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Abstract

We consider the problem of answering observational, interventional, and counterfactual queries in a
causally sufficient setting where only observational data and the causal graph are available. Utilizing
the recent developments in diffusion models, we introduce diffusion-based causal models (DCM)
to learn causal mechanisms, that generate unique latent encodings. These encodings enable us to
directly sample under interventions and perform abduction for counterfactuals. Diffusion models
are a natural fit here, since they can encode each node to a latent representation that acts as a proxy
for exogenous noise. Our empirical evaluations demonstrate significant improvements over existing
state-of-the-art methods for answering causal queries. Furthermore, we provide theoretical results
that offer a methodology for analyzing counterfactual estimation in general encoder-decoder models,
which could be useful in settings beyond our proposed approach.

1 Introduction

Understanding the causal relationships in complex problems is crucial for making analyses, conclusions, and gen-
eralized predictions. To achieve this, we require causal models and queries. Structural Causal Models (SCMs) are
generative models describing the causal relationships between variables, allowing for observational, interventional,
and counterfactual queries (Pearl, 2009a). An SCM specifies how a set of endogenous (observed) random variables
is generated from a set of exogenous (unobserved) random variables with prior distribution via a set of structural
equations.

Given a causal DAG, we focus on approximating the individual SCMs with diffusion models. As an application, we
present a flexible framework for answering all the three types of causal (observational, interventional, and counterfac-
tual) queries. For counterfactuals, we work in Pearl’s SCM framework (Pearl, 2009a), and seek to quantify unit-level
statements of the form: Given that observed a factual sample (xF

1 , . . . , xF
K) for a set of K variables (X1, . . . , Xk),

what would have been the outcome for these K variables be, if the value of some set XI (with I ⊆ [K]) had been
set to some γ ∈ R|I|? Throughout this paper we assume causal sufficiency, i.e., absence of hidden confounders. Note
that causal sufficiency is a necessary assumption for answering causal queries from observational data alone.

In the SCM framework, causal queries can be answered by learning a proxy for the unobserved exogenous noise and
the structural equations. This suggests that (conditional) generative models that encode to a latent space could be an
attractive choice for the modeling SCMs, as the latent serves as the proxy for the exogenous noise. In these models,
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the encoding process extracts the latent from an observation, and the decoding process generates the sample from the
latent, approximating the structural equations.

Our Contributions. In this work, we propose and analyze the effectiveness of using a diffusion model for modeling
SCMs. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) have gained popularity
recently due to their high expressivity and exceptional performance in generative tasks (Saharia et al., 2022; Ramesh
et al., 2022; Kong et al., 2021). The primary contribution of our work is in determining how to apply diffusion
models to the causal setting. Rather than focusing a single causal inference setting, our aim through this modeling
is to provide a single flexible framework that works for answering a wide range of causal queries. Now applying
diffusion models to the causal setting is non-trivial because diffusion models are typically used to learn a stochastic
process mapping between a standard Gaussian and a data distribution. Our main idea is to model each node in the
causal graph as a diffusion model and cascade generated samples in topological order to answer causal queries. For
each node, the corresponding diffusion model takes as input the node and parent values to encode and decode a
latent representation. To implement the diffusion model, we utilize the recently proposed Denoising Diffusion Implicit
Models (DDIMs) (Song et al., 2021), which may be interpreted as a deterministic autoencoder model without any
dimensionality reduction while encoding. We leverage the deterministic forward and backward diffusion processes
of DDIMs to use diffusion models as an encoder-decoder model. We refer to the resulting model as diffusion-based
causal model (DCM) and show that this model mimics the necessary properties of an SCM. Our key contributions
include:

(1) [Section 3] We propose diffusion-based causal model (DCM), a new model class for modeling structural causal
models, that provides a flexible and practical framework for approximating both interventions (do-operator) and
counterfactuals (abduction-action-prediction steps). We present a procedure for training a DCM given just the
causal graph and observational data, and show that the resulting trained model enables sampling from the observa-
tional and interventional distributions, and facilitates answering counterfactual queries.

(2) [Section 4] Our theoretical analysis examines the accuracy of counterfactual estimates generated by the DCM, and
we demonstrate that they can be bounded given some reasonable assumptions. Importantly, our analysis is not
limited to diffusion models, but also applies to other encoder-decoder settings. To the best of our knowledge, these
are the first error bounds that explain the observed performance improvements in using encoder-decoder models,
like diffusion models, to address counterfactual queries. Another feature of this result, is that it also extends, under
an additional assumption, to the more challenging multivariate case.

(3) [Section 5] We evaluate the performance of DCM on a range of synthetic datasets generated with various structural
equation types for all three forms of causal queries. We find that DCM consistently outperforms existing state-
of-the-art methods (Sánchez-Martin et al., 2022; Khemakhem et al., 2021). In fact, for certain interventional and
counterfactual queries such as those arising with nonadditive noise models, DCM is better by an order of magnitude
or more than these existing approaches. Additionally, we demonstrate the favorable performance of DCM on an
interventional query experiment conducted on fMRI data.

Related Work. Over the years, a variety of methods have been developed in the causal inference literature for answer-
ing interventional and/or counterfactual queries including non-parametric methods (Shalit et al., 2017; Alaa & Van
Der Schaar, 2017; Muandet et al., 2021) and probabilistic modeling methods (Zečević et al., 2021a). More relevant to
our approach is a recent series of work, including (Moraffah et al., 2020; Pawlowski et al., 2020; Kocaoglu et al., 2018;
Parafita & Vitrià, 2020; Zečević et al., 2021b; Garrido et al., 2021; Karimi et al., 2020; Sánchez-Martin et al., 2022;
Khemakhem et al., 2021; Sanchez & Tsaftaris, 2022) that have demonstrated the success of using deep (conditional)
generative models for this task.

Karimi et al. (2020) propose an approach for answering interventional queries by fitting a conditional variational
autoencoder to each conditional in the Markov factorization implied by the causal graph. Also using the ideas of
variational inference and normalizing flows, Pawlowski et al. (2020) propose schemes for counterfactual inference.

In Khemakhem et al. (2021), the authors propose an autoregressive normalizing flow for causal discovery and queries,
referred to as CAREFL. CAREFL is also applicable even with only knowledge of the causal ordering rather than the full
causal graph as we require. However, as also noted by Sánchez-Martin et al. (2022), when the causal graph is present,
CAREFL is unable to exploit the absence of edges fully as it reduces a causal graph to its causal ordering (which may
not be unique). Using normalizing flows for answering causal queries with causal DAG was also explored by (Balgi
et al., 2022), however their approach does not have any theoretical guarantees on their counterfactual estimates, and
their experimental evaluation is quite limited.

2



Published in Transactions on Machine Learning Research (11/2024)

Sánchez-Martin et al. (2022) propose VACA, which uses graph neural networks (GNNs) in the form of a variational
graph autoencoder to sample from the observational, interventional, and counterfactual distribution. VACA can uti-
lize the inherent graph structure through the GNN, however, suffers in empirical performance (see Section 5). Fur-
thermore, the usage of the GNN leads to undesirable design constraints, e.g., the encoder GNN cannot have hidden
layers (Sánchez-Martin et al., 2022).

A very recent work by Javaloy et al. (2023) combines the idea of using autoregressive normalizing flows (as in
CAREFL) and modeling the entire causal graph as one model (as in VACA), to reduce possible error propagation
in the graph. The authors further generalize the theoretical results from Khemakhem et al. (2021) beyond affine
autoregressive normalizing flows and establish a clearer connection to SCMs by providing a more direct way of ap-
plying the do-operator. In contrast to our work, Javaloy et al. (2023) focuses on modeling the whole causal graph
as one model. Modeling on a per-node basis has several advantages over a single model in terms of flexibility and
computational efficiency because it permits individual node models to be trained in parallel. For example, on a single
experiment, we observed that our DCM approach trains roughly seven times faster than CAREFL and nine times faster
than VACA (see Appendix D.1).

Sanchez & Tsaftaris (2022) use diffusion models for counterfactual estimation, focusing on the bivariate graph case
with an image class causing an image. The authors train a diffusion model to generate images and use the abduction-
action-prediction procedure from Pearl et al. (2016) as well as classifier guidance (Dhariwal & Nichol, 2021) to
generate counterfactual images. However, this is solely for bivariate models and requires training a separate classifier
for intermediate diffusion images, and exhibits poor performance for more complex images e.g., ImageNet (Deng
et al., 2009). Our approach distinguishes itself from Sanchez & Tsaftaris (2022) as it can handle general causal graphs
(beyond the simpler two node setting) and operates on continuous variables (beyond the simpler case of a discrete
label and image). Our experimental evaluations are more general as it also covers interventional queries not addressed
by Sanchez & Tsaftaris (2022). Finally, in terms of theoretical contribution, we provide rigorous conditions on the
latent model and structural equations under which we can estimate counterfactuals. Even for two variable setting
considered by Sanchez & Tsaftaris (2022) such a theoretical understanding was previously missing.

Finally, a diffusion model based approach has also been recently proposed for the different task of causal discovery
under additive noise models, where the diffusion model serves as an approximation to the Hessian functions (Sanchez
et al., 2022). This raises the interesting question of whether the diffusion models can be adapted for solving the
end-to-end problem from discovery to inference.

2 Preliminaries

Notation. To distinguish random variables from their instantiation, we represent the former with capital letters and
the latter with the corresponding lowercase letters. To distinguish between the nodes in the causal graph and diffusion
random variables, we use subscripts to denote graph nodes. Let [n] := {1, . . . , n}.

Structural Causal Models. Consider a directed acyclic graph (DAG) G with nodes {1, . . . , K} in a topologically
sorted order, where a node i is represented by a (random) variable Xi in some generic space Xi ⊂ Rdi . Let pai be
the parents of node i in G and let Xpai

:= {Xj}j∈pai
be the variables of the parents of node i. A structural causal

model M describes the relationship between an observed/endogenous node i and its causal parents. Formally, an
SCMM := (F, p(U)) determines how a set of K endogenous random variables X := {X1, . . . , XK} is generated
from a set of exogenous random variables U := {U1, . . . , UK} with prior distribution p(U) via a set of structural
equations, F := (f1, . . . , fK) where Xi := fi(Xpai

, Ui) for i ∈ [K]. Throughout this paper, we assume that
the unobserved random variables are jointly independent (Markovian SCM), and the DAG G is the graph induced
by M. Every SCM M entails a unique joint observational distribution satisfying the causal Markov assumption:
p(X) =

∏K
i=1 p(Xi | Xpai

).

