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<Think> The generated video 
should first shows a man in a 
green suit sits in a meadow of 
yellow flowers…  Next, a brown 
monkey clinging tightly to a rope 
comes into view, its fur rippling in 
the wind…

<Image 1> <Image 2>

in the 
style of

Replace 
the 
plane in

with

then 
touch

lower 
herself 
onto

steps 
out from

Video GenerationVideo Understanding

In Context Video Editing

In Context Video Generation

<Image 1> <Image 2> <Image 3> <Image 4>

“This video shows a young girl in a pink dress playing the piano. The camera 
is positioned at a slight angle, giving a top view of the scene, allowing the 
viewer to see the girl's hands moving over the piano keys.”

Generate a video of a group of teddy bears walking on a rainy day. 

Think Mode for Complex Instructions

Please provide a 
detailed caption of 
this video

<Video 1>

Generalization to UnSeen Tasks

Green screen 
the man and the 
woman from the 
video:

<Video 1>

Generate a 
video based 
on the 
visual 
prompt:

<Image 3>

Figure 1: VOGUE is a unified system that can understand multi-modal instructions and generate multi-modal
video content. More videos are available on anonymous website, please check them out.

ABSTRACT

Unified multimodal models have shown promising results in multimodal content
generation and editing but remain largely limited to the image domain. In this
work, we present VOGUE, a versatile framework that extends unified modeling to
the video domain. VOGUE adopts a dual-stream design, combining a Multimodal
Large Language Model (MLLM) for instruction understanding with a Multimodal
DiT (MMDiT) for video generation. This design enables accurate interpretation
of complex multimodal instructions while preserving visual consistency. Built on
this architecture, VOGUE unifies diverse video generation and editing tasks un-
der a single multimodal instruction paradigm and is jointly trained across them.
Extensive experiments demonstrate that VOGUE matches or surpasses state-of-
the-art task-specific baselines in text/image-to-video generation, in-context video
generation and editing. Notably, the unified design of VOGUE enables two forms
of generalization. First, VOGUE supports task composition, such as combining
editing with style transfer within a single instruction. Second, even without ex-
plicit training on free-form video editing, VOGUE transfers its editing capability
from large-scale image editing data to this setting, handling unseen instructions
such as green-screening characters or changing materials within a video. Beyond
these core capabilities, VOGUE also supports visual-prompt-based video genera-
tion, where the MLLM interprets visual prompts and guides the MMDiT during
synthesis. To foster future research, our model and code will be released.

1

https://anonymous-submission-rebuttal.github.io/vogue/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

A long-term goal of multimodal AI assistants is to build models that can seamlessly understand
diverse inputs across modalities and generate outputs in kind, enabling natural communication
through language, images, and video demonstrations.

Recent advances in unified models suggest that this vision is increasingly attainable. Prior work
(Shi et al., 2024a; Pan et al., 2025; Sun et al., 2023; Team, 2024; Tong et al., 2024; Wang et al.,
2024b; Deng et al., 2025; Wu et al., 2025b; Ma et al., 2025b; Xie et al., 2024; 2025; Zhou et al.,
2024) has demonstrated promising results in text–image understanding and generation by jointly
optimizing these capabilities within unified systems. More recently, models such as Google Nano
banana and GPT-image-1 have pushed this paradigm further by integrating computer vision, image
manipulation, and multimodal reasoning into a single framework, marking a shift from specialized
single-modality generators toward powerful unified systems.

Despite this progress, unified understanding–generation models remain limited to text and image
(Lin et al., 2025; Wu et al., 2025c), leaving video largely underexplored. Existing video generation
models primarily address a single text-to-video task and rely on text encoders to process instructions
(Wan et al., 2025; Ju et al., 2025; Polyak et al., 2024; Kong et al., 2024), restricting their ability to
understand and reason over multimodal instructions (Hu et al., 2024a). Meanwhile, video editing
methods typically employ task-specific modules or pipelines (Ku et al., 2024; Jiang et al., 2025; Ye
et al., 2025b), which makes it difficult to scale across diverse tasks. Consequently, due to the lack of
unified modeling, advanced capabilities such as multimodal prompting, in-context video generation,
and sophisticated free-form editing remain beyond the reach of any single model.

Motivated by these limitations, we present VOGUE —a unified framework for understanding, gener-
ation, and editing in the video domain. VOGUE bridges this gap by enabling multimodal instruction
following and delivering robust performance across diverse video tasks.

To build VOGUE, we propose a two-stream design, where an MLLM serves as the understanding
branch and an MMDiT backbone (Esser et al., 2024) serves as the generation branch. While prior
work such as Qwen-Image (Wu et al., 2025a) explores a similar idea in the image domain, our
model generalizes this design to video. Both streams now receive image and video instructions: the
understanding branch through a semantic encoder, and the generation branch through VAE-based
encoders. In contrast, prior unified models such as GPT-image-1 (Lin et al., 2025) rely exclusively
on semantic encoders, which often struggle to capture fine-grained visual details. Similarly, bot-
tlenecked approaches using learnable query tokens (Tong et al., 2024; Pan et al., 2025) compress
inputs into a fixed set of tokens, creating a severe capacity bottleneck when instructions contain
videos. As a result, both approaches fall short in supporting in-context video generation. Our design
preserves the multimodal reasoning capabilities of the MLLM while enabling the model to handle
diverse video tasks with multimodal inputs. Moreover, it ensures cross-stream consistency, which is
crucial for precise editing and for maintaining subject identity in in-context generation.

Based on this unified architecture, we train VOGUE across a wide spectrum of tasks, including text-
to-image, text-to-video, image-to-video, in-context video generation, in-context video editing, and
image editing. As a unified system, VOGUE not only understands multimodal instructions and distin-
guishes between tasks but also achieves improvements over state-of-the-art task-specific methods.
Thanks to unified training, VOGUE generalizes to novel task compositions unseen during training,
such as deleting one identity while swapping another within a single instruction. More importantly,
although VOGUE is not trained on free-form video editing data, it demonstrates generalization ability
transfer from image editing to free-form video editing (e.g., change material and weather), highlight-
ing the effectiveness of our unified video understanding and generation framework.

Furthermore, VOGUE retains the strong visual understanding capability of its underlying frozen
MLLM. By leveraging the MLLM’s autoregressive reasoning and language generation abilities,
VOGUE can effectively interpret ambiguous and complex multimodal instructions that require joint
vision–language understanding, such as turning visual prompting into in-context video generation
tasks. Since its text generation ability originates from a frozen MLLM, VOGUE should be regarded
as a post-trained unified multimodal generative system capable of producing images, videos, and
text, rather than a unified model trained from scratch(Ma et al., 2025b; Deng et al., 2025).
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Our key contributions are:
1) We introduce VOGUE, a powerful multimodal generative model that unifies understanding, gener-
ation, and editing of videos within a single framework. To build VOGUE, we propose a dual-stream
architecture that combines the multimodal reasoning capabilities of the MLLM with the genera-
tion strengths of the MMDiT. Unlike prior task-specific or modality-restricted approaches, VOGUE
can interpret multimodal instructions, distinguish between diverse tasks, and achieve state-of-the-art
performance across a wide range of benchmarks.
2) We demonstrate that VOGUE generalizes to unseen tasks and novel task compositions without ad
hoc designs, highlighting the benefits of a unified framework.
3) We show that VOGUE leverages the MLLM branch’s think mode to interpret and execute com-
plex multimodal instructions, such as visual prompting.

