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Figure 1: VOGUE is a unified system that can understand multi-modal instructions and generate multi-modal
video content. More videos are available on anonymous website, please check them out.

ABSTRACT

Unified multimodal models have shown promising results in multimodal content
generation and editing but remain largely limited to the image domain. In this
work, we present VOGUE, a versatile framework that extends unified modeling to
the video domain. VOGUE adopts a dual-stream design, combining a Multimodal
Large Language Model (MLLM) for instruction understanding with a Multimodal
DiT (MMDiT) for video generation. This design enables accurate interpretation
of complex multimodal instructions while preserving visual consistency. Built on
this architecture, VOGUE unifies diverse video generation and editing tasks un-
der a single multimodal instruction paradigm and is jointly trained across them.
Extensive experiments demonstrate that VOGUE matches or surpasses state-of-
the-art task-specific baselines in text/image-to-video generation, in-context video
generation and editing. Notably, the unified design of VOGUE enables two forms
of generalization. First, VOGUE supports task composition, such as combining
editing with style transfer within a single instruction. Second, even without ex-
plicit training on free-form video editing, VOGUE transfers its editing capability
from large-scale image editing data to this setting, handling unseen instructions
such as green-screening characters or changing materials within a video. Beyond
these core capabilities, VOGUE also supports visual-prompt-based video genera-
tion, where the MLLM interprets visual prompts and guides the MMDiT during
synthesis. To foster future research, our model and code will be released.


https://anonymous-submission-rebuttal.github.io/vogue/
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1 INTRODUCTION

A long-term goal of multimodal AI assistants is to build models that can seamlessly understand
diverse inputs across modalities and generate outputs in kind, enabling natural communication
through language, images, and video demonstrations.

Recent advances in unified models suggest that this vision is increasingly attainable. Prior work
(Shi et al., 2024aj Pan et al., 2025} |Sun et al., 2023}, Team, |2024; Tong et al.l 2024} Wang et al.,
2024b; |Deng et al.l 2025; [Wu et al., 2025b; [Ma et al., [2025b; |Xie et al.l 2024; 2025} Zhou et al.,
2024) has demonstrated promising results in text-image understanding and generation by jointly
optimizing these capabilities within unified systems. More recently, models such as Google Nano
banana and GPT-image-1 have pushed this paradigm further by integrating computer vision, image
manipulation, and multimodal reasoning into a single framework, marking a shift from specialized
single-modality generators toward powerful unified systems.

Despite this progress, unified understanding—generation models remain limited to text and image
(Lin et al., 2025} [Wu et al., [2025c), leaving video largely underexplored. Existing video generation
models primarily address a single text-to-video task and rely on text encoders to process instructions
(Wan et al., 2025} Ju et al., [2025} [Polyak et al., [2024} |Kong et al., [2024), restricting their ability to
understand and reason over multimodal instructions (Hu et al., 2024a). Meanwhile, video editing
methods typically employ task-specific modules or pipelines (Ku et al., 2024} Jiang et al., 20255 |Ye
et al.;, 2025b)), which makes it difficult to scale across diverse tasks. Consequently, due to the lack of
unified modeling, advanced capabilities such as multimodal prompting, in-context video generation,
and sophisticated free-form editing remain beyond the reach of any single model.

Motivated by these limitations, we present VOGUE —a unified framework for understanding, gener-
ation, and editing in the video domain. VOGUE bridges this gap by enabling multimodal instruction
following and delivering robust performance across diverse video tasks.

To build VOGUE, we propose a two-stream design, where an MLLM serves as the understanding
branch and an MMDIT backbone (Esser et al., [2024) serves as the generation branch. While prior
work such as Qwen-Image (Wu et all 2025a) explores a similar idea in the image domain, our
model generalizes this design to video. Both streams now receive image and video instructions: the
understanding branch through a semantic encoder, and the generation branch through VAE-based
encoders. In contrast, prior unified models such as GPT-image-1 (Lin et al., 2025)) rely exclusively
on semantic encoders, which often struggle to capture fine-grained visual details. Similarly, bot-
tlenecked approaches using learnable query tokens (Tong et al., [2024} [Pan et al., 2025) compress
inputs into a fixed set of tokens, creating a severe capacity bottleneck when instructions contain
videos. As a result, both approaches fall short in supporting in-context video generation. Our design
preserves the multimodal reasoning capabilities of the MLLM while enabling the model to handle
diverse video tasks with multimodal inputs. Moreover, it ensures cross-stream consistency, which is
crucial for precise editing and for maintaining subject identity in in-context generation.

Based on this unified architecture, we train VOGUE across a wide spectrum of tasks, including text-
to-image, text-to-video, image-to-video, in-context video generation, in-context video editing, and
image editing. As a unified system, VOGUE not only understands multimodal instructions and distin-
guishes between tasks but also achieves improvements over state-of-the-art task-specific methods.
Thanks to unified training, VOGUE generalizes to novel task compositions unseen during training,
such as deleting one identity while swapping another within a single instruction. More importantly,
although VOGUE is not trained on free-form video editing data, it demonstrates generalization ability
transfer from image editing to free-form video editing (e.g., change material and weather), highlight-
ing the effectiveness of our unified video understanding and generation framework.

Furthermore, VOGUE retains the strong visual understanding capability of its underlying frozen
MLLM. By leveraging the MLLM’s autoregressive reasoning and language generation abilities,
VOGUE can effectively interpret ambiguous and complex multimodal instructions that require joint
vision—language understanding, such as turning visual prompting into in-context video generation
tasks. Since its text generation ability originates from a frozen MLLM, VOGUE should be regarded
as a post-trained unified multimodal generative system capable of producing images, videos, and
text, rather than a unified model trained from scratch(Ma et al., |2025bj |Deng et al., 2025)).
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Our key contributions are:

1) We introduce VOGUE, a powerful multimodal generative model that unifies understanding, gener-
ation, and editing of videos within a single framework. To build VOGUE, we propose a dual-stream
architecture that combines the multimodal reasoning capabilities of the MLLM with the genera-
tion strengths of the MMDIT. Unlike prior task-specific or modality-restricted approaches, VOGUE
can interpret multimodal instructions, distinguish between diverse tasks, and achieve state-of-the-art
performance across a wide range of benchmarks.

2) We demonstrate that VOGUE generalizes to unseen tasks and novel task compositions without ad
hoc designs, highlighting the benefits of a unified framework.

3) We show that VOGUE leverages the MLLM branch’s think mode to interpret and execute com-
plex multimodal instructions, such as visual prompting.
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Figure 2: Model architecture. VOGUE is a dual-stream model consisting of an MLLM for understanding and
an MMDIiT module for generation. While concurrent work such as Qwen-Image explores a similar idea in the
image editing setting, our model generalizes this design to the video domain and to a multitask setting.

2  METHOD

2.1 MODEL ARCHITECTURE

As demonstrated in[Figure 2] VOGUE consists of two main components: a multimodal large language
model (MLLM) and a multimodal DiT (MM-DiT). The MLLM handles visual-textual understand-
ing, taking text, image, and video inputs and producing text responses. The MM-DiT focuses on
visual generation with two branches: one incorporates high-level semantic information from the
MLLM, while the other integrates fine-grained reconstruction signals from a VAE. Specifically, we
extract the last-layer hidden states of the MLLM, which encode rich semantic features of the mul-
timodal input. These are aligned to the input space of the MM-DiT via a trainable connector and
fed into its understanding stream. In parallel, visual signals are encoded by the VAE and passed
into the MM-DiT generation stream to preserve fine details. This design enables strong semantic
grounding together with high-fidelity visual detail, which is especially important for video editing
and identity-preserving in-context generation.

2.2 UNIFYING MULTIPLE TASKS

We standardize multimodal instructions by assigning each visual input an ID tag, as illustrated
in [Figure 1] For text-to-video (T2V), the text input is processed by the MLLM, while the noisy
video is fed into the MM-DiT. For image-to-video (I2V), both the image and text are processed by
the MLLM, whereas the image and noisy video are provided to the MM-DiT. For in-context video
generation (MultilID2V) and in-context video editing (ID-V2V), multiple visual conditions are of-
ten available, such as several reference images together with a reference video. Each visual signal
is encoded with the VAE, padded to a uniform shape, concatenated along the temporal axis, and
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then processed with self-attention. Unlike prior approaches that introduce task-specific bias embed-
dings or context adapter modules [2025)), we avoid task-specific cus-
tomization. To help the MM-DiT distinguish between condition latents and noisy video latents, we
apply 3D positional embeddings, which preserve the spatial indices across frames while increment-
ing only the temporal dimension. In practice, we find this strategy more effective than Qwen2-VL’s
MROPE (Wang et al.,[2024a), which offsets all axes whenever a new visual input is introduced.
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Figure 3: Thinking Mode. VOGUE leverages the MLLM stream to understand and interpret user intent from
complex multimodal prompts that cannot be handled by the DiT alone. For example, users can provide diagrams
or visual annotations to guide video generation without writing dense textual prompts.

