniformity as training
progresses. However, in Z, this metric is near 1.0 for all epochs of training which means that most

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

550 575 600 625 650 675
Effective Rank (H(R))

0.055

0.060

0.065

0.070

0.075

0.080

I(R
;Z

)

(a) SimCLR Models

800 825 850 875 900 925
Effective Rank (H(R))

0.22

0.24

0.26

0.28

I(R
;Z

)

(b) VICReg Models

420 440 460 480 500 520
Effective Rank (H(R))

0.04

0.05

0.06

0.07

I(R
;Z

)

(c) NNCLR Models

370 380 390 400 410
Effective Rank (H(R))

0.00

0.25

0.50

0.75

1.00

I(R
;Z

)

BT

BYOL DCv2

Mocov2

NNCLR

RESSL

Mocov3

SimCLRSimSiamSwav

VICReg(d) Cifar-100 Models

48

50

52

54

Ac
cu

ra
cy

50

52

54

56

58

Ac
cu

ra
cy

53.5

54.0

54.5

55.0

55.5

56.0

Ac
cu

ra
cy

64

66

68

70

Ac
cu

ra
cy

Figure 4: In Figures a), b), and c), the H(R)
and I(R;Z) across 15 ResNet-50 models trained
with randomized hyperparameters with 3 differ-
ent SSL strategies are shown. In Figure d), we
show the same plot across 11 different SSL meth-
ods trained on ResNet-18 for 1000 epochs.

Magnitude of Correlation with Performance Across Trained Models

Method Dataset Epochs # of Models ER (H(R)) I(R;Z) Ratio

SimCLR Cifar100 100 15 .082 .323 .462
VICReg Cifar100 100 15 .013 .772 .751
NNCLR Cifar100 100 15 .206 .229 .337

All-ResNet18 Cifar100 1000 11 .029 .372 .375
SimCLR Cifar100 400 10 .557 .543 .625
VICReg Cifar100 400 10 .351 .875 .894
SimCLR TinyImageNet200 400 10 .534 .507 .521
SimCLR Cinic-10 400 10 .029 .323 .421
SimCLR Cifar-10 400 10 .873 .841 .833
SimCLR OrganSMNIST 400 10 .0024 .435 .442

Table 1: This table shows the pearson correla-
tion coefficient between the performance of a set
of SSL models trained with different hyperpa-
rameters on a specific dataset and the effective
rank (H(R)), I(R;Z), and the ratio between
them.

of the variance of Z is contained within only a small number of top eigenvalues. This suggests that
samples in Z distribute uniformly along a restricted subset of dimensions which is in contrast to
the behavior of space R that tries to distribute uniformly on as many dimensions as possible. This
discrepancy in sample uniformity can also be visualized in part c) with the uniformity metric (47).
We observe that for all SSL methods the uniformity between both spaces diverges from each other
as training progresses. This divergent behavior is further confirmed in part d), where I(R;Z) is
measured with a matrix mutual information estimator (51) that increases at the start of training, but
gradually decreases for every method later in training.

We also empirically verify how this relationship between H(R) and I(R;Z) impacts the downstream
performance in Figure 4. In parts a), b), and c) we train 15 different models with randomized
hyperparameters specific to 3 different SSL methods on Cifar-100 for 100 epochs each. We observe
that for each method, the best performing models cluster around specific H(R) and I(R;Z) values.
This trend also holds in part d), where every one of 11 models is trained with entirely different SSL
approaches. In Table 1, we also compute the magnitude of the Pearson correlation coefficient between
the performance of each of the generated models across different datasets and H(R), I(R;Z), and
the ratio between both of them. We observe that generally the performance correlates more with the
ratio, rather than either of the terms individually. Again, this result empirically shows the existence of
an ideal balance between H(R) and I(R;Z) that will correspond to the best performing SSL model.
This analysis suggests that SSL algorithms should have a mechanism to adaptively balance between
both terms across training.

4 METHODOLOGY

Based on the analysis of the previous section, we introduce a method to balance the training trajectory
of both H(R) and I(R;Z). Consider an image i drawn from a training pool i ∈ I . i is passed
into two random transformations a(i) = xi and a

′
(i) = x

′

i where a and a
′

are drawn from the
set of all random augmentations A. Both xi and x

′

i are passed into an encoder network e(·). This
results in the representations e(x) = ri and e(x

′
) = r

′

i. These representations are then passed into a
projection head g(·) that produces the embeddings g(xi) = zi and g(x

′

i) = z
′

i . The collection of all
representations and embeddings within a batch of b samples can be represented by the R, R

′
, Z, and

Z
′

matrices. In this case, all matrices are composed of b vectors with F features. From this setup,
we can compute LNCE used in SimCLR (7) and the LV ICReg loss. The main details of each loss is
provided in Section A.5. For the purposes of the AdaDim methodology, we highlight the sample
uniformity term in LNCE and the feature decorrelation term in LV ICReg:

LNCE =
∑
i∈I

(−zi · z
′
i)/τ + log(

∑
k∈K(i)

exp(zi · zk/τ)))

︸ ︷︷ ︸
uniformity

LV ICReg = λs(Z,Z
′
) + µ[v(Z) + v(Z

′
)] + ν[c(Z) + c(Z

′
)]]︸ ︷︷ ︸

decorrelation

(4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

𝛼 = 0

𝛼 = 1

𝛼 = 𝐴𝑑𝑎

𝐿𝑚𝑢𝑡

(d)

Figure 5: a) This figure shows the impact of manually varying alpha on H(R). b) This figure shows
the impact of manually varying alpha on I(R;Z). c) This figure shows how the adaptive α parameter
varies during training of a ResNet50 model for 400 epochs across a variety of datasets. d) This
figure gives a toy example of the inution behind our loss that includes the adaptive α leading to an
intermediate H(R) and I(R;Z) trajectory followed by gradual increases in Lmut regularization.

The second term in LNCE is a sample uniformity loss as it distances the image of interest zi away
from all other samples in the batch of interest k ∈ K(i). The final term in LV icReg represents a
decorrelation loss as it tries to drive the covariance matrix towards an identity matrix. It takes the
form c(Z) = 1

F

∑
i ̸=j [C(Z)]2i,j where C(Z) is the covariance matrix of Z. We then compute the

dimensionality of the current embedding space Z after every eα epochs (20 in this paper) of training.
This is done by computing the SVD of the representation space of 10 randomly chosen batches from
the training set and then calculating the average effective rank across these batches ER(Z) (35).
We then scale ER(Z) by the maximum possible dimensionality value which is D = min(b, F)

to produce the adaptive parameter α = ER(Z)
D . α will gradually transition from 0 to 1 during

training as the dimensionality of the space increases. Therefore, we can transition between optimizing
between feature decorrelation and sample uniformity with the loss (1 − α)LV ICReg + αLNCE .
However, we also want to gradually increase regularization on I(R;Z). To do this, we compute an
I(R;Z) loss Lmut(R,Z) that encourages lower I(R;Z) with the α-Renyi entropy approximation
technique (51; 32; 34). This loss first computes the entropy of a matrix with the formula H(R) =
− 1

2 log[tr(
R
b)

2]. The mutual information can then be computed as I(R;Z) = H(R) + H(Z) −
H(R⊙ Z). For purposes of numerical stability, Lmut = I(R̂R̂T ; ẐẐT) where R̂ and Ẑ refer to the
normalized version of each space. We scale its regularization through the term β = γ ∗ α with γ.
The final form of our loss is then:

LAdaDim = (1− β)[(1− α)LV ICReg + αLNCE]− βLmut (5)

