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ABSTRACT

Given an image and a target modification (e.g an image of the Eiffel tower and the
text “without people and at night-time”), Compositional Image Retrieval (CIR)
aims to retrieve the relevant target image in a database. While supervised ap-
proaches rely on annotating triplets that is costly (i.e. query image, textual modi-
fication, and target image), recent research sidesteps this need by using large-scale
vision-language models (VLMs), performing Zero-Shot CIR (ZS-CIR). How-
ever, state-of-the-art approaches in ZS-CIR still require training task-specific, cus-