2.3 THINKING MODE

VOGUE leverages its MLLM branch to interpret unconventional or hand-crafted prompts, as illus-
trated in [Figure 3]and[Figure 6] For example, users may provide an input image with manual anno-
tations, which the MLLM translates into a structured plan and dense prompt tokens that guide video
generation. Unlike agent-based approaches that invoke multiple downstream generators without
true multimodal understanding ability, VOGUE offers a more simplified design: the MMDIiT directly
integrates embeddings from the dense prompt tokens produced by the MLLM. This integration ef-
fectively turns visual prompting into in-context video generation.

2.4 TRAINING STRATEGY

Stage 1. Connector alignment between MLLM and MMDIT. In this stage, we train only the MLP
connector while keeping both the MLLM and MMDIT frozen. Training is performed on O(40)M
pretraining samples across text-to-image (T2I) and O(10)M text-to-video (T2V) generation tasks,
as well as an image-reconstruction task in which only images from the text-to-image dataset are
fed into the MLLM and the MMDIT reconstructs the image using visual features from the MLLM.
After this stage, VOGUE can generate images and videos conditioned on text or image inputs from
the MLLM.

Stage 2. Fine-tuning MMDIiT on T2I and T2V. In this stage, we keep the MLLM frozen and fine-
tune the connector and MMDIT on O(20)K high-quality T2I and T2V samples. After this stage,
VOGUE achieves performance comparable to the MMDIiT backbone that uses its own text encoder.

Stage 3. Multi-task training. Finally, we extend training to include in-context generation (multi-
ID-to-video), in-context video editing, image editing and image-to-video tasks, alongside the previ-
ous T2I and T2V tasks. We keep the MLLM frozen and only train the connector and MMDiT. This
stage enables VOGUE to unify a broad range of video generation and editing tasks under multimodal
instruction. Details of task decomposition, training setting and dataset construction are provided in

[Table Tland [Table 7}

3 EXPERIMENTS

In this section, we first describe the implementation details in[subsection 3.1} Then, we present main
results in We conduct a comprehensive benchmark of VOGUE with SoTA methods



Under review as a conference paper at ICLR 2026

In Context Generation

Sl

<imgl>

;“-_——" ;.

Ca 'l

(it

<imgl>

In Context Editing

VOG UNIC(require mask)

Figure 4: Qualitative comparison of VOGUE with SoTA Task Specific Experts on In Context Generation
and In Context Editing tasks.

Table 1: Overview of tasks with input modalities and mixing ratios for stage 3 training.

Task Input #Examples Ratio
Text to Image txt 10K 0.05
Text to Video txt 12K 0.05
Image to Video img+txt 12K 0.10
Image Editing img+txt 500K 0.30
Image Style Transfer img+txt 17K 0.10
In-Context Video Editing (swap, addition, delete, style) ref-img X n + video + txt 16K 0.20
In-Context Video Generation ref-img X n + txt 6K 0.10
In-Context Image Style Transfer ref-img X n + img + txt 17K 0.10

across a broad spectrum of video understanding and generation tasks. Our results show that VOGUE’s
strong unified capabilities across all settings. Next, we demonstrate the zero shot generalization
ability of VOGUE and analysis the visual prompt understanding ability in[subsection 3.3| Finally, we
validate the design choices of VOGUE through ablation studies in [subsection 3@

3.1 IMPLEMENTATION DETAILS

We adopt qwen2.5VL-7B as the MLLM backbone and HunyuanVideo-T2V-
13B (Kong et al. 2024) as the MMDIT backbone. The original HunyuanVideo use two text en-
coders; we remove them and instead use qwen2.5VL as the unified multi-modal embedder. To align
feature dimensions between qwen2.5VL and HunyuanVideo, we apply an MLP with a 4x expan-
sion. Training is conducted on 32 H100 GPUs. Additional details are provided in the Appendix

3.2 MAIN RESULTS

3.2.1 VISUAL UNDERSTANDING AND GENERATION

VOGUE ’s visual understanding is powered by a frozen pretrained MLLM. Freezing the MLLM
preserves its strong native understanding ability and prevents performance degradation from joint
training with generative tasks. As shown in[Table 2} VOGUE achieves competitive scores of 83.5 on
MMBench [2024¢)), 58.6 on MMMU [2024), and 66.6 on MM-Vet
for understanding tasks. At the same time, it retains strong generation ability, supporting both
12V and T2V within a single unified model. In contrast, baseline models rely on different variants for
different tasks, whereas VOGUE reaches performance comparable to the HunyuanVideo backbone
on the VBench (Huang et al.|[2024)) benchmarks.
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Figure 5: Zero-Shot Generalization. We demonstrate two type of generalization. (i) VOGUE was not trained
on General Free-form Video Editing data. It transfers this ability from diverse image editing data to the video
domain through joint training with in-context video generation and editing data (limited to ID deletion, swap-
ping, addition, and stylization), enabling it to handle previously unseen video editing instructions. (ii) VOGUE
can also generalize to novel task compositions, even though it was not explicitly trained on such compositions.

Table 2: Quantitative comparison on Visual Understanding and Video Generation. Best results are shown in
bold, and second-best are underlined. For models with “/” (T2V/I2V), we use different model variants for each
task. In contrast, VOGUE unifies both Understanding and Generation, supporting 12V and T2V within a single
model while maintaining competitive generation quality. *We report understanding task results for VOGUE
using the MLLM component — Qwen-2.5VL-7B results.

Model Understanding Video Generation
MMB MMMU MM-Vet Vbench T2V Vbench 12V
Video Understanding Model

36.4 67.8 36.3 X X

79.3 51.1 57.4 X X

Video Generation Model
CogVideoX(T2V/12V) X X X 81.61 86.70
12VGen-XL X X X X 85.28
HunyuanVideo(T2V/I2V) X X X 83.24 86.82
Step-Video-(T2V/TI2V) X X X 81.83 88.36
Wan2.1(T2V/12V) X X X 84.70 86.86

Unified Understanding & Generation Model

Emu3 58.5 31.6 37.2 80.96 X
TokenFlow-XL 76.8 43.2 48.2 X X
Janus 69.4 30.5 343 X X
JanusFlow 749 29.3 30.9 X X
Janus-Pro-7B 79.2 41.0 50.0 X X
Show-o - 26.7 - X X
BAGEL 85.0 553 67.2 X X
Show-02 79.3 489 56.6 81.34 85.28
VOGUE * 835 58.6 66.6 82.58 86.19

3.2.2 IN-CONTEXT VIDEO GENERATION

Benchmark: Following FullDiT 2025) and OmniGen2 (Wu et al.,[2025c), we construct a

test set covering both single-ID and multi-ID video generation scenarios. In the single-ID setting, a
subject may have multiple reference images (e.g., different viewpoints of a person or object). In the
multi-ID setting, the references include 2—4 distinct identities. Details are provided in the Appendix.
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Table 3: Quantitative comparison on In-Context Generation. Human evaluation includes Subject Consis-
tency (SC), Prompt Following (PF), and Overall Video Quality (VQ). Automatic metrics measure video qual-
ity in terms of Smoothness, Dynamics, and Aesthetics. Best results are shown in bold, and second-best are
underlined. VOGUE achieves superior or competitive performance across all metrics compared to the SoTA
methods and commercial models and in particular be the best for SC.

Single Reference Generation
Model Human Eval Score Automatic Video Quality Score
SCt PF1 vQ1T | Smoothness T Dynamic? AestheticT

VACE 031 065 042 0.922 40.341 5.426
Klingl.6  0.68 095  0.88 0.938 86.641 5.896
Pika2.2 045 043 015 0.928 104.768 5.125
VOGUE 0.88 093 095 0.943 56.336 5.740

Multi Reference (> 2) Generation
Model Human Eval Score Automatic Video Quality Score
Nex PF1 vQ1T | Smoothness T Dynamic?t Aesthetict

VACE 0.48 0.53 0.48 0.862 65.606 5.941
Kling1.6 0.73 0.45 0.95 0.916 61.856 6.034
Pika2.2 0.71 0.48 0.43 0.898 76.796 5.176
VOGUE 0.81 0.75 0.85 0.942 59.393 6.128

Metrics: We conduct both human evaluations and automatic metric assessments. For human eval-
uation, we follow the protocols of Instruct-Imagen and OmniGen?2
to perform a systematic study. Each sample is rated by at least three annotators on (i) subject
consistency (SC), (ii) prompt following (PF), and (iii) overall video quality (VQ). Scores in each
category are drawn from {0, 0.5, 1}, where 0 indicates inconsistency or extremely poor quality, and
1 indicates full consistency or high quality. For automatic evaluation, we adopt three metrics from
VBench (Huang et al.},2024): smoothness, dynamics, and aesthetics.