Our goal is for the optimization objective to naturally lead to an ideal balance between H(R) and
I(R;Z) by the end of training. In order to achieve this balance, the loss needs different components
that both support and oppose the growth of H(R) and I(R;Z) at different points during the training
process by exploiting the observed dynamics that we discuss in Section 3. The first set of components
that are balanced with the α term are LNCE and LV ICReg. In parts a) and b) of Figure 5, we show
the impact on H(R) and I(R;Z) when manually varying α from 0 to 1 while fixing β = 0 across 6
different datasets. As a loss based on sample uniformity, LNCE supports lower H(R) and I(R;Z)
while a feature decorrelation based loss like LV ICReg supports higher I(R;Z) and H(R). This
leads to the behavior of parts a) and b), where gradually varying the loss from 0 (LV ICReg) to 1
(LNCE) consistently leads to both a lower H(R) and I(R;Z). In part c), we show that the adaptive
α term grows from 0 to 1 in a manner that is specific to the unique dimensionality characteristics of
each dataset. Therefore, the adaptive α term encourages an intermediate H(R) and I(R;Z) training
trajectory when compared with α = 0 or α = 1 as shown in the toy intuition example of part d).
However, at the end of training, both LV ICReg and LNCE will demonstrate the SSL dynamic of
lowering I(R;Z) in late stage training. Therefore, to maintain balance in this dynamic system, we
need an additional term that explicitly opposes the decrease in I(R;Z) as shown by the magnitude
of Lmut increasing as it scales with α in part d). In this way, all parts of this loss are designed to
dynamically balance both H(R) and I(R;Z) across all stages of training.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

AdaDimMut Parameter Variation Ablation
α γ β Accuracy
0 0 0 72.14
1 0 0 69.57

0.5 0 0 72.23
Ada 0 0 72.30

Cosine 0 0 71.40
Linear 0 0 71.59
Ada 1e-04 1 72.00

1 1e-04 1 68.81
0 1e-04 1 72.10

Ada 1e-04 Ada 72.73

Table 2: This table shows how per-
formance varies on Cifar-100 as
changes are made to the α and β
parameters.

AdaDimMut Standardized Hyperparameter Ablation Study

Method α Type Cifar100 Cifar10 TinyImageNet200 Cinic10 Blood OrganS iNat21

SimCLR (7) N/A 64.00 88.59 44.78 78.54 92.54 77.67 23.96
VICReg (3) N/A 64.70 90.02 45.54 78.25 92.48 76.50 24.24

SimCLR + λ (32) N/A 64.37 88.00 45.54 76.96 92.86 77.98 23.51
VICReg + λ (32) N/A 64.54 89.77 45.83 78.47 92.43 77.16 24.01

SimCLR +VICReg α = 0.5 66.53 90.43 46.26 79.35 92.86 78.50 24..56
SimCLR +VICReg cosine 65.78 88.85 45.45 78.87 92.57 78.46 -
SimCLR +VICReg linear 66.99 89.53 45.94 78.60 92.07 78.61 -

AdaDim (α = Ada) Ours 66.90 90.72 47.81 78.55 93.10 78.55 -
AdaDim (α = Ada, β = Ada) Ours 67.15 90.81 48.24 79.53 93.24 79.19 24.81

Table 3: This table shows an ablation study of perfor-
mance across a variety of datasets when varying AdaDim
parameters.

5 RESULTS

For the vast majority of experiments, a Resnet-50 (20) architecture is used in tandem with a simple
3-layer MLP projection head. All ablation study experiments utilize the same projection head with
augmentation scheme for ease of comparison. For comparison with state of the art models, the
parameters from the solo-learn (11) library or the original paper are used. Our AdaDim method is
trained with a LARS optimizer, batch size of 256, a learning rate of 0.4, a weight decay of 1e-4,
and γ = 1e − 4. For all experiments, models are trained for 400 epochs. The exception to these
conventions are comparisons with ImageNet-100 where a ResNet-18 model is used with γ = −0.1.
An online linear evaluation setting is used for all experiments that has been shown to directly correlate
with the offline setting and act as a standard benchmark (17; 18; 11). Further details are in Section A.4.

𝜸 = 𝟏𝒆 − 𝟒

𝜸 = 𝟎. 𝟏

𝜸 = 𝟎. 𝟎𝟏

𝜸 = 𝟎. 𝟎𝟎𝟏

𝑺𝒊𝒎𝑪𝑳𝑹

𝑽𝑰𝑪𝑹𝒆𝒈

Figure 6: a) This figure shows how performance, H(R), and I(R;Z) change as γ is varied. b) This
figure shows how the effective rank of AdaDim varies compared to baseline methods. c) This figure
shows how the I(R;Z) for AdaDim varies compared to baseline methods.

In Tables 2 and 3, we analyze the performance of AdaDim under a fixed setting where all comparisons
use the same projector head, augmentations, and optimizer settings. In Table 2, we analyze the impact
of different design choices of α, γ, and β on the downstream performance of out method. We compare
against methods that make use of intutive α scaling methods such as cosine or linear growth between
0 and 1 over the course of training. However, these methods are lacking in terms of an ability to adapt
the optimization based on the dimensional characteristics of the specific dataset and correspondingly
perform worse than an adaptive α. Additionally, we compare against using a fixed I(R;Z) term
during training. We observe that this regularization causes a slight decrease in performance. This
result suggests that I(R;Z) regularization should be applied selectively at specific points in SSL
training, rather than a constant term throughout. We also note the marked performance improvement
when transitioning between training with α alone compared to β in tandem with α. In this case, the
α term regularizes the transition from a feature decorrelation loss to a sample uniformity loss while
β balances additional regularization on I(R;Z) as training progresses. We confirm this ablation
study across many different datasets in Table 3. Again, we observe that ad-hoc α scaling strategies
such as linear and cosine scaling do not provide additional benefits. We also compare against the
I(R;Z) regularization strategy proposed by (32). This work argues that simply reducing I(R;Z)
during training without an adaptive mechanism can improve SSL representations. However, we find
that using their suggested λ parameter results in little to no improvement in classification accuracy

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ResNet-18 400 Epoch ImageNet100 Comparison
Method Accuracy

Barlow Twins (50) 80.38
BYOL (19) 80.16

DeepClusterv2 (4) 75.36
DINO (6) 74.84

Moco v2 (8) 78.20
Moco v3 (10) 80.36
NNCLR (14) 79.80
ReSSL (52) 76.92
SimCLR (7) 77.64
SimSiam (9) 74.54

SwAV (5) 74.04
VICReg (3) 79.22

AdaDim 80.78

Table 4: This table shows
the performance of SOTA SSL
methods under 400 epochs of
training on ResNet-18. All re-
sults comparing with AdaDim
are taken from the tables in the
solo-learn library.

AdaDim Solo-Learn SOTA Comparison

Method Cifar100 TinyImageNet200 Cinic10 STL10 Blood OrganA OrganS OrganC

SimCLR (7) 69.06 46.66 78.77 86.73 93.10 88.04 77.98 91.13
ViCReg (3) 72.18 48.47 82.70 87.92 93.77 92.21 80.37 91.84
Moco v2 (8) 71.01 46.78 81.48 92.41 93.74 90.49 75.96 90.81
BYOL (19) 71.72 32.96 80.00 89.96 92.45 92.26 78.53 91.45

Barlow Twins (3) 70.84 46.73 81.5 88.45 89.91 91.69 78.69 89.77
NNCLR (14) 70.72 39.66 77.28 87.16 93.15 92.93 79.92 91.71
SimSiam (9) 65.52 31.35 79.97 89.45 91.78 91.91 78.31 90.79

Deepcluster v2 (4) 65.70 41.87 74.80 82.93 93.56 92.21 77.93 74.31
Moco v3 (6) 63.96 37.56 74.71 85.25 93.33 92.27 78.69 91.84

AdaDim (α =Ada) 72.23 47.87 82.38 88.11 93.74 92.90 80.19 91.95
AdaDim (α =Ada, β = Ada) 72.73 48.76 82.77 89.01 94.24 92.77 80.80 91.95

Table 5: This table compares AdaDim with other SSL meth-
ods across diverse data settings. All methods are trained with
their best tuned parameters provided in the solo-learn library
(11). Note that the AdaDim method for this comparison uses the
stronger augmentation scheme provided by the solo learn library.
We bold the best performing method and underline the second
best.

across all datasets. The reason for this discrepancy in their results may be that in their original paper
their method only showed improvements with 200 epochs of training. In this limited setting, fixed
regularization may help as there isn’t enough training time for the discussed dynamics to emerge.
However, in the more robust 400 epoch baselines of our work, it is necessary to adapt I(R;Z) to
complement the SSL training dynamics. We also analyze the dynamics of our AdaDim method in
Figure 6. In part a), we vary γ and plot the accuracy, H(R), and I(R;Z) of representations from
Cifar-100. We find that lower γ expectedly leads to a corresponding increase in H(R) and I(R;Z)
and gradually reduces performance. The best performing model reaches a balance between both at
the γ = 1e − 4 point. In parts b) and c), we compare the growth in H(R) and I(R;Z) with the
representations from SimCLR and VICReg. We find that the adaptive regularization of our method
leads to AdaDim reaching a trajectory that attempts to balance between both terms.