MLLM
VAE

Patchify

MMDiT

VAE

Patchify

VAE

Patchify

Understanding Stream Block Generation Stream Block

Single Stream Block

Generate an video of the woman in <Image 1> holds 
<Image 2> in the scene of <Video 1>

noise

<Image 1> <Image 2> <Video 1> Target VideoVideoImages

Figure 2: Model architecture. VOGUE is a dual-stream model consisting of an MLLM for understanding and
an MMDiT module for generation. While concurrent work such as Qwen-Image explores a similar idea in the
image editing setting, our model generalizes this design to the video domain and to a multitask setting.

2 METHOD

2.1 MODEL ARCHITECTURE

As demonstrated in Figure 2, VOGUE consists of two main components: a multimodal large language
model (MLLM) and a multimodal DiT (MM-DiT). The MLLM handles visual–textual understand-
ing, taking text, image, and video inputs and producing text responses. The MM-DiT focuses on
visual generation with two branches: one incorporates high-level semantic information from the
MLLM, while the other integrates fine-grained reconstruction signals from a VAE. Specifically, we
extract the last-layer hidden states of the MLLM, which encode rich semantic features of the mul-
timodal input. These are aligned to the input space of the MM-DiT via a trainable connector and
fed into its understanding stream. In parallel, visual signals are encoded by the VAE and passed
into the MM-DiT generation stream to preserve fine details. This design enables strong semantic
grounding together with high-fidelity visual detail, which is especially important for video editing
and identity-preserving in-context generation.

2.2 UNIFYING MULTIPLE TASKS

We standardize multimodal instructions by assigning each visual input an ID tag, as illustrated
in Figure 1. For text-to-video (T2V), the text input is processed by the MLLM, while the noisy
video is fed into the MM-DiT. For image-to-video (I2V), both the image and text are processed by
the MLLM, whereas the image and noisy video are provided to the MM-DiT. For in-context video
generation (MultiID2V) and in-context video editing (ID-V2V), multiple visual conditions are of-
ten available, such as several reference images together with a reference video. Each visual signal
is encoded with the VAE, padded to a uniform shape, concatenated along the temporal axis, and

3
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then processed with self-attention. Unlike prior approaches that introduce task-specific bias embed-
dings (Ye et al., 2025b) or context adapter modules (Jiang et al., 2025), we avoid task-specific cus-
tomization. To help the MM-DiT distinguish between condition latents and noisy video latents, we
apply 3D positional embeddings, which preserve the spatial indices across frames while increment-
ing only the temporal dimension. In practice, we find this strategy more effective than Qwen2-VL’s
MRoPE (Wang et al., 2024a), which offsets all axes whenever a new visual input is introduced.

MLLM

VAE

MMDiT

VAE

Understanding Stream Block Generation Stream Block

Single Stream Block

VAE

<Image 2> <Image 3> <Image 4>

“Suddenly, a 
sleek sports 

car…”

“A motorcyclist 
leans forward 

in…”

<Image 1>

“The user provide with 
annotations. I can 

generate a dense video 
caption that reflects 

the visual prompt in to 
help the Video 
Generation.”

Noisy Video  
latent

Figure 3: Thinking Mode. VOGUE leverages the MLLM stream to understand and interpret user intent from
complex multimodal prompts that cannot be handled by the DiT alone. For example, users can provide diagrams
or visual annotations to guide video generation without writing dense textual prompts.

2.3 THINKING MODE

VOGUE leverages its MLLM branch to interpret unconventional or hand-crafted prompts, as illus-
trated in Figure 3 and Figure 6. For example, users may provide an input image with manual anno-
tations, which the MLLM translates into a structured plan and dense prompt tokens that guide video
generation. Unlike agent-based approaches that invoke multiple downstream generators without
true multimodal understanding ability, VOGUE offers a more simplified design: the MMDiT directly
integrates embeddings from the dense prompt tokens produced by the MLLM. This integration ef-
fectively turns visual prompting into in-context video generation.

2.4 TRAINING STRATEGY

Stage 1. Connector alignment between MLLM and MMDiT. In this stage, we train only the MLP
connector while keeping both the MLLM and MMDiT frozen. Training is performed on O(40)M
pretraining samples across text-to-image (T2I) and O(10)M text-to-video (T2V) generation tasks,
as well as an image-reconstruction task in which only images from the text-to-image dataset are
fed into the MLLM and the MMDiT reconstructs the image using visual features from the MLLM.
After this stage, VOGUE can generate images and videos conditioned on text or image inputs from
the MLLM.

Stage 2. Fine-tuning MMDiT on T2I and T2V. In this stage, we keep the MLLM frozen and fine-
tune the connector and MMDiT on O(20)K high-quality T2I and T2V samples. After this stage,
VOGUE achieves performance comparable to the MMDiT backbone that uses its own text encoder.

Stage 3. Multi-task training. Finally, we extend training to include in-context generation (multi-
ID-to-video), in-context video editing, image editing and image-to-video tasks, alongside the previ-
ous T2I and T2V tasks. We keep the MLLM frozen and only train the connector and MMDiT. This
stage enables VOGUE to unify a broad range of video generation and editing tasks under multimodal
instruction. Details of task decomposition, training setting and dataset construction are provided in
Table 1 and Table 7.

3 EXPERIMENTS

In this section, we first describe the implementation details in subsection 3.1. Then, we present main
results in subsection 3.2. We conduct a comprehensive benchmark of VOGUE with SoTA methods

4
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Figure 4: Qualitative comparison of VOGUE with SoTA Task Specific Experts on In Context Generation
and In Context Editing tasks.

Table 1: Overview of tasks with input modalities and mixing ratios for stage 3 training.

Task Input #Examples Ratio

Text to Image txt 10K 0.05

Text to Video txt 12K 0.05

Image to Video img+txt 12K 0.10

Image Editing img+txt 500K 0.30

Image Style Transfer img+txt 17K 0.10

In-Context Video Editing (swap, addition, delete, style) ref-img × n + video + txt 16K 0.20

In-Context Video Generation ref-img × n + txt 6K 0.10

In-Context Image Style Transfer ref-img × n + img + txt 17K 0.10

across a broad spectrum of video understanding and generation tasks. Our results show that VOGUE’s
strong unified capabilities across all settings. Next, we demonstrate the zero shot generalization
ability of VOGUE and analysis the visual prompt understanding ability in subsection 3.3. Finally, we
validate the design choices of VOGUE through ablation studies in subsection 3.4.

3.1 IMPLEMENTATION DETAILS

We adopt qwen2.5VL-7B (Bai et al., 2025) as the MLLM backbone and HunyuanVideo-T2V-
13B (Kong et al., 2024) as the MMDiT backbone. The original HunyuanVideo use two text en-
coders; we remove them and instead use qwen2.5VL as the unified multi-modal embedder. To align
feature dimensions between qwen2.5VL and HunyuanVideo, we apply an MLP with a 4× expan-
sion. Training is conducted on 32 H100 GPUs. Additional details are provided in the Appendix

3.2 MAIN RESULTS

3.2.1 VISUAL UNDERSTANDING AND GENERATION

VOGUE ’s visual understanding is powered by a frozen pretrained MLLM. Freezing the MLLM
preserves its strong native understanding ability and prevents performance degradation from joint
training with generative tasks. As shown in Table 2, VOGUE achieves competitive scores of 83.5 on
MMBench (Liu et al., 2024e), 58.6 on MMMU (Yue et al., 2024), and 66.6 on MM-Vet (Yu et al.,
2023) for understanding tasks. At the same time, it retains strong generation ability, supporting both
I2V and T2V within a single unified model. In contrast, baseline models rely on different variants for
different tasks, whereas VOGUE reaches performance comparable to the HunyuanVideo backbone
on the VBench (Huang et al., 2024) benchmarks.

