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Abstract
Maximum matching is one of the most funda-
mental combinatorial optimization problems with
applications in various contexts such as balanced
clustering, data mining, resource allocation, and
online advertisement. In many of these applica-
tions, the input graph is massive. The sheer size
of these inputs makes it impossible to store the
whole graph in the memory of a single machine
and process it there. Graph sparsification has been
an extremely powerful tool to alleviate this prob-
lem. In this paper, we study a highly successful
and versatile sparsifier for the matching problem:
the edge-degree constrained subgraph (EDCS) in-
troduced first by Bernstein & Stein 2015. The
EDCS has a parameter β ≥ 2 which controls
the density of the sparsifier. It has been shown
through various proofs in the literature that by
picking a subgraph with O(nβ) edges, the EDCS
includes a matching of size at least 2/3−O(1/β)
times the maximum matching size. As such, by in-
creasing β the approximation ratio of EDCS gets
closer and closer to 2/3. In this paper, we propose
a new approach for analyzing the approximation
ratio of EDCS. Our analysis is tight for any value
of β. Namely, we pinpoint the precise approxima-
tion ratio of EDCS for any sparsity parameter β.
Our analysis reveals that one does not necessarily
need to increase β to improve approximation, as
suggested by previous analysis. In particular, the
best choice turns out to be β = 6, which achieves
an approximation ratio of .677! This is arguably
surprising as it is even better than 2/3 ∼ .666, the
bound that was widely believed to be the limit for
EDCS.
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1. Introduction
Maximum matching is one of the most fundamental combi-
natorial optimization problems. Recall that a matching in a
graph is a collection of edges that do not share any vertices.
A maximum matching is a matching of the largest possible
size.

The matching problem finds applications in various contexts
such as data mining, resource allocation, online advertise-
ment, bioinformatics, and many others. For instance, maxi-
mum matching can improve the quality of data clustering
(Assadi et al., 2019b), it can produce fair k-center clustering
(Jones et al., 2020), or can be used to discover subgraphs for
bioinformatics applications (Berger et al., 2008; Langmead
& Donald, 2004). In most of these applications, the input
graph is massive. The sheer size of these inputs makes it
impossible to store the whole graph in the memory of a
single machine and process it there. This has motivated a
large and beautiful body of work over the past two decades
on large-scale algorithms for this problem.

Graph Sparsification: Graph sparsification is a powerful
tool to process massive graphs. A graph sparsifier receives
an n-vertex graph that may have as many as Ω(n2) edges
and sparsifies it into a sparse subgraph, say with O(n) edges,
that preserves some property of it. Graph sparsifiers have
been instrumental tools for various graph problems. Cut
sparsifiers (Nagamochi & Ibaraki, 1992), spectral sparsi-
fiers (Spielman & Teng, 2011), and spanners (Abboud &
Bodwin, 2017) are some famous examples. Graph spar-
sifiers did not find many applications for matchings until
nearly a decade ago when Bernstein & Stein 2015 intro-
duced the edge-degree constrained subgraph (EDCS). See
in particular the nice paper of Assadi & Bernstein 2019 for
an in-depth introduction to EDCS and an overview of some
of its applications.

Over the years, the EDCS has been successfully applied
to a variety of large-scale settings including the massively
parallel computations (MPC) setting which is a common
theoretical model of MapReduce-style computation (Assadi
et al., 2019a), the dynamic setting (Bernstein & Stein, 2015;
Behnezhad & Khanna, 2022; Roghani et al., 2022), the
streaming setting (Bernstein, 2020; Assadi & Behnezhad,
2021), the sublinear time setting (Behnezhad et al., 2023;
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Bhattacharya et al., 2023), communication complexity
(Azarmehr & Behnezhad, 2023), and the stochastic match-
ing setting (Assadi & Bernstein, 2019).

In this paper, we revisit the key property of EDCS: that
it obtains a good approximation of maximum matching
while at the same time being sparse. To put our results into
perspective, we first need to provide some background and
overview existing bounds.