Baselines: We compare VOGUE with the state-of-the-art open-source model VACE, given the
scarcity of video models capable of in-context generation. We also include commercial baselines
such as Pika2.2 and Kling1.6.

Results: Quantitative comparisons are presented in[Table 3] VOGUE achieves superior or compet-
itive performance across all metrics compared to the baselines. Additional results are shown in
and more examples are available on our project website. Notably, baseline models often
struggle with complex instructions involving multiple identities (e.g., when the number of reference
images is 4), whereas VOGUE can accurately follow instructions while preserving identity.

Visual Prompting

Figure 6: Qualitative results of VOGUE with visual prompt inputs. We illustrate two types of visual prompts:
in the first three examples, annotations are drawn on a canvas, while in the last example, the annotation is drawn
directly on an input image.
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Table 4: Quantitative comparison with task-specific expert models on In-Context Video Editing. Our model
is the only mask-free approach, capable of performing edits solely based on instructions without requiring
explicit mask inputs to indicate editing regions. Despite this more challenging setting, it achieves superior or
competitive performance across all metrics compared to state-of-the-art task-specific expert baselines. Best
scores are shown in bold, and second-best are underlined.

In Context Insert

Model Identity Alignment Video Quality
CLIP-IT DINO-IT CLIP-scoref | SmoothnessT Dynamict Aesthetict
VACE 0.513 0.105 0.103 0.947 51.343 5.693
UNIC 0.598 0.245 0.216 0.961 11.070 5.627
Klingl1.6 0.632 0.287 0.246 0.993 1.025 5.798
Pika2.2 0.692 0.399 0.253 0.951 261.443 5.591
VOGUE (Mask Free) 0.693 0.398 0.259 0.943 22.753 6.031
In Context Swap
Model Identity Alignment Video Quality
CLIP-IT DINO-IT CLIP-scoret | Smoothness? Dynamict Aesthetict
VACE 0.703 0.391 0.218 0.960 29.001 5.961
UNIC 0.725 0.429 0.242 0.971 7.500 6.056
Klingl.6 0.707 0.437 0.211 0.995 0.518 6.042
Pika2.2 0.704 0.406 0.211 0.967 30.812 5.097
AnyV2V 0.605 0.229 0.218 0917 7.596 4.842
VOGUE (Mask Free) 0.728 0.427 0.244 0.973 19.892 6.190
In Context Delete
Model Video Reconstruction Alignment Video Quality
PSNR? RefVideo-CLIP{ | CLIP-scoret | SmoothnessT Dynamic Aesthetict
VACE 20.601 0.874 0.206 0.968 16.146 5.637
UNIC 19.171 0.817 0.217 0.970 10.934 5.493
Klingl.6 15.476 0.888 0.208 0.998 0.663 4.965
AnyV2V 19.504 0.869 0.205 0.964 4.980 5.325
VideoPainter 22.987 0.920 0.212 0.957 13.759 5.403
VOGUE (Mask Free) 17.980 0.888 0.214 0.971 19.502 5.498
In Context Stylization
Model Style & Content Alignment Video Quality
CSD-Scoret ArtFID) CLIP-scoref | Smoothness? Dynamict Aesthetict
AnyV2V 0.207 43.299 0.195 0.937 9.227 4.640
StyleMaster 0.306 38.213 0.188 0.952 9.758 5.121
UNIC 0.197 36.198 0.215 0.932 11.569 5.045
VOGUE (Mask Free) 0.228 37.877 0.226 0.963 15.455 6.281

3.2.3 IN-CONTEXT VIDEO EDITING

Benchmark: Following UNIC (Ye et al.,2025b), we construct a test set covering four editing types:
swap, delete, addition, and style transfer. Each example consists of a source video and a reference
image, together with a natural language instruction. Further details are provided in the Appendix.

Metrics: We adopt the evaluation protocol of UNIC (Ye et al.,[2025b) and conduct automatic metric
assessments. Specifically, we use CLIP-I and DINO-I to measure identity consistency, and CLIP-
Score to measure prompt following.

Baselines: We compare VOGUE with state-of-the-art task-specific expert models, including UNIC,
AnyV2V, and VideoPainter. We also evaluate against commercial models such as Pika2.2 and
Klingl.6. Note that all baseline models require explicit mask inputs to localize editing regions
and guide generation, whereas VOGUE operates without masks.

Results: Quantitative comparisons are presented in[Table 4 Although VOGUE is evaluated under the
more challenging mask-free setting, it still achieves superior or competitive performance across all
metrics compared to the baselines. Additional results are shown in [Figure 4] and further examples
are provided on our project website. VOGUE can accurately follow instructions while preserving the
identity of the reference images.

3.3 MODEL ANALYSIS

3.3.1 ZERO SHOT GENERALIZATION

We observed two type of generalization ability of VOGUE. Although the training data of VOGUE does
not include general free-form video editing tasks (see[Table 1)), it transfers this ability from diverse
image editing data and in-context video editing data (limited to ID deletion, swapping, addition,
and stylization) to the video domain, enabling it to handle free-form video editing instructions(e.g.,
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changing material or environment). Surprisingly, we find that VOGUE can perform tasks such as
green-screening characters from videos. We also observe that VOGUE is capable of handling task
compositions. It can combine in-context editing with style transfer, or perform multiple edits simul-
taneously (e.g., deleting one identity while adding another). Demonstrations in [Figure 5|

3.3.2 THINKING MODE

We demonstrate the results of visual prompting with VOGUE in We consider two types
of visual prompts. In the first setting, users draw reference images and story plans on a canvas.
Here, the model can interpret the plan and generate corresponding videos. In the second setting,
annotations are drawn directly on an input image, which the model treats as an 12V task—similar to
the functionality of VEO3 (Google DeepMind, 2025); in this case, VOGUE can interpret the motion
or new events described by the visual prompt. These results highlight the advantages of VOGUE in
handling complex multimodal instructions.

3.4 ABLATION STUDY

Our ablation studies address two central questions: (i) Does multi-task learning enhance perfor-
mance compared with single-task learning? (ii) Is our model design effective? Specifically, should
visual embeddings be streamed to both the MLLM and MMDiT branches? We conduct human eval-
uations on In-Context Video Editing and In-Context Video Generation, using the same evaluation
protocol as in [subsubsection 3.2.2] (i) To study multi-task learning, we compare VOGUE with a
single-task baseline. The single-task baseline shares the same architecture as VOGUE but requires an
independent model for each task and has access only to task-specific data. Results in[Table 5|demon-
strate the effectiveness of multi-task learning, especially for the editing task, where VOGUE benefits
from large-scale image editing data during joint learning. (ii) To evaluate the impact of streaming
visual inputs, we compare VOGUE with variants that share the same architecture: - w/o visual for
MMDIT: visual inputs are fed only to the MLLM branch. - w/o visual for MLLM: visual inputs
are fed only to the MMDIT branch are not provided to the MLLM branch. As shown in
feeding visual inputs exclusively to the MLLM results in a dramatic drop in identity preservation.
while feeding them only to the MMDIiT causes a performance drop on editing tasks that require
localization and semantic understanding from the MLLM branch.

Table 5: Ablation study comparing single-task model, VOGUE, VOGUE w/o Visual for MMDIT, and VOGUE
w/o Visual for MLLM across different In-Context tasks.

Single-task model VOGUE VOGUE w/o Visual for MMDIT  VOGUE w/o Visual for MLLM
PFt SCT VQt PFt SCt VQt PFr SCt vQt PFt SCt vQt
IC-cen singleid 085 073 093 093 088 095 075 0.32 0.86 0.78 0.88 0.94
& multiid 072 079 073 0.75 0.81 0.85 081 0.23 0.83 0.72 0.82 0.83
insert 081 0.85 086 092 092 091 068 0.18 0.75 0.88 0.88 091
ICcdit  SWaP 053 0.78 0.68 091 085 0.85 0.63 0.15 0.62 0.75 0.85 0.84
A delete 032 042 089 052 058 092 021 0.13 0.63 0.45 045 0.89
stylization 0.56 043 0.63 079 0.64 0.64 086 0.11 0.57 0.78 0.61 0.64
Average 0.64 0.67 079 0.80 078 0.85 0.66 0.18 0.71 0.73  0.75 0.84

4 RELATED WORK

Unified Multimodal Understanding and Generation. Recent progress in multimodal generation
has been driven primarily by the text and image domains, spanning autoregressive modeling, diffu-
sion—autoregression hybrids, and LLM-based regression approaches (Sun et al.,|2024a; [Team), [2024;
Xie et al., [2024; |Ge et al., 2024} [Wu et al., [2025¢). While these advances demonstrate strong capa-
bilities in images, unified approaches beyond the image domain remain limited. We instead present
a unified video model. A full discussion of prior multimodal works is provided in Appendix C.1

Image/Video Generation and Editing. Diffusion models have achieved remarkable success in
image and video synthesis (Rombach et all [2022; |[Esser et al., [2024; Blattmann et al., 2023b),
with growing interest in controllability (Zhang et al.,[2023b} [Brooks et al., 2023)) and unified image
editing systems (Xiao et al.,[2025; Tan et al.,[2024; /Chen et al., 2025¢). In contrast, the video domain
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remains dominated by single-task frameworks. Video Alchemist (Chen et al., |2025d) and Movie
Weaver (Liang et al.l [2025) are dedicated to in-context generation. Attempts at unification (Ku
et al., 2024 \Ju et al.| 2025} Jiang et al., 2025)) still require task-specific pipelines or modules. We
bridge this gap by unifying diverse video tasks under a single framework. Extended related work in
Appendix C.2.