5
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Figure 5: Zero-Shot Generalization. We demonstrate two type of generalization. (i) VOGUE was not trained
on General Free-form Video Editing data. It transfers this ability from diverse image editing data to the video
domain through joint training with in-context video generation and editing data (limited to ID deletion, swap-
ping, addition, and stylization), enabling it to handle previously unseen video editing instructions. (ii) VOGUE
can also generalize to novel task compositions, even though it was not explicitly trained on such compositions.

Table 2: Quantitative comparison on Visual Understanding and Video Generation. Best results are shown in
bold, and second-best are underlined. For models with “/” (T2V/I2V), we use different model variants for each
task. In contrast, VOGUE unifies both Understanding and Generation, supporting I2V and T2V within a single
model while maintaining competitive generation quality. *We report understanding task results for VOGUE
using the MLLM component — Qwen-2.5VL-7B results.

Model Understanding Video Generation

MMB MMMU MM-Vet Vbench T2V Vbench I2V

Video Understanding Model
LLaVA-1.5 (Liu et al., 2024a) 36.4 67.8 36.3 × ×
LLaVA-NeXT (Liu et al., 2024b) 79.3 51.1 57.4 × ×

Video Generation Model
CogVideoX(T2V/I2V) × × × 81.61 86.70
I2VGen-XL × × × × 85.28
HunyuanVideo(T2V/I2V) × × × 83.24 86.82
Step-Video-(T2V/TI2V) × × × 81.83 88.36
Wan2.1(T2V/I2V) × × × 84.70 86.86

Unified Understanding & Generation Model
Emu3 58.5 31.6 37.2 80.96 ×
TokenFlow-XL 76.8 43.2 48.2 × ×
Janus 69.4 30.5 34.3 × ×
JanusFlow 74.9 29.3 30.9 × ×
Janus-Pro-7B 79.2 41.0 50.0 × ×
Show-o - 26.7 - × ×
BAGEL 85.0 55.3 67.2 × ×
Show-o2 79.3 48.9 56.6 81.34 85.28
VOGUE * 83.5 58.6 66.6 82.58 86.19

3.2.2 IN-CONTEXT VIDEO GENERATION

Benchmark: Following FullDiT (Ju et al., 2025) and OmniGen2 (Wu et al., 2025c), we construct a
test set covering both single-ID and multi-ID video generation scenarios. In the single-ID setting, a
subject may have multiple reference images (e.g., different viewpoints of a person or object). In the
multi-ID setting, the references include 2–4 distinct identities. Details are provided in the Appendix.
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Table 3: Quantitative comparison on In-Context Generation. Human evaluation includes Subject Consis-
tency (SC), Prompt Following (PF), and Overall Video Quality (VQ). Automatic metrics measure video qual-
ity in terms of Smoothness, Dynamics, and Aesthetics. Best results are shown in bold, and second-best are
underlined. VOGUE achieves superior or competitive performance across all metrics compared to the SoTA
methods and commercial models and in particular be the best for SC.

Single Reference Generation
Model Human Eval Score Automatic Video Quality Score

SC↑ PF↑ VQ↑ Smoothness↑ Dynamic↑ Aesthetic↑

VACE 0.31 0.65 0.42 0.922 40.341 5.426
Kling1.6 0.68 0.95 0.88 0.938 86.641 5.896
Pika2.2 0.45 0.43 0.15 0.928 104.768 5.125
VOGUE 0.88 0.93 0.95 0.943 56.336 5.740

Multi Reference (≥ 2) Generation
Model Human Eval Score Automatic Video Quality Score

SC↑ PF↑ VQ↑ Smoothness↑ Dynamic↑ Aesthetic↑

VACE 0.48 0.53 0.48 0.862 65.606 5.941
Kling1.6 0.73 0.45 0.95 0.916 61.856 6.034
Pika2.2 0.71 0.48 0.43 0.898 76.796 5.176
VOGUE 0.81 0.75 0.85 0.942 59.393 6.128

Metrics: We conduct both human evaluations and automatic metric assessments. For human eval-
uation, we follow the protocols of Instruct-Imagen (Hu et al., 2024a) and OmniGen2 (Wu et al.,
2025c) to perform a systematic study. Each sample is rated by at least three annotators on (i) subject
consistency (SC), (ii) prompt following (PF), and (iii) overall video quality (VQ). Scores in each
category are drawn from {0, 0.5, 1}, where 0 indicates inconsistency or extremely poor quality, and
1 indicates full consistency or high quality. For automatic evaluation, we adopt three metrics from
VBench (Huang et al., 2024): smoothness, dynamics, and aesthetics.

Baselines: We compare VOGUE with the state-of-the-art open-source model VACE, given the
scarcity of video models capable of in-context generation. We also include commercial baselines
such as Pika2.2 and Kling1.6.

Results: Quantitative comparisons are presented in Table 3. VOGUE achieves superior or compet-
itive performance across all metrics compared to the baselines. Additional results are shown in
Figure 4, and more examples are available on our project website. Notably, baseline models often
struggle with complex instructions involving multiple identities (e.g., when the number of reference
images is 4), whereas VOGUE can accurately follow instructions while preserving identity.

Vi
su

al
 Pr

om
pt

in
g

Figure 6: Qualitative results of VOGUE with visual prompt inputs. We illustrate two types of visual prompts:
in the first three examples, annotations are drawn on a canvas, while in the last example, the annotation is drawn
directly on an input image.
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Table 4: Quantitative comparison with task-specific expert models on In-Context Video Editing. Our model
is the only mask-free approach, capable of performing edits solely based on instructions without requiring
explicit mask inputs to indicate editing regions. Despite this more challenging setting, it achieves superior or
competitive performance across all metrics compared to state-of-the-art task-specific expert baselines. Best
scores are shown in bold, and second-best are underlined.

In Context Insert
Model Identity Alignment Video Quality

CLIP-I↑ DINO-I↑ CLIP-score↑ Smoothness↑ Dynamic↑ Aesthetic↑
VACE 0.513 0.105 0.103 0.947 51.343 5.693
UNIC 0.598 0.245 0.216 0.961 11.070 5.627
Kling1.6 0.632 0.287 0.246 0.993 1.025 5.798
Pika2.2 0.692 0.399 0.253 0.951 261.443 5.591
VOGUE (Mask Free) 0.693 0.398 0.259 0.943 22.753 6.031

In Context Swap
Model Identity Alignment Video Quality

CLIP-I↑ DINO-I↑ CLIP-score↑ Smoothness↑ Dynamic↑ Aesthetic↑
VACE 0.703 0.391 0.218 0.960 29.001 5.961
UNIC 0.725 0.429 0.242 0.971 7.500 6.056
Kling1.6 0.707 0.437 0.211 0.995 0.518 6.042
Pika2.2 0.704 0.406 0.211 0.967 30.812 5.097
AnyV2V 0.605 0.229 0.218 0.917 7.596 4.842
VOGUE (Mask Free) 0.728 0.427 0.244 0.973 19.892 6.190

In Context Delete
Model Video Reconstruction Alignment Video Quality

PSNR↑ RefVideo-CLIP↑ CLIP-score↑ Smoothness↑ Dynamic↑ Aesthetic↑
VACE 20.601 0.874 0.206 0.968 16.146 5.637
UNIC 19.171 0.817 0.217 0.970 10.934 5.493
Kling1.6 15.476 0.888 0.208 0.998 0.663 4.965
AnyV2V 19.504 0.869 0.205 0.964 4.980 5.325
VideoPainter 22.987 0.920 0.212 0.957 13.759 5.403
VOGUE (Mask Free) 17.980 0.888 0.214 0.971 19.502 5.498

In Context Stylization
Model Style & Content Alignment Video Quality

CSD-Score↑ ArtFID↓ CLIP-score↑ Smoothness↑ Dynamic↑ Aesthetic↑
AnyV2V 0.207 43.299 0.195 0.937 9.227 4.640
StyleMaster 0.306 38.213 0.188 0.952 9.758 5.121
UNIC 0.197 36.198 0.215 0.932 11.569 5.045
VOGUE (Mask Free) 0.228 37.877 0.226 0.963 15.455 6.281

3.2.3 IN-CONTEXT VIDEO EDITING

Benchmark: Following UNIC (Ye et al., 2025b), we construct a test set covering four editing types:
swap, delete, addition, and style transfer. Each example consists of a source video and a reference
image, together with a natural language instruction. Further details are provided in the Appendix.