Background

Let us start by stating the formal definition of EDCS.

Definition 1.1 (Bernstein & Stein 2015). Given a graph
G, a subgraph H ⊆ G is an edge-degree constrained sub-
graph with parameters (β, β−), or a (β, β−)-EDCS, if the
following conditions hold:

1. for all edges (u, v) ∈ H , degH(u) + degH(v) ≤ β,

2. for all (u, v) ∈ G \H , degH(u) + degH(v) ≥ β−.

The following proposition shows that a (β, β−)-EDCS al-
ways exists for all integers β > β− ≥ 1.

Proposition 1.2 (Bernstein & Stein 2015). Any graph G
contains a (β, β−)-EDCS for any integers β > β− ≥ 1,
and one can be found greedily in polynomial time.

Moreover, since the edge-degrees in a (β, β−)-EDCS are all
upper bounded by β by the first property of Definition 1.1,
so are the vertex degrees. Therefore, the EDCS has at most
O(nβ) edges. This means that smaller values of β are more
desirable as the subgraph picked will be a sparser.

It will be instructive to set β = 2 and β− = 1. It can be eas-
ily confirmed that any (2, 1)-EDCS is a maximal matching
(i.e., a matching that is not a subset of another matching)
and that any maximal matching is a (2, 1)-EDCS. It is well-
known that a maximal matching has at least half as many
edges as a maximum matching and that this bound is tight.1

The key property of EDCS is that by slightly increasing β
and keeping β− close to it, the approximation ratio improves
to almost 2/3. Formally:

Proposition 1.3 (Bernstein & Stein 2015; 2016; Assadi &
Bernstein 2019; Behnezhad 2021). Given a graph G, and
parameters β ≥ 1/ε and β− ≥ (1 − ε)β, any (β, β−)-
EDCS of G contains a (2/3−O(ε))-approximate maximum
matching of G.

The approximation guarantee of Proposition 1.3 is close to
optimal. In particular, for infinitely many choices of

1 ≤ β− < β,

1Take G to be a path with 3 edges and take H to be the subgraph
only containing the middle edge.
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Figure 1. An example due to (Bernstein & Stein, 2015) where a
(β, β − 1)-EDCS does not obtain a better than 2/3-approximation
for any odd β = 2k + 1. Here we have a bipartite graph, each
side having three equally sized vertex sets A,B,C. The solid blue
lines denote the EDCS edges, and the dashed red lines denote the
edges not in the EDCS. The vertices in B have degree k in the
EDCS, the vertices in C have degree k + 1 in the EDCS, and the
vertices in A have degree one. Note that any edge in the EDCS has
edge degree at most β = 2k + 1. The only edges missing from
the EDCS are the dashed B-B edges which all have edge degree
exactly β − 1 = 2k. While the graph G has a perfect matching,
the EDCS can only match 2/3 of the vertices.

(particularly for all odd β = 2k + 1 and all β− < β) exam-
ples have been known since the original paper of (Bernstein
& Stein, 2015) where a (β, β−)-EDCS does not include a
better than 2/3-approximation. See Figure 1.

Our Contribution

In most applications of EDCS, we would like to set β to
be as small as possible to achieve sparser subgraphs.2 On
the other hand, making β smaller would make the approxi-
mation guarantee of Proposition 1.3 worse. It is therefore
natural to study the trade-off between β and the approxi-
mation ratio. Unfortunately, known proofs are too loose,
especially, for small values of β. In this paper, we propose a
new approach to analyze the approximation ratio of EDCS.
Our analysis is tight and precisely pinpoints the exact ap-
proximation ratio achieved for any given β. Table 1 states
the approximation ratio for various values of β and β−.

