Vision Transformer Autoencoders for Unsupervised
Representation Learning: Revealing Novel Genetic
Associations through Learned Sparse Attention
Patterns

Samia R.Islam Tian Xia Wei He Ziqian Xie* Degui Zhi*
D. Bradley McWilliams School of Biomedical Informatics,
The University of Texas Health Science Center at Houston
{ziqian.xie, degui.zhil}@uth.tmc.edu

Abstract

Linking genetic variation to human brain structure is a key step toward understand-
ing the biological basis of cognition and disease. Progress in this area, however, has
been limited by two major challenges: genome-wide association studies (GWAS)
require very large cohorts, and imaging features are often predefined, restricting the
discovery of novel associations. Data-driven representation learning offers a way
to overcome these barriers by extracting informative features directly from imaging
data without strong prior assumptions. Here, we present a pipeline that applies a
Vision Transformer (ViT)-based autoencoder to derive 128-dimensional representa-
tions from T1-weighted brain MRI scans of 6,130 UK Biobank participants. These
representations were used in GWAS to identify single nucleotide polymorphisms,
which were further aggregated into genetic loci. To evaluate model performance, we
introduce two metrics: recovery of previously reported brain-structure-associated
loci and the total number of loci discovered. The ViT-based approach outperformed
alternative methods on both measures. Feature interpretation also revealed that
the model captured non-local anatomical patterns, such as hemisphere symmetry.
Together, these results demonstrate the value of transformer-based architectures in
discovering novel and robust imaging phenotypes for genetic discovery.

1 Introduction

Insights into understanding brain structural anatomy and related genetic signals have the potential
to pave the way for breakthroughs in neuroscience and precision medicine. Most genome-wide
association studies (GWAS) in the past have focused on direct phenotype measurements [Garcia{
Marin et al. 2024, Hibar et al., 2017, 2015] or statistical and mathematical representations of
anatomical modeling and population genetics [Brun et al., 2009, Pol et al., 2006]. While these
approaches have led to interesting discoveries, they rely on prior knowledge and constraints and
may overlook more nuanced or complex patterns in the data. Recent advances in machine learning
techniques offer more flexible and data-driven methods that can learn important features from raw
imaging data. T1-weighted magnetic resonance imaging (MRI) brain scans capture detailed structural
architecture and may be used as a rich source of data for advanced machine learning models.

Previous works on brain imaging GWAS have primarily focused on image-derived phenotypes (IDPs)
via image processing pipelines [Elliott et al., 2018, |Smith et al.| 2021]]. However, IDPs can miss

*Co-corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The 3rd Workshop on
Imageomics: Discovering Biological Knowledge from Images Using Al



subtle or complex patterns due to their reliance on predefined features and model assumptions, even
more so in case of limited data availability.

Recent advances in machine learning techniques offer more flexible methods that can learn important
features from raw imaging data [Hussain et al.l 2018] |Giger, 2018]. [Yu et al.|[2024] demonstrated
using supervised deep learning to derive IDPs through labeled MRI data for brain imaging GWAS.
The primary challenge with this approach is that labor-intensive labeled data for supervised deep
learning carry the same biases from the human labeler.

Patel et al.|[[2024]] used unsupervised deep learning to discover phenotypes for GWAS of brain imaging
because this approach can bypass the challenges of relying on predefined features, segmentation, and
manual annotation by enabling models to learn complex and relevant features directly from the raw
image data, where the model creates an n-dimensional representation known as Unsupervised Deep
learning derived Imaging Phenotypes (UDIPs).

Here, we propose an approach where an unsupervised learning vision transformer (ViT) model
[Dosovitskiy et al.l 2021] is used for brain imaging GWAS. This utilizes a different inductive bias
from CNN architectures, which typically build representations through stacked layers of template
matching, whereas the ViT uses patch-based self-attention to directly model potentially long-range
interactions within the image. ViTs have demonstrated strong performance in various medical
imaging applications, including feature extraction from brain MRI [Dhinagar et al.| [2023]], their
architectural design facilitating the direct modeling of global context and long-range dependencies,
even in the early layers [Dhinagar et al2023| |/Al-Hammuri et al., 2023]].