Metrics: We adopt the evaluation protocol of UNIC (Ye et al., 2025b) and conduct automatic metric
assessments. Specifically, we use CLIP-I and DINO-I to measure identity consistency, and CLIP-
Score to measure prompt following.

Baselines: We compare VOGUE with state-of-the-art task-specific expert models, including UNIC,
AnyV2V, and VideoPainter. We also evaluate against commercial models such as Pika2.2 and
Kling1.6. Note that all baseline models require explicit mask inputs to localize editing regions
and guide generation, whereas VOGUE operates without masks.

Results: Quantitative comparisons are presented in Table 4. Although VOGUE is evaluated under the
more challenging mask-free setting, it still achieves superior or competitive performance across all
metrics compared to the baselines. Additional results are shown in Figure 4, and further examples
are provided on our project website. VOGUE can accurately follow instructions while preserving the
identity of the reference images.

3.3 MODEL ANALYSIS

3.3.1 ZERO SHOT GENERALIZATION

We observed two type of generalization ability of VOGUE. Although the training data of VOGUE does
not include general free-form video editing tasks (see Table 1), it transfers this ability from diverse
image editing data and in-context video editing data (limited to ID deletion, swapping, addition,
and stylization) to the video domain, enabling it to handle free-form video editing instructions(e.g.,
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changing material or environment). Surprisingly, we find that VOGUE can perform tasks such as
green-screening characters from videos. We also observe that VOGUE is capable of handling task
compositions. It can combine in-context editing with style transfer, or perform multiple edits simul-
taneously (e.g., deleting one identity while adding another). Demonstrations in Figure 5.

3.3.2 THINKING MODE

We demonstrate the results of visual prompting with VOGUE in Figure 6. We consider two types
of visual prompts. In the first setting, users draw reference images and story plans on a canvas.
Here, the model can interpret the plan and generate corresponding videos. In the second setting,
annotations are drawn directly on an input image, which the model treats as an I2V task—similar to
the functionality of VEO3 (Google DeepMind, 2025); in this case, VOGUE can interpret the motion
or new events described by the visual prompt. These results highlight the advantages of VOGUE in
handling complex multimodal instructions.

3.4 ABLATION STUDY

Our ablation studies address two central questions: (i) Does multi-task learning enhance perfor-
mance compared with single-task learning? (ii) Is our model design effective? Specifically, should
visual embeddings be streamed to both the MLLM and MMDiT branches? We conduct human eval-
uations on In-Context Video Editing and In-Context Video Generation, using the same evaluation
protocol as in subsubsection 3.2.2. (i) To study multi-task learning, we compare VOGUE with a
single-task baseline. The single-task baseline shares the same architecture as VOGUE but requires an
independent model for each task and has access only to task-specific data. Results in Table 5 demon-
strate the effectiveness of multi-task learning, especially for the editing task, where VOGUE benefits
from large-scale image editing data during joint learning. (ii) To evaluate the impact of streaming
visual inputs, we compare VOGUE with variants that share the same architecture: - w/o visual for
MMDiT: visual inputs are fed only to the MLLM branch. - w/o visual for MLLM: visual inputs
are fed only to the MMDiT branch are not provided to the MLLM branch. As shown in Table 5,
feeding visual inputs exclusively to the MLLM results in a dramatic drop in identity preservation.
while feeding them only to the MMDiT causes a performance drop on editing tasks that require
localization and semantic understanding from the MLLM branch.

Table 5: Ablation study comparing single-task model, VOGUE, VOGUE w/o Visual for MMDIT, and VOGUE
w/o Visual for MLLM across different In-Context tasks.

Single-task model VOGUE VOGUE w/o Visual for MMDIT VOGUE w/o Visual for MLLM

PF↑ SC↑ VQ↑ PF↑ SC↑ VQ↑ PF↑ SC↑ VQ↑ PF↑ SC↑ VQ↑

IC-gen singleid 0.85 0.73 0.93 0.93 0.88 0.95 0.75 0.32 0.86 0.78 0.88 0.94
multiid 0.72 0.79 0.73 0.75 0.81 0.85 0.81 0.23 0.83 0.72 0.82 0.83

IC-edit

insert 0.81 0.85 0.86 0.92 0.92 0.91 0.68 0.18 0.75 0.88 0.88 0.91
swap 0.53 0.78 0.68 0.91 0.85 0.85 0.63 0.15 0.62 0.75 0.85 0.84
delete 0.32 0.42 0.89 0.52 0.58 0.92 0.21 0.13 0.63 0.45 0.45 0.89
stylization 0.56 0.43 0.63 0.79 0.64 0.64 0.86 0.11 0.57 0.78 0.61 0.64

Average 0.64 0.67 0.79 0.80 0.78 0.85 0.66 0.18 0.71 0.73 0.75 0.84

4 RELATED WORK

Unified Multimodal Understanding and Generation. Recent progress in multimodal generation
has been driven primarily by the text and image domains, spanning autoregressive modeling, diffu-
sion–autoregression hybrids, and LLM-based regression approaches (Sun et al., 2024a; Team, 2024;
Xie et al., 2024; Ge et al., 2024; Wu et al., 2025c). While these advances demonstrate strong capa-
bilities in images, unified approaches beyond the image domain remain limited. We instead present
a unified video model. A full discussion of prior multimodal works is provided in Appendix C.1

Image/Video Generation and Editing. Diffusion models have achieved remarkable success in
image and video synthesis (Rombach et al., 2022; Esser et al., 2024; Blattmann et al., 2023b),
with growing interest in controllability (Zhang et al., 2023b; Brooks et al., 2023) and unified image
editing systems (Xiao et al., 2025; Tan et al., 2024; Chen et al., 2025e). In contrast, the video domain
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remains dominated by single-task frameworks. Video Alchemist (Chen et al., 2025d) and Movie
Weaver (Liang et al., 2025) are dedicated to in-context generation. Attempts at unification (Ku
et al., 2024; Ju et al., 2025; Jiang et al., 2025) still require task-specific pipelines or modules. We
bridge this gap by unifying diverse video tasks under a single framework. Extended related work in
Appendix C.2.

5 CONCLUSION

We introduce VOGUE, a unified multimodal generative model for video understanding, generation,
and editing. By integrating an MLLM for semantic understanding with an MMDiT for generation,
VOGUE combines strong multimodal reasoning with fine-grained visual consistency. It can interpret
multimodal instructions and handle diverse tasks effectively. Our experiments show that VOGUE not
only matches or outperforms task-specific baselines across text/image-to-video, video editing, and
in-context generation, but also generalizes to unseen tasks and novel task compositions—capabilities
that specialized pipelines struggle to achieve. Beyond robust performance, VOGUE can also support
visual prompting understanding, underscoring the advantages of unified modeling over fragmented
approaches. Looking forward, VOGUE opens new directions for multimodal research, advancing us
toward assistants that can naturally communicate through language, images, and video.
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Ethics Statement This study was carried out in alignment with the ICLR Code of Ethics. All data
used for training were acquired through legitimate commercial channels. Before model training, we
applied thorough filtering and screening procedures to eliminate harmful, biased, or otherwise inap-
propriate material. These measures were taken to minimize potential risks and to uphold principles
of fairness, safety, and responsible AI research.