Structural causal models address Pearl’s causal hierarchy (or “ladder of causation”), which consists of three “layers”
of causal queries in increasing complexity (Pearl, 2009a): observational (or associational), interventional, and coun-
terfactual. As an example, an interventional query can be formulated as “What will be the effect on the population
X, if a variable Xi is assigned a fixed value γi?” The do-operator do(Xi := γi) represents the effect of setting
variable Xi to γi. Note that our proposed framework allows for more general sets of interventions as well, such as
interventions on multiple variables denoted as do(XI := γ) (where I ⊆ [K], XI := (Xi)i∈I , γ ∈ R|I|). An inter-
vention operation, do(XI := γ), transforms the original joint distribution into an interventional distribution denoted
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by p(X | do(XI := γ)). On the other hand, a counterfactual query can be framed as “What would have been the
outcome of a particular factual sample xF := (xF

1 , . . . , xF
K), if the value of XI had been set to γ?”. Counterfactual

estimation may be performed through the three-step procedure of 1) abduction: estimation of the exogenous noise U ,
2) action: intervene do(XI := γ), and 3) prediction: estimating xCF using the abducted noise and intervention values.
Note that in Step 1, we perform deterministic counterfactual reasoning, focusing on counterfactuals pertaining to a
single unit of the population.

Diffusion Models. Given data from distribution X0 ∼ Q, the objective of diffusion models is to construct an effi-
ciently sampleable distribution approximating Q. Denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein
et al., 2015; Ho et al., 2020) accomplish this by introducing a forward noising process that adds isotropic Gaussian
noise at each time step and a learned reverse denoising process. A common representation of diffusion models is a fixed
Markov chain that adds Gaussian noise with variances β1, . . . , βT ∈ (0, 1), generating latent variables X1, . . . , XT ,
q(Xt | xt−1) = N (Xt;

√
1− βtx

t−1, βtI) and q(Xt | x0) = N (Xt;√αtx
0, (1−αt)I), where αt :=

∏t
i=1(1−βi).

Here, T ∈ Z+, and t ∈ {0, . . . , T} denotes the time index.

By choosing sufficiently large T and αt that converge to 0, we have XT is distributed as an isotropic Gaussian
distribution. The learned reverse diffusion process attempts to approximate the intractable q(Xt−1 | xt) using a neural
network and is defined as a Markov chain with Gaussian transitions, pθ(Xt−1 | xt) = N (Xt−1; µθ(xt, t), Σθ(xt, t)).
Rather than predicting µθ directly, the network could instead predict the Gaussian noise ε from xt = √αtx

0 +√
1− αtε. Ho et al. (2020) found that modeling ε instead of µθ, fixing Σθ, and using the following reweighted loss

function

Et∼Unif{[T ]}
X0∼Q

ε∼N (0,I)

[∥ε− εθ(
√

αtX
0 +
√

1− αtε, t)∥2], (1)

works well empirically. We also utilize this loss function in our training.

Song et al. (2021) demonstrate that it is possible to take a pretrained standard denoising diffusion probabilistic model
(DDPM) and generalize the generation to non-Markovian processes. In particular, it is possible to use a pretrained
DDPM model to obtain a deterministic sample given noise XT , known as the denoising diffusion implicit model
(DDIM), with reverse implicit diffusion process

Xt−1 :=
√

αt−1

αt
Xt − εθ(Xt, t)

(√
αt−1(1− αt)/αt −

√
1− αt−1

)
. (2)

Note that the Xt here is deterministic. We also use a forward implicit diffusion process introduced by Song et al.
(2021), derived from rewriting the DDIM process Eq. 2 as an ordinary differential equation (ODE) and considering
the Euler method approximation in the forward direction to obtain

Xt+1 :=
√

αt+1

αt
Xt + εθ(Xt, t)

(√
1− αt+1 −

√
αt+1(1− αt)/αt

)
. (3)

We utilize the DDIM framework in this work, in particular Eqs. 3 and 2 will define the encoding (forward) and
decoding (reverse) processes. Note that this ensures deterministic encoding and decoding. This construction produces
a unique latent variable per observation, as well as a unique decoding, and also ensures we obtain the same output for
repeated counterfactual queries.

3 DCMs: Diffusion-based Causal Models

In this section, we present our DCM approach for modeling the SCMs and to answer causal queries. The DCM
approach falls in a general class of techniques that try to model a structural causal model by using an encoder-decoder
pair. Consider a data generating process X = f(Xpa, U). The goal will to construct an encoding function g and
a decoding function h. The encoding function g attempts to represent the information in U : for a pair (X, Xpa),
Z := g(X, Xpa) is the latent variable. The decoder takes the input Z and Xpa as input to attempt to reconstruct X:
X̂ = h(Z, Xpa), where under perfect reconstruction, X̂ = X . The decoding function h mimics the true structural

4



Published in Transactions on Machine Learning Research (11/2024)

equation f , although it does not need to be exactly equal. For example, there are infinitely many encodings that satisfy
Z = r(U) for all U for an invertible function r.

We first explain the construction and the training process of a DCM, and then explain how the model can be used for
answering various causal queries. We start with some notations.

• Define Zt
i to be the ith endogenous node value at diffusion step t of the forward implicit diffusion process (Eq. 3),

and let Zi := ZT
i .

• Define X̂t
i to be ith endogenous node value at diffusion step t of the reverse implicit diffusion process (Eq. 2), and

let X̂i := X̂0
i .

Training a DCM. We train a diffusion model for each node, taking denoised parent values as input. The parent
values can be interpreted as additional covariates to the model, where one may choose to use classifier free guidance
to incorporate the covariates (Ho & Salimans, 2021). Empirically, we find that simply concatenating the covariates
results in better performance than classifier free guidance.

We use the εθ parametrization for the diffusion model from Ho et al. (2020), representing the diffusion model for
node i as εi

θ(X, Xpai
, t). The complete training procedure presented in Algorithm 1 is only slightly modified from the

usual training procedure, with the additions of the parents as covariates and training a diffusion model for each node.
Since the generative models learned for generation of different endogenous nodes do not affect training of each other,
these models may be trained in parallel. For each node in the graph, we can train a model in parallel as each diffusion
model only requires the current node and parent values. Our final DCM model is just a combination of these K trained
diffusion models ε1

θ, . . . , εK
θ .

Algorithm 1 DCM Training
Input: Distribution Q, scale factors {αt}T

t=1, causal DAG G with node i represented by Xi

1: while not converged do
2: Sample X0 ∼ Q
3: for i = 1, . . . , K do
4: t ∼ Unif[{1, . . . , T}]
5: ε ∼ N (0, Idi

) {di is the dimension of Xi}
6: Update parameters of node i’s diffusion model εi

θ, by minimizing the following loss:
∥ε− εi

θ(√αtX
0
i +
√

1− αtε, X0
pai

, t)∥2
2 (based on Eq. 1)

7: end for
8: end while

We use all the variables (X1, . . . , XK) for the training procedure, because a priori, we do not assume anything on the
possible causal queries, i.e., we allow for all possible target variables, intervened variables, etc. However, if we are
only interested in some pre-defined set of queries, then the graph could be reduced accordingly. For example, if we
are only interested in counterfactual estimate of a particular node with respect to an intervention of a predecessor, one
can simply reduce it to a subgraph containing the target node, the intervened node and a backdoor adjustment set (e.g.,
the ancestors of the intervened node). This then reduces to only learning a single diffusion model.

One major advantage of our proposed DCM approach is the ability to generalize to larger graphs. Since each diffusion
model only uses the parents as input, modeling each node depends only on the incoming degree of the node (the
number of causal parents). While the number of diffusion models scales with the number of non-root nodes, each
model is generally small in terms of its parameter size and can be trained in parallel. Additionally, we may apply the
proposed DCM approach to any setting where diffusion models are applicable: continuous variables, high dimensional
settings, categorical data, images, etc.

Encoding and Decoding Steps with DCM. With a DCM, the encoding (resp. decoding) process is identical to the
DDIM encoding (resp. decoding) process except we include the parent values as additional covariates. Note that,
given the model ϵθ, DDIM is a deterministic process as laid out in Eqs. 2 and 3. Let us focus on a node i ∈ [K] (same
process is repeated for each node i). The encoding process takes Xi and its parent values Xpai

as input and maps it
to a latent variable Zi. The decoding process takes Zi and Xpai

as input to construct X̂i (an approximation of Xi).
Formally, using the forward implicit diffusion process in Eq. 3, given a sample Xi, we encode a unique latent variable
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Zi := ZT
i , using the recursive formula

Zt+1
i :=

√
αt+1

αt
Zt

i + εi
θ(Zt

i , Xpai
, t)

√
1− αt+1 −

√
αt+1(1− αt)

αt

 ,∀t = 0, .., T − 1, (4)

where Z0
i := Xi. The latent variable Zi acts as a proxy for the exogenous noise Ui. Using the reverse implicit

diffusion process from DDIM in Eq. 2, given a latent vector Zi we obtain a deterministic decoding X̂i := X̂0
i , using

the recursive formula

X̂t−1
i :=

√
αt−1

αt
X̂t

i − εi
θ(X̂t

i , Xpai
, t)

√
αt−1(1− αt)

αt
−

√
1− αt−1

 , for all t = T, . . . , 1, (5)

where X̂T := Zi. In the following, we use Enci(Xi, Xpai
) and Deci(Zi, Xpai

) to denote the encoding and decoding
functions for node i defined in Eqns. 4 and 5 respectively. See Algorithms 2 and 3 for detailed pseudocodes.

Algorithm 2 Enci(Xi, Xpai
)

Input: Xi, Xpai

1: Z0
i ← Xi

2: for t = 0, . . . , T − 1 do

3: Zt+1
i ←

√
αt+1

αt
Zt

i + εi
θ(Zt

i , Xpai
, t)

(
√

1− αt+1 −
√

αt+1(1−αt)
αt

)
4: end for
5: Return Zi := ZT

i

Algorithm 3 Deci(Zi, Xpai
)

Input: Zi, Xpai

1: X̂T ← Zi

2: for t = T, . . . , 1 do

3: X̂t−1
i ←

√
αt−1

αt
X̂t

i − εi
θ(X̂t

i , Xpai
, t)

(√
αt−1(1−αt)

αt
−
√

1− αt−1

)
4: end for
5: Return X̂i := X̂0

i

Answering Causal Queries with a Trained DCM. We now describe how a trained DCM model can be used for
(approximately) answering causal queries. Answering observational and interventional queries require sampling from
the observational and the interventional distribution respectively. With counterfactuals, a query is at the unit level,
where the structural assignments are changed, but the exogenous noise is identical to that of the observed datum.

(a) Generating Samples for Observational/Interventional Queries. Samples from a DCM model that approximates
the interventional distribution p(X | do(XI := γ)) can be generated as follows. For an intervened node i with
intervention γi, the sampled value is always the intervention value, therefore we generate X̂i := γi. For a non-
intervened node i, assume by induction we have the generated parent values X̂pai

. To generate X̂i, we first sample
the latent vector Zi ∼ N (0, Idi) where di is the dimension of Xi. Then taking Zi as the noise for node i, we compute
X̂i := Deci(Zi, X̂pai

) as the generated sample value for node i. This value X̂i is then used as the parent value for
the children of node i. Samples from a DCM model that approximates the observational distribution p(X) can be
generated by setting I = ∅. See Algorithm 4 for the pseudocode.