5 CONCLUSION

We introduce VOGUE, a unified multimodal generative model for video understanding, generation,
and editing. By integrating an MLLM for semantic understanding with an MMDiT for generation,
VOGUE combines strong multimodal reasoning with fine-grained visual consistency. It can interpret
multimodal instructions and handle diverse tasks effectively. Our experiments show that VOGUE not
only matches or outperforms task-specific baselines across text/image-to-video, video editing, and
in-context generation, but also generalizes to unseen tasks and novel task compositions—capabilities
that specialized pipelines struggle to achieve. Beyond robust performance, VOGUE can also support
visual prompting understanding, underscoring the advantages of unified modeling over fragmented
approaches. Looking forward, VOGUE opens new directions for multimodal research, advancing us
toward assistants that can naturally communicate through language, images, and video.

10
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Ethics Statement This study was carried out in alignment with the ICLR Code of Ethics. All data
used for training were acquired through legitimate commercial channels. Before model training, we
applied thorough filtering and screening procedures to eliminate harmful, biased, or otherwise inap-
propriate material. These measures were taken to minimize potential risks and to uphold principles
of fairness, safety, and responsible Al research.

Reproducibility Statement We emphasize reproducibility across multiple dimensions of this
work. Code: The code, trained models, and supporting scripts will be publicly released to enable
replication of our results. Data: Documentation of data processing procedures is provided in the Ap-
pendix. Model and Experiments: The model implementation is described in the main paper, while
the Appendix details the experimental setup, including training strategies, training configurations,
hyperparameter configurations, and hardware specifications.

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023a.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 22563-22575, 2023b.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 18392-18402, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. OpenAl
Blog, 1:8,2024.

Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing,
Yaofang Liu, Qifeng Chen, Xintao Wang, et al. Videocrafterl: Open diffusion models for high-
quality video generation. arXiv preprint arXiv:2310.19512, 2023.

Jiuhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
models-architecture, training and dataset. arXiv preprint arXiv:2505.09568, 2025a.

Junying Chen, Zhenyang Cai, Pengcheng Chen, Shunian Chen, Ke Ji, Xidong Wang, Yunjin Yang,
and Benyou Wang. Sharegpt-4o-image: Aligning multimodal models with gpt-4o-level image
generation. arXiv preprint arXiv:2506.18095, 2025b.

Shoufa Chen, Chongjian Ge, Yuqi Zhang, Yida Zhang, Fengda Zhu, Hao Yang, Hongxiang Hao,
Hui Wu, Zhichao Lai, Yifei Hu, Ting-Che Lin, Shilong Zhang, Fu Li, Chuan Li, Xing Wang,
Yanghua Peng, Peize Sun, Ping Luo, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Xiaobing Liu.
Goku: Flow based video generative foundation models. arXiv preprint arXiv:2502.04896, 2025c.

Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Yuwei Fang, Kwot Sin Lee, Ivan Sko-
rokhodov, Kfir Aberman, Jun-Yan Zhu, Ming-Hsuan Yang, and Sergey Tulyakov. Multi-subject
open-set personalization in video generation. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 6099-6110, 2025d.

Xi Chen, Zhifei Zhang, He Zhang, Yugian Zhou, Soo Ye Kim, Qing Liu, Yijun Li, Jianming Zhang,
Nanxuan Zhao, Yilin Wang, et al. Unireal: Universal image generation and editing via learning
real-world dynamics. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pp. 12501-12511, 2025e.

11



Under review as a conference paper at ICLR 2026

Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. arXiv
preprint arXiv:2505.14683, 2025.

Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian
Sun, Hongyu Zhou, Haoran Wei, et al. Dreamllm: Synergistic multimodal comprehension and
creation. arXiv preprint arXiv:2309.11499, 2023.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation.
arXiv preprint arXiv:2404.14396, 2024.

Google DeepMind. Veo 3: Video generation model. Al Model/Software, May 2025. URL https:
//deepmind.google/models/veo/. Version 3.

Agrim Gupta, Linxi Fan, Surya Ganguli, and Li Fei-Fei. Metamorph: Learning universal controllers
with transformers. arXiv preprint arXiv:2203.11931, 2022.

Hexiang Hu, Kelvin CK Chan, Yu-Chuan Su, Wenhu Chen, Yandong Li, Kihyuk Sohn, Yang Zhao,
Xue Ben, Boging Gong, William Cohen, et al. Instruct-imagen: Image generation with multi-
modal instruction. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4754-4763, 2024a.

Jiahao Hu, Tianxiong Zhong, Xuebo Wang, Boyuan Jiang, Xingye Tian, Fei Yang, Pengfei Wan,
and Di Zhang. Vivid-10m: A dataset and baseline for versatile and interactive video local editing.
arXiv preprint arXiv:2411.15260, 2024b.

Yuzhou Huang, Ziyang Yuan, Quande Liu, Qiulin Wang, Xintao Wang, Ruimao Zhang, Pengfei
Wan, Di Zhang, and Kun Gai. Conceptmaster: Multi-concept video customization on diffusion
transformer models without test-time tuning. arXiv preprint arXiv:2501.04698, 2025.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
video generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21807-21818, 2024.

Zeyinzi Jiang, Zhen Han, Chaojie Mao, Jingfeng Zhang, Yulin Pan, and Yu Liu. Vace: All-in-one
video creation and editing. arXiv preprint arXiv:2503.07598, 2025.

Xuan Ju, Weicai Ye, Quande Liu, Qiulin Wang, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai,
and Qiang Xu. Fulldit: Multi-task video generative foundation model with full attention. arXiv
preprint arXiv:2503.19907, 2025.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

Max Ku, Cong Wei, Weiming Ren, Harry Yang, and Wenhu Chen. Anyv2v: A tuning-free frame-
work for any video-to-video editing tasks. arXiv preprint arXiv:2403.14468, 2024.

Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, et al. Flux. 1 kontext:
Flow matching for in-context image generation and editing in latent space. arXiv preprint
arXiv:2506.15742, 2025.

Feng Liang, Haoyu Ma, Zecheng He, Tingbo Hou, Ji Hou, Kunpeng Li, Xiaoliang Dai, Felix Juefei-
Xu, Samaneh Azadi, Animesh Sinha, et al. Movie weaver: Tuning-free multi-concept video per-
sonalization with anchored prompts. In Proceedings of the Computer Vision and Pattern Recog-
nition Conference, pp. 13146-13156, 2025.

12


https://deepmind.google/models/veo/
https://deepmind.google/models/veo/

Under review as a conference paper at ICLR 2026

Chao Liao, Liyang Liu, Xun Wang, Zhengxiong Luo, Xinyu Zhang, Wenliang Zhao, Jie Wu, Liang
Li, Zhi Tian, and Weilin Huang. Mogao: An omni foundation model for interleaved multi-modal
generation. arXiv preprint arXiv:2505.05472, 2025.

Jun Hao Liew, Hanshu Yan, Jianfeng Zhang, Zhongcong Xu, and Jiashi Feng. Magicedit: High-
fidelity and temporally coherent video editing. arXiv preprint arXiv:2308.14749, 2023.

Bin Lin, Zongjian Li, Xinhua Cheng, Yuwei Niu, Yang Ye, Xianyi He, Shenghai Yuan, Wangbo Yu,
Shaodong Wang, Yunyang Ge, et al. Uniworld: High-resolution semantic encoders for unified
visual understanding and generation. arXiv preprint arXiv:2506.03147, 2025.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pp. 26296-26306, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llavanext: Improved reasoning, ocr, and world knowledge, 2024b.