Reproducibility Statement We emphasize reproducibility across multiple dimensions of this
work. Code: The code, trained models, and supporting scripts will be publicly released to enable
replication of our results. Data: Documentation of data processing procedures is provided in the Ap-
pendix. Model and Experiments: The model implementation is described in the main paper, while
the Appendix details the experimental setup, including training strategies, training configurations,
hyperparameter configurations, and hardware specifications.
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A APPENDIX

Appendix contains the following sections:

• Statement for Large Language Models

• Extended Related Work

• Training Details

• Limitation and Future Work

• Training Dataset Construction

• Model Design Experiment and Analysis

• Evaluation Benchmark

B STATEMENT FOR LARGE LANGUAGE MODELS

We use large language models (LLMs) in this paper solely for grammar correction and text re-
finement. They are not employed for generating original content or contributing to the conceptual
development of the ideas presented.

C EXTENDED RELATED WORK

C.1 UNIFIED MULTIMODAL UNDERSTANDING AND GENERATION

Recent progress in multimodal generation has been driven primarily by the text and image domains.
Autoregressive models such as LlamaGen, Chameleon, Emu2, and Emu3(Sun et al., 2024a; Team,
2024; Sun et al., 2024b; Wang et al., 2024b) adopt discrete token prediction. Hybrid approaches like
Show-o, Transfusion, and DreamLLM (Xie et al., 2024; Zhou et al., 2024; Dong et al., 2023) in-
tegrate autoregression with diffusion for image synthesis. Regression- or instruction-tuning–based
methods, including SEED-X, Janus, MetaMorph, Next-gpt and OmniGen2 (Ge et al., 2024; Wu
et al., 2025b; Gupta et al., 2022; Wu et al., 2024; 2025c), adapt LLMs for image feature prediction
and controllable generation. Efficiency-oriented designs such as LMFusion and MetaQueries (Shi
et al., 2024a; Pan et al., 2025) freeze MLLMs and add lightweight modules or learnable queries,
while large-scale pretraining efforts like Show-o2, BLIP3-o, MoGao, and BAGEL (Xie et al., 2025;
Chen et al., 2025a; Liao et al., 2025; Deng et al., 2025) demonstrate strong generalization on inter-
leaved multimodal data. Despite these advances, most works remain centered on image understand-
ing and generation. In contrast, we move beyond the image domain by presenting a unified video
model.

C.2 IMAGE/VIDEO GENERATION AND EDITING.

Diffusion models have achieved remarkable success in high-fidelity image synthesis, with systems
like Stable Diffusion, DALL·E, and Imagen(Rombach et al., 2022; Podell et al., 2023; Esser et al.,
2024; Ramesh et al., 2021; Saharia et al., 2022) establishing strong text-to-image capabilities and
recent video diffusion models(Blattmann et al., 2023b; Polyak et al., 2024; Chen et al., 2025c; 2023;
Yang et al., 2024; Blattmann et al., 2023a; Kong et al., 2024; Brooks et al., 2024; Ma et al., 2025a)
enabling scalable video generation. To improve controllability, models including ControlNet, T2I-
Adapter(Zhang et al., 2023b; Mou et al., 2024) introduce external condition modules, while editing
frameworks like InstructPix2Pix, EMU-Edit (Brooks et al., 2023; Sheynin et al., 2024) support
instruction-driven refinement. Recently, unified image generation has emerged, with OmniGen,
OmniControl, and UniReal (Xiao et al., 2025; Tan et al., 2024; Chen et al., 2025e) expanding from
generation to reference-guided editing. General editing methods (Wei et al., 2024; Zhao et al., 2024;
Liu et al., 2025b; Shi et al., 2024b; Zhang et al., 2023a) further highlight this trend. In contrast,
the video domain remains dominated by single-task frameworks such as Video-P2P, MagicEdit,
MotionCtrl (Liu et al., 2024c; Liew et al., 2023; Wang et al., 2024c; Liu et al., 2025a). Attempts at
unification include AnyV2V (Ku et al., 2024), which requires task-specific pipelines, VACE (Jiang
et al., 2025), which relies on heavy adapter designs. Video Alchemist (Chen et al., 2025d) and Movie
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Table 6: Model capabilities across understanding, generation, editing, and in-context generation.
✓indicates support; ✗indicates not supported. The last row is highlighted.

Model Understanding Image Gen. Video Gen. Image Edit. Video Edit. In-context Video Gen.

LLaVA-1.5 ✓ ✗ ✗ ✗ ✗ ✗
SD3-medium ✗ ✓ ✗ ✗ ✗ ✗
FLUX.1-dev ✗ ✓ ✗ ✗ ✗ ✗
QwenImage ✓ ✓ ✗ ✓ ✗ ✗
HunyuanVideo ✗ ✓ ✗ ✗ ✗ ✗
Show-o ✓ ✓ ✗ ✗ ✗ ✗
Janus-Pro ✓ ✓ ✗ ✓ ✗ ✗
Emu3 ✓ ✓ ✗ ✓ ✗ ✗
BLIP3-o ✓ ✓ ✗ ✗ ✗ ✗
BAGEL ✓ ✓ ✗ ✓ ✗ ✗
OmniGen2 ✓ ✓ ✗ ✗ ✗ ✗
VACE ✗ ✓ ✓ ✗ ✗ ✓
VOGUE ✓ ✓ ✓ ✓ ✓ ✓

Weaver (Liang et al., 2025) use adapter-based designs and are dedicated to in-context generation.
FullDiT (Ju et al., 2025), which supports multi-condition video generation but lacks editing, and
UNIC (Ye et al., 2025b), which unifies tasks but depends on task-specific condition bias, limiting
scalability. Yet, compared to images, unified and flexible video generation and editing remains
far less explored. Our work bridges this gap by unifying diverse video tasks under a multimodal
instruction framework. We provide the model capabilities comparison in Table 6.

D TRAINING DETAILS

We adopt qwen2.5VL-7B (Bai et al., 2025) as the MLLM backbone and HunyuanVideo-T2V-
13B (Kong et al., 2024) as the MMDiT backbone. The original HunyuanVideo also uses CLIP as
its text encoder; we remove it and instead employ qwen2.5VL as the unified multimodal embedder.
The released HunyuanVideo checkpoint is a CFG-distilled model, whose distillation embeddings
we discard to simplify the training. To align feature dimensions between qwen2.5VL and Hunyuan-
Video, we apply an MLP with a 4× expansion. Training is conducted on 32 H100 GPUs. We report
training configurations, hyperparameters, and data composition ratios in Table 7, and provide task
example quantity in Table 1.

E LIMITATION AND FUTURE WORK

Our model is trained on diverse tasks with multimodal instructions. While we do not observe task
confusion, it sometimes fails to strictly follow editing instructions, occasionally over-editing unre-
lated regions. Due to backbone limitations, the model also struggles to fully preserve the motion
of original videos, indicating the need for stronger video backbones. Moreover, although VOGUE
generalizes to free-form video editing, its success rate remains lower than in image editing, under-
scoring the greater difficulty of video editing. Future work could explore large-scale video editing
datasets and improved backbones for motion fidelity. Additionally, as VOGUE represents an assem-
bled multimodal generative system capable of producing images, videos, and text, future work could
aim to develop a native multimodal video model trained end-to-end.

F TRAINING DATASET CONSTRUCTION

This section details the construction of our datasets.