(b) Counterfactual Queries. Consider a factual observation xF := (xF
1 , . . . , xF

K) and interventions on a set of nodes
I with values γ. We use a DCM model to construct a counterfactual estimate x̂CF as follows. The counterfactual
estimate only differs from the factual value on intervened nodes or descendants of an intervened node. Similarly to
interventional queries, for each intervened node i ∈ I, x̂CF

i := γi. For each non-intervened node i that is a descendant
of any intervened node, assume by induction that we have the generated counterfactual estimates x̂CF

pai
. To obtain x̂CF

i ,
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Algorithm 4 Observational/Interventional Sampling
Input: Intervention set I with values γ (I = ∅ for observational sampling)

1: for i = 1, . . . , K do {in topological order}
2: Zi ∼ N (0, Idi)
3: if i ∈ I then
4: X̂i ← γi

5: else
6: X̂i ← Deci(Zi, X̂pai

)
7: end if
8: end for
9: Return X̂ := (X̂1, . . . , X̂K)

Algorithm 5 Counterfactual Estimation
Input: Intervention set I with values γ, factual sample xF := (xF

1 , . . . , xF
K)

1: for i = 1, . . . , K do {in topological order}
2: if i ∈ I then
3: x̂CF

i ← γi

4: else if i is not a descendant of any intervened node in I then
5: x̂CF

i ← xF
i

6: else
7: zF

i ← Enci(xF
i , xF

pai
) {abduction step}

8: x̂CF
i ← Deci(zF

i , x̂pai
) {action and prediction steps}

9: end if
10: end for
11: Return x̂CF := (x̂CF

1 , . . . , x̂CF
K )

we first define the estimated factual noise as ẑF
i := Enci(xF

i , xF
pai

). Then we generate our counterfactual estimate by
using ẑF

i as the noise for node i, by decoding, x̂CF
i := Deci(ẑF

i , x̂CF
pai

). See Algorithm 5 for the pseudocode.

Note that with xF, we assumed full observability,1 since because Algorithm 5 produces a counterfactual estimate for
each node. However, when intervening on XI and if the only quantity of interest is counterfactual on some X⋆, then
you only need factual samples from {Xi : Xi is on a path from XI → X⋆} (Saha & Garain, 2022). In practice, this
could be further relaxed by imputing for missing data, which is beyond the scope of this work.

4 Bounding Counterfactual Error

We now establish sufficient conditions under which the counterfactual estimation error can be bounded. In fact, the
results in this section not only hold for diffusion models, but to a more general setting of conditional latent variable
models satisfying certain properties. Another feature of this result, is that it also extends, under an additional assump-
tion, to the more challenging higher-dimensional case. All proofs from this section are collected in Appendix A.

We focus on learning a single conditional latent variable model for an endogenous node Xi, given its parents Xpai
,

as the models learned for different endogenous nodes do not affect each other. Since the choice of node i plays no
role, we drop the subscript i in the following and refer to the node of interest as X , its causal parents as Xpa, its
corresponding exogenous variables as U , and its structural equation as X := f(Xpa, U). Let the encoding function
g : X ×Xpa → Z and the decoding function h : Z ×Xpa → X , where Z is the latent space. In the DCM context, the
functions g and h correspond to Enc and Dec functions, respectively.

It is well-known that certain counterfactual queries are not identifiable from observational data without making as-
sumptions on the functional relationships, even under causal sufficiency (Pearl, 2009b). Consequently, recent research
has been directed towards understanding the conditions under which identifiability results can be obtained (Lu et al.,

1This is a common assumption in literature also made in all the related work e.g., (Sánchez-Martin et al., 2022; Khemakhem et al., 2021;
Pawlowski et al., 2020).
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2020; Nasr-Esfahany & Kiciman, 2023; Nasr-Esfahany et al., 2023). Assumption 2 of our Theorem 1, ensures that the
true counterfactual outcome is identifiable, see e.g., (Lu et al., 2020, Theorem 1) or (Nasr-Esfahany & Kiciman, 2023,
Theorem 5). In the context of learned structural causal models to determine whether a given counterfactual query can
be answered with sufficient accuracy, requires also assumptions on the learned SCM, e.g., encoder and decoder in this
case.

Our first result presents sufficient conditions on the latent variable encoding function and the structural equation under
which we can recover latent exogenous variable up to a (possibly nonlinear) invertible function. We start with a one-
dimensional exogenous noise U and variable X ∈ X ⊂ R. In Section 4.1, we provide a similar theorem for the
higher-dimensional case where X ∈ Rm for m ≥ 3 in Theorem 2 with a stronger assumption on the Jacobian of f
and g.

Theorem 1. Assume for X ∈ X ⊂ R and exogenous noise U ∼ Unif[0, 1], X satisfies the structural equation:
X := f(Xpa, U), where Xpa ∈ Xpa ⊂ Rd are the parents of node X and U ⊥⊥ Xpa. Consider an encoder-decoder
model with encoding function g : X ×Xpa → Z and decoding function h : Z ×Xpa → X , Z := g(X, Xpa), X̂ :=
h(Z, Xpa). Assume the following conditions:

1. The encoding is independent of the parent values, g(X, Xpa) ⊥⊥ Xpa.

2. The structural equation f is differentiable and strictly increasing with respect to U for all xpa ∈ Xpa.

3. The encoding g is invertible and differentiable with respect to X for all xpa ∈ Xpa.

Then, g(X, Xpa) = q̃(U) for an invertible function q̃.

Discussion on Assumptions Underlying Theorem 1.

(1) Assumption 1 of independence between the encoding and the parent values may appear strong, but is in fact often
valid. For example, in the additive noise setting with f(Xpa, U) := f ′(Xpa)+U where Xpa and U are independent, if
the fitted model f̂ ≡ f ′, then the encoder g(X, Xpa) = f(Xpa, U)− f̂(Xpa) = U and by definition U is independent
of Xpa.2 The same assumption also appears in other related results on counterfactual identifiability in bijective SCMs,
see, e.g., (Nasr-Esfahany et al., 2023, Theorem 5.3) and proof of Theorem 5 in (Nasr-Esfahany & Kiciman, 2023).
We conduct empirical tests to further confirm this assumption by examining the dependence between the parents
and encoding values. Our experimental results show that DCMs consistently fail to reject the null hypothesis of
independence. This implies that independent encodings can be found in practice. We provide the details of these
experiments in Appendix B.3.

(2) Assumption 2 is always satisfied under the additive noise model, where f(Xpa, U) := f ′(Xpa) + U . It is also
satisfied by post non-linear models, under the standard requirements on identifiability as expressed in (Zhang & Hy-
varinen, 2012).4 Assumption 2 is also satisfied by heteroscedastic noise models (Strobl & Lasko, 2023).5 Again, the
recent results about counterfactual identifiability, e.g., (Nasr-Esfahany & Kiciman, 2023, Theorem 5) and (Lu et al.,
2020, Theorem 1), also utilize the same assumption.

Through our strictly increasing in U assumption, we obviate distinguishing cases like f(Xpa, U) := Xpa + U vs.
f(Xpa, U) := Xpa − U , which otherwise will be indistinguishable for symmetric distributions U (see also remark
below). For example, for any fixed value of Xpa, f(Xpa, U) := Xpa − U is not increasing in U , so such structural
equations are automatically eliminated in Theorem 1. In other words, among these two cases, this assumption only
permits the additive noise form f(Xpa, U) := Xpa + U .

2In general, if we have a good approximation f by some f̂ , then the encoding g(X, Xpa) = X − f̂(Xpa) would be close to U , as also noted
by (Hoyer et al., 2008).

3To encourage independence, one could also modify the original diffusion model training objective to add a Hilbert-Schmidt independence
criterion (HSIC) (Gretton et al., 2007) regularization term. Our experiments did not show a clear benefit of using this modified objective, and we
leave further investigation here for future work.

4Zhang & Hyvarinen (2012) (see Eqn. 2) defined post-nonlinear models as f(Xpa, U) := f2(f1(Xpa)+U) where Xpa and U are independent,
function f1 is nonconstant, and f2 is invertible. The invertibility assumption on f2 implies that f is strictly increasing (or decreasing) in U .
Additionally, (Zhang & Hyvarinen, 2012) make a differentiability of f2 assumption (see Assumption A1) for identifiability, which implies the f is
differentiable in U .

5Heteroscedastic noise models are generally defined as f(Xpa, U) := f ′(Xpa) + g(Xpa) · U where the function g is assumed to be strictly
positive (see Definition 1 in (Strobl & Lasko, 2023), which makes it compatible with our Assumption 2 of Theorem 1.
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(3) We may consider transformations of the uniform noise U to obtain other settings, for example additive Gaussian
noise. For a continuous random variable U ′ with invertible CDF F and the structural equation f(·, F (·)), we have

U ′ d= F −1(U) and the results similarly hold.

We now discuss some consequences of Theorem 1 for estimating counterfactual outcomes.

1. Perfect Estimation. Using Theorem 1, we now look at a condition under which the counterfactual estimate
produced by the encoder-decoder model matches the true counterfactual outcome.6. The idea here been, if no in-
formation is lost in the encoding and decoding steps, i.e., h(g(X, Xpa), Xpa) = X , and assuming Theorem 1
(g(X, Xpa) = q̃(U)), we have h(q̃(U), Xpa) = X = f(Xpa, q̃−1(U)). This means that in the abduction step,
the encoder-decoder model could recover q̃(U), but in the prediction step, it first applies the inverse of q̃ to the recov-
ered exogenous variable, and then f . Thus, the counterfactual estimate equals the true counterfactual outcome. We
formalize this in Corollary 1.
Corollary 1. Assume the conditions of Theorem 1. Furthermore, assume the encoder-decoder model pair (g, h)
satisfies: h(g(X, Xpa), Xpa) = X . Consider a factual sample pair xF := (x, xpa) where x := f(xpa, u) and an in-
tervention do(Xpa := γ). Then, the counterfactual estimate, given by h(g(x, xpa), γ) matches the true counterfactual
outcome xCF := f(γ, u).

Comparison with Recent Related Work. Recent studies by Nasr-Esfahany & Kiciman (2023) and Nasr-Esfahany
et al. (2023) have explored the problem of estimating counterfactual outcomes with learned SCMs. In particular, Nasr-
Esfahany & Kiciman (2023, Theorem 5) consider a setting where the SCM X := f(Xpa, U) is learned with a bijective
(deep conditional generative) model f̂(Xpa, Û). Nasr-Esfahany et al. (2023, Theorem 5.3) considered a closely related
problem of learning a ground-truth bijective SCM. The conditions underlying ours and these results are not directly
comparable because, unlike our setup, they do not explicitly consider an encoder-decoder model. Our results provide
precise conditions on the encoder g and decoder h for recovering the correct counterfactual outcome, and we can
extend these results to obtain counterfactual estimation error bounds under relaxed assumptions, a problem that has
not been addressed previously.

Counterfactual identifiability in a different context of reinforcement learning was also established by (Lu et al., 2020).
Their result relies on incomparable assumptions on state-action pairs. Furthermore, our proof techniques are quite
different from Lu et al. (2020) who rely on a technique based on analyzing conditional quantile, unlike an algebraic
technique employed here.