In Tables 5 and 4, we compare against state of the art SSL approaches in the solo-learn codebase
setting where each method has its own specific tuned hyperparameters. In this setting, α by itself
routinely underperforms relative to other methods across a diverse set of datasets. However, using
both the α and β parameters together results in performance comparable to or exceeding all state
of the art methods. Again, this highlights the importance of both terms scaling together during
training. Additionally, we note that our method out performs or is comparable to strategies that
require expensive training paradigms such as queues (14; 8), clustering strategies (5), student teacher
networks (19), and additional prediction heads. The only additional overhead with our method is
an SVD calculation on 10 batches every 20 epochs. Furthermore, we note that our method is able
to consistently perform well both on common baselines such as ImageNet100 and Cifar100, but
also on less commonly benchmarked medical datasets (48). The significance of this improvement
is that our method scales the optimization objective by measuring the dimensional characteristics
specific to each dataset during training. In this way, our method is better able to adapt to scenarios
outside of the original natural image domain where previous methods were designed. Additionally,
for all experiments we kept γ = 1e − 4 mostly constant. However, further tuning of this term
can potentially lead to further improvements on specific datasets that may benefit from more or
less I(R;Z) regularization. Overall, our results indicate the benefits of adapting to the specific
representational dynamics of SSL training.
6 CONCLUSION

This paper demonstrates theoretically and empirically that the best performing SSL models arrive at
a balance between the dimensionality H(R) of the representation space and the mutual information
between the representation and embedding spaces I(R;Z). Specifically, these dynamics indicate that
increases in H(R) due to feature decorrelation are preserved between R and Z, but increases due
to the samples spreading uniformly can cause I(R;Z) to increase, plateau, or decrease depending
on the stage of training of the SSL algorithm. We then introduce a training method called AdaDim
based on an adaptive interpolation between dimension and sample contrastive approaches and gradual
regularization of I(R;Z). AdaDim results in improved performance over baseline strategies without
requiring additional architectural overhead other than an intermittent SVD calculation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

[1] Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep neural
networks. arXiv preprint arXiv:1711.08856, 2017.

[2] Kumar K Agrawal, Arnab Kumar Mondal, Arna Ghosh, and Blake Richards. alpha-req:
Assessing representation quality in self-supervised learning by measuring eigenspectrum decay.
Advances in Neural Information Processing Systems, 35:17626–17638, 2022.

[3] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regular-
ization for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

[4] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the European conference on
computer vision (ECCV), pages 132–149, 2018.

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020.

[8] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[9] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 15750–15758,
2021.

[10] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised
vision transformers. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9640–9649, 2021.

[11] Victor Guilherme Turrisi Da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and Elisa Ricci. solo-
learn: A library of self-supervised methods for visual representation learning. Journal of
Machine Learning Research, 23(56):1–6, 2022.

[12] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not
imagenet or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[14] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman.
With a little help from my friends: Nearest-neighbor contrastive learning of visual representa-
tions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9588–9597, 2021.

[15] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for
self-supervised representation learning. In International conference on machine learning, pages
3015–3024. PMLR, 2021.

[16] Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
representations via multi-view information bottleneck. arXiv preprint arXiv:2002.07017, 2020.

[17] Quentin Garrido, Randall Balestriero, Laurent Najman, and Yann Lecun. Rankme: Assessing
the downstream performance of pretrained self-supervised representations by their rank. In
International conference on machine learning, pages 10929–10974. PMLR, 2023.

[18] Quentin Garrido, Yubei Chen, Adrien Bardes, Laurent Najman, and Yann Lecun. On the
duality between contrastive and non-contrastive self-supervised learning. arXiv preprint
arXiv:2206.02574, 2022.

[19] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[21] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse
in contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[22] Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent devel-
opments. Philosophical transactions of the royal society A: Mathematical, Physical and
Engineering Sciences, 374(2065):20150202, 2016.

[23] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

[24] Jaeill Kim, Suhyun Kang, Duhun Hwang, Jungwook Shin, and Wonjong Rhee. Vne: An
effective method for improving deep representation by manipulating eigenvalue distribution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3799–3810, 2023.

[25] Kiran Kokilepersaud, Stephanie Trejo Corona, Mohit Prabhushankar, Ghassan AlRegib, and
Charles Wykoff. Clinically labeled contrastive learning for oct biomarker classification. IEEE
Journal of Biomedical and Health Informatics, 27(9):4397–4408, 2023.

[26] Kiran Kokilepersaud, Seulgi Kim, Mohit Prabhushankar, and Ghassan AlRegib. Hex: Hierar-
chical emergence exploitation in self-supervised algorithms. arXiv preprint arXiv:2410.23200,
2024.

[27] Kiran Kokilepersaud, Mohit Prabhushankar, and Ghassan AlRegib. Volumetric supervised
contrastive learning for seismic semantic segmentation. In Second International Meeting for
Applied Geoscience & Energy, pages 1699–1703. Society of Exploration Geophysicists and
American Association of Petroleum . . . , 2022.

[28] Kiran Kokilepersaud, Mohit Prabhushankar, Yavuz Yarici, Ghassan AlRegib, and Armin Par-
chami. Exploiting the distortion-semantic interaction in fisheye data. IEEE Open Journal of
Signal Processing, 4:284–293, 2023.

[29] Kiran Kokilepersaud, Yavuz Yarici, Mohit Prabhushankar, and Ghassan AlRegib. Taxes are all
you need: Integration of taxonomical hierarchy relationships into the contrastive loss. arXiv
preprint arXiv:2406.06848, 2024.

[30] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[31] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[32] Zhuo Ouyang, Kaiwen Hu, Qi Zhang, Yifei Wang, and Yisen Wang. Projection head is secretly
an information bottleneck. arXiv preprint arXiv:2503.00507, 2025.

[33] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[34] Alfréd Rényi. On measures of entropy and information. In Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability, volume 1: contributions to the theory of
statistics, volume 4, pages 547–562. University of California Press, 1961.

[35] Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In
2007 15th European signal processing conference, pages 606–610. IEEE, 2007.

[36] Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khande-
parkar. A theoretical analysis of contrastive unsupervised representation learning. In Interna-
tional Conference on Machine Learning, pages 5628–5637. PMLR, 2019.

[37] Johannes Schneider and Mohit Prabhushankar. Understanding and leveraging the learning
phases of neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 14886–14893, 2024.

[38] James B Simon, Maksis Knutins, Liu Ziyin, Daniel Geisz, Abraham J Fetterman, and Joshua
Albrecht. On the stepwise nature of self-supervised learning. In International Conference on
Machine Learning, pages 31852–31876. PMLR, 2023.

[39] Manu Srinath Halvagal, Axel Laborieux, and Friedemann Zenke. Implicit variance regulariza-
tion in non-contrastive ssl. Advances in Neural Information Processing Systems, 36:63409–
63436, 2023.

[40] Zhiquan Tan, Jingqin Yang, Weiran Huang, Yang Yuan, and Yifan Zhang. Information flow in
self-supervised learning. arXiv preprint arXiv:2309.17281, 2023.

[41] Vimal Thilak, Chen Huang, Omid Saremi, Laurent Dinh, Hanlin Goh, Preetum Nakkiran,
Joshua M Susskind, and Etai Littwin. Lidar: Sensing linear probing performance in joint
embedding ssl architectures. arXiv preprint arXiv:2312.04000, 2023.