F.1 ID-RELATED TASKS

For in-context video generation, which requires identity annotations, we follow the data creation
pipeline of ConceptMaster (Huang et al., 2025). We first extract keyframes from each video and
then use Qwen2.5-VL-7B (Bai et al., 2025) to identify the primary subjects in the video. The
model is prompted to focus on semantically meaningful objects and ignore irrelevant background
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Table 7: Training hyperparameters across different stages. Stage 1: Connector alignment, Stage 2:
Fine-tuning, Stage 3: Multi-task training.

Stages

Hyperparameters Stage 1 Stage 2 Stage 3
(Connector Alignment) (Fine-tuning) (Multi-task)

Learning rate 1× 10−4 2.0× 10−5 2.0× 10−5

LR scheduler Constant Constant Constant
Weight decay 0.0 0.0 0.0
Gradient norm clip 1.0 1.0 1.0
Optimizer AdamW (β1 = 0.9, β2 = 0.95, ϵ = 1.0× 10−15)
Warm-up steps 50 50 50
Training steps 15K 5K 15K
EMA ratio - 0.9999 0.9999
# Training samples O(50)M O(10)K Mixed tasks (Table 1)
Gen resolution (min, max) (240, 480) (480, 854) (480, 854)
Gen frames (min, max) (1, 1) (1, 129) (1, 129)
Und resolution (min, max) (240, 480) (480, 854) (480, 854)
Und frames (min, max) (1, 1) (1, 8) (1, 8)
Diffusion timestep shift 5.0 5.0 5.0

Data sampling ratio
Text to Image 0.7 0.0 0.0
Text to Image(High Quality) 0.0 0.7 0.05
Text to Video 0.2 0.0 0.0
Text to Video(High Quality) 0.0 0.2 0.05
Image Reconstruction 0.1 0.1 0.0
Image to Video 0.0 0.0 0.1
Image Editing 0.0 0.0 0.3
Image Style Transfer 0.0 0.0 0.1
In-Context Video Editing 0.0 0.0 0.1
In-Context Video Generation 0.0 0.0 0.2
In-Context Image Style Transfer 0.0 0.0 0.1

Table 8: Training dataset quantity

Task Input #Examples

Text to Image txt 10K

Text to Video txt 12K

Image to Video img+txt 12K

Image Editing img+txt 500K

Image Style Transfer img+txt 17K

In-Context Video Editing (swap, addition, delete, style) ref-img × n + video + txt 16K

In-Context Video Generation ref-img × n + txt 6K

In-Context Image Style Transfer ref-img × n + img + txt 17K

elements. Based on the subject tags generated by the Qwen2.5-VL-7B (Bai et al., 2025), we obtain
subject bounding boxes on the first frame with Grounding DINO (Liu et al., 2024d), We filter out
videos with target areas that are either too small or too large. The lower bound is 10% of the
frame and the upper bound is 60% of the frame. We then use apply SAM2 (Ravi et al., 2024) to
obtain object segmentation masks from the source video. To further filter out object tracks that are
not consistently visible (e.g., those that are too small in most frames or segmented unreliably), we
compute a visibility consistency score. For each track, we count the number of frames in which the
object’s mask area exceeds a preset area threshold and divide this by the total number of frames in
the track. Frames where the object is too small or poorly segmented do not contribute to the score.
A higher score indicates that the subject remains clearly visible for most of the video. We discard
tracks whose visibility consistency score falls below a predefined threshold. After this stage, we get
sources videos and subject masks.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Source video Masked Video Inpainted VideoSubject Image

Input Target

In Context Swap

In Context Addition

In Context Deletion

Figure 7: In-Context task dataset construction examples. The top section illustrates our pipeline: we first
extract the subject image from the initial frame, then apply SAM2 (Ravi et al., 2024) to obtain video masks,
and subsequently perform video inpainting based on these masks. The bottom section shows how we group the
resulting images and videos into input–target pairs to form a dataset.

As demonstrated in Figure 7, to build in-context video tasks, we leverage an inpainter model.

For the object swap task, the inpainter is instructed to fill the masked region using the text tags
predicted by Qwen2.5-VL (Bai et al., 2025). To construct training pairs for this task, we use the
inpainted video together with the subject image as the input, and the original video as the target.

For the object removal and addition tasks, we do not provide explicit textual instructions to the
inpainter. Instead, the model fills the masked region based solely on the surrounding visual context,
effectively removing the target object while preserving the background. For the addition task, we
construct training pairs by using the inpainted video and the subject image as input, with the original
video as the target. For the deletion task, we use the original video as the input and the inpainted
video as the target.

To construct editing instructions for each pair of data, we employ Qwen2.5-VL-72B (Bai et al.,
2025) to generate precise editing instructions based on the first frame of the input video and and the
first frame of the target video.
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Annotator Instructions
You are given two inputs:

– Source video
– Edited video

A sample should be accepted only if it satisfies all three dimensions:

1. Video Quality
• The edited region is clear, stable, and free of severe blur.
• No obvious artifacts such as texture duplication, holes, melting shapes, or structural

collapse.
• Motion is temporally consistent with no strong flicker or jitter.

2. Instruction Following
• The edit correctly follows the given instruction (e.g., object removal, addition, or

swap).
3. Consistency With the Source Video

• No unintended changes or over-editing outside the target region.
• The edited content matches the original motion, lighting, and scene dynamics

across frames.

Figure 8: Annotator instruction used for human filtering of in context task video data.

The inpainter is built on a 1B-parameter model with an architecture similar to Wan2.1 (Wan et al.,
2025), which employs cross-attention modules for text conditioning and self-attention for visual
tokens. We select and copy an interleaved half of the Transformer blocks from the original DiT to
form the control net. While the original DiT processes noisy video tokens together with text tokens,
the newly added control blocks operate on the masked video, the corresponding masks, and the text
tokens. The output of each control block is injected back into the DiT as an additive control signal.

To train the video inpainter, we use the open source dataset VIVID-10M (Hu et al., 2024b), which
provides source video and object mask for inpainter training.

After constructing the dataset, we conduct a human filtering stage to ensure the final quality of all
edited videos. Annotators are provided with both the source video and the edited video and evaluate
each sample solely based on three criteria: video quality, instruction following, and consistency with
the source video(degree of overedit).

For object removal and addition tasks, a sample is accepted only if the edit satisfies all three di-
mensions: (1) high video quality, meaning the edited region is clear and artifact-free; (2) correct
execution of the instruction, such as fully removing or appropriately adding the target object; and
(3) consistency with the original video, ensuring natural backgrounds and no over-editing beyond
the target region. Any sample exhibiting artifacts, partial edits, or temporal flicker is rejected.

For object swap tasks, annotators apply the same three metrics. A sample is accepted only if (1)
the edited content is visually stable and free of distortions, (2) the swap operation correctly follows
the instruction, and (3) the resulting video remains consistent with the original motion, lighting, and
scene dynamics. Samples containing structural distortions, unnatural textures, or temporal incon-
sistency are rejected. Identity verification is unnecessary, as the source video already defines the
intended target appearance.

F.2 STYLIZATION

Following UNIC (Ye et al., 2025b), Text-to-Video (T2V) models are capable of generating stylized
videos with high visual quality and strong fidelity to a given reference style image. Instead of
directly stylizing an existing real video, we leverage this capability to first produce a high-quality
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stylized video using a T2V model. We then convert this stylized video into a realistic counterpart
using a stylized-to-real ControlNet Video DiT model.

The input to the ControlNet is a gray tile signal. Specifically, we downsample the video spatially by
a factor of 8 and then upsample it by the same factor to remove high-frequency details, producing a
low-fidelity tile image. We further discard the color information by converting this tile image into
grayscale. This results in a structural guidance signal that preserves spatial layout while suppressing
style and texture.