Lijie Liu, Tianxiang Ma, Bingchuan Li, Zhuowei Chen, Jiawei Liu, Gen Li, Siyu Zhou, Qian He,
and Xinglong Wu. Phantom: Subject-consistent video generation via cross-modal alignment.
arXiv preprint arXiv:2502.11079, 2025a.

Shaoteng Liu, Yuechen Zhang, Wenbo Li, Zhe Lin, and Jiaya Jia. Video-p2p: Video editing with
cross-attention control. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8599—-8608, 2024c.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
for open-set object detection. In European conference on computer vision, pp. 38-55. Springer,
2024d.

Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming
Wang, Honghao Fu, Chunrui Han, et al. Steplx-edit: A practical framework for general image
editing. arXiv preprint arXiv:2504.17761, 2025b.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? In European conference on computer vision, pp. 216-233. Springer, 2024e.

Guoging Ma, Haoyang Huang, Kun Yan, Liangyu Chen, Nan Duan, Shengming Yin, Changyi Wan,
Ranchen Ming, Xiaoniu Song, Xing Chen, et al. Step-video-t2v technical report: The practice,
challenges, and future of video foundation model. arXiv preprint arXiv:2502.10248, 2025a.

Yiyang Ma, Xingchao Liu, Xiaokang Chen, Wen Liu, Chengyue Wu, Zhiyu Wu, Zizheng Pan,
Zhenda Xie, Haowei Zhang, Xingkai Yu, et al. Janusflow: Harmonizing autoregression and rec-
tified flow for unified multimodal understanding and generation. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 7739-7751, 2025b.

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In Proceedings of the AAAI conference on artificial intelligence, volume 38, pp. 4296—
4304, 2024.

Xichen Pan, Satya Narayan Shukla, Aashu Singh, Zhuokai Zhao, Shlok Kumar Mishra, Jialiang
Wang, Zhiyang Xu, Jiuhai Chen, Kunpeng Li, Felix Juefei-Xu, et al. Transfer between modalities
with metaqueries. arXiv preprint arXiv:2504.06256, 2025.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media founda-
tion models. arXiv preprint arXiv:2410.13720, 2024.

13



Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821-8831. Pmlr, 2021.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Ridle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479-36494, 2022.

Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh,
and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation tasks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8871-
8879, 2024.

Weijia Shi, Xiaochuang Han, Chunting Zhou, Weixin Liang, Xi Victoria Lin, Luke Zettlemoyer,
and Lili Yu. Lmfusion: Adapting pretrained language models for multimodal generation. arXiv
preprint arXiv:2412.15188, 2024a.

Yichun Shi, Peng Wang, and Weilin Huang. Seededit: Align image re-generation to image editing.
arXiv preprint arXiv:2411.06686, 2024b.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024a.

Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, Yueze Wang, Hongcheng Gao,
Jingjing Liu, Tiejun Huang, and Xinlong Wang. Emu: Generative pretraining in multimodality.
arXiv preprint arXiv:2307.05222, 2023.

Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Yueze Wang, Yongming Rao,
Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context
learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 14398-14409, 2024b.

Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol: Min-
imal and universal control for diffusion transformer. arXiv preprint arXiv:2411.15098, 2024.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

Shengbang Tong, David Fan, Jiachen Zhu, Yunyang Xiong, Xinlei Chen, Koustuv Sinha, Michael
Rabbat, Yann LeCun, Saining Xie, and Zhuang Liu. Metamorph: Multimodal understanding and
generation via instruction tuning. arXiv preprint arXiv:2412.14164, 2024.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
models. arXiv preprint arXiv:2503.20314, 2025.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,

Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024a.

14



Under review as a conference paper at ICLR 2026

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024b.

Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
ACM SIGGRAPH 2024 Conference Papers, pp. 1-11, 2024c.

Cong Wei, Zheyang Xiong, Weiming Ren, Xeron Du, Ge Zhang, and Wenhu Chen. Omniedit:
Building image editing generalist models through specialist supervision. In The Thirteenth Inter-
national Conference on Learning Representations, 2024.

Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. arXiv preprint arXiv:2508.02324,
2025a.

Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu,
Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified
multimodal understanding and generation. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 12966—12977, 2025b.

Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation.
arXiv preprint arXiv:2506.18871, 2025c.

Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multi-
modal llm. In Forty-first International Conference on Machine Learning, 2024.

Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. In Proceed-
ings of the Computer Vision and Pattern Recognition Conference, pp. 13294-13304, 2025.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
to unify multimodal understanding and generation. arXiv preprint arXiv:2408.12528, 2024.

Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-02: Improved native unified multimodal
models. arXiv preprint arXiv:2506.15564, 2025.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024.

Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, and Li Yuan.
Imgedit: A unified image editing dataset and benchmark. arXiv preprint arXiv:2505.20275,
2025a.

Zixuan Ye, Xuanhua He, Quande Liu, Qiulin Wang, Xintao Wang, Pengfei Wan, Di Zhang, Kun
Gai, Qifeng Chen, and Wenhan Luo. Unic: Unified in-context video editing. arXiv preprint
arXiv:2506.04216, 2025b.

Zixuan Ye, Huijuan Huang, Xintao Wang, Pengfei Wan, Di Zhang, and Wenhan Luo. Stylemaster:
Stylize your video with artistic generation and translation. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pp. 2630-2640, 2025¢.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv
preprint arXiv:2308.02490, 2023.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9556-9567, 2024.

15



Under review as a conference paper at ICLR 2026

Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
dataset for instruction-guided image editing. Advances in Neural Information Processing Systems,
36:31428-31449, 2023a.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pp- 3836-3847, 2023b.

Haozhe Zhao, Xiaojian Shawn Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu,
Minjia Zhang, Qing Li, and Baobao Chang. Ultraedit: Instruction-based fine-grained image
editing at scale. Advances in Neural Information Processing Systems, 37:3058-3093, 2024.

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
diffuse images with one multi-modal model. arXiv preprint arXiv:2408.11039, 2024.

16



Under review as a conference paper at ICLR 2026

A APPENDIX

Appendix contains the following sections:

 Statement for Large Language Models

» Extended Related Work

* Training Details

* Limitation and Future Work

* Training Dataset Construction

* Model Design Experiment and Analysis

¢ Evaluation Benchmark

B STATEMENT FOR LARGE LANGUAGE MODELS

We use large language models (LLMs) in this paper solely for grammar correction and text re-
finement. They are not employed for generating original content or contributing to the conceptual
development of the ideas presented.

C EXTENDED RELATED WORK

C.1 UNIFIED MULTIMODAL UNDERSTANDING AND GENERATION

Recent progress in multimodal generation has been driven primarily by the text and image domains.
Autoregressive models such as LlamaGen, Chameleon, Emu2, and Emu3(Sun et al., 2024a; Team)
2024;|Sun et al.|[2024b}; 'Wang et al.,[2024b)) adopt discrete token prediction. Hybrid approaches like
Show-o, Transfusion, and DreamLLM (Xie et al., 2024} Zhou et al.| |2024; [Dong et al., [2023)) in-
tegrate autoregression with diffusion for image synthesis. Regression- or instruction-tuning—based
methods, including SEED-X, Janus, MetaMorph, Next-gpt and OmniGen2 (Ge et al., 2024} |Wu
et al., 2025b; |Gupta et al., [2022; [Wu et al., 20245 [2025¢)), adapt LLMs for image feature prediction
and controllable generation. Efficiency-oriented designs such as LMFusion and MetaQueries (Shi
et al.| [2024a; [Pan et al.| 2025) freeze MLLMs and add lightweight modules or learnable queries,
while large-scale pretraining efforts like Show-02, BLIP3-0, MoGao, and BAGEL (Xie et al., 2025;
Chen et al.| 2025a; |[Liao et al.| 2025 Deng et al., [2025)) demonstrate strong generalization on inter-
leaved multimodal data. Despite these advances, most works remain centered on image understand-
ing and generation. In contrast, we move beyond the image domain by presenting a unified video
model.

C.2 IMAGE/VIDEO GENERATION AND EDITING.