2. Estimation Error. Another consequence of Theorem 1 is that it can bound the counterfactual error in terms of the
reconstruction error of the encoder-decoder model. Informally, the following corollary shows that if the reconstruction
h(g(X, Xpa), Xpa) is “close” to X (measured under some metric d(·, ·)), then such encoder-decoder models can
provide “good” counterfactual estimates. To the best of our knowledge, this is the first result that establishes a bound
on the counterfactual error in relation to the reconstruction error of these encoder-decoder models.

Corollary 2. Let γ ≥ 0. Assume the conditions of Theorem 1. Furthermore, assume the encoder-decoder model
pair (g, h) under some metric d (e.g., ∥ · ∥2), has reconstruction error less than τ : d(h(g(X, Xpa), Xpa), X) ≤ τ .
Consider a factual sample pair xF := (x, xpa) where x := f(xpa, u) and an intervention do(Xpa := γ). Then, the
error between the true counterfactual xCF := f(γ, u) and counterfactual estimate given by h(g(x, xpa), γ) is at most
τ . In other words, d(h(g(x, xpa), γ), xCF) ≤ τ .

The above result suggests that the reconstruction error can serve as an estimate for the counterfactual error. While
the true value of τ is unknown, we may compute a reasonable bound by computing the reconstruction error over the
dataset.

4.1 Extension of Theorem 1 to Higher-Dimensional Setting

In this section, we present an extension of Theorem 1 to a higher dimensional setting and use it to provide coun-
terfactual identifiability and estimation error results. Since we are now dealing with vector-valued functions, we use
Jacobians. Let Jfxpa denote the Jacobian matrix obtained by evaluating the Jacobian (with respect to U ) of f(Xpa, U)
at Xpa = xpa. Let Jgxpa denote the Jacobian matrix obtained by evaluating the Jacobian (with respect to X) of
g(X, Xpa) at Xpa = xpa.

6Note that identifiability of the counterfactual outcomes, does not require identifiability of the SCM.
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Theorem 2. Assume for X ∈ X ⊂ Rm and continuous exogenous noise U ∼ Unif[0, 1]m for m ≥ 3, and X satisfies
the structural equation

X = f(Xpa, U) (6)

where Xpa ∈ Xpa ⊂ Rd are the parents of node X and U ⊥⊥ Xpa. Consider an encoder-decoder model with encoding
function g : X × Xpa → Z and decoding function h : Z × Xpa → X ,

Z := g(X, Xpa), X̂ := h(Z, Xpa). (7)

Assume the following conditions:

1. The encoding is independent of the parent values, g(X, Xpa) ⊥⊥ Xpa.

2. The structural equation f is invertible and differentiable with respect to U, and Jfxpa is p.d. for all xpa ∈ Xpa.

3. The encoding g is invertible and differentiable with respect to X , and Jgxpa is p.d. for all xpa ∈ Xpa.

4. The encoding qxpa(U) := g(f(xpa, U), xpa) satisfies Jqxpa |q−1
xpa (z) = c(xpa)A for all z ∈ Z and xpa ∈ Xpa,

where c is a scalar function and A is an orthogonal matrix.

Then, g(f(Xpa, U), Xpa) = q̃(U) for an invertible function q̃.

The interpretations behind Assumptions 1, 2, and 3 in Theorem 2 are similar to corresponding assumptions in The-
orem 1. Assumption 4 however is technical, and we will explain the need for it below. In Corollaries 3 and 4
(Appendix A), we restate Corollaries 1 and 2 to this higher-dimensional setting. The proofs are identical to that of
Corollaries 1 and 2, with the only change being that the role of Theorem 1 in those proofs is now replaced by Theo-
rem 2.

On Negative Result of Nasr-Esfahany & Kiciman (2023). Nasr-Esfahany & Kiciman (2023) presented a gen-
eral counterfactual impossibility identification result under multidimensional exogenous noise. The construction in
Nasr-Esfahany & Kiciman (2023) considers two structural equations f, f ′ that are indistinguishable in distribution.
Formally, let R ∈ Rm×m be a rotation matrix, and U ∈ Rm be a standard (isotropic) Gaussian random vector. Define,

f ′(Xpa, U) =
{

f(Xpa, U) for Xpa ∈ A

f(Xpa, R · U) for Xpa ∈ B
, (8)

where the domain Xpa is split into disjoint A and B. Now, f and f ′ generate different counterfactual outcomes, for
counterfactual queries with evidence in A and intervention in B (or the other way around).

In Theorem 2, we avoid this impossibility result by assuming that we can construct an encoding of a “special” kind
captured through our Assumption 4. In particular, consider the encoding qxpa at a specific parent value xpa as a
function of the exogenous noise U . The assumption states that the Jacobian of the encoding is equal to c(xpa)A
for a scalar function c and orthogonal matrix A. However, it is important to acknowledge that this assumption is
highly restrictive and difficult to verify, not to mention challenging to construct in practice with just observational
data. Our intention is that these initial ideas can serve as a starting point for addressing the impossibility result, with
the expectation that subsequent results will further refine and expand upon these ideas.

5 Experimental Evaluation

In this section, we evaluate the empirical performance of DCM for answering causal queries on both synthetic and real
world data. Our primary objective through these experiments is not to tackle a specific causal inference problem, but
to demonstrate that our DCM approach provides a unified and flexible framework for answering a wide range of obser-
vational, interventional, and counterfactual queries. For the real data experiments, we consider an interventional data
experiment on fMRI data (Section 5.2) and an experimental study for the problem of estimating individual treatment
effects (Appendix E).7

7Code for reproducibility: https://github.com/patrickrchao/DiffusionBasedCausalModels
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Diffusion Model Implementation and Training. For our implementation of the εθ model in DCM, we use a sim-
ple fully connected neural network with three hidden layers of size [128, 256, 256] and SiLU activation (Elfwing
et al., 2018). We fit the model using Adam with a learning rate of 1e-4, batch size of 64, and train for 500 epochs.
Since the root nodes lack parents, the only form of counterfactual reasoning involves directly intervening on the root
node, which may be done trivially. Therefore, for root nodes, we do not train diffusion models and instead sample
from the empirical distribution of the training data. Additional details about the diffusion model parameters are in
Appendix C.1.

Compared Approaches. For a fair comparison, our evaluation centers on methodologies that allow for both inter-
ventional and counterfactual estimation. With this criteria, we primarily compare DCM to two recently proposed
state-of-the-art schemes VACA (Sánchez-Martin et al., 2022) and CAREFL (Khemakhem et al., 2021), and a general
regression model that assumes an additive noise model which we refer to as ANM.8 For VACA and CAREFL, we use
the code provided by their respective authors. The ANM approach performs model selection over a variety of models,
including linear and gradient boosted regressor, and we use the implementation from the popular DoWhy causal infer-
ence package (Sharma et al., 2019; Blöbaum et al., 2022). Additional details on how ANM answers causal queries are
provided in Appendix C.2 and implementation details for VACA, CAREFL, and ANM are in Appendix C.1.

5.1 Synthetic Data Experiments

For generating quantitative results, we use synthetic experiments since we know the exact structural equations, and
hence we have access to the ground-truth observational, interventional, and counterfactual distributions. We present
results on two larger graphs here, and defer results on a set of four smaller graphs to Appendix D.2. In Appendix D.3,
we also present results by generating synthetic data based on the real world graph from the Sachs dataset (Sachs et al.,
2005).

The two graphs, considered here, include a ladder graph structure (see Figure 9) and a randomly generated graph
structure. Both graphs are comprised of 10 nodes of three dimensions each, and the random graph is a randomly
sampled directed acyclic graph (see Appendix C.3 for more details). Since each diffusion model only uses the parents
as input, modeling each node depends only on the incoming degree of the node (the number of causal parents).

Following Sánchez-Martin et al. (2022), for the observational and interventional distributions, we report the Maxi-
mum Mean Discrepancy (MMD) (Gretton et al., 2012) between the true and estimated distributions. For counter-
factual estimation, we report the mean squared error (MSE) of the true and estimated counterfactual values. Again
following Sánchez-Martin et al. (2022), we consider two broad classes of structural equations:

1. Additive Noise Model (NLIN): fi(Xpai
, Ui) = f ′(Xpai

) + Ui. In particular, we will be interested in the case
where fi’s are non-linear.

2. Nonadditive Noise Model (NADD): fi(Xpai
, Ui) is an arbitrary function of Xpai

and Ui.

To prevent overfitting of hyperparameters, we randomly generate these structural equations for each initialization.
Each structural equation is comprised a neural network with a single hidden layer of 16 units and SiLU activation
(Elfwing et al., 2018) with random weights from sampled from [−1, 1].

Each simulation generates n = 5000 samples as training data. Let M̂ be a fitted causal model and M⋆ be the true
causal model, both capable of generating observational and interventional samples, and answering counterfactual
queries. Each pair of graphs and structural equation type is evaluated for 20 different initialization, and we report
the mean value. We provide additional details about our observational, interventional, and counterfactual evaluation
frameworks in Appendix C.4.

Synthetic Experiments Results. In Table 1, we provide the performance of all evaluated models for observational,
interventional, and counterfactual queries, averaged over 20 separate initializations of models and training data, with
the lowest value in each row bolded. The values are multiplied by 100 for clarity. We also provide boxplots of the
performances in Figure 1 (Appendix D).

We see DCM and ANM are the most competitive approaches, with similar performance on observational and inter-
ventional queries. If the ANM is the correctly specified model, then the ANM encoding should be close to the true

8In spite of our best efforts, we were unable to run a proper comparison against the very recent approach proposed by Javaloy et al. (2023) due
to challenges in adapting their code into our settings.
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DCM ANM VACA CAREFL

SCM Metric (×10−2) (×10−2) (×10−2) (×10−2)

La
dd

er

N
L

IN

Obs. MMD 0.44±0.14 0.63±0.21 2.82±0.83 13.41±1.14

Int. MMD 1.63±0.20 1.80±0.17 4.48±0.78 15.01±1.23

CF. MSE 3.42±1.67 10.65±2.48 41.03±19.00 17.46±6.04
N

A
D

D
Obs. MMD 0.32±0.11 0.40±0.16 3.22±1.05 14.60±1.34

Int. MMD 1.54±0.17 1.57±0.15 5.13±1.16 16.87±1.85

CF. MSE 4.28±2.39 10.71±5.47 27.42±12.34 22.26±13.75

R
an

do
m N

L
IN

Obs. MMD 0.28±0.12 0.47±0.15 1.82±0.73 12.11±1.21

Int. MMD 1.45±0.07 1.88±0.22 3.52±1.03 14.15±2.34

CF. MSE 9.51±13.12 23.68±28.49 82.10±78.49 52.57±82.03

N
A

D
D

Obs. MMD 0.19±0.05 0.31±0.14 2.09±0.60 12.63±1.10

Int. MMD 1.42±0.25 1.73±0.44 4.24±1.40 14.65±1.76

CF. MSE 20.13±57.52 44.76±86.02 124.82±275.09 54.29±83.68

Table 1: Mean±standard deviation of observational, interventional, and counterfactual queries of the ladder and ran-
dom SCMs in nonlinear and nonadditive settings over 20 random initializations of the model and training data. The
values are multiplied by 100 for clarity.

encoding, assuming the regression model fit the data well. We see this in the nonlinear setting, ANM performs well
but struggles to outperform DCM, perhaps due to the complexity of fitting a neural network using classical models.
Note thats since observational and interventional queries are inherently easier than counterfactual queries, it is natural
that we observe smaller improvements over other baselines.