This paper presents a novel Vision Transformer autoencoder to derive a new class of phenotypes,
ViT-UDIPs, directly from brain MRI data. A genome-wide association study performed on these
ViT-UDIPs reveals novel genetic loci that were not captured by previous analyses. Additionally, an
interpretability framework is introduced to probe the model’s learned pattern, offering insights into
the ViT-derived phenotypes.

2 Methods

Our overall pipeline is shown in[I] The three major steps are data selection, ViT-Autoencoder
(ViT-AE) model development, and GWAS analysis.
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Figure 1: Overall pipeline of the study. a) T1 brain MRI preprocessed by UKBB were used for
training, validation and testing. b) ViT-AE trained by background masked mean square error (MSE)
loss of non-zero patches. c¢) Genetic loci discovered by univariate GWAS and FUMA GWAS.

2.1 Data Selection

The MRI scans were obtained from UKBB. Disjoint datasets were used for training, validation and
GWAS to ensure robust model evaluation and prevent data leakage. 6,130 MRI scans were chosen
for the model and split into 75/25 training/validation sets. 4,597 scans were used for training, and
1,533 scans were used for validation. The dataset used for GWAS consisted of 37,376 scans.



The linearly registered T1 brain MRI scans were of dimensions 182 x 218 x 182. To allow division
into equal-sized patches, these scans were padded to 182 x 224 x 182. The background voxels were
already set to 0 by UK Biobank preprocessing. For the foreground voxels, we applied a z-transform
to standardize the intensity values, ensuring consistency across scans and facilitating better model
performance.

2.2 ViT-AE Model

The ViT-AE architecture consisted of a ViT encoder, an average pooling layer and a ViT decoder. The
features from the average pooling layer, which served as a concise representation of the input, became
a distinct token embedding that fed into the decoder layers along with empty token embeddings
solely containing positional encoding. These combined token embeddings passed through multiple
transformer layers and were decoded by a linear projection to reconstruct the input patches. MSE
loss was computed between predicted patches and original patches within the batch mask. The
reconstructed layer assembled and reshaped the predicted patches from the decoder into 3D images
of size 182 x 224 x 182.

2.3 GWAS

Related individuals were filtered out since our GWAS was conducted using a linear model, addi-
tionally, multiple visits were filtered where only scans from the first visits were retained. A total of
22,867 subjects were used for performing GWAS on the extracted ViT-UDIPs. GWAS was performed
between the SNPs and the 128 ViT-UDIPs, with age (field ID 21003), ageﬁ, sex (field ID 31), sex x
age, sex X ageQ, 10 genetic PC (field ID 22009), head size (field ID 25000), inverted contrast-to-noise
ratio (field ID 25735), head position in scanner (field ID 25756-25758), scanner table position (field
ID 25759), location of the assessment center (field ID 54) and date of attending assessment center
(field ID 53) as covariates FastGWA [Jiang et al.|[2019], implemented in GCTA (Genome-wide Com-
plex Trait Analysis, Version 1.94.1), was used to perform linear mixed model association analyses
based on a sparse kinship matrix provided by the UK Biobank. The Bonferroni-corrected significance
threshold was set to Se-8/128. We created a summary statistics file with only the most significant
p-value (minP) for each SNP. This file was uploaded and run on FUMA SNP2GENE [Watanabe et al.|
2017] and the generated GenomeRiskLoci.txt file was then used to obtain the clumped loci.

3 Results

3.1 Model Performance

The average validation loss of the ViT-AE model remained at approximately 0.22 after 200 epochs.
Training was stopped at epoch 300 when we did not see any decrease in validation loss and im-
provement in the number of discovered loci. We further performed training optimizations for the
VIiT-AE model. For training, the optimal configuration was found to be the AdamW optimizer
combined with a cosine learning rate scheduler and an enlarged batch size of 16. This setup yielded
the highest number of discovered loci (63) and the greatest overlap with loci from the BIG40 panel.
This configuration is adopted as the current setting, and all subsequent results are based on this setup.