Diffusion models have achieved remarkable success in high-fidelity image synthesis, with systems
like Stable Diffusion, DALL-E, and Imagen(Rombach et al., [2022; |[Podell et al |2023}; [Esser et al.,
2024; Ramesh et al.| [2021}; |Saharia et al.| [2022) establishing strong text-to-image capabilities and
recent video diffusion models(Blattmann et al., 2023b} |Polyak et al.} 2024;|Chen et al., 2025c; [2023}
Yang et al., [2024} Blattmann et al., 2023a; Kong et al.| 2024; Brooks et al., 2024} |[Ma et al., [2025al)
enabling scalable video generation. To improve controllability, models including ControlNet, T2I-
Adapter(Zhang et al., 2023b; |Mou et al.,|2024) introduce external condition modules, while editing
frameworks like InstructPix2Pix, EMU-Edit (Brooks et al., |2023; Sheynin et al., [2024) support
instruction-driven refinement. Recently, unified image generation has emerged, with OmniGen,
OmniControl, and UniReal (Xiao et al., [2025} [Tan et al., [2024} |Chen et al., |2025¢)) expanding from
generation to reference-guided editing. General editing methods (Wei et al.||2024;|Zhao et al.,2024;
Liu et al., [2025bj |Shi et al.| [2024b}, [Zhang et al. 2023a)) further highlight this trend. In contrast,
the video domain remains dominated by single-task frameworks such as Video-P2P, MagicEdit,
MotionCtrl (Liu et al [2024c} |[Liew et al.| [2023; Wang et al., [2024c; Liu et al., 2025a). Attempts at
unification include AnyV2V (Ku et al.,|2024), which requires task-specific pipelines, VACE (Jiang
et al.||2025)), which relies on heavy adapter designs. Video Alchemist (Chen et al.,2025d)) and Movie

17



Under review as a conference paper at ICLR 2026

Table 6: Model capabilities across understanding, generation, editing, and in-context generation.
v'indicates support; Xindicates not supported. The last row is highlighted.

Model Understanding Image Gen. Video Gen. Image Edit. Video Edit. In-context Video Gen.
LLaVA-1.5 v X X X X X
SD3-medium X 4 X X X X
FLUX.1-dev X 4 X X X X
Qwenlmage v 4 X v X X
HunyuanVideo X 4 X X X X
Show-o v v X X X X
Janus-Pro v v X v X X
Emu3 v v X v X X
BLIP3-0 v v X X X X
BAGEL v 4 X v X X
OmniGen2 v v X X X X
VACE X v 4 X X v
VOGUE v v v v v v

Weaver (Liang et al.| 2025) use adapter-based designs and are dedicated to in-context generation.
FullDiT (Ju et al., 2025), which supports multi-condition video generation but lacks editing, and
UNIC (Ye et al.l [2025b)), which unifies tasks but depends on task-specific condition bias, limiting
scalability. Yet, compared to images, unified and flexible video generation and editing remains
far less explored. Our work bridges this gap by unifying diverse video tasks under a multimodal
instruction framework. We provide the model capabilities comparison in

D TRAINING DETAILS

We adopt qwen2.5VL-7B (Bai et al,, [2025) as the MLLM backbone and HunyuanVideo-T2V-
13B (Kong et al., 2024) as the MMDiT backbone. The original HunyuanVideo also uses CLIP as
its text encoder; we remove it and instead employ qwen2.5VL as the unified multimodal embedder.
The released HunyuanVideo checkpoint is a CFG-distilled model, whose distillation embeddings
we discard to simplify the training. To align feature dimensions between qwen2.5VL and Hunyuan-
Video, we apply an MLP with a 4x expansion. Training is conducted on 32 H100 GPUs. We report
training configurations, hyperparameters, and data composition ratios in and provide task

example quantity in

E LIMITATION AND FUTURE WORK

Our model is trained on diverse tasks with multimodal instructions. While we do not observe task
confusion, it sometimes fails to strictly follow editing instructions, occasionally over-editing unre-
lated regions. Due to backbone limitations, the model also struggles to fully preserve the motion
of original videos, indicating the need for stronger video backbones. Moreover, although VOGUE
generalizes to free-form video editing, its success rate remains lower than in image editing, under-
scoring the greater difficulty of video editing. Future work could explore large-scale video editing
datasets and improved backbones for motion fidelity. Additionally, as VOGUE represents an assem-
bled multimodal generative system capable of producing images, videos, and text, future work could
aim to develop a native multimodal video model trained end-to-end.

F TRAINING DATASET CONSTRUCTION

This section details the construction of our datasets.

F.1 ID-RELATED TASKS

For in-context video generation, which requires identity annotations, we follow the data creation
pipeline of ConceptMaster (Huang et al. 2025). We first extract keyframes from each video and
then use Qwen2.5-VL-7B (Bai et al.l 2025) to identify the primary subjects in the video. The
model is prompted to focus on semantically meaningful objects and ignore irrelevant background
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Table 7: Training hyperparameters across different stages. Stage 1: Connector alignment, Stage 2:
Fine-tuning, Stage 3: Multi-task training.

Stages

Hyperparameters Stage 1 Stage 2 Stage 3

(Connector Alignment)  (Fine-tuning) (Multi-task)
Learning rate 1x1074 2.0 x 107° 2.0 x 107°
LR scheduler Constant Constant Constant
Weight decay 0.0 0.0 0.0
Gradient norm clip 1.0 1.0 1.0
Optimizer AdamW (81 = 0.9, B> = 0.95,¢ = 1.0 x 1071%)
Warm-up steps 50 50 50
Training steps 15K 5K 15K
EMA ratio - 0.9999 0.9999
# Training samples O(500M O(10)K Mixed tasks
Gen resolution (min, max) (240, 480) (480, 854) (480, 854)
Gen frames (min, max) (1, 1) (1, 129) (1, 129)
Und resolution (min, max) (240, 480) (480, 854) (480, 854)
Und frames (min, max) (L, 1) (1, 8) (1, 8)
Diffusion timestep shift 5.0 5.0 5.0
Data sampling ratio
Text to Image 0.7 0.0 0.0
Text to Image(High Quality) 0.0 0.7 0.05
Text to Video 0.2 0.0 0.0
Text to Video(High Quality) 0.0 0.2 0.05
Image Reconstruction 0.1 0.1 0.0
Image to Video 0.0 0.0 0.1
Image Editing 0.0 0.0 0.3
Image Style Transfer 0.0 0.0 0.1
In-Context Video Editing 0.0 0.0 0.1
In-Context Video Generation 0.0 0.0 0.2
In-Context Image Style Transfer 0.0 0.0 0.1

Table 8: Training dataset quantity

Task Input #Examples
Text to Image txt 10K
Text to Video txt 12K
Image to Video img+txt 12K
Image Editing img+txt 500K
Image Style Transfer img+txt 17K
In-Context Video Editing (swap, addition, delete, style) ref-img x n + video + txt 16K
In-Context Video Generation ref-img X n + txt 6K
In-Context Image Style Transfer ref-img X n + img + txt 17K

elements. Based on the subject tags generated by the Qwen2.5-VL-7B (Bai et al.| [2025]), we obtain
subject bounding boxes on the first frame with Grounding DINO (Liu et al.| [2024d), We filter out
videos with target areas that are either too small or too large. The lower bound is 10% of the
frame and the upper bound is 60% of the frame. We then use apply SAM2 2024) to
obtain object segmentation masks from the source video. To further filter out object tracks that are
not consistently visible (e.g., those that are too small in most frames or segmented unreliably), we
compute a visibility consistency score. For each track, we count the number of frames in which the
object’s mask area exceeds a preset area threshold and divide this by the total number of frames in
the track. Frames where the object is too small or poorly segmented do not contribute to the score.
A higher score indicates that the subject remains clearly visible for most of the video. We discard
tracks whose visibility consistency score falls below a predefined threshold. After this stage, we get
sources videos and subject masks.
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Source video Subject Image Masked Video Inpainted Video

In Context Swap

In Context Addition |«

In Context Deletion |

Figure 7: In-Context task dataset construction examples. The top section illustrates our pipeline: we first
extract the subject image from the initial frame, then apply SAM2 to obtain video masks,
and subsequently perform video inpainting based on these masks. The bottom section shows how we group the
resulting images and videos into input—target pairs to form a dataset.

As demonstrated in [Figure 7] to build in-context video tasks, we leverage an inpainter model.

For the object swap task, the inpainter is instructed to fill the masked region using the text tags

predicted by Qwen2.5-VL 2025). To construct training pairs for this task, we use the
inpainted video together with the subject image as the input, and the original video as the target.

For the object removal and addition tasks, we do not provide explicit textual instructions to the
inpainter. Instead, the model fills the masked region based solely on the surrounding visual context,
effectively removing the target object while preserving the background. For the addition task, we
construct training pairs by using the inpainted video and the subject image as input, with the original
video as the target. For the deletion task, we use the original video as the input and the inpainted
video as the target.

To construct editing instructions for each pair of data, we employ Qwen2.5-VL-72B (Bai et al.|
[2025) to generate precise editing instructions based on the first frame of the input video and and the
first frame of the target video.
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Annotator Instructions
You are given two inputs:
— Source video
— Edited video

A sample should be accepted only if it satisfies all three dimensions:

1. Video Quality
 The edited region is clear, stable, and free of severe blur.

* No obvious artifacts such as texture duplication, holes, melting shapes, or structural
collapse.

* Motion is temporally consistent with no strong flicker or jitter.
2. Instruction Following

* The edit correctly follows the given instruction (e.g., object removal, addition, or
swap).