[42] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning
dynamics without contrastive pairs. In International Conference on Machine Learning, pages
10268–10278. PMLR, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[43] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

[44] Tobias Uelwer, Jan Robine, Stefan Sylvius Wagner, Marc Höftmann, Eric Upschulte, Sebastian
Konietzny, Maike Behrendt, and Stefan Harmeling. A survey on self-supervised methods for
visual representation learning. Machine Learning, 114(4):1–56, 2025.

[45] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig
Adam, Pietro Perona, and Serge Belongie. The inaturalist species classification and detection
dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 8769–8778, 2018.

[46] John Von Neumann. Mathematical foundations of quantum mechanics: New edition. Princeton
university press, 2018.

[47] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In International conference on machine learning,
pages 9929–9939. PMLR, 2020.

[48] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister,
and Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical
image classification. Scientific Data, 10(1):41, 2023.

[49] Leon Yao and John Miller. Tiny imagenet classification with convolutional neural networks. CS
231N, 2(5):8, 2015.

[50] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In International conference on machine learning,
pages 12310–12320. PMLR, 2021.

[51] Yifan Zhang, Zhiquan Tan, Jingqin Yang, Weiran Huang, and Yang Yuan. Matrix information
theory for self-supervised learning. arXiv preprint arXiv:2305.17326, 2023.

[52] Mingkai Zheng, Shan You, Fei Wang, Chen Qian, Changshui Zhang, Xiaogang Wang, and
Chang Xu. Ressl: Relational self-supervised learning with weak augmentation. Advances in
Neural Information Processing Systems, 34:2543–2555, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX EXPERIMENTAL DETAILS

Limitations and Broader Impact Our work focuses on finding an optimal point between H(R)
and I(R;Z) and discussing the training dynamics that influences both terms. However, the notion of
an “ideal“ optimal point is difficult to prove with respect to a given data setting. Ideally, there should
be a derived bound or ratio between H(R) and I(R;Z) that we can claim with high probability
corresponds to a close to “ideal“ optimal relationship between the two terms. Despite this limitation,
the broader impact of this work is that it provides a general framework to develop SSL algorithms
across diverse fields such as medicine (25), seismology (27), and autonomous driving (28). Therefore,
it provides an avenue for potential growth of machine learning solutions in a wide variety of fields.
We are not aware of any negative societal impacts directly caused by our work.

A.1 CODEBASE

We use the solo-learn codebase (11) for all experiments.

A.2 DATASETS

We show explicit details of all datasets used in this paper in Table 6. The data sets were chosen on
the basis of trying to achieve as much diversity across a wide variety of data settings to showcase the
adaptability of our method. This includes medical and natural image datasets, datasets of varying
sizes, datasets of varying class complexity, and datasets with varying class imbalances.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Dataset Abbreviation & Link Description # of classes
CIFAR-100 (30) cifar100 100 classes of 32x32 color images,

including animals, vehicles, and
various objects commonly found
in the world.

100

CIFAR-10 (30) cifar10 10 classes of 32x32 color images
featuring everyday objects and
scenes such as airplanes, cars, and
animals.

10

Tiny ImageNet (49) tinyimagenet200 200 classes of 64x64 images, a
smaller version of the ImageNet
dataset, used for object recogni-
tion and classification tasks.

200

BloodMNIST (48) blood 8 classes of 28x28 images, de-
signed for classification of dis-
eases in red blood cells.

8

OrganSMNIST (48) organs 11 classes of 28x28 images, de-
signed for classifying various
types of liver tumor problems.

11

OrganCMNIST (48) organc 11 classes of 28x28 images, de-
signed for classifying various
types of liver tumor problems.

11

OrganAMNIST (48) organa 11 classes of 28x28 images, de-
signed for classifying various
types of liver tumor problems.

11

STL10 (48) stl10 10 classes of 96x96 images, de-
signed for classifying various
types of images.

10

Cinic-10 (12) cinic10 10 classes of 96x96 images, de-
signed for developing unsuper-
vised feature learning, deep learn-
ing, and self-taught learning algo-
rithms.

10

iNaturalist 2021 (45) inat21 Large-scale dataset with over
10,000 species, collected from
photographs of plants and animals
in their natural environments for
fine-grained classification.

10,000

ImageNet (13) imagenet Large dataset with over 1,000
classes, used for image classifi-
cation and object detection, con-
taining millions of images across
a wide variety of categories.

1,000

Table 6: Overview of the datasets used in this paper.

14

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://tiny-imagenet.herokuapp.com/
https://medmnist.com/
https://medmnist.com/
https://medmnist.com/
https://medmnist.com/
https://cs.stanford.edu/~acoates/stl10/
https://github.com/BayesWatch/cinic-10
https://www.kaggle.com/c/inaturalist-2021
http://www.image-net.org/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 METRIC ANALYSIS DETAILS

One possible mathematical description for the dimensionality of a representation space H(R) is the
von Neumann entropy of eigenvalues (46; 24) which takes the form H(R) = −

∑
i λilog(λi) where

each λi represents an eigenvalue of R. We note that many other entropy estimators take a similar
form in Section A.3. To increase H(R) in this setting, we can either increase the total number of
non-zero eigenvalues or maintain the same number of eigenvalues, but make the eigenvalues more
similar in value to each other (higher uniformity, lower variance). Increasing the total number of
eigenvalues corresponds to feature decorrelation in which an SSL algorithm discovers a larger number
of total dimensions along which R can vary. Decreasing the variance of eigenvalues within a fixed
dimensional space corresponds to sample uniformity where representations spread more equally
along all dimensions.

Throughout the paper, the dynamics between H(R) and I(R;Z) is discussed. However, this analysis
requires a variety of metrics that were not fully detailed in the main paper. For our analytical
experiments, the test set of interest is passed into the trained SSL model and its associated projection
head. This results in a matrix for the representation space R and embedding space Z for the test set
of size test set size × 2048. On top of these matrices, certain metrics for analysis are computed such
as the effective rank discussed earlier (35). Additionally, I(R;Z) is computed using the α-Renyi
matrix mutual information approximation discussed in (40). To calculate this quantity, assume
that normalized matrices A and B are both Rnxn. The entropy of matrix A can be represented as
Hα(A) = 1

1−α log[tr((
A
n)

α)] where α =2 for all experiments. This formulation results in a matrix
mutual information estimator of the form I(A;B) = Hα(A) +Hα(B)−Hα(A⊙B) where ⊙ is
the hadamard product. This formulation only works for positive semi definite matrices so during our
experiments the approximation of (40) is followed where the normalized covariance matrices RRT

and ZZT are used as inputs to calculate I(R;Z).

Note that there are a variety of ways to approximate H(R). In this paper, both Hα(R) and the
effective rank are used at different points. The main reason for this choice is that the effective
rank is normalized with respect to the eigenvalues of the current distribution. This means that the
lowest possible value is 0 and the highest possible value is the dimension of the batch of interest.
The advantage of the α-Renyi approximator is that the scale of the values will more closely match
the values used to calculate I(R;Z). This makes it more useful for visualization within a plot.
However, both metrics result in the same trade-off behavior and are correlated with each other.
This correlation is observed in Figure 7. In general, any computation of H(R) can be thought
of as an approximation of the dimensionality of the representation space. This is because higher
dimensionality has been characterized in terms of eigenvalue distributions across a variety of works
(18; 41; 2; 21). These metrics follow this trend as they are based on measuring the distribution of
eigenvalues for a given matrix. For example, another possible entropy estimator is discussed in (51).
This work states that for a positive semi definite (PSD) matrix A, matrix entropy (ME) can be defined
as ME(A) = −tr(Alog(A)) + tr(A) = −

∑
i λilog(λi) +

∑
i λi. The first term will increase

with the dimensionality of the representation space i.e. as the eigenvalues become more uniformly
distributed. The second term will increase with more and larger eigenvalues i.e. as the dimensions of
the space increases.

The uniformity metric (47) is also used as part of our analysis. This metric acts as a measurement of
how uniformly distributed the points of a representation space are on a hypersphere. It takes the form
of the pairwise gaussian potential kernel and can be expressed as log(E(x,y)∼pdata

[e−2||e(x)−e(y)||22]).
In general, greater uniformity indicates a more negative value when this metric is computed empiri-
cally. We use the implementation from the original github of (47).