Our proposed DCM method exhibits superior performance compared to VACA and CAREFL, often by as much as
an order of magnitude. The better performance of DCM over CAREFL may be attributed to the fact that DCM uses
the causal graph, while CAREFL only relies on a non-unique causal ordering. In the case of VACA, the limited
expressiveness of the GNN encoder-decoder might be the reason behind its inferior performance, especially when
dealing with multivariable, multidimensional complex structural equations as considered here, a shortcoming that
has also been acknowledged by the authors of VACA (Sánchez-Martin et al., 2022). Furthermore, VACA performs
approximate inference, e.g. when performing a counterfactual query with do(X1 = 2), the predicted counterfactual
value for X1 is not exactly 2 due to imperfections in the reconstruction. This design choice may result in downstream
compounding errors, possibly explaining discrepancies in performance. To avoid penalizing this feature, all metrics
are computed using downstream nodes from intervened nodes. To evaluate computational efficiency, we compared
DCM with VACA and CAREFL using a single experimental setup (see Appendix D.1). The results suggest that DCM
is significantly more computationally efficient than both VACA and CAREFL, with training taking 7 times less time.
Lastly, the standard deviation of DCM is small relative to the other models, demonstrating relative consistency, which
points to the robustness of our proposed approach.

5.2 Real Data Experiments I

We evaluate DCM on interventional real world data by evaluating our model on the electrical stimulation interven-
tional fMRI data from (Thompson et al., 2020), using the experimental setup from (Khemakhem et al., 2021). The
fMRI data comprises samples from 14 patients with medically refractory epilepsy, with time series of the Cingulate
Gyrus (CG) and Heschl’s Gyrus (HG). The assumed underlying causal structure is the bivarate graph CG→ HG. Our
interventional ground truth data comprises an intervened value of CG and an observed sample of HG. We defer the
reader to (Thompson et al., 2020; Khemakhem et al., 2021) for a more thorough discussion of the dataset.
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Algorithm Median Abs. Error Mean Abs. Error

DCM 0.5981± 9.5e-3 0.5779± 1.9e-3
CAREFL 0.5983± 3.0e-2 0.6004± 2.2e-2
ANM 0.6746± 4.8e-8 0.6498± 1.4e-6
Linear SCM 0.6045± 0 0.6042± 0

Table 2: Performances for interventional predictions on the fMRI dataset, of the form median/mean absolute
error±standard deviation, using the mean over 10 random seeds. We do not include VACA due to implementation
difficulties. The results for CAREFL, ANM, and Linear SCM are consistent with those observed by (Khemakhem
et al., 2021). We note that the Linear SCM has zero standard deviation, as the ridge regression model does not vary
with the random seed.

In Table 2, we note that the difference in performance is more minor than our synthetic results. We believe this is due
to two reasons. Firstly, the data seems inherently close to linear, as exhibited by the relatively similar performance
with the standard ridge regression model (Linear SCM). Secondly, we only have a single ground truth interventional
value instead of multiple samples from the interventional distribution. As a result, we can only compute the absolute
error based on this single value, rather than evaluating the maximum mean discrepancy (MMD) between the true
and predicted interventional distributions. Specifically, in the above table, we compute the absolute error between the
model prediction and the interventional sample for each of the 14 patients and report the mean/median. The availability
of a single interventional introduces a possibly large amount of irreducible error, artificially inflating the error values.
For more details on the error inflation, see Appendix C.5.

6 Concluding Remarks

We demonstrate that diffusion models, in particular, the DDIM formulation (which allows for unique encoding and
decoding) provide a flexible and practical framework for approximating interventions (do-operator) and counterfactual
(abduction-action-prediction) steps. Our approach, DCM, is applicable independent of the DAG structure. We find
that empirically DCM outperforms competing methods in all three causal settings, observational, interventional, and
counterfactual queries, across various classes of structural equations and graphs.

While not in scope of this paper, the proposed DCM approach can also be naturally extended to any setting where
diffusion models are applicable like categorical data, images, etc. For higher dimensional spaces, we believe DCMs
should scale nicely, as diffusion models are typically deployed for high-dimensional image settings and exhibit SOTA
performance. Furthermore, we may leverage many of the optimization and implementation tricks, as diffusion models
are a very active field of research.

The proposed method does come with certain limitations. For example, as with all the previously mentioned related
approaches, DCM precludes unobserved confounding. The theoretical analyses require assumptions, not all of which
are easy to test. However, our practical results suggest that DCM provides competitive empirical performance, even
when some assumptions needed for our theoretical guarantees are violated.
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A Missing Details from Section 4

Notation. For two sets X ,Y a map f : X 7→ Y , and a set S ⊂ X , we define f(S) = {f(x) : x ∈ S}. For x ∈ X ,
we define x + S = {x + x′ : x′ ∈ X}. For a random variable X , define pX(x) as the probability density function
(PDF) at x. We use p.d. to denote positive definite matrices and Jf |x to denote the Jacobian of f evaluated at x. For
a function with two inputs f(·, ·), we define fx(Y ) := f(x, Y ) and fy(X) := f(X, y).

Lemma 1. For U ,Z ⊂ R, consider a family of invertible functions qxpa : U → Z for xpa ∈ Xpa ⊂ Rd, then
dqxpa

du (q−1
xpa

(z)) = c(z) for all xpa ∈ Xpa if and only if qxpa can be expressed as

qxpa(u) = q(u + r(xpa))

for some function r and invertible q.

Proof. First for the reverse direction, we may assume qxpa(u) = q(u + r(xpa)). Then

dqxpa

du
(u) = dq

du
(u + r(xpa)).
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Now plugging in u = q−1
xpa

(z) = q−1(z)− r(xpa),

dqxpa

du
(q−1

xpa
(z)) = dq

du
(q−1(z)− r(xpa) + r(xpa)) = dq

du
(q−1(z)) = c(z).

Therefore
dqxpa

du (q−1
xpa

(z)) is a function of z.

For the forward direction, assume
dqxpa

du (q−1
xpa

(z)) = c(z). Define sxpa : Z → U to be the inverse of qxpa . By the
inverse function theorem and by assumption.

dsxpa

dz
(z) =

dq−1
xpa

dz
(z) = 1

dqxpa
du (q−1

xpa(z))
= 1

c(z)

for all xpa. Since the derivatives of sxpa are equal for all xpa, by the mean value theorem, all sxpa are additive shifts
of each other. Without loss of generality, we may consider an arbitrary fixed xpa0 ∈ Xpa and reparametrize sxpa as

sxpa(z) = sxpa0
(z)− r(xpa).

Let u = sxpa(z). Then we have

sxpa0
(z) = u + r(xpa)

qxpa(u) = z = qxpa0
(u + r(xpa)),

and we have the desired representation by choosing q = qxpa0
.

Theorem 1. Assume for X ∈ X ⊂ R and exogenous noise U ∼ Unif[0, 1], X satisfies the structural equation:
X := f(Xpa, U), where Xpa ∈ Xpa ⊂ Rd are the parents of node X and U ⊥⊥ Xpa. Consider an encoder-decoder
model with encoding function g : X ×Xpa → Z and decoding function h : Z ×Xpa → X , Z := g(X, Xpa), X̂ :=
h(Z, Xpa). Assume the following conditions:

1. The encoding is independent of the parent values, g(X, Xpa) ⊥⊥ Xpa.

2. The structural equation f is differentiable and strictly increasing with respect to U for all xpa ∈ Xpa.

3. The encoding g is invertible and differentiable with respect to X for all xpa ∈ Xpa.

Then, g(X, Xpa) = q̃(U) for an invertible function q̃.

Proof. First, we show that g(X, Xpa) = g(f(Xpa, U), Xpa) is solely a function of U .

Since continuity and invertibility imply strict monotonicity, without loss of generality, assume g is an strictly increasing
function (if not, we may replace g with −g and use h(−Z, Xpa)). By properties of the composition of functions,
qxpa(U) := g(f(xpa, U), xpa) is also differentiable and strictly increasing with respect to U . Also, because of strict
monotonicity it is also invertible.

By the assumption that the encoding Z is independent of Xpa,

Z = qxpa(U) ⊥⊥ Xpa. (9)

Therefore the conditional distribution of Z does not depend on Xpa. Using the assumption that U ⊥⊥ Xpa, for all
xpa ∈ Xpa and z in the support of Z, by the change of density formula,

pZ(z) =
pU (q−1

xpa
(z))∣∣∣ dqxpa

du (q−1
xpa(z))

∣∣∣ =
1{q−1

xpa
(z) ∈ [0, 1]}

dqxpa
du (q−1

xpa(z))
= c1(z). (10)

The numerator follows from the fact that the noise is uniformly distributed. The term
dqxpa

du (q−1
xpa

(z)) is nonnega-
tive since qxpa is increasing. Furthermore, since pZ(z) > 0, the numerator in Eq. 10 is always equal to 1 and the
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denominator must not depend on Xpa,
dqxpa

du
(q−1

xpa
(z)) = c2(z)

for some function c2. From Lemma 1 (by replacing a by xpa), we may express

qxpa(u) = q(u + r(xpa)) (11)

for an invertible function q.

Next, since Z ⊥⊥ Xpa, the support of Z does not depend on Xpa, equivalently the ranges of qx1 and qx2 are equal for
all x1, x2 ∈ Xpa,

qx1([0, 1]) = qx2([0, 1]). (12)

Applying Eq. 11 and the invertibility of q,

q([0, 1] + r(x1)) = q([0, 1] + r(x2))
[0, 1] + r(x1) = [0, 1] + r(x2)

[r(x1), r(x1) + 1] = [r(x2), r(x2) + 1]

Since this holds for all x1, x2 ∈ Xpa, we have r(xpa) is a constant function, or r(xpa) ≡ r. Thus let q̃ be q̃(u) =
q(u + r) = qxpa(u), which is solely a function of U for all xpa. For all xpa,

g(f(xpa, U), xpa)) = qxpa(U) = q̃(U) =⇒ g(f(Xpa, U), Xpa) = q̃(U), (13)

for an invertible function q̃. This completes the proof.

Corollary 1. Assume the conditions of Theorem 1. Furthermore, assume the encoder-decoder model pair (g, h)
satisfies: h(g(X, Xpa), Xpa) = X . Consider a factual sample pair xF := (x, xpa) where x := f(xpa, u) and an in-
tervention do(Xpa := γ). Then, the counterfactual estimate, given by h(g(x, xpa), γ) matches the true counterfactual
outcome xCF := f(γ, u).