3. Consistency With the Source Video
* No unintended changes or over-editing outside the target region.

* The edited content matches the original motion, lighting, and scene dynamics
across frames.

Figure 8: Annotator instruction used for human filtering of in context task video data.

The inpainter is built on a 1B-parameter model with an architecture similar to Wan2.1
2025), which employs cross-attention modules for text conditioning and self-attention for visual
tokens. We select and copy an interleaved half of the Transformer blocks from the original DiT to
form the control net. While the original DiT processes noisy video tokens together with text tokens,
the newly added control blocks operate on the masked video, the corresponding masks, and the text
tokens. The output of each control block is injected back into the DiT as an additive control signal.

To train the video inpainter, we use the open source dataset VIVID-10M (Hu et al.| 2024b), which
provides source video and object mask for inpainter training.

After constructing the dataset, we conduct a human filtering stage to ensure the final quality of all
edited videos. Annotators are provided with both the source video and the edited video and evaluate
each sample solely based on three criteria: video quality, instruction following, and consistency with
the source video(degree of overedit).

For object removal and addition tasks, a sample is accepted only if the edit satisfies all three di-
mensions: (1) high video quality, meaning the edited region is clear and artifact-free; (2) correct
execution of the instruction, such as fully removing or appropriately adding the target object; and
(3) consistency with the original video, ensuring natural backgrounds and no over-editing beyond
the target region. Any sample exhibiting artifacts, partial edits, or temporal flicker is rejected.

For object swap tasks, annotators apply the same three metrics. A sample is accepted only if (1)
the edited content is visually stable and free of distortions, (2) the swap operation correctly follows
the instruction, and (3) the resulting video remains consistent with the original motion, lighting, and
scene dynamics. Samples containing structural distortions, unnatural textures, or temporal incon-
sistency are rejected. Identity verification is unnecessary, as the source video already defines the
intended target appearance.

F.2 STYLIZATION

Following UNIC 2025b)), Text-to-Video (T2V) models are capable of generating stylized
videos with high visual quality and strong fidelity to a given reference style image. Instead of
directly stylizing an existing real video, we leverage this capability to first produce a high-quality
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stylized video using a T2V model. We then convert this stylized video into a realistic counterpart
using a stylized-to-real ControlNet Video DiT model.

The input to the ControlNet is a gray tile signal. Specifically, we downsample the video spatially by
a factor of 8 and then upsample it by the same factor to remove high-frequency details, producing a
low-fidelity tile image. We further discard the color information by converting this tile image into
grayscale. This results in a structural guidance signal that preserves spatial layout while suppressing
style and texture.

Similar to StyleMaster (Ye et al.,[2025c)), the ControlNet is built on a 1B-parameter DiT architecture
similar to Wan2.1 (Wan et al., [2025), which combines cross-attention for text conditioning with
self-attention over visual tokens. We construct the ControlNet by copying an interleaved half of
the Transformer blocks from the original DiT. While the original DiT processes noisy video tokens
alongside text tokens, the ControlNet blocks operate on the gray tile signal together with the text
tokens. The output of each ControlNet block is injected back into the DiT through additive residual
connections.

We train the stylized-to-real ControlNet using 10K video pairs in which both the input and target
videos are real. During training, the model therefore learns a real-to-real reconstruction task. Since
the control signal (the gray tile) preserves only coarse spatial structure while discarding color, de-
tails, and style, the model learns to generate realistic content guided only by spatial layout. At
inference time, the model can effectively perform stylized-to-real mapping because the stylized in-
put video is also converted into a gray-tile signal, which contains only spatial layout information
and thus matches the training distribution.

F.3 IMAGE EDITING, TEXT-TO-VIDEO AND TEXT-TO-IMAGE

We leverage state-of-the-art image-editing models such as FLUX.1 Kontext 2025)) to
construct a diverse collection of edited images. We further incorporate high-quality open-source
datasets, including OmniEdit 2024), ImgEdit [20254), and ShareGPT-4o-
Image (Chen et al,[2025b). Following OmniEdit, we apply an additional VLM-based filtering stage
on the curated image-editing dataset. Each (source, edited) pair is evaluated using Qwen2.5-VL,
which assigns 0—10 scores along three core dimensions:

* Image Quality: the edited region must be sharp and visually stable, with no artifacts such
as duplicated textures, holes, melting shapes, unnatural boundaries, or structural distor-
tions.

 Instruction Following: the edit must correctly execute the given instruction (e.g., object
removal, addition, or swap), without partial or incorrect modifications.

* Consistency With the Source Image(degree of overedit): no unintended changes or over-
editing may occur outside the target region, and the edited content must remain coherent
with the original scene’s lighting, colors, and geometry.

Samples falling below threshold on any dimension are discarded. After filtering, we retain approxi-
mately 500K high-quality edited samples.

For text-to-image and text-to-video generation tasks, we utilize additional internal datasets. A de-
tailed summary of all data sources is provided in[Table §]

G MODEL DESIGN

G.1 MODEL DESIGN

Our model design study addresses the following question: What is the most effective approach for
aligning a pretrained MLLM with a diffusion generator during Stage I training?

We investigate three design choices for aligning the pretrained MLLM with the diffusion generator
in Stage 1. Throughout this stage, the MLLM remains frozen, while we vary the connector and DiT
architectures across three variants.
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Figure 9: Three design choices for aligning the MLLM with the diffusion generator in Stage 1 training.
We keep the MLLM fixed and vary the connector and DiT architecture across three variants: (a) the DiT
uses cross-attention for text conditioning, where we replace its original text encoder with an MLP layer that
aligns the final hidden states from the MLLM; (b) building upon (a), we introduce a learnable query design
and extract the final hidden states from these learnable queries; and (c) our VOGUE architecture employs an
MMDiT design that leverages self-attention for text conditioning.

(a) Cross Attention

(b.1) Cross Attention
with Learnable Query

(b.2) Cross Attention
with Learnable Query
(DiT Frozen)

(c) Self-Attention
(VOGUE)

Prompt: an elephant wearing a colorful birthday hat is walking along the sandy
beach, its large ears flapping gently in the breeze as it makes its way towards the

ocean, the sound of seagulls filling the air, with the sun shining brightly overhead,

casting a warm glow over the entire scene

Prompt: A giant panda with soft, fluffy fur and a gentle demeanor is sitting on a
wooden dock by the serene shores of a tranquil lake, strumming the strings of a
guitar with its paws

Figure 10: Qualitative comparison of design choices for aligning the MLLM with the diffusion generator
in Stage 1 training. In all settings, the MLLM is kept frozen. (a) Cross-Attention DiT: we train the MLP
connector and DiT; (b.1) Cross-Attention DiT with Learnable Query: following [2025)), we train
the learnable query tokens, MLP connector, and DiT; (b.2) similar to (b.1), but the DiT is frozen while only
the learnable query tokens and MLP connector are trained; (c) VOGUE (MMDiT): only the MLP connector is
trained, with all other components frozen. All variants are trained for 15K steps. Among all variants, VOGUE
(MMDiT) demonstrates the best prompt alignment.

(a) Cross-attention DiT. The first variant adopts a cross-attention—based DiT for text conditioning,
where we replace its original text encoder with an MLP connector that projects the final hidden
states from the MLLM into the DiT text embedding space. Both the MLP and DiT are trained.

(b) Cross-attention DiT with Learnable query. Building upon (a), we use a learnable query mecha-
nism following (2025). Specifically, we extract the final hidden states of learnable queries
from the MLLM, which are then passed through an MLP layer and used to replace the original
text conditioning in the DiT’s cross-attention module. We test two variants: (1) jointly training the
learnable queries, MLP layer, and DiT (as in (2023)); and (2) training only the learnable
queries and MLP while keeping the DiT frozen.
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Table 9: Quantitative comparison of VOGUE with VOGUE w/o MLLM on in-context editing task. Best scores
are shown in bold, and second-best are underlined.