A.4 METHOD SPECIFIC TRAINING DETAILS

All essential hyperparameters for comparisons with state of the art methods are shown in Table 7.
Note that we tried to use identical hyperparameters as much as possible for ease of comparison
across experiments. In the case of method specific hyperparameters, we tried to use the parameters
described in the solo-learn codebase as much as possible (11). We also compare with the explicit
I(R;Z) regularization. In these experiments, the experimental setup of (32) is used. This involves
taking the matrices R and Z and computing the mutual information estimate based on the α-Renyi
approximation discussed in Section A.3. This is added as a regularization term on top of the SSL

15

https://github.com/ssnl/align_uniform.git

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7: We show versions of the same opening Figure with H(R) computed with a) the effective
rank and b) an α-Renyi matrix approximator.

Method Projection Method-Specific
Parameters Optimizer Batch Size Learning Rate Weight Decay

AdaDim - Baseline 2048-2048-2048
gamma = 1e-4,

20 Epochs SVD Calc,
starting alpha = 0.1

LARS 256 0.4 1e-4

AdaDim - ImageNet100 2048-2048-2048
gamma = -1e-1,

20 Epochs SVD Calc,
starting alpha = 0.1

LARS 256 0.4 1e-4

Barlow Twins 2048 - 2048 -2048 scale_loss = 0.1 LARS 256 0.3 1e-4
SimCLR 2048-2048-128 temperature = 0.1 LARS 256 0.4 1e-4

VICReg 2048 - 2048 -2048
var_loss = 25,
inv_loss = 25,
cov_loss = 1

LARS 256 0.4 1e-4

BYOL 4096 - 4096 - 256 momentum = 1.0,
base = 0.99 LARS 256 1.0 1e-5

NNCLR 2048 - 4096 -256 queue = 65536,
temperature = 0.2 LARS 256 0.4 1e-5

SimSiam 2048 - 2048 -512 temperature = 0.2 LARS 256 0.5 1e-5
DeepCluster v2 2048 - 128 Prototypes = [3000, 3000, 3000] LARS 256 0.6 1e-5

Moco v2 2048 - 256 temperature = 0.2, LARS, momentum = [0.9,0.99] SGD 256 0.3 1e-4
Moco v3 4096 - 4096 - 256 momentum = [0.9,0.99] LARS 256 0.3 1e-6

Table 7: This table shows the parameters that were used to train every ssl comparison. These
parameters were mostly taken from the solo-learn library with some exceptions in order to improve
training.

method of interest in Table 7. This regularization term is scaled by a λ parameter that is set to .0001
for all experiments. This specific choice of λ is based on the best performing model in (32).

Additionally, due to the extensive nature of our experiments, an online linear evaluation setting is
used where the classifier is trained alongside the backbone and projector. Representations are fed
to a linear classifier while keeping the gradient of the classifier’s cross entropy loss from flowing
through the backbone. The performance of the online classifier correlates well with the offline setting,
making it a reliable proxy as shown in (18; 7). In this setting, a single linear layer of size 2048 is
used to match the feature size of ResNet-50 to perform this fine-tuning operation.

A.5 COMPLETE SIMCLR AND VICREG LOSS

In this section, we go into more depth regarding the LNCE and LV ICReg losses. Suppose there
is an image i drawn from a training pool i ∈ I . i is passed into two random transformations
t(i) = x and t

′
(i) = x

′
where t and t

′
are drawn from the set of all random augmentations

T . Both x and x
′

are passed into an encoder network e(·). This results in the representations
e(x) = r and e(x

′
) = r

′
. These representations are then passed into a projection head g(·) that

produces the embeddings g(x) = z and g(x
′
) = z

′
. The collection of all representations and

embeddings within a batch of n samples can be represented by the R, R
′
, Z, and Z

′
matrices.

In this case, all matrices are composed of n vectors with dimension D. This can be written as
R = [r1, r2, ..., rn], R

′
= [r

′

1, r
′

2, ..., r
′

n], Z
′
= [z

′

1, z
′

2, ..., z
′

n], and Z = [z1, z2, ..., zn]. From
this setup, the VICReg (3) and InfoNCE (31; 7) losses can be computed. In this case, VICReg
corresponds to a feature decorrelation loss that is better at promoting higher H(R) while InfoNCE

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

corresponds to a sample uniformity loss better at promoting lower I(R;Z) at the end of training.

The InfoNCE (LNCE) loss is written as: LNCE = −
∑

i∈I log
exp(sim(zi,z

′
i)/τ)∑2N

k=1 1[k ̸=i]exp(sim(zi,zk))
where

sim refers to the cosine similarity, τ represents a temperature parameter, and the summation in
the denominator takes place over all samples from both transformations. The VICReg loss is
written as: LV ICReg = λs(Z,Z

′
) + µ[v(Z) + v(Z

′
)] + ν[c(Z) + c(Z

′
)]]. The invariance term

is s(Z,Z
′
) = 1

n

∑N
i=1 ||zi − z

′

i||22. The covariance term is c(Z) = 1
D

∑
i ̸=j [C(Z)]2i,j where C(Z)

is the covariance matrix of Z. The variance term is v(Z) = 1
d

∑D
j=1 max(0, γ − S(zj , ϵ)) where

S(x, ϵ) is the regularized standard deviation, zj represents the vector of each value at dimension
j, and γ is a target value set to 1 for all experiments. For both LNCE and LV ICReg, we use the
conventions of the original papers which includes τ = 0.1, λ = µ = 25, and ν = 1.

A.6 COMPUTE RESOURCES

Our resources included a personal PC with 8 Intel i7-6700K CPU Cores and 2 12 GB Nvidia GeForce
GTX Titan X GPUs. We also used a lab work station server with 12 Intel i7-5930K CPU cores and 2
24GB Nvidia TITAN RTX GPUs. We also used a server with compute resources based on availability
and priority queues. The vast majority of experiments run with these resources are shown in the main
paper or the appendix. However, there may be early exploratory experiments in the development of
our method that were not included.

A.7 COMPUTE DISCUSSION OF OUR METHOD

Our method involves computing the distribution of the eigenvalues at different points in the training
process. In general, computing eigenvalues is an expensive operation with order O(n3). However,
the number of calculations is limited through a few mechanisms specific to AdaDim. This includes
the usage of the Eα parameter. This parameter dictates how many epochs must pass before the
α parameter is re computed. In Figure 16, performance improvements are maintained even when
Eα is as much as 100 epochs. Additionally, for every Eα, the eigenvalues for only 10 training
batches are computed. This is because we found empirically that most batches will have a similar
effective rank as training progresses. This limits the need to compute the eigenvalues across all
batches in an epoch. The averaging across 10 batches is done to ensure that the resulting α reflects
the current dimensionality of the dataset. However, it may be possible to use even fewer batches in
this computation.

A.8 EMPIRICAL EIGENVALUE ANALYSIS DETAILS

In Figure 3, a variety of analyses on the eigenvalue distribution of a model trained with the VICReg
methodology is performed for 2000 epochs. In part b), all eigenvalues are normalized before
counting the number of eigenvalues above a threshold τ that we set to .01 for all experiments.
This normalization was performed by dividing all the eigenvalues by the l-1 norm of the complete
eigenvalue distribution. This is similar to the normalization done in the computation of the effective
rank. In part c), the cumulative explained variance ratio metric is computed. To compute this metric,
assume that there is a set of eigenvalues λ = [λ1, λ2, ..., λN] where the eigenvalues are ordered in
the order of increasing magnitude. Assume that there is a percentage p of eigenvalues. This results

in the explained variance metric:
∑p∗N

i=1 λi∑N
i=1 λi

. This metric increases as the subset of eigenvalues that
we sum over constitutes more of the overall variance of the data. However, it will decrease as the
spread of this variance is distributed over eigenvalues outside of the percentage that the numerator is
summed over.