Our Results: Our analysis reveals that the approximation
ratio of (β, β−)-EDCS, when β− = β − 1, behaves very
differently from when β− < β − 1. Note that this is still in
the regime where a (β, β−)-EDCS exists and can be found
in polynomial time. For instance, for any odd value of β ≥
7, a (β, β − 1)-EDCS obtains an exact 2/3-approximation.
The approximation turns out to be quite surprising when
considering even values of β ≥ 6. For instance, a (6, 5)-

2The only exception is the deterministic dynamic algorithm
of (Bernstein & Stein, 2015) for maintaining EDCS where larger
values of β help as they make the EDCS more “robust” to changes.
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EDCS obtains a .677-approximation which is even better
than 2/3 ∼ .666! While this may seem to contradict the
example of Figure 1, it has to be noted that Figure 1 requires
β to be odd and does not work when it is even. Moreover,
as we increase β in the even case, the approximation ratio
gets worse and approaches 2/3 (see Figure 4). We note
that when β is even, β − 1, which is the edge-degree lower
bound for missed edges, is odd. This means that the two
endpoints of such missed edges must have different degrees.
Such imbalance between the degrees of the vertices with
missed optimal edges is precisely the reason for a better than
2/3 approximation. When we increase β, this imbalance
becomes less significant (as the ratio of degrees gets closer
and closer to 1) and so the approximation becomes worse.
This is in sharp contrast with previous analysis such as the
one in Proposition 1.3 where increasing β improves the
approximation.

We emphasize that going beyond 2/3-approximation for the
maximum matching problem is considered a difficult task in
many settings. We refer the interested reader to (Assadi &
Behnezhad, 2021; Behnezhad et al., 2023) where the precise
problem of beating 2/3-approximation is studied in various
settings. We hope that our discovery that a (6, 5)-EDCS
beats 2/3-approximation combined with the known bound
of Proposition 1.2 that such EDCS’s can be found via a
simple greedy algorithm paves the way for future progress
on this important question.

Our Analysis: While previous analysis of EDCS were
analytical, our analysis is based on a new factor-revealing
linear program (formalized as LP 1) that we show provides
the exact approximation ratio of (β, β−)-EDCS for any
given parameters β, β−.

We then provide the claimed approximation guarantees by
solving this LP. We note that a factor revealing LP has
also been used to analyze a hierarchical version of EDCS
in (Behnezhad & Khanna, 2022). However, the factor re-
vealing LP there is different from ours and, importantly,
is not tight. For instance, the LP used by (Behnezhad &
Khanna, 2022) only guarantees a 0.6-approximation for a
(6, 5)-EDCS which is way smaller than the correct bound
of 0.677 returned by our tight LP.

2. Preliminaries
In this section, we introduce the notations and definitions
we use, and provide some background on matchings.

A graph G is bipartite if its vertices can be partitioned into
two sets L and R, such that every edge has exactly one
endpoint in L and one endpoint in R. We use G(L,R) to
denote a bipartite graph with partitions L and R.

Given a set of vertices A, we use NG(A) (or N(A) when G

is clear from the context) to denote the set of its neighbors.
For a vertex u, we use degG(u) to denote its degree in G.

Given a graph G, a matching is a subset of edges such that
no two edges share an endpoint. We say that a matching
M covers a vertex u, or that u is matched in M , if there
is an edge adjacent to u in M . A maximum matching is a
matching with the largest possible number of edges. We use
µ(G) to denote the size of a maximum matching in G.

The following is a well-known primal-dual result for bipar-
tite maximum matching.
Proposition 2.1 (Extended Hall’s Theorem). Given a bipar-
tite graph G(L,R), it holds that

µ(G) = min
A⊆L

|N(A)|+ |L \A| .

The vertex set that minimizes the right-hand side is referred
to as a Hall’s witness for G. Furthermore, for every maxi-
mum matching M and Hall’s witness A, every edge of M
covers exactly one vertex in N(A) ∪ (L \A).