Similar to StyleMaster (Ye et al., 2025c), the ControlNet is built on a 1B-parameter DiT architecture
similar to Wan2.1 (Wan et al., 2025), which combines cross-attention for text conditioning with
self-attention over visual tokens. We construct the ControlNet by copying an interleaved half of
the Transformer blocks from the original DiT. While the original DiT processes noisy video tokens
alongside text tokens, the ControlNet blocks operate on the gray tile signal together with the text
tokens. The output of each ControlNet block is injected back into the DiT through additive residual
connections.

We train the stylized-to-real ControlNet using 10K video pairs in which both the input and target
videos are real. During training, the model therefore learns a real-to-real reconstruction task. Since
the control signal (the gray tile) preserves only coarse spatial structure while discarding color, de-
tails, and style, the model learns to generate realistic content guided only by spatial layout. At
inference time, the model can effectively perform stylized-to-real mapping because the stylized in-
put video is also converted into a gray-tile signal, which contains only spatial layout information
and thus matches the training distribution.

F.3 IMAGE EDITING, TEXT-TO-VIDEO AND TEXT-TO-IMAGE

We leverage state-of-the-art image-editing models such as FLUX.1 Kontext (Labs et al., 2025) to
construct a diverse collection of edited images. We further incorporate high-quality open-source
datasets, including OmniEdit (Wei et al., 2024), ImgEdit (Ye et al., 2025a), and ShareGPT-4o-
Image (Chen et al., 2025b). Following OmniEdit, we apply an additional VLM-based filtering stage
on the curated image-editing dataset. Each (source, edited) pair is evaluated using Qwen2.5-VL,
which assigns 0–10 scores along three core dimensions:

• Image Quality: the edited region must be sharp and visually stable, with no artifacts such
as duplicated textures, holes, melting shapes, unnatural boundaries, or structural distor-
tions.

• Instruction Following: the edit must correctly execute the given instruction (e.g., object
removal, addition, or swap), without partial or incorrect modifications.

• Consistency With the Source Image(degree of overedit): no unintended changes or over-
editing may occur outside the target region, and the edited content must remain coherent
with the original scene’s lighting, colors, and geometry.

Samples falling below threshold on any dimension are discarded. After filtering, we retain approxi-
mately 500K high-quality edited samples.

For text-to-image and text-to-video generation tasks, we utilize additional internal datasets. A de-
tailed summary of all data sources is provided in Table 8.

G MODEL DESIGN

G.1 MODEL DESIGN

Our model design study addresses the following question: What is the most effective approach for
aligning a pretrained MLLM with a diffusion generator during Stage 1 training?

We investigate three design choices for aligning the pretrained MLLM with the diffusion generator
in Stage 1. Throughout this stage, the MLLM remains frozen, while we vary the connector and DiT
architectures across three variants.
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Generate an video of the man in <Image 1> 
holds <Image 2> in the scene of <Video 1>

MLLM

Text

DiT
Cross Attention

Self Attention

Noisy Video Token

MLLM

Text

Learnable Query

(a) Cross Attention (b) Cross Attention with Learnable Query

MLLM

MMDiT

Text

Noisy Video Token
(c) Self Attention

DiT
Cross Attention

Self Attention

Noisy Video Token

Self Attention

Figure 9: Three design choices for aligning the MLLM with the diffusion generator in Stage 1 training.
We keep the MLLM fixed and vary the connector and DiT architecture across three variants: (a) the DiT
uses cross-attention for text conditioning, where we replace its original text encoder with an MLP layer that
aligns the final hidden states from the MLLM; (b) building upon (a), we introduce a learnable query design
and extract the final hidden states from these learnable queries; and (c) our VOGUE architecture employs an
MMDiT design that leverages self-attention for text conditioning.

(a) Cross Attention

(b.1) Cross Attention 
with Learnable Query

(b.2) Cross Attention 
with Learnable Query

(DiT Frozen)

(c) Self-Attention 
(VOGUE)

Prompt: an elephant wearing a colorful birthday hat is walking along the sandy 
beach, its large ears flapping gently in the breeze as it makes its way towards the 
ocean, the sound of seagulls filling the air, with the sun shining brightly overhead, 
casting a warm glow over the entire scene

Prompt: A giant panda with soft, fluffy fur and a gentle demeanor is sitting on a 
wooden dock by the serene shores of a tranquil lake, strumming the strings of a 
guitar with its paws

Figure 10: Qualitative comparison of design choices for aligning the MLLM with the diffusion generator
in Stage 1 training. In all settings, the MLLM is kept frozen. (a) Cross-Attention DiT: we train the MLP
connector and DiT; (b.1) Cross-Attention DiT with Learnable Query: following (Pan et al., 2025), we train
the learnable query tokens, MLP connector, and DiT; (b.2) similar to (b.1), but the DiT is frozen while only
the learnable query tokens and MLP connector are trained; (c) VOGUE (MMDiT): only the MLP connector is
trained, with all other components frozen. All variants are trained for 15K steps. Among all variants, VOGUE
(MMDiT) demonstrates the best prompt alignment.

(a) Cross-attention DiT. The first variant adopts a cross-attention–based DiT for text conditioning,
where we replace its original text encoder with an MLP connector that projects the final hidden
states from the MLLM into the DiT text embedding space. Both the MLP and DiT are trained.

(b) Cross-attention DiT with Learnable query. Building upon (a), we use a learnable query mecha-
nism following Pan et al. (2025). Specifically, we extract the final hidden states of learnable queries
from the MLLM, which are then passed through an MLP layer and used to replace the original
text conditioning in the DiT’s cross-attention module. We test two variants: (1) jointly training the
learnable queries, MLP layer, and DiT (as in Pan et al. (2025)); and (2) training only the learnable
queries and MLP while keeping the DiT frozen.
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Table 9: Quantitative comparison of VOGUE with VOGUE w/o MLLM on in-context editing task. Best scores
are shown in bold, and second-best are underlined.

In Context Insert
Model Identity Alignment Video Quality

CLIP-I↑ DINO-I↑ CLIP-score↑ Smoothness↑ Aesthetic↑
VACE 0.513 0.105 0.103 0.947 5.693
UNIC 0.598 0.245 0.216 0.961 5.627
Kling1.6 0.632 0.287 0.246 0.993 5.798
Pika2.2 0.692 0.399 0.253 0.951 5.591
VOGUE w/o MLLM 0.679 0.325 0.232 0.959 5.981
VOGUE 0.693 0.398 0.259 0.943 6.031

In Context Swap
Model Identity Alignment Video Quality

CLIP-I↑ DINO-I↑ CLIP-score↑ Smoothness↑ Aesthetic↑
VACE 0.703 0.391 0.218 0.960 5.961
UNIC 0.725 0.429 0.242 0.971 6.056
Kling1.6 0.707 0.437 0.211 0.995 6.042
Pika2.2 0.704 0.406 0.211 0.967 5.097
AnyV2V 0.605 0.229 0.218 0.917 4.842
VOGUE w/o MLLM 0.645 0.318 0.227 0.968 6.043
VOGUE 0.728 0.427 0.244 0.973 6.190

In Context Delete
Model Video Reconstruction Alignment Video Quality

PSNR↑ RefVideo-CLIP↑ CLIP-score↑ Smoothness↑ Aesthetic↑
VACE 20.601 0.874 0.206 0.968 5.637
UNIC 19.171 0.817 0.217 0.970 5.493
Kling1.6 15.476 0.888 0.208 0.998 4.965
AnyV2V 19.504 0.869 0.205 0.964 5.325
VideoPainter 22.987 0.920 0.212 0.957 5.403
VOGUE w/o MLLM 11.202 0.816 0.196 0.971 5.385
VOGUE 17.980 0.888 0.214 0.971 5.498

(c) VOGUE architecture. The main difference in this variant lies in its use of MMDiT, which em-
ploys self-attention for joint text–video interaction instead of cross-attention. We replace MMDiT’s
original text encoder with an MLP connector that projects the final hidden states from the MLLM
into the MMDiT’s text embedding space. Only the MLP layer is trained, while both the MLLM and
MMDiT remain frozen.