Table 1: Model optimization

Base:ViT Val SSIM  Best number of loci Number of loci hit
loss discovered  across on the IDP loci panel
epochs and replica- (BIG40)
tions
StepLR scheduler 0.25 0.79 31 19
Cosine scheduler 0.21 0.81 56 28
Increase batch size 0.22 0.80 63 29




3.2 GWAS

We analyzed FUMA GWAS results for epochs 300, as they represented the epochs with the most
number of loci discovered. Notably, we discovered 24 new loci associated with brain structure that
were not previously reported by CNN-based UDIP approach by [Patel et al.| [2024]. We investigated
the lead SNPs in these loci. [2] shows the previously unreported loci and the nearest gene to the
leadSNP on a Manhattan plot. Four of the newly identified loci are located on chromosome 2, and
three on chromosomes 4, 6, and 14, respectively. An example of how to interpret the plot is as follows:
the SLC39A8 gene on chromosome 4 was found to be significantly associated with the ViT-UDIP
feature at dimension 95, suggesting a potential link between the genetic activity of SLC39A8 and the
representation captured in this embedding dimension.
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Figure 2: New loci discovered from ViT-based UDIP approach.

14 loci out of 24 had been previously associated with brain structure. 10 loci out of 24 had not been
previously documented in the GWAS catalog as being associated with brain architecture.

3.3 Attention Head Analysis

We investigated the attention scores of the trained model and found some interesting patterns. From
the very first attention layer, the model started to focus on a subset of patches across different heads.
The attention pattern of each head was extremely sparse (3)), while different heads at different layers
focused on different patches. This subset of patches consisted of less than one-third of the total
patches, with all other patches attending to them.

We found that this behavior arises from the specific embeddings learned by the model. The input
embedding matrix maps most patches to a similar direction—referred to as audience tokens—while
a small subset remains only weakly correlated with both the majority and each other, which we denote
as spotlight tokens. (3).

At each attention head, the (unnormalized) attention score between two tokens X; and X5 can be
written as

X WEWoXo,.

This can be interpreted as first rotating them differently (based on the rotation matrices formed by the
left and right singular vectors of W}WQ), followed by projecting the rotated X; and X5 onto the
dimensions with nonzero singular values and finally computing a weighted inner product.

Specifically, consider the singular value decomposition

Wi Wgo=UZV',
where U and V are rotation matrices, and X is a diagonal scaling matrix.

Then, the interaction between X; and X5 can be written as

(PUTX,)"2,.(PV'Xy,),
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Figure 3: Investigation of unique patterns from ViT. a) Softmax attention score at attention layer 1
head 1 between 957 tokens, image is blurred using a Gaussian filter with sigma=2 for better visual
quality. b) Correlation heatmap between 957 tokens input embeddings, we use hierarchical clustering
with average linkage to reorder the dimensions of the heatmap. ¢) Visualization of spotlight tokens
across brain slices. Highlighted regions (yellow).

where P is a wide identity matrix that selects the first d;, coordinates of the input (the dimension
of the attention head), and 3, is the reduced singular value matrix consisting only of the nonzero
entries of 3, with shape dj, x dj,.

As aresult, at each attention head, audience tokens tend to focus on one or a few nearby “spotlight”
tokens that happen to align with them through rotations, leading to sparse attention patterns and
accumulation of information from these spotlight patches.

We then visualize the distribution of spotlight tokens across different brain slices. The highlighted
regions in [3] indicate key locations where the model focuses its attention. We observe that these
spotlight patches tend to cluster around deep sulci, align along the boundaries of the ventricles, and
appear in structures such as the cerebellum and brainstem. Additionally, some spotlight patches
appear in corresponding regions across hemispheres, suggesting a tendency to capture bilaterally
relevant anatomical features. The distribution of attention is sparse and concentrated around major
structural landmarks, indicating that the model prioritizes these regions for information aggregation.

4 Conclusion

We developed an approach that integrated unsupervised deep representation learning, specifically
using a ViT-AE model, for brain imaging GWAS. Our ViT-AE pipeline successfully identified 24
genetic loci associated with brain structure that were missed by a previous CNN-based approach, with
10 of these having no prior associations with brain morphology in the GWAS Catalog. Furthermore,
our analysis of the model’s attention mechanism revealed the data-driven emergence of “spotlight
tokens,” which receive a disproportionate amount of attention and correspond to anatomically infor-
mative regions with high structural variance, such as the boundaries between different types of tissue
(e.g. gray and white matter), the edges of ventricles or the complex folding of deep sulci. The model
appears to have learned to focus its attention on these information-rich patches.In conclusion, this
robust pipeline demonstrates significant promise in uncovering genetic signals from brain MRI data
by leveraging the ViT’s ability to capture intricate structural patterns and spatial relationships.
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