Proof. For the intervention do(Xpa := γ), the true counterfactual outcome is xCF := f(γ, u). By assumption,
h(g(xCF, xpa), xpa) = xCF. Now since Eq. 13 holds true for all Xpa and U , it also holds for the factual and counter-
factual samples. We have,

g(x, xpa) = g(f(xpa, u), xpa) = q̃(u) = g(f(γ, u), γ) = g(xCF, γ).

Therefore, the counterfactual estimate produced by the encoder-decoder model

h(g(x, xpa), γ) = h(g(xCF, γ), γ) = xCF.

This completes the proof.

Corollary 2. Let γ ≥ 0. Assume the conditions of Theorem 1. Furthermore, assume the encoder-decoder model
pair (g, h) under some metric d (e.g., ∥ · ∥2), has reconstruction error less than τ : d(h(g(X, Xpa), Xpa), X) ≤ τ .
Consider a factual sample pair xF := (x, xpa) where x := f(xpa, u) and an intervention do(Xpa := γ). Then, the
error between the true counterfactual xCF := f(γ, u) and counterfactual estimate given by h(g(x, xpa), γ) is at most
τ . In other words, d(h(g(x, xpa), γ), xCF) ≤ τ .

Proof. For the intervention do(Xpa := γ), the counterfactual outcome is xCF := f(γ, u). Since Eq. 13 holds true for
all Xpa and U , it also holds for the factual and counterfactual samples. We have,

g(x, xpa) = g(f(xpa, u), xpa) = q̃(u) = g(f(γ, u), γ) = g(xCF, γ). (14)
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By the assumption on the reconstruction error of the encoder-decoder and 14,

d(h(g(xCF, γ), γ), xCF) ≤ τ (15)

d(h(g(x, xpa), γ), xCF) ≤ τ. (16)

We now discuss a lemma that is an extension of Lemma 1 to higher dimensions.

Lemma 2. For U ,Z ⊂ Rm, consider a family of invertible functions qxpa : U → Z for xpa ∈ Xpa ⊂ Rd, if
Jqxpa(q−1

xpa
(z)) = cA for all xpa ∈ Xpa then qxpa can be expressed as

qxpa(u) = q(u + r(xpa))

for some function r and invertible q.

Proof. Assume Jqxpa(q−1
xpa

(z)) = cA. By the inverse function theorem,

Jq−1
xpa
|z =

(
Jqxpa |q−1

xpa (z)

)−1
. (17)

Define sxpa : Z → U to be the inverse of qxpa . By assumption

det Jqxpa |q−1
xpa (z) = det Jq−1

xpa
|z = det Jsxpa |z = cA

for all xpa and a constant c and orthgonal matrix A. Since the Jacobian of sxpa is a scaled orthogonal matrix, sxpa is a
conformal function. Therefore by Liouville’s theorem, sxpa is a Möbius function (Blair, 2000), which implies that

sxpa(z) = bxpa + αxpaAxpa(z − axpa)/∥z − axpa∥ε, (18)

where Axpa is an orthogonal matrix, ε ∈ {0, 2}, axpa ∈ Rm, and αxpa ∈ R. The Jacobian of sxpa is equal to cA by
assumption

Jsxpa

∣∣
z

=
αxpaAxpa

∥z − axpa∥ε

(
I − ε

(z − axpa)(z − axpa)T

∥z − axpa∥2

)
= cA.

This imposes constraints on variables α, a, and ε. Choose z such that z − axpa = kv for a unit vector v and multiply
by A−1

xpa
,

cAA−1
xpa

=
αxpa

∥kv∥ε

(
I − ε

k2vvT

k2∥v∥2

)
I = εvvT +

(
ckε

αxpa

)
AA−1

xpa
.

If ε = 2, choosing different values of k, implying different values of z, results in varying values of on the right hand
side, which should be the constant identity matrix. Therefore we must have ε = 0. This also implies that αxpa = c
and A = Axpa . This gives the further parametrization

sxpa(z) = bxpa − cA(z − axpa) = b′(xpa) + cAz

where b′(xpa) = bxpa − cAaxpa .

Without of loss of generality, we may consider an arbitrary fixed xpa0 ∈ Xpa,

sxpa0
(z)− sxpa(z) = r(xpa) := b′(xpa0)− b′(xpa).
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Let u = sxpa(z). Then we have

sxpa0
(z) = u + r(xpa)

qxpa(u) = z = qxpa0
(u + r(xpa)),

and we have the desired representation by choosing q = qxpa0
.

Theorem 2. Assume for X ∈ X ⊂ Rm and continuous exogenous noise U ∼ Unif[0, 1]m for m ≥ 3, and X satisfies
the structural equation

X = f(Xpa, U) (6)

where Xpa ∈ Xpa ⊂ Rd are the parents of node X and U ⊥⊥ Xpa. Consider an encoder-decoder model with encoding
function g : X × Xpa → Z and decoding function h : Z × Xpa → X ,

Z := g(X, Xpa), X̂ := h(Z, Xpa). (7)

Assume the following conditions:

1. The encoding is independent of the parent values, g(X, Xpa) ⊥⊥ Xpa.

2. The structural equation f is invertible and differentiable with respect to U, and Jfxpa is p.d. for all xpa ∈ Xpa.

3. The encoding g is invertible and differentiable with respect to X , and Jgxpa is p.d. for all xpa ∈ Xpa.

4. The encoding qxpa(U) := g(f(xpa, U), xpa) satisfies Jqxpa |q−1
xpa (z) = c(xpa)A for all z ∈ Z and xpa ∈ Xpa,

where c is a scalar function and A is an orthogonal matrix.

Then, g(f(Xpa, U), Xpa) = q̃(U) for an invertible function q̃.

Proof. We may show that g(X, Xpa) = g(f(Xpa, U), Xpa) is solely a function of U .

By properties of composition of functions, qxpa(U) := g(f(xpa, U), xpa) is also invertible, differentiable. Since Jfxpa

and Jgxpa are p.d. and Jqxpa = JfxpaJgxpa , then Jqxpa is p.d. for all xpa ∈ Xpa as well.

By the assumption that the encoding Z is independent of Xpa,

Z = qXpa(U) ⊥⊥ Xpa. (19)

Therefore the conditional distribution of Z does not depend on Xpa. Using the assumption that U ⊥⊥ Xpa, for all
xpa ∈ Xpa and z in the support of Z, by the change of density formula,

pZ(z) =
pU (q−1

xpa
(z))∣∣∣det Jqxpa |q−1

xpa (z)

∣∣∣ =
2−m

1{q−1
xpa

(z) ∈ [0, 1]m}
det Jqxpa |q−1

xpa (z)
= c1(z). (20)

The numerator follows from the fact that the noise is uniformly distributed. The determinant of the Jacobian term
Jqxpa(q−1

xpa
(z)) is nonnegative since Jqxpa is p.d. Furthermore, since pZ(z) > 0, the numerator in Eq. 20 is always

equal to 2−m and the denominator must not depend on Xpa,

det Jqxpa |q−1
xpa (z) = c2(z) (21)

for some function c2. From our assumption, Jqxpa |q−1
xpa (z) = c(xpa)A for an orthogonal matrix A for all z. Applying

this to Eq. 21,

det Jqxpa |q−1
xpa (z) = det c(xpa)A = c(xpa) = c2(z),
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which implies c(xpa) ≡ c is a constant function, or Jqxpa |q−1
xpa (z) = cA. By Lemma 2, we may express qxpa(u) as

qxpa(u) = q(u + r(xpa)) (22)

for an invertible function q.

Next, since Z ⊥⊥ Xpa, the support of Z does not depend on Xpa, equivalently the ranges of qxpa1
and qxpa2

are equal
for all x1, x2 ∈ Xpa,

qx1([0, 1]m) = qx2([0, 1]m). (23)

Applying Eq. 22 and the invertibility of q,

q([0, 1]m + r(x1)) = q([0, 1]m + r(x2))
[0, 1]m + r(x1) = [0, 1]m + r(x2)

[r(x1), r(x1) + 1]m = [r(x2), r(x2) + 1]m.

Since this holds for all x1, x2 ∈ Xpa, we have r(x) is a constant, or r(x) ≡ r. Thus let q̃ be q̃(u) = q(u+r) = qxpa(u),
which is solely a function of U for all xpa. For all xpa,

g(f(xpa, U, xpa)) = qxpa(U) = q̃(U) =⇒ g(f(Xpa, U), Xpa) = q̃(U). (24)

This completes the proof.

Corollary 3. Assume the conditions of Theorem 2. Furthermore, assume the encoder-decoder model pair (g, h)
satisfies

h(g(X, Xpa), Xpa) = X. (25)

Consider a factual sample pair (x, xpa) where x := f(xpa, u) and an intervention do(Xpa := γ). Then, the given by
h(g(x, xpa), γ) matches the true counterfactual outcome xCF := f(γ, u).

Corollary 4. Let γ ≥ 0. Assume the conditions of Theorem 2. Furthermore, assume the encoder-decoder model pair
(g, h) under some metric d (e.g., ∥ · ∥2), has reconstruction error less than τ ,

d(h(g(X, Xpa), Xpa), X) ≤ τ. (26)

Consider a factual sample pair (x, xpa) where x := f(xpa, u) and an intervention do(Xpa := γ). Then, the er-
ror between the true counterfactual xCF := f(γ, u) and counterfactual estimate h(g(x, xpa), γ) is at most τ , i.e.,
d(h(g(x, xpa), γ), xCF) ≤ τ .

B Testing Independence between Parents and Encodings

We empirically evaluate the dependence between the encoding and parent values. We consider a bivariate nonlinear
SCM X1 → X2 where X2 = f(X1, U2) = X2

1 + U2 and X1 and U2 are independently sampled from a standard
normal distribution. We evaluate the HSIC between X1 and the encoding of X2. We fit our model on n = 5000
samples and evaluate the HSIC score on 1000 test samples from the same distribution. We compute a p-value using
a kernel based independence test and compare our performance to ANM, a correctly specified model in this setting
(Gretton et al., 2007). We perform this experiment 100 times. Given true independence, we expect the p-values to
follow a uniform distribution. In the table below, we show some summary statistics of the p-values from the 100
trials, with the last row representing the expected values with true uniform p-values (which happens under the null
hypothesis).

We provide p-values from the correctly specified ANM approach which are close to a uniform distribution, demon-
strating that it is possible to have encodings that are close to independent. Although the p-values produced by our DCM
approach are not completely uniform, the encodings do not to consistently reject the null hypothesis of independence.
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Mean Std. Dev 10% Quantile 90% Quantile Min Max

DCM 0.196 0.207 0.004 0.515 6e-6 0.947
ANM 0.419 0.255 0.092 0.774 3e-5 0.894
True Uniform (null) 0.500 0.288 0.100 0.900 1e-2 0.990

Table 3: Table of p-value descriptions.