A

N(A)

L \ A

R \ N(A)

Figure 2. An example of Hall’s witness. The curvy red edges
denote a maximum matching, and A is a Hall’s witness. Generally,
considering a vertex set A ⊆ L and any matching, the vertices
in A are matched to a subset of N(A). Therefore, even if all the
vertices in L \A are somehow matched, the matching has size at
most |N(A)| + |L \A|, i.e. µ(G) ≤ |N(A)| + |L \A|. Hall’s
theorem states that there exists a vertex set A, referred to as a
Hall’s witness, for which this inequality is tight.

3. A New Analysis of the EDCS via a
Factor-Revealing LP

In this section, we present the linear program that “re-
veals” the approximation ratio of EDCS for fixed parameters
(β, β−). We prove that it is tight, i.e. any pair (G,H) con-
sisting of a bipartite graph G(L,R) and a (β, β−)-EDCS
H ⊆ G can be converted to a feasible solution of the LP
and vice versa.
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The edges and the vertices of the graph are divided into
groups based on their properties and their role in the graph
(e.g. for a vertex this includes its degree, whether it is
matched in the maximum matching, where it is in the Hall’s
witness, etc.) We refer to these properties as a vertex profile
or an edge profile, and use V P and EP to denote the set of
valid vertex profiles and edge profiles, respectively. Then,
a variable is designated to each group of vertices or edges
with the same profile. Its value is set (proportionally) to the
number of vertices or edges in that group.

The easiest way to understand the LP is to see how a pair
(G,H) is converted to a feasible solution, where G is a
bipartite graph, and H is a (β, β−)-EDCS for G. First, fix
a maximum matching M∗ of G and a maximum matching
M of H , along with a Hall’s witness A for H , i.e. |M | =
µ(H) = |NH(A)|+ |L \A|. Without loss of generality, we
can assume that G contains no edges other than M∗ ∪H .
Because those edges can be removed from the graph, in
which case µ(G) and µ(H) remain unchanged while H is
still a (β, β−)-EDCS.

We divide the vertices and the edges into different groups.
All the vertices or edges in a group have the same properties,
a.k.a. profile, which will be defined shortly. Each variable of
the LP then reflects how many vertices or edges with each
profile there are in the graph. We scale all the numbers by
1/µ(H), that is if there are k vertices with a certain profile,
then the variable corresponding to that vertex profile holds
the value k/µ(H). As a result, the variables corresponding
to the edges in M sum to 1, the variables corresponding to
the edges in M∗ sum to the approximation ratio µ(G)/µ(H)
which we set as the objective function of our LP to be
maximized.

Now, we define the vertex profiles. To do so, we consider all
the possible cases of the following properties for a vertex:

• whether it is in A, L \A, NH(A), or R \NH(A),

• its degree in H , an integer between 0 and β − 1,

• whether it is matched in M , and

• whether it is matched in M∗.

Since we create a variable for each vertex profile, we make
sure to use only valid vertex profiles, so that we do not
create “extra” variables. That is, we have to confirm that the
properties above in a profile make sense together. We have
a total of ten validity conditions, two for the vertex profiles
and (as explained later) eight for the edge profiles. These
conditions are enforced when formulating the LP, and they
are not a part of the LP itself. Specifically, for the vertex
profiles, we assert the following:

1. if a vertex is in NH(A) or L \ A, then it must be
matched in M , because M is a maximum matching of
H and A is a Hall’s witness for H (see Proposition 2.1),
and

2. if a vertex has zero degree in H , then it must be un-
matched in M , since having an edge in M would mean
having degree at least 1.

After considering all the cases and discarding the vertex
profiles that do not satisfy the aforementioned conditions,
we create a variable for each vertex profile. Observe that
any vertex in the graph has a valid profile, i.e. its properties
satisfy the two conditions. Finally, to set the values in our
feasible solution, if there are nv vertices with profile v, we
let the variable xv corresponding to that vertex profile be
equal to nv/µ(H).

To define an edge profile, we consider all the possible cases
of the following properties for an edge:

• the vertex profiles of its endpoints in L and R,

• whether it is in H ,

• whether it is in M , and

• whether it is in M∗.