In Context Insert

Model Identity Alignment Video Quality
CLIP-IT DINO-It CLIP-score? | Smoothness? Aesthetict
VACE 0.513 0.105 0.103 0.947 5.693
UNIC 0.598 0.245 0.216 0.961 5.627
Kling1.6 0.632 0.287 0.246 0.993 5.798
Pika2.2 0.692 0.399 0.253 0.951 5.591
VOGUE w/o MLLM  0.679 0.325 0.232 0.959 5.981
VOGUE 0.693 0.398 0.259 0.943 6.031
In Context Swap
Model Identity Alignment Video Quality
CLIP-IT DINO-It CLIP-score? | Smoothness? Aesthetict
VACE 0.703 0.391 0.218 0.960 5.961
UNIC 0.725 0.429 0.242 0.971 6.056
Kling1.6 0.707 0.437 0.211 0.995 6.042
Pika2.2 0.704 0.406 0.211 0.967 5.097
AnyV2V 0.605 0.229 0.218 0.917 4.842
VOGUE w/o MLLM  0.645 0.318 0.227 0.968 6.043
VOGUE 0.728 0.427 0.244 0.973 6.190
In Context Delete
Model Video Reconstruction Alignment Video Quality
PSNR{  RefVideo-CLIPT | CLIP-score?T | Smoothnesst Aesthetict
VACE 20.601 0.874 0.206 0.968 5.637
UNIC 19.171 0.817 0.217 0.970 5.493
Kling1.6 15.476 0.888 0.208 0.998 4.965
AnyV2V 19.504 0.869 0.205 0.964 5.325
VideoPainter 22.987 0.920 0.212 0.957 5.403
VOGUE w/o MLLM  11.202 0.816 0.196 0.971 5.385
VOGUE 17.980 0.888 0.214 0.971 5.498

(¢) VOGUE architecture. The main difference in this variant lies in its use of MMDIiT, which em-
ploys self-attention for joint text—video interaction instead of cross-attention. We replace MMDiT’s
original text encoder with an MLP connector that projects the final hidden states from the MLLM
into the MMDiT’s text embedding space. Only the MLP layer is trained, while both the MLLM and
MMDiT remain frozen.

For the cross-attention variants, we use an internal model with an architecture similar to (Wan et al
20235)), originally based on a T5 text encoder(Raffel et al.|, [2020), which we replace with Qwen2.5-

VL. For VOGUE, we follow the implementation details described in All variants are

trained for 15K steps, and the qualitative results are presented in Figure [10

Our findings show that the cross-attention variants require unfreezing the DiT generator to achieve
effective alignment with the MLLM, as evidenced by the comparison between (b.2) and (b.1).
Nevertheless, even after unfreezing, variants (a) and (b.1) exhibit limited text-following abil-
ity—particularly for compositional object prompts. In contrast, the VOGUE architecture achieves
efficient and robust alignment by training only the MLP connector.

G.2 ADDITIONAL ABLATION STUDY

We conducted an ablation study by training VOGUE without MLLM and using the original text en-
coders with the same dataset and training settings. This experiment addresses whether incorporating
an MLLM is necessary. Our results are presented in [Table 9]

Our analysis shows that the MLLM is particularly important for tasks requiring strong visual ground-
ing. For example, in in-context generation, when the reference image is not a close-up shot of a
single object and instead contains multiple objects, the model must correctly ground the instruction
to the appropriate region or entity. Models using only the original text encoder often fail in such
cases.
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Additionaly, in editing tasks that require fine-grained grounding—such as deleting a small object at
the border of the frame (e.g., a clock on the wall), or swapping an object at the edge of the video
(e.g., a paper bag on the floor), or tasks requiring prior visual knowledge (e.g., replacing an object
with Pikachu). The VOGUE w/o MLLM baseline often fails to follow these instructions, whereas
VOGUE succeeds.

H EVALUATION BENCHMARK

H.1 VISUAL UNDERSTANDING AND GENERATION

For the text-to-video generation task, we use the prompt suite provided in VBench
(2024), which contains 946 prompts covering 16 dimensions, including subject consistency, back-
ground consistency, aesthetic quality, imaging quality, object class, multiple objects, color, spatial
relationship, scene, temporal style, overall consistency, human action, temporal flickering, motion
smoothness, dynamic degree, appearance style.

H.2 IN-CONTEXT VIDEO GENERATION

For the in-context video generation, we construct a test set consisting of 20 cases, evenly split
between single-ID and multi-ID scenarios. For each case, we collect ID images and carefully design
prompts to ensure reasonable evaluation. As shown in Fig. [[T} we build an ID pool with diverse
images, ranging from cartoons to real-world subjects, including humans, animals, and common
objects. We then select ID images from this pool and design appropriate prompts for them.

E @
Choose IDs & 2 ‘" DesignPrompt  Acorgiis

> ' » ———— > playingin the
; x swimming pool.
| oy

]

IDs Pool

Figure 11: Construction pipeline of in-context video generation test set.

The single-ID examples are shown in Fig.[I2] The single ID can have either one ID image, as shown
by the cat example, or multiple shots of the same ID, as demonstrated by the human example.

As shown in Fig. [I3] in the multiple-ID scenarios, the number of IDs in a case ranges from 2 to
4, with larger numbers leading to higher difficulty. Our prompts focus on the interaction between
these ID images and describe the relationships among them. For example, in the first case, the
prompt describes a woman sitting on the sofa beside the bag, which connects the woman, sofa, and
bag provided in the ID images. In the second case, the relationship between the two characters is
described as Psyduck riding Pikachu.

H.3 IN-CONTEXT VIDEO EDITING

For the in-context video editing, we evaluate on the UNICBench|[Ye et al.| (2025b) across four tasks:
ID Insertion, ID Swap, ID Deletion, and Stylization. Since our setting differs from other video
editing models (which may require masks to indicate the edited area, while ours uses instructions
instead), we demonstrate in detail how we derive our inputs from the existing video editing bench-
mark.
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IDs Prompt

Panoramic shot, a man leaning against a tree, playing a
beautiful melody on the guitar in his hand. His smile is
like the chords in the music, harmonious and warm. The
£ camera slowly moves around the man.

A cat is swimming in the pool

Figure 12: Example of single-ID test case in in-context video generation test set.

Prompt

The scene begins with a close-up of the vintage car’s door as it
swings open, the reflection of warm lights gliding over its
polished surface. A woman's leg steps out gracefully, her
elegant beige dress flowing as she exits. The camera follows
her from behind as she strides with quiet confidence, heels
clicking against the sleek floor.As she moves to the right, the
camera smoothly shifts, tracking her movement. In front of
her, an opulent, futuristic leather sofa sits under soft ambient
lighting. Resting atop the seat is the ornate handbag, its
detailed pattern catching the glow. She approaches, pausing
briefly before lowering herself onto the sofa with effortless
poise, settling beside the bag. A soft smile forms as she gently
places her hand on it, exuding quiet luxury and sophistication.

Psyduck rides Pikachu forward, and the camera follows
their movement

== ‘WVO. ]

Figure 13: Example of multi-ID test case in in-context video generation test set.
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First, as shown in Fig. @ for ID insertion, the elements in UNICBench consist of a reference video,
reference ID, and a caption for the target video. The goal of ID insertion is to naturally integrate
new objects or elements from the reference ID into the target video. Here we replace the caption
with a more direct instruction.

An octopus at the edge of
the sea. The octopus has
an orange-yellow body
with clearly visible
suckers on its tentacles.

Elements in |
UNICBench

Add an octopus from the image

Inputs of at the edge of the sea.

VOGUE

Figure 14: Example of ID insertion test case.

For ID swap, the elements in UNICBench consist of a reference video, mask, reference ID, and a
caption for the target video. The goal of ID swap is to replace specific elements in the target video
with corresponding elements from the reference ID while preserving the original video’s context
and motion. In our setting, we don’t need a mask to indicate the editing area; instead, we use a more
convenient instruction-based approach. For example, in Fig.[T5] we simply use the instruction “Use
the man’s face in the reference image to replace the man’s face in the video.”

A man in a black tuxedo
stands in a festive, dimly
lit environment filled
with sparkling lights and
decorations.

Elements in
UNICBench

Use the man's face in the reference
image the image to replace the man's
face in the video.

Inputs of
VOGUE

Figure 15: Example of ID swap test case.

For ID deletion, UNICBench provides a reference video, mask, and a caption for the target video.
ID deletion aims to naturally remove specified objects or elements from the video while maintaining
visual consistency and filling the removed areas with appropriate background content. While current
video editing methods use masks to specify the object for removal, our approach simplifies this
through text instructions. As demonstrated in Fig. [T6] we use straightforward prompts such as
”Delete the computer in the video.”

For stylization, the existing elements in UNICBench include a style reference image, target caption,
and reference video. The purpose of stylization is to transform the visual appearance of the target
video to match the artistic style of the reference image while preserving the original video’s content
and motion dynamics. We standardize the instruction format to Transform the video into the style
of the reference image,” as shown in Fig.
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'Iu, ,
l, A man in a light grey suit and
Elements in S / yellow tie is seated at an office
§ I & desk, while a woman in a white
UNICBench ¢ < blazer with a black collar
~ stands beside him, holding a
=\ glass of water.

g "“'l,l ,

Inputs of
VOGUE

Delete the computer in the video.

Figure 16: Example of ID deletion test case.

A woman with long

Elements in hair and glasses

UNICBench stands near a river.
Inputs of Transform the video of into the
P style of the reference image.

VOGUE

Figure 17: Example of stylization test case.
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