A.9 RANDOM PARAMETER ABLATION STUDY

In Figure 4, we show how accuracy varies for a variety models with different hyperparameters. We
generate 15 models for 3 different methods on Cifar-100 and display the exact parameters for each of
these methods in Table 8.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Method Dataset Epochs Parameters Learning Rate Temperature Weight Decay Effective Rank Mutual Info Accuracy
SimCLR Cifar-100 100 d=2048 0.6 0.05 10-6 673 0.073 47.15
SimCLR Cifar-100 100 d=2048 0.6 0.07 10-6 682 0.071 48.84
SimCLR Cifar-100 100 d=2048 0.6 0.1 10-6 684 0.079 49.43
SimCLR Cifar-100 100 d=2048 0.6 0.2 10-6 646 0.075 52.28
SimCLR Cifar-100 100 d=2048 0.6 0.3 10-6 594 0.076 54.39
SimCLR Cifar-100 100 d=2048 0.6 0.4 10-6 566 0.068 51.99
SimCLR Cifar-100 100 d=2048 0.5 0.05 10-6 658 0.064 48.65
SimCLR Cifar-100 100 d=2048 0.5 0.07 10-6 652 0.056 47.36
SimCLR Cifar-100 100 d=2048 0.5 0.1 10-6 670 0.055 54.56
SimCLR Cifar-100 100 d=2048 0.5 0.15 10-6 666 0.074 54.03
SimCLR Cifar-100 100 d=2048 0.5 0.2 10-6 637 0.078 54.98
SimCLR Cifar-100 100 d=2048 0.5 0.3 10-6 587 0.078 54.15
SimCLR Cifar-100 100 d=2048 0.5 0.4 10-6 556 0.07 53.1
SimCLR Cifar-100 100 d=2048 0.5 0.15 10-7 655 0.076 54.86
SimCLR Cifar-100 100 d=2048 0.5 0.15 10-5 666.67 0.076 53.59
VICReg Cifar-100 100 nu = 0.3 0.3 N/A 10-6 922 0.268 50.75
VICReg Cifar-100 100 nu = 0.4 0.3 N/A 10-6 914 0.265 50.83
VICReg Cifar-100 100 nu = 0.5 0.3 N/A 10-6 902 0.292 50.62
VICReg Cifar-100 100 nu = 0.6 0.3 N/A 10-6 892 0.263 52.29
VICReg Cifar-100 100 nu = 0.7 0.3 N/A 10-6 902 0.235 56.72
VICReg Cifar-100 100 nu = 0.8 0.3 N/A 10-6 903 0.24 56.27
VICReg Cifar-100 100 nu = 0.9 0.3 N/A 10-6 898 0.237 55.73
VICReg Cifar-100 100 nu = 1.0 0.3 N/A 10-6 883 0.244 52.37
VICReg Cifar-100 100 nu = 1.1 0.3 N/A 10-6 878 0.229 57.6
VICReg Cifar-100 100 nu = 1.2 0.3 N/A 10-6 877 0.232 52.28
VICReg Cifar-100 100 nu = 1.3 0.3 N/A 10-6 847 0.257 54.54
VICReg Cifar-100 100 nu = 1.4 0.3 N/A 10-6 868 0.212 55.09
VICReg Cifar-100 100 nu = 1.5 0.3 N/A 10-6 795 0.279 49.19
VICReg Cifar-100 100 nu = 1.6 0.3 N/A 10-6 867 0.209 54.48
VICReg Cifar-100 100 nu = 1.7 0.3 N/A 10-6 848 0.2107 58.69
NNCLR Cifar-100 100 d=2048 0.6 0.05 10-6 416 0.043 54.09
NNCLR Cifar-100 100 d=2048 0.6 0.07 10-6 417 0.038 54.27
NNCLR Cifar-100 100 d=2048 0.6 0.1 10-6 459 0.033 55.47
NNCLR Cifar-100 100 d=2048 0.6 0.2 10-6 493 0.058 55.9
NNCLR Cifar-100 100 d=2048 0.6 0.3 10-6 490 0.067 54.43
NNCLR Cifar-100 100 d=2048 0.6 0.4 10-6 519 0.067 55.07
NNCLR Cifar-100 100 d=2048 0.5 0.05 10-6 425 0.042 54.59
NNCLR Cifar-100 100 d=2048 0.5 0.07 10-6 439 0.036 55.16
NNCLR Cifar-100 100 d=2048 0.5 0.1 10-6 462 0.033 56.01
NNCLR Cifar-100 100 d=2048 0.5 0.15 10-6 474 0.05 56.09
NNCLR Cifar-100 100 d=2048 0.5 0.2 10-6 505 0.06 56.37
NNCLR Cifar-100 100 d=2048 0.5 0.3 10-6 518 0.074 55.02
NNCLR Cifar-100 100 d=2048 0.5 0.4 10-6 520 0.075 53.43
NNCLR Cifar-100 100 d=2048 0.5 0.15 10-7 492 0.048 56.19
NNCLR Cifar-100 100 d=2048 0.5 0.15 10-6 474 0.051 56.09

Table 8: This table shows all the parameters, accuracies, rank scores, and mutual information values
for the random parameter experiments shown in the main paper.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B APPENDIX THEORETICAL DETAILS

B.1 HIGH LEVEL INTUITION

Higher dimensionality in R is desirable because it counters the dimensional collapse effect discussed
in (21) and encourages a more diverse feature space. Lower I(R;Z) is also desirable because it
implies that the projection head is effective in removing uninformative features from the representation
space. However, we prove through information theoretic bounds that increasing the dimensionality
of R causes a corresponding increase in I(R;Z) thus necessitating a trade-off between the two for
an ideal representation space. This trade-off is illustrated in Figure 1 where an image is passed
through an encoder e(·) to produce a representation space R with 6 associated features. 3 features
are target-relevant and 3 are uninformative. The feature space is associated with an eigenvalue
distribution that indicates how relevant each feature is to the geometry of the representation space.
Ideally, the eigenvalue distribution should capture just the target-relevant features; however, a higher
dimensional space also captures uninformative features as shown in part a). To counter this, the
projector should act as an information bottleneck (43) during training that projects the features into
a lower dimensional space where only the target features are relevant. In part a), the distribution
of eigenvalues remains the same after projection so the projection head does not remove spurious
features from R which corresponds to a high I(R;Z). Part b) represents an ideal case where R has
sufficiently high dimensionality to capture mostly informative features while sufficiently low I(R;Z)
such that the projector guides the optimization process towards target-relevant features.

Figure 8: Assume there is an image with 3 task relevant features and 3 spurious features. The
image is associated with a representation space R, projection space Z, and corresponding eigenvalue
distributions for both. a) This is an example of R and Z with high dimensionality and high I(Z;R).
b) This is an example of R and Z that that has moderate dimensionality and moderate I(R;Z).

B.2 GAUSSIAN MUTUAL INFO DERIVATION DETAILS

We will follow from the assumptions found in Section 3 of the main paper. The following closed
form equations are needed for this analysis:

I(R;Z) =
1

2
(ln(|ΣR|) + ln(|ΣZ |)− ln(|Σ|))

H(R) =
m

2
ln(2π) +

1

2
ln(|ΣR|) +

m

2

ln(|Σ|) = ln(|ΣZ ||ΣR − ΣRZΣ
−1
Z ΣZR|)

ln(|Σ|) = ln(|ΣR||ΣZ − ΣZRΣ
−1
R ΣRZ |)

Note that the ln(|Σ|) derivation arrives from Shur’s formula that provides an equality for the determi-
nant of a block covariance matrix.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In this setting, I(R;Z) can be rewritten as:

I(R;Z) =
1

2
(ln(|ΣR|) + ln(|ΣZ |)− ln(|ΣR||ΣZ − ΣZRΣ

−1
R ΣRZ |)

I(R;Z) =
1

2
(ln(|ΣR|) + ln(|ΣZ |)− ln(|ΣZ ||ΣR − ΣRZΣ

−1
Z ΣZR|)

Using law of logarithms, we can simplify this equation into:

I(R;Z) =
1

2
(ln(|ΣZ |)− ln(|ΣZ − ΣZRΣ

−1
R ΣRZ |)

I(R;Z) =
1

2
(ln(|ΣR|)− ln(|ΣR − ΣRZΣ

−1
Z ΣZR|)

This results in the form described in the main paper as:

I(R;Z) =
1

2
(ln(|ΣZ |)− ln(|V ar(Z|R)|)) = 1

2
(ln(|ΣR|)− ln(|V ar(R|Z)|))

We further analyze the specific terms that make up this equation in Figure 9. In parts a) and b)
of this figure, the I(R;Z) curves from the main paper are repeated. In part c), each of the terms
that make up I(R;Z) are analyzed as changes as the number of features is fixed and the sample
variance increases. ln(|ΣR|) and ln(|V ar(Z|R)|) increases as the variance increases. However,
ln(|V ar(Z|R)|) increases at a faster rate as the variance increases. This happens because ln(|ΣZ |)
does not change in value. The end result is a reduction in mutual information which shows that Z is
not able to preserve the variance in R under the conditions of its projection.