Checking the validity of an edge profile takes more work.
This is where we enforce the bulk of the properties that G,
H , and M have. Note that if a profile is invalid, we do not
create a variable for it at all. First, some simple consistency
conditions:

3. if the edge is in H , then its endpoint vertex profiles
must indicate a nonzero degree in H ,

4. if the edge is in M (resp. M∗), its endpoint vertex
profiles must indicate that they are matched in M (resp.
M∗),

5. if an edge is in M , it must be (by definition) in H , and

6. there are no edges outside H ∪M∗ (see the beginning
of Section 3).

Then, the conditions concerning the EDCS H (see Defini-
tion 1.1):

7. if an edge is in H , the degrees of its endpoints in H
must sum to at most β, and

8. if an edge is not in H , the degrees of its endpoints in
H must sum to at least β−.
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Finally, the conditions for the Hall’s witness A (see Propo-
sition 2.1):

9. there should be no edges of H between A and R \
NH(A) (by definition), and

10. for every edge of M , exactly one of the following holds:
(i) it has an endpoint in N(A), or (ii) it has an endpoint
in L \A.

Similar to the vertices, we create a variable for each valid
edge profile (i.e. an edge profile that satisfies all the condi-
tions), and set their values proportional to the number of
edges with that profile. That is, if there are ne edges with
profile e, the variable xe corresponding to that profile is set
equal to ne

µ(H) . This completes the explanation of how the
variables are meant to correspond to a graph.

To tie this all together, we need to add the constraints. Most
of the properties of G, H , and M are already encoded in
the vertex/edge profiles. The purpose of the constraints is to
link the number of vertices to the number of edges adjacent
to them, and to ensure that the variables corresponding to
M sum to 1, i.e. everything is scaled by 1/µ(H).

Recall, V P and EP denote the set of valid vertex profiles
and edge profiles, respectively. For every profile v ∈ V P
(resp. e ∈ EP ), we create a variable, and denote it by xv

(resp. xe). We use H(v) (resp. M(v), M∗(v)) to denote the
set of edge profiles that are in H (resp. M , M∗) and one of
their endpoints has profile v. We also use e ∈ M∗ to denote
that the edges with profile e are in M∗, and vdeg to denote
the degree of vertices with profile v in H . The LP is then as
follows:

LP 1: The factor-revealing LP for the approximation
ratio of (β, β−)-EDCS

maximize
∑
e∈EP
e∈M∗

xe

∑
e∈H(v)

xe = vdeg · xv ∀v ∈ V P

∑
e∈M(v)

xe = xv
∀v∈V P

that is matched in M∑
e∈M∗(v)

xe = xv
∀v∈V P

that is matched in M∗

∑
e∈M

xe = 1

xe ≥ 0 ∀e ∈ EP

xv ≥ 0 ∀v ∈ V P

To see how the first three constraints tie the vertex variables
to edge variables, take the first set of constraints as an exam-
ple. These constraints state that for a vertex profile that has
degree d in H , if there are k vertices with this profile, then
there should be d · k edges of H adjacent to these vertices.
The fourth constraint simply states that everything is scaled
by 1/µ(H), therefore the variables corresponding to the
edges of M sum to 1 (recall |M | = µ(H)). With that, we
are ready to state the main theorem of this section.

Theorem 3.1. The optimal objective value for LP 1 is equal
to the approximation ratio of (β, β−)-EDCS. That is, if
the optimal value for LP 1 is r, then for every bipartite
graph G and every (β, β−)-EDCS H ⊆ G, it holds that
r · µ(H) ≥ µ(G). Furthermore, there exists an instance
where this inequality is tight.

We prove the theorem by showing the following two claims
hold.

Claim 3.2. The optimal value of LP 1 is an upper bound
for the approximation ratio of (β, β−)-EDCS. That is, any
pair of a bipartite graph G and (β, β−)-EDCS H ⊆ G can
be converted to a feasible solution of LP 1 such that the
objective value is equal to µ(G)/µ(H).