For the cross-attention variants, we use an internal model with an architecture similar to (Wan et al.,
2025), originally based on a T5 text encoder(Raffel et al., 2020), which we replace with Qwen2.5-
VL. For VOGUE, we follow the implementation details described in subsection 3.1. All variants are
trained for 15K steps, and the qualitative results are presented in Figure 10.

Our findings show that the cross-attention variants require unfreezing the DiT generator to achieve
effective alignment with the MLLM, as evidenced by the comparison between (b.2) and (b.1).
Nevertheless, even after unfreezing, variants (a) and (b.1) exhibit limited text-following abil-
ity—particularly for compositional object prompts. In contrast, the VOGUE architecture achieves
efficient and robust alignment by training only the MLP connector.

G.2 ADDITIONAL ABLATION STUDY

We conducted an ablation study by training VOGUE without MLLM and using the original text en-
coders with the same dataset and training settings. This experiment addresses whether incorporating
an MLLM is necessary. Our results are presented in Table 9.

Our analysis shows that the MLLM is particularly important for tasks requiring strong visual ground-
ing. For example, in in-context generation, when the reference image is not a close-up shot of a
single object and instead contains multiple objects, the model must correctly ground the instruction
to the appropriate region or entity. Models using only the original text encoder often fail in such
cases.
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Additionaly, in editing tasks that require fine-grained grounding—such as deleting a small object at
the border of the frame (e.g., a clock on the wall), or swapping an object at the edge of the video
(e.g., a paper bag on the floor), or tasks requiring prior visual knowledge (e.g., replacing an object
with Pikachu). The VOGUE w/o MLLM baseline often fails to follow these instructions, whereas
VOGUE succeeds.

H EVALUATION BENCHMARK

H.1 VISUAL UNDERSTANDING AND GENERATION

For the text-to-video generation task, we use the prompt suite provided in VBench Huang et al.
(2024), which contains 946 prompts covering 16 dimensions, including subject consistency, back-
ground consistency, aesthetic quality, imaging quality, object class, multiple objects, color, spatial
relationship, scene, temporal style, overall consistency, human action, temporal flickering, motion
smoothness, dynamic degree, appearance style.

H.2 IN-CONTEXT VIDEO GENERATION

For the in-context video generation, we construct a test set consisting of 20 cases, evenly split
between single-ID and multi-ID scenarios. For each case, we collect ID images and carefully design
prompts to ensure reasonable evaluation. As shown in Fig. 11, we build an ID pool with diverse
images, ranging from cartoons to real-world subjects, including humans, animals, and common
objects. We then select ID images from this pool and design appropriate prompts for them.

IDs Pool

Choose IDs Design Prompt A corgi is 

playing in the 

swimming pool.

Figure 11: Construction pipeline of in-context video generation test set.

The single-ID examples are shown in Fig. 12. The single ID can have either one ID image, as shown
by the cat example, or multiple shots of the same ID, as demonstrated by the human example.

As shown in Fig. 13, in the multiple-ID scenarios, the number of IDs in a case ranges from 2 to
4, with larger numbers leading to higher difficulty. Our prompts focus on the interaction between
these ID images and describe the relationships among them. For example, in the first case, the
prompt describes a woman sitting on the sofa beside the bag, which connects the woman, sofa, and
bag provided in the ID images. In the second case, the relationship between the two characters is
described as Psyduck riding Pikachu.

H.3 IN-CONTEXT VIDEO EDITING

For the in-context video editing, we evaluate on the UNICBench Ye et al. (2025b) across four tasks:
ID Insertion, ID Swap, ID Deletion, and Stylization. Since our setting differs from other video
editing models (which may require masks to indicate the edited area, while ours uses instructions
instead), we demonstrate in detail how we derive our inputs from the existing video editing bench-
mark.
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Panoramic shot, a man leaning against a tree, playing a 

beautiful melody on the guitar in his hand. His smile is 

like the chords in the music, harmonious and warm. The 

camera slowly moves around the man.

IDs Prompt

A cat is swimming in the pool

Figure 12: Example of single-ID test case in in-context video generation test set.

IDs Prompt

The scene begins with a close-up of the vintage car’s door as it 

swings open, the reflection of warm lights gliding over its 

polished surface. A woman's leg steps out gracefully, her 

elegant beige dress flowing as she exits. The camera follows 

her from behind as she strides with quiet confidence, heels 

clicking against the sleek floor.As she moves to the right, the 

camera smoothly shifts, tracking her movement. In front of 

her, an opulent, futuristic leather sofa sits under soft ambient 

lighting. Resting atop the seat is the ornate handbag, its 

detailed pattern catching the glow. She approaches, pausing 

briefly before lowering herself onto the sofa with effortless 

poise, settling beside the bag. A soft smile forms as she gently 

places her hand on it, exuding quiet luxury and sophistication. 

Psyduck rides Pikachu forward, and the camera follows 

their movement

Figure 13: Example of multi-ID test case in in-context video generation test set.
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First, as shown in Fig. 14, for ID insertion, the elements in UNICBench consist of a reference video,
reference ID, and a caption for the target video. The goal of ID insertion is to naturally integrate
new objects or elements from the reference ID into the target video. Here we replace the caption
with a more direct instruction.

Elements in 

UNICBench

Inputs of 

VOGUE

Add an octopus from the image 

at the edge of the sea.

An octopus at the edge of 

the sea. The octopus has 

an orange-yellow body 

with clearly visible 

suckers on its tentacles.

Figure 14: Example of ID insertion test case.

For ID swap, the elements in UNICBench consist of a reference video, mask, reference ID, and a
caption for the target video. The goal of ID swap is to replace specific elements in the target video
with corresponding elements from the reference ID while preserving the original video’s context
and motion. In our setting, we don’t need a mask to indicate the editing area; instead, we use a more
convenient instruction-based approach. For example, in Fig. 15, we simply use the instruction ”Use
the man’s face in the reference image to replace the man’s face in the video.”

Elements in 

UNICBench

Inputs of 

VOGUE

Use the man's face in the reference 

image the image to replace the man's 

face in the video.

A man in a black tuxedo 

stands in a festive, dimly 

lit environment filled 

with sparkling lights and 

decorations.

Figure 15: Example of ID swap test case.

For ID deletion, UNICBench provides a reference video, mask, and a caption for the target video.
ID deletion aims to naturally remove specified objects or elements from the video while maintaining
visual consistency and filling the removed areas with appropriate background content. While current
video editing methods use masks to specify the object for removal, our approach simplifies this
through text instructions. As demonstrated in Fig. 16, we use straightforward prompts such as
”Delete the computer in the video.”

For stylization, the existing elements in UNICBench include a style reference image, target caption,
and reference video. The purpose of stylization is to transform the visual appearance of the target
video to match the artistic style of the reference image while preserving the original video’s content
and motion dynamics. We standardize the instruction format to ”Transform the video into the style
of the reference image,” as shown in Fig. 17.
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Elements in 

UNICBench

Inputs of 

VOGUE
Delete the computer in the video.

A man in a light grey suit and 

yellow tie is seated at an office 

desk, while a woman in a white 

blazer with a black collar 

stands beside him, holding a 

glass of water. 

Figure 16: Example of ID deletion test case.

Elements in 

UNICBench

Inputs of 

VOGUE

Transform the video of into the 

style of the reference image.

A woman with long 

hair and glasses 

stands near a river.

Figure 17: Example of stylization test case.
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