These results demonstrate that it is empirically possible to obtain encodings independent of the parent variables. We
further note that the ANM is correctly specified in this setting and DCM is relatively competitive despite being far
more general.

C Missing Experimental Details

In this section, we provide missing details from Section 5.

C.1 Model Hyperparameters

For all experiments in our evaluation, we hold the model hyperparameters constant. For DCM, we use T = 100
total time steps with a linear βt schedule interpolating between 1e-4 and 0.1, or βt =

(
0.1− 10−4)

t−1
T −1 + 10−4

for t ∈ [T ]. To incorporate the parents’ values and time step t, we simply concatenate the parent values and t/T as
input to the εθ model. We found that using the popular cosine schedule (Nichol & Dhariwal, 2021) resulted in worse
empirical performance, as well as using a positional encoding for the time t. We believe the drop in performance from
the positional encoding is due to the low dimensionality of the problem since the dimension of the positional encoder
would dominate the dimension of the other inputs.

We also evaluated using classifier-free guidance (CFG) (Ho & Salimans, 2021) to improve the reliance on the parent
values, however, we found this also decreased performance. We provide a plausible explanation that can be explained
through Theorem 1. With Theorem 1, we would like our encoding g(Y, X) to be independent of X , however using a
CFG encoding (1 + w)g(Y, X) − wg(Y, 0) would only serve to increase the dependence of g(Y, X) on X , which is
counterproductive to our objective.

For VACA, we use the default implementation9, training for 500 epochs, with a learning rate of 0.005, and the encoder
and decoder have hidden dimensions of size [8, 8] and [16] respectively, a latent vector dimension of 4, and a parent
dropout rate of 0.2.

For CAREFL, we also use the default implementation10 with the neural spline autoregressive flows (Durkan et al.,
2019), training for 500 epochs with a learning rate of 0.005, four flows, and ten hidden units.

For ANM, we also use the default implementation to select a regression model. Given a set of fitted regression
models, the ANM chooses the model with the lowest root mean squared error averaged over splits of the data. The
ANM considers the following regressor models: linear, ridge, LASSO, elastic net, random forest, histogram gradient
boosting, support vector, extra trees, k-NN, and AdaBoost.

C.2 Details about the Additive Noise Model (ANM)

For a given node Xi with parents Xpai
, consider fitting a regression model f̂i where f̂i(Xpai

) ≈ Xi. Using this
regression model and the training dataset is sufficient for generating samples from the observational and interventional
distribution, as well as computing counterfactuals.

Observational/Interventional Samples. Samples are constructed in topological order. For intervened nodes, the
sampled value is always the intervened value. Non-intervened root nodes in the SCM are sampled from the empirical
distribution of the training set. A new sample for Xi is generated by sampling the parent value Xpai

inductively and
sampling Û from the empirical residual distribution, and outputting X̂i := f̂i(Xpai

) + Û .

9https://github.com/psanch21/VACA
10https://github.com/piomonti/carefl/
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Counterfactual Estimation. For a factual observation xF and interventions on nodes I with values γ, the counterfac-
tual estimate only differs from the factual estimate for all nodes that are intervened or downstream from an intervened
node. We proceed in topological order. For each intervened node i, x̂CF

i := γi. For each non-intervened node i

downstream from an intervened node, define ûF
i := xF

i − f̂i(xF
pai

), the residual and estimated noise for the factual
sample. Let x̂CF

pai
be counterfactual estimates of the parents of Xi. Then x̂CF

i := f̂i(x̂CF
pai

) + ûF
i .

Therefore, for counterfactual queries, if the true functional equation fi is an additive noise model, then if f̂i ≈ fi, the
regression model will have low counterfactual error. In fact, if f̂i ≡ fi, then the regression model will have perfect
counterfactual performance.

C.3 Details about Random Graph Generation

The random graph is comprised of ten nodes. We randomly sample this graph by generating a random upper tri-
angular adjacency matrix where each entry in the upper triangular half is each to 1 with probability 30%. We then
check that this graph is comprised of a single connected component (if not, we resample the graph). For a graphical
representation, we provide an example in Figure 4.

C.4 Query Evaluation Frameworks for Synthetic Data Experiments

Observational Evaluation. We generate 1000 samples from both the fitted and true observational distribution and
report the MMD between the two. Since DCM and the ANM use the empirical distribution for root nodes, we only
take the MMD between nonroot nodes.

Interventional Evaluation. We consider interventions of individual nodes. For an intervention node i, we choose 20
intervention values γ1, . . . , γ20, linearly interpolating between the 10% and 90% quantiles of the marginal distribution
of node i to represent realistic interventions. Then for each intervention do(Xi := γj), we generate 100 values from
the fitted model and true causal model, X̂ and X⋆ for the samples from the fitted model and true model respectively.
Since the intervention only affects the descendants of node i, we subset X̂ and X⋆ to include only the descendants
of node i, and compute the MMD on X̂ and X⋆ to obtain a distance δi,j between the interventional distribution for
the specific node and interventional value. Lastly, we report the mean MMD over all 20 intervention values and all
intervened nodes. For the ladder graph, we choose to intervene on X2 and X3 as these are the farthest nodes upstream
and capture the maximum difficulty of the intervention. For the random graph, we randomly select three non-sink
nodes to intervene on. A formal description of our interventional evaluation framework is given in Algorithm 6.

Algorithm 6 Evaluation of Interventional Queries

1: for each intervention node i do
2: γ1, . . . , γ20 linearly interpolate 10% to 90% quantiles of node i
3: for each intervention γj generated above do
4: Intervene do(Xi := γj)
5: Generate 100 samples X̂ from M̂ and X⋆ from M⋆ of descendants of i
6: δi,j ← ˆMMD(X̂, X⋆)
7: end for
8: end for
9: Output mean of all δi,j

Counterfactual Evaluation. Similarly to interventional evaluation, we consider interventions of individual nodes and
for node i, we choose 20 intervention values γ1, . . . , γ20, linearly interpolating between the 10% and 90% quantiles
of the marginal distribution of node i to represent realistic interventions. Then for each intervention do(Xi := γj),
we generate 100 nonintervened factual samples xF, and query for the estimated and true counterfactual values x̂CF

and xCF respectively. Similarly to before, x̂CF and xCF only differ on the descendants of node i, therefore we only
consider the subset of the descendants of node i. We compute the MSE δi,j , since the counterfactual estimate and
ground truth are point values, giving us an error for a specific node and interventional value. Lastly, we report the
mean MSE over all 20 intervention values and all intervened nodes. We use the same intervention nodes as in the
interventional evaluation mentioned above. A formal description of our counterfactual evaluation framework is given
in Algorithm 7 (Appendix C).
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Algorithm 7 Evaluation of Counterfactual Queries

1: for each intervention node i do
2: γ1, . . . , γ20 linearly interpolate 10% to 90% quantiles of node i
3: for each intervention γj generated above do
4: Generate 100 factual samples xF

1 , . . . , xF
100

5: Intervene do(Xi := γj)
6: Using {xF}100

k=1, compute counterfactual estimates {x̂CF
k }100

k=1 and true counterfactuals {xCF
k }100

k=1 for all
descendants of i

7: δi,j ← MSE({x̂CF
k }100

k=1, {xCF
k }100

k=1)
8: end for
9: end for

10: Output mean of all δi,j

C.5 Explanation of Error Inflation in fMRI Experiments

In our fMRI experiments, we compute the absolute error on a single interventional sample and compute the absolute
value. As an intuition for why we cannot hope to have errors close to zero and for why the errors are relatively much
closer together, consider the following toy problem.

Assume X1, . . . , Xn, Y1, . . . , Yn
iid∼ N (θ, 1) and we observe X1, . . . , Xn as data. Consider the two following statisti-

cal problems:

1. Learn a distribution D̂ such that samples from D̂ and samples Y1, . . . , Yn achieves low MMD.

2. Learn an estimator that estimates Y1 well under squared error.

In the first statistical problem, if D̂ is a reasonable estimator, we should expect that more data leads to lower a MMD,
for example the error may decay at a 1/n rate. We should expect MMD values close to zero, and the magnitude of the
performance is directly interpretable.

In the second statistical problem, under squared error, the problem is equivalent to

min
c

EY1∼N (θ,1)(Y1 − c)2 = min
c

θ2 + 1− 2cθ + c2.

The optimal estimator is the mean θ and achieves a squared error of 1. Of course in practice we do not know θ, if
we were to use the sample mean of X1, . . . , Xn, we would have an error of the order 1 + 1/n. While we may still
compare various estimators, e.g. sample mean, sample median, deep neural network, all the losses will be inflated by
1, causing the difference in performances to seem much more minute.

Our synthetic experiments hope to directly estimate the interventional distribution and computes the MMD between
samples from the true and model’s distributions, implying they are of the first statistical problem. The fMRI real data
experiments aim to estimate a single intervention value from a distribution, implying they are of the second statistical
problem. We should not expect these results to be very small, and the metric values should all be shifted by an intrinsic
irreducible error.

D Additional Experiments

D.1 Running Time Experiments

We present the training times in minutes for one seed on the ladder graph using the default implementation and
parameters. For a fair comparison, these are all evaluated on a CPU. Note that ANM is the fastest as it uses standard
regression models, and our proposed DCM approach is about 7-9x faster than CAREFL and VACA. The generation
(inference) times for all the methods are in the order of 1 second. For VACA and CAREFL, we use the implementation
provided by the respective authors.
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Figure 1: Left: Nonlinear setting (NLIN), Right: Nonadditive setting (NADD). Box plots of observational, interven-
tional, and counterfactual queries of the ladder and random SCMs over 20 random initializations of the model and
training data.

DCM ANM VACA CAREFL

Training Time (in minutes) 15.3 4.3 142.8 110.5

Table 4: Table of training times for a single run.

D.2 Additional Synthetic Experiments

In this section, we present additional experimental evidence showcasing the superior performance of DCM in address-
ing various types of causal queries. We consider four additional smaller graph structures, which we call the chain,
triangle, diamond, and Y graphs (see Figure 9).

The exact equations are presented in Table 5. These functional equations were chosen to balance the signal-to-noise
ratio of the covariates and noise to represent realistic settings. Furthermore, these structural equations were chosen
after hyperparameter selection, meaning we did not tune DCM’s parameters nor tune the structural equations after
observing the performance of the models.