Proof. The reduction has been partially explained. Given
G and H , we fix a maximum matching M∗ in G, a max-
imum matching M in H , and a Hall’s witness A for H .
Then for every vertex profile v (similarly for every edge
profile e), if the number of vertices with that profile is nv,
we set the value of the corresponding variable xv equal to
nv/µ(H). Note that any vertex (similarly edge) of G corre-
sponds to exactly one vertex profile and the constraints hold
automatically. Therefore, x is feasible.

Now we calculate the objective value for x (denote it by r).

r =
∑
e∈M∗

xe =

∑
e∈M∗ ne

µ(H)
=

µ(G)

µ(H)
,

which concludes the proof.

Claim 3.3. The optimal value of LP 1 is a lower bound for
the approximation ratio of (β, β−)-EDCS. That is, an opti-
mal solution of LP 1 with objective value r can be converted
to a bipartite graph G and a (β, β−)-EDCS H ⊆ G such
that µ(G)/µ(H) = r.

Proof. Take a rational optimal solution x (note that since
the coefficients in the constraints are rational, there exists a
rational optimal solution to the LP). Because x is rational,
there exists a positive integer N such that nv = N · xv and
ne = N · xe is an integer for all profile v and e.

We create a graph G with exactly nv vertices with profile v,
and ne edges with profile e. To start, we create a group of nv
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vertices for each vertex profile v. To connect them, for each
edge profile e we use ne edges between the two endpoint
groups of e (recall that each edge profile indicates the vertex
profiles of its endpoints). This can be done because of
the LP constraints that link the number of edges to the
number of vertices. More specifically, one can start with
the edge profiles of M∗ and match unmatched vertices from
the endpoint groups. Then, move on to the edge profiles
of M \M∗ and match unmatched vertices (w.r.t. M ) from
the endpoint groups. Finally, go over the edge profiles of
H \ (M ∪M∗) and connect the vertices from the endpoint
groups to achieve their designated degree in H .

Now that we have G, we define H , M , M∗, and A sim-
ply by considering what the vertex/edge profiles indicate.
H is a (β, β−)-EDCS of G because of the EDCS validity
conditions for edge profiles (conditions 7 and 8). M is a
maximum matching of H since it is coupled with the Hall’s
witness A. That is, there is a vertex set A ⊆ L such that each
edge of M matches exactly one vertex from (L\A)∪N(A)
(conditions 1, 9, and 10). Finally, M∗ is a maximum match-
ing since otherwise we could choose a larger matching as
M∗ and derive a feasible solution with a larger objective
value, which contradicts optimality.

Now we calculate the approximation ratio in this instance:

µ(G)

µ(H)
=

∑
e∈M∗ ne

µ(H)
=

∑
e∈M∗

xe.

The right-hand side is the objective value for x, i.e. the
optimal value of LP 1, which concludes the proof.

Putting the two claims together, gives Theorem 3.1.

4. Numerical Solutions
4.1. Setup

All of our code3 is written in Python (version 3.10.12) and is
available in the supplementary material. For solving factor-
revealing LP instances, we utilized the Gurobi optimization
package (version 11.0.0). The experiments were conducted
on a computing cluster equipped with 64 cores, each run-
ning at 2.30GHz on Intel(R) Xeon(R) processors, and with
756 GiB of main memory. The operating system used was
Ubuntu 22.04.3 LTS.

4.2. Results

We implement the factor-revealing LP in Section 3 for all
possible values of β, β− ∈ [1, 100] where β > β−. The
largest approximation ratio that we obtain using the factor-
revealing LP is 0.6774 which is achieved for parameter
β = 6 and β− = 5 (see Table 1 and Figure 3).