Figure 9: In a) and b), we again show the curves when Z is two components with experiments related
to varying the number of features adn the cluster variance. In c), we decompose each of the individual
terms that make up I(R;Z).

B.3 GAUSSIAN SIMULATION DETAILS

In Figure 2, a detailed simulation on data generated from a Gaussian distribution is shown. The
simulations discussed two settings between the R space and the projection space Z: n < m and
n << m. For each setting, I(R;Z) varies when the number of dimensions is kept fixed while the
variance of the data is perturbed as well as when the variance of the data is fixed and the number of
dimensions is varied. To generate this data, the make blobs dataset from the sklearn library(33) is
used. This library generates Gaussian isotropic clusters that are intended for clustering problems.
However, for our purposes it acts as a reliable generator of Gaussian distributed data. The cluster
labels of this dataset are not used in any capacity for our experiments to conform to the SSL setting.
This dataset has the following parameters:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1. n_samples: We set this to 1000 for all experiments.

2. n_features: We set this based on the features required for the simulation of interest.

3. centers: This is set to 5 for all experiments. This describes the number of clusters to generate.

4. cluster_std: This is the parameter we vary to control the variance of the generated data.

5. random_state: This can set the initial random seed for the generation. We do not set this
parameter so as to generate a slightly different version of the dataset after every simula-
tion. We then take the average and standard deviation of 100 simulations for every set of
parameters that we use in our experiments.

B.4 NEURAL NETWORK SIMULATION

In the main paper, PCA is used as a general projection between R and Z for the purposes of modeling
the interaction between a space and its projection without having to deal with the nuances of training
neural networks. However, the projector can also be replaced with a neural network and either the
SimCLR or VICReg loss and show that the same general trends hold.

For this experiment, synthetic gaussian data is generated in the manner described in Section B.3.
However, this time a small MLP is used. It is composed of 5 layers and 20 hidden units per layer
followed by a small projector with 2 layers and 5 hidden units per layer to output a dimension of size
5. The generated data has 25 features and a cluster standard deviation of .01. It is trained for 1000
epochs with either the SimCLR or VICReg loss. In this setting, augmentations were generated by
adding randomly distributed Gaussian noise with a standard deviation of 0.5 to the generated data.
During training, I(R;Z) is measured for every epoch where R is the original generated data and Z is
the output of the neural network. This value is computed using the closed form I(R;Z) for gaussian
distributed data. The Adam optimizer is used for these experiments with a learning rate of .0001 and
a β of 0.9 to 0.999.

Figure 10 shows that the neural network simulation of our data exhibits the same trends both when
trained on SimCLR or VICReg. At the start of training, I(R;Z) increases and gradually plateaus by
the end of training. Additionally, the dimension contrastive strategy VICReg approaches a higher
I(R;Z) than that of the sample contrastive strategy SimCLR.

Figure 10: We show the I(R;Z) curves across epochs of training for a gaussian dataset trained on a)
SimCLR and b) VICReg.

B.5 INFO THEORETIC BOUNDS

The upper bound on I(R;Y) described in the main text originated from a derivation performed in
(32). The exact details of these bounds can be found in the original paper. Below the derivation of the
bound described in equation 3 is shown completely. The original bound is described as:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I(Y ;R) ≤ I(Y ;Z)− I(R;Z) +H(R)

The approximation I(Y ;Z) = G is used in the main paper which results in the following bound:

I(Y ;R) ≤ G− I(R;Z) +H(R)

We substitute in the equation 1
2 (ln(|ΣZ |)− ln(|V ar(Z|R)|)) for I(R;Z) and H(R) = m

2 ln(2π) +
1
2 ln(|ΣR|) + m

2 . This results in the bound:

I(Y ;R) ≤ G− 1

2
(ln(|ΣZ |)− ln(|V ar(Z|R)|)) + (

m

2
ln(2π) +

1

2
ln(|ΣR|) +

m

2
)

A simplification of terms results in the bound shown in the main paper as:

I(Y ;R) ≤ G+
1

2
(ln(|ΣR|)− ln(|ΣZ |))︸ ︷︷ ︸

K(Both)

+
1

2
ln(|V ar(Z|R)|)︸ ︷︷ ︸

V (I(R;Z))

+
m

2
(ln(2π) + 1)︸ ︷︷ ︸
D(H(R))

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C APPENDIX ANALYTICAL DETAILS

C.1 VICREG VS. SIMCLR COMPARISON

The AdaDim methodology is based on the idea that VICReg better promotes higher H(R) and
SimCLR promotes lower I(R;Z). This is based on our analysis that feature decorrelation leads to
higher I(R;Z) while sample uniformity leads to an I(R;Z) behavior that depends on the stage of
training. These same dynamics are observed in a real SSL setting in Figure 11 where a ResNet-50
model is trained for 2000 epochs on Cifar-100 (30) using the VICReg and SimCLR SSL methods. In
part a), both methods have an increase in I(R;Z), but it occurs at a slower rate for SimCLR. In part
b), the overall dimensionality of the dataset increases across all training epochs for R, but begins to
plateau at the end of training corresponding to the end of the feature decorrelation stage. Z exhibits
this same behavior, but plateaus much more noticeably throughout training which may contribute
partially to the plateauing effect of I(R;Z). For both R and Z, the overall dimensionality is lower
for SimCLR than for VICReg. In part c), R and Z have a similar uniformity for both methods at the
start of training, but significantly diverge from each other by the end of training for both methods.

Figure 11: We train models with a two different SSL methods for 2000 epochs and then analyze
changes in a) I(R;Z), b) effective rank between R and Z, and c) uniformity between R and Z.

These observed trends for SimCLR and VICReg hold for a wide variety of datasets in parts a) and b)
of Figure 12. In part a), at the end of training for 6 different datasets, the dimensionality and I(R;Z)
of VICReg is higher than that of SimCLR. In part b), these trends are analyzed over the course of
manually setting the α parameter over the course of training from 0 to 1 in increments of 0.2. It is
observed that as the optimization changes from VICReg (α = 0) to SimCLR (α = 1) the I(R;Z)
and the dimensionality for all data sets monotonically decreases.

Figure 12: a) We compare the effective rank and I(R;Z) between the representation of the test set for
different datasets trained on VICReg and SimCLR. b) We show how the effective rank and I(R;Z)
vary after the introduction of the α parameter for each dataset. c) We show how the performance
varies as a function of the I(R;Z) and effective rank for a variety of datasets.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.2 GENERATION OF H(R) VS I(R;Z) PLOTS

In Figure 12, the empirical results that demonstrate the existence of an optimal point between high
H(R) and low I(R;Z) are shown. In part a), the plots were generated by training on each respective
dataset with manually chosen α parameters within the AdaDim framework. In this case, manual
means that the adaptive α computation does not happen and a specific value from 0 to 1 is kept constant
across the entire training time with γ set to 0. These α values are α = [0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0].
The plot in part b) of Figure 1 was generated in a similar manner, with the exception of the size of the
increments of α is reduced to 0.05.

More plots are provided for more datasets in part c) of Figure 12. Note that potentially more models
need to be generated in order for the balance trend to be more salient for specific datasets. However,
for many of these datasets, such as TinyImageNet, OrganSMNIST, and Cifar-10, these trends of a
performance balance between H(R) and I(R;Z) are clear.

One surprising observation from these results is that they contradict the a variety of recent works
(2; 41; 18). In these papers, the authors try to argue that some measure of dimensionality can be used
as an unsupervised surrogate of representational quality. In other words, higher dimensionality should
correspond to the better performing model on potentially any downstream task. However, our work
suggests that both dimensionality and I(R;Z) should be considered for an unsupervised assessment
of model quality. However, our result is not surprising when we consider how these works justify
their conclusions. For example, (17) based their rank estimates off of pre-trained ImageNet models.
However, in practice, this assumption may not hold and certain domains such as medicine may
benefit more from an in distribution pre-training. (41) showed a wide range of coefficient correlation
values (0.2 - 0.8) between different dimensionality based metrics and performance values derived
from various sources. This suggests that in some settings dimensionality is a good surrogate for
performance while in others I(R;Z) needs to be considered. This corresponds to the dynamics
discussed in this paper, where the best performing model is often not the one with the highest
dimensionality. It is the one that reaches a suitable intermediate point between dimensionality and
I(R;Z). Our work suggests that future unsupervised estimators of representational quality should
have some mechanism to detect this optimal balance between the two terms of interest.

C.3 MANUAL α USAGE

Dataset
Method Alpha Cifar100 Cifar10 TinyImageNet200 Cinic10 Blood OrganS iNat21
SimCLR N/A 64.00 88.59 44.78 78.54 92.54 77.67 23.96
VICReg N/A 64.70 90.02 45.54 78,25 92.48 76.50 24.24
AdaDim 0.2 65.18 90.07 46.75 78.27 93.36 78.41 -
AdaDim 0.4 66.15 90.18 47.00 78.57 93.04 78.46 -
AdaDim 0.5 66.53 90.43 46.26 79.35 92.98 78.50 24.56
AdaDim 0.6 66.11 89.87 48.06 79.58 93.56 78.23 -
AdaDim 0.8 66.32 89.25 47.83 78.54 93.71 78.26 -
AdaDim Ada 66.90 90.72 47.81 79.53 92.86 78.55 24.81

Table 9: This shows the performance of AdaDim under different α parameters on several different
datasets.

In Table 9, an ablation study of the choice of α parameter when β is set to 0 is performed. We
compare between the adaptive methodology of our main paper and a method based on setting a
manual value that is consistent throughout training. We find that our adaptive methodology either out
performs or is consistent with the best result that we get from manually choosing a hyperparameter
for α. This highlights the importance of adaptively shifting between losses over the course of training
to match the dynamics of SSL training.

C.4 VARIATION IN OPTIMIZATION PROCEDURE

In Figure 13, the optimization setting is varied for several SSL methods. It is observed that the
effective rank and I(R;Z) curves have similar trends for both the adam and lars optimizers. However,
the difference is that for the adam optimizer, the effective rank has a more pronounced upper limit
on the values it can reach. Additionally, for I(R;Z) the adam trained optimizer begins to decrease

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 13: We show how the a) effective rank and b) I(R;Z) vary for both SimCLR and VICReg
under different optimization settings.

Figure 14: We show the impact of our method in comparison to SimCLR and VICReg over 1000
epochs of training for the a) effective rank metric, b) I(R;Z), and c) uniformity.

or plateau quicker. This result highlights that the trends of this paper are general, but its exact
manifestation across training will vary based on the setup of the experiment.

C.5 TRAINING DYNAMICS OF ADADIM

We also show how the training dynamics of our AdaDim approach compares to that of a fully
dimension contrastive approach (VICReg) and fully sample contrastive approach (SimCLR) across
1000 epochs of training in Figure 14. In parts a) and b), the AdaDim approach arrives at an
intermediate point between both methods in terms of dimensionality and in terms of I(R;Z).
Furthermore, in part c), the AdaDim methodology exhibits similar training dynamics in terms of
a divergence between the uniformity of R and Z at the end of training. This result confirms our
hypothesis that our method is able to find a better balance between H(R) and I(R;Z).

C.6 HYPERPARAMETER ABLATION STUDIES

In Table 10, AdaDim out performs or matches a wide variety of state of the art SSL approaches
within the constrained hyperparameter setting that we use for our ablation studies on a diverse set
of classification benchmarks. This is significant because AdaDim does not require any additional
architectural nuances such as queues (8; 14), predictor architectures (19), or stop gradient calculations
(9). It only requires optimization of the space after the projection head. However, an analysis of
parameters that can potentially influence AdaDim are shown in Figure 16. In part a), the effect
of the output projection size on the performance of AdaDim is shown. AdaDim out performs
VICReg that has been previously shown to improve as the output dimension size increases. In
part b), the temperature parameter in the INCE loss is varied. In this case, performance varies
with respect to an appropriately chosen temperature parameter, but all temperature values still out
perform the baseline SimCLR model. In part c), we investigate how varying the Eα parameter effects

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 15: Comparison of AdaDimwith different
amounts of training time.

Method Cifar100 TinyImageNet200 Cinic-10
SimCLR (7) 64.00 44.78 78.54
VICReg (3) 64.70 45.54 78.25
Moco v2 (8) 66.06 45.32 77.30
BYOL (19) 66.88 34.60 79.10

Barlow Twins (50) 63.58 44.29 75.98
NNCLR (14) 67.15 40.44 78.45
SimSiam (9) 62.61 27.20 78.72

AdaDim 66.90 47.81 79.53

Table 10: This table compares AdaDim with
other SSL methods.

downstream performance. It is observed that any choice of this parameter still results in performance
that significantly exceeds SimCLR and VICReg baselines on Cifar-100.

AdaDim is based on adapting to the dynamics of SSL representations. Therefore, it may benefit from
a longer training time. This idea is illustrated in Figure 7 where AdaDim is compared against simply
setting α = .5 manually across all training epochs. Both choices for α out perform SimCLR(α = 1)
and VICReg (α = 0). However, the adaptive method significantly improves relative to the manual
method as the amount of training time increases. This suggests that with less training time, the model
is not able to undergo a complete transition between the feature decorrelation and sample uniformity
stages.

Figure 16: In this figure, we show how performance varies when we perturb key hyperparameters in
AdaDim. a) We analyze the impact of different output projector sizes. b) We analyze the impact of
varying the temperature parameter in the INCE loss. c) We analyze the impact of changing Eα.

C.7 BETA ANALYSIS

In Figure 6, we performed an analysis of varying γ in a positive direction. We found that increases
both the mutual information and effective rank of R. We also study the impact to R of varying γ in
the negative direction. We find that both the mutual information and effective rank drop over the
course of training as expected by the regularization on I(R;Z). However, what is interesting is that
the same trend of an optimal balance emerges despite the lower rank and I(R;Z). This suggests the
existence of multiple rank and I(R;Z) regions where performance can be maximized.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 17: In this figure, we show how performance varies as we manually increase β with positive
values. a) This shows how the effective rank varies. b) This figure shows how I(R;Z) varies. c) This
figure shows how the performance varies.

27

	Introduction
	Related Works
	Analysis of Training Dynamics
	Simulated Training Dynamics
	Empirical Dynamics

	Methodology
	Results
	Conclusion
	Appendix Experimental Details
	Codebase
	Datasets
	Metric Analysis Details
	Method Specific Training Details
	Complete SimCLR and VICReg Loss
	Compute Resources
	Compute Discussion of our Method
	Empirical Eigenvalue Analysis Details
	Random Parameter Ablation Study

	Appendix Theoretical Details
	High Level Intuition
	Gaussian Mutual Info Derivation Details
	Gaussian Simulation Details
	Neural Network Simulation
	Info Theoretic Bounds

	Appendix Analytical Details
	VICReg vs. SimCLR Comparison
	Generation of H(R) vs I(R;Z) Plots
	Manual Usage
	Variation in Optimization Procedure
	Training Dynamics of AdaDim
	Hyperparameter Ablation Studies
	Beta Analysis