Consider a node with value X with parents Xpa and exogenous noise U where Xpa ⊥⊥ U , and corresponding func-
tional equation f such that

X = f(Xpa, U).
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SCM Nonlinear Case Nonadditive Case

C
ha

in f2(U2, X1) exp(X1/2) + U2/4 1/((U2 + X1)2 + 0.5)

f3(U3, X2) (X2 − 5)3/15 + U3
√

X2 + |U3|/(0.1 + X2)

Tr
ia

ng
le f2(U2, X1) 2X2

1 + U2 X1/((U2 + X1)2 + 1) + U2/4

f3(U3, X1, X2) 20/(1 + exp(−X2
2 + X1)) + U3 (|U3|+ 0.3)(−X1 + X2/2 + |U3|/5)2

D
ia

m
on

d

f2(U2, X1) X2
1 + U2/2

√
|X1|(|U2|+ 0.1)/2 + |X1|+ U2/5

f3(U3, X1, X2) X2
2 − 2/(1 + exp(−X1)) + U3/2 1/(1 + (|U3|+ 0.5) exp(−X2 + X1))

f4(U4, X2, X3) X3/(|X2 + 2|+ X3 + 0.5) + U4/10 (X3 + X2 + U4/4− 7)2 − 20

Y

f3(U3, X1, X2) 4/(1 + exp(−X1 −X2))−X2
2 + U3/2 (X1 − 2X2 − 2)(|U3|+ 0.2)

f4(U4, X3) 20/(1 + exp(X2
3 /2−X3)) + U4 (cos(X3) + U4/2)2

Table 5: The equations defining the data generating process in the NLIN and NADD cases.

Further assuming the additive noise model, X := f1(Xpa) + f2(U). In this additive setting, since Xpa ⊥⊥ U , we have

Var [X] = Var [f1(Xpa] + Var [f2(U)].

We choose f1 and f2 such that

0.05 ≤ Var [f2(U)]
Var [f1(Xpa] ≤ 0.5,

representing the fact that the ratio of the effect of the noise to the parents is roughly approximate or smaller by an
order of magnitude.

For the nonadditive case, we decompose the variance using the law of total variance,

Var [X] = EVar [f(Xpa, U) | U ] + VarE[f(Xpa, U) | U ].

Similarly, we choose the functional equation f such that f satisfies

0.05 ≤ VarE[f(Xpa, U) | U ]
EVar [f(Xpa, U) | U ] ≤ 0.5

For all graphs, Ui
iid∼ N (0, 1), and we choose f such that Xi = Ui if Xi is a root node, i.e. f is the identity function.

Lastly, we normalize every node Xi such that Var (Xi) ≈ 1. For the sake of clarity, we omit all normalizing terms in
the formulas and omit functional equations for root nodes below.

Results. For these 4 graph structures (chain, triangle, diamond, and Y), in Table 6, we provide the performance of all
evaluated models for observational, interventional, and counterfactual queries, averaged over 10 separate initializations
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DCM ANM VACA CAREFL

SCM Metric (×10−2) (×10−2) (×10−2) (×10−2)

C
ha

in

N
L

IN

Obs. MMD 0.27±0.11 0.19±0.27 1.63±0.42 4.25±1.12

Int. MMD 1.71±0.27 1.70±0.47 10.10±1.81 8.63±0.52

CF. MSE 0.33±0.16 2.43±2.49 25.99±6.47 19.62±4.01
N

A
D

D
Obs. MMD 0.22±0.16 1.51±0.43 1.53±0.41 3.48±1.06

Int. MMD 2.85±0.45 7.34±0.62 10.42±2.77 11.02±1.32

CF. MSE 75.84±1.65 88.56±2.63 98.82±4.16 105.80±11.04

Tr
ia

ng
le N

L
IN

Obs. MMD 0.16±0.11 0.12±0.07 3.12±0.93 4.64±1.03

Int. MMD 1.50±0.30 3.28±0.79 18.43±1.72 7.08±0.82

CF. MSE 1.12±0.26 9.80±1.70 178.69±16.45 41.85±19.58

N
A

D
D

Obs. MMD 0.25±0.12 0.51±0.08 2.42±0.48 5.12±1.10

Int. MMD 2.81±0.21 5.54±0.60 11.09±0.85 4.17±0.44

CF. MSE 26.28±6.68 97.25±16.45 173.67±16.28 121.99±31.34

Y

N
L

IN

Obs. MMD 0.11±0.05 0.14±0.08 2.29±0.69 6.82±0.85

Int. MMD 1.23±0.08 1.40±0.14 9.50±0.96 14.97±1.29

CF. MSE 0.28±0.25 1.22±0.27 28.79±4.02 27.85±5.33

N
A

D
D

Obs. MMD 0.21±0.15 1.00±0.19 1.51±0.44 3.39±0.58

Int. MMD 1.54±0.23 5.62±0.31 5.37±0.72 6.51±0.40

CF. MSE 33.45±2.06 47.55±2.56 60.67±3.24 52.41±6.69

D
ia

m
on

d N
L

IN

Obs. MMD 0.22±0.10 0.13±0.07 2.77±0.45 8.28±1.29

Int. MMD 3.21±0.62 2.56±0.31 25.30±1.39 18.23±3.01

CF. MSE 14.74±6.09 32.02±37.74 138.65±12.33 607.62±241.21

N
A

D
D

Obs. MMD 0.25±0.18 0.28±0.09 2.36±0.44 5.50±0.81

Int. MMD 1.88±0.23 4.40±0.52 12.54±0.89 16.34±1.72

CF. MSE 1.36±0.14 8.58±0.77 57.40±4.23 24.61±7.05

Table 6: Mean±standard deviation of observational, interventional, and counterfactual queries of four different SCMs
in nonlinear and nonadditive settings over 10 random initializations of the model and training data. The values are
multiplied by 100 for clarity.

of models and training data, with the lowest value in each row bolded. The values are multiplied by 100 for clarity. In
Figure 2, we show the box plots for the same set of experiments.

The results here are similar to those observed with the larger graph structures in Table 1. DCM has the lowest error
in 7 out of 12 of the nonlinear settings, with the correctly specified ANM having the lowest error in the remaining
5. Furthermore, DCM and ANM both typically have a lower standard deviation compared to the other competing
methods. For the nonadditive settings, DCM demonstrates the lowest values for all 12 causal queries.

D.3 Semi-Synthetic Experiments

To further evaluate the effectiveness of DCM, we explore a semi-synthetic experiment based on the Sachs
dataset (Sachs et al., 2005). We use the real world graph from comprised of 11 nodes11. The graph represents an

11https://www.bnlearn.com/bnrepository/discrete-small.html#sachs
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intricate network of signaling pathways within human T cells. The 11 nodes within this graph each correspond to one
of the phosphorylated proteins or phospholipids that were examined in their study.

For our experiment, we sample data in a semi-synthetic manner. For the root nodes, we sample from the empirical
marginal distribution. For non-root nodes, since the ground truth structural equations are unknown, we use a random
neural network as the structural equation, as was done in Section 5. We report the performances in Table 7. We see
that the performance improvements with our DCM approach corroborate our prior findings.

DCM ANM VACA CAREFL

SCM Metric (×10−2) (×10−2) (×10−2) (×10−2)

Sa
ch

s N
L

IN

Obs. MMD 0.31±0.15 0.21±0.04 0.53±0.24 7.30±0.95

Int. MMD 1.25±0.11 1.37±0.12 2.03±0.36 5.77±0.85

CF. MSE 0.72±0.19 4.72±1.71 17.71±9.23 9.59±2.52

N
A

D
D

Obs. MMD 0.18±0.07 0.18±0.06 0.39±0.24 6.10±1.14

Int. MMD 1.42±0.26 1.86±0.51 2.21±0.98 5.29±2.07

CF. MSE 1.99±2.49 4.68±5.77 7.30±11.57 8.30±8.34

Table 7: Mean±standard deviation of observational, interventional, and counterfactual queries of the Sachs SCM in
nonlinear (NLIN) and nonadditive (NADD) settings over 10 random initializations of the model and training data. The
values are multiplied by 100 for clarity.

E Real Data Experiment II

In order to evaluate our DCM approach, we assess its performance in computing the Individual Treatment Effect (ITE),
which is defined as Di := Yi(1) − Yi(0) where Yi(0) ∈ R is the potential outcome of unit i when i is assigned to
the control group, and Yi(1) is the potential outcome when i is assigned to the treatment group. Note that we do not
observe Di for any unit i as for each unit in the training data set, we observe either the outcome under control or the
outcome under treatment, but never both.

Now, in non-simulated data, it is impossible to know the counterfactual ground-truth as this event did not happen.
However, averaging the ITE over all individuals, i.e., E[Y (1) − Y (0)], provides us with an estimate of the average
treatment effect (ATE), for which we have real-world datasets with known ground-truth. Therefore, to evaluate our
approach, we first estimate the ITE for each sample by estimating each corresponding counterfactual outcome. We
then average these to obtain the ATE, which we can then compare with the ground-truth ATE. Since our techniques
are designed for constructing unit-level counterfactuals, and not ATE directly, the goal here is not to compare against
other ATE estimation approaches, but rather demonstrate that the individual treatment effects computed through our
counterfactuals are reasonably accurate.

The following experiments are based on popular datasets. Each experiment was repeated 10 times using the same
model hyperparameters for each problem, without fine-tuning to the specific problem. For each dataset, we use the
ground-truth graph structure from the literature and assign a DCM model to each non-root node. For root nodes, we
can directly use the empirical distribution without the need to fit a particular model.

Infant Health and Development Program Dataset. The dataset aims at predicting the effect of specialized childcare
on cognitive test scores of infants (Hill, 2011). The goal here is to see if a treatment (specialized childcare) improves
the cognitive abilities of infants compared to infants that did not receive the treatment. The average treatment effect
here is the difference between the expected cognitive test score under do(specialized child care = 1) and expected
cognitive test score under do(specialized child care = 0). The ground-truth ATE (on cognitive test score) associated
with this dataset is 4.021.

Lalonde Dataset. The dataset contains different demographic variables (e.g., gender, age, education etc.) with the
goal to see if training programs increase earnings (LaLonde, 1986). The average treatment effect here is the difference
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Dataset Algorithm ATE (computed from ITE) Relative Absolute Error (%)

IHDP DCM 4.013 0.199%
IHDP ANM 3.957 1.592%

Lalonde DCM 1579.59 3.672%
Lalonde ANM 1516.20 7.538%

Table 8: ATE estimation through computing unit-level counterfactuals. The ground-truth ATE provided with the IHDP
and Lalonde datasets are 4.021 and 1639.80, respectively.

between the expected earnings under do(training program = 1) and expected earnings under do(training program = 0).
The ground-truth ATE (on earnings) associated with this dataset is 1639.80.

Results. The results are summarized in Table 8. As noted above, the focus of this paper is on computing unit-level
counterfactuals. The fact that the estimate of the ATE computed from via DCM approach matches the ground-truth
ATE well can be seen as a sign that the unit-level counterfactuals were computed accurately. For baseline, we also
show the results where we replace our DCM approach with additive noise model (ANM) approach for modeling the
SCMs.
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Figure 2: Top: Nonlinear setting (NLIN), Bottom: Nonadditive setting (NADD). Box plots of observational, inter-
ventional, and counterfactual queries of four different SCMs over 10 random initializations of the model and training
data.
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Figure 3: Ladder graph used in Section 5.
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Figure 4: Example of a random graph used in Section 5, with exogenous noise nodes omitted for clarity.
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Figure 5: Chain graph.
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Figure 7: Diamond graph.
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Figure 8: Y graph.

Figure 9: Causal graphs used in our experiments in Appendix D.2.
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