3The implemented code can be found at the following link.
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Figure 3. Heatmap shows the approximation ratio of (β, β−)-
EDCS for different values of β− (x-axis) and β (y-axis). The
best approximation ratio is shown in a green circle for β = 6 and
β− = 5.

The result of the factor-revealing LP shows that for (β, β −
1)-EDCS when β is an even number larger than 4, the ap-
proximation ratio of the EDCS is larger than 2/3 and as β
grows, the approximation ratio converges to 2/3 (see Fig-
ure 4).

On the other hand, for all other values of (β, β−), the ap-
proximation ratio is always below 2/3, and for a constant
integer c ≥ 2, the approximation ratio of (β, β − c)-EDCS
converge to 2/3 as β goes to infinity (see Figure 5 and Ta-
ble 2).

5. Conclusion
Over the recent years, EDCS has proven to be a successful
matching sparsifier in various applications, including MPC
model, stochastic matching model, sublinear time model,
dynamic model, and streaming model. Many state-of-the-
art results have been achieved by employing EDCS as a
matching sparsifier in these settings.

It is well-known that for large values of β and β−, the ap-
proximation ratio of EDCS is 2/3− ε. This paper provides
a tight analysis of the approximation ratio of (β, β−)-EDCS
for small values of β and β− using a factor-revealing linear
program. Remarkably, we discover that when β is even,
the (β, β − 1)-EDCS has an approximation ratio greater
than 2/3, a previously unknown result. Our findings reveal
that the maximum achievable approximation ratio is 0.6774
when β = 6 and β− = 5. We hope the discovery that a
(6, 5)-EDCS surpasses the 2/3 approximation, combined
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β\β− 1 2 3 4 5 6 7 8 9 10 11
2 0.5 - - - - - - - - - -
3 0.3333 0.5 - - - - - - - - -
4 0.25 0.4 0.625 - - - - - - - -
5 0.2 0.3333 0.4782 0.6249 - - - - - - -
6 0.1666 0.2857 0.4117 0.5 0.6774 - - - - - -
7 0.1428 0.25 0.3617 0.4444 0.5604 0.6666 - - - - -
8 0.125 0.2222 0.3225 0.4 0.4827 0.5783 0.6756 - - - -
9 0.1111 0.2 0.2911 0.3636 0.4399 0.5 0.6097 0.6666 - - -

10 0.1 0.1818 0.2653 0.3333 0.4042 0.4615 0.539 0.6153 0.6721 - -
11 0.0909 0.1666 0.2436 0.3076 0.3739 0.4285 0.4862 0.5569 0.625 0.6666 -
12 0.0833 0.1538 0.2253 0.2857 0.3478 0.3999 0.4545 0.5 0.5796 0.625 0.6703

Table 1. The approximation ratio achieved by EDCS obtained from the factor-revealing LP in Section 3. Rows correspond to β, and
columns correspond to β−. The table presents the approximation ratio for all possible (β, β−)-EDCS when 1 ≤ β− < β ≤ 12. A
hyphen in a cell of the table indicates that there is no EDCS with the corresponding parameters.

Figure 4. The approximation ratio of (β, β − 1)-EDCS is com-
puted for all possible values of β ≤ 100. The y-axis denotes the
approximation ratio, while the x-axis corresponds to the values of
β. The horizontal red dashed line represents the approximation
ratio 2/3, which was previously believed to be the best possible
approximation ratio of EDCS. The largest approximation ratio
occurs when β = 6.

with the known bound that EDCS can be obtained through
a simple greedy algorithm, opens avenues for future ad-
vancements in solving the maximum matching problem in
different settings.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Figure 5. The approximation ratio of (β, β−c)-EDCS is calculated
for various choices of c ∈ [1, 2, 5, 10] across all feasible values of
β ≤ 100. The y-axis represents the approximation ratio, and the
x-axis corresponds to the values of β. The horizontal red dashed
line represents the approximation ratio 2/3. As c increases, the
approximation ratio worsens, and the convergence to 2/3 occurs at
a slower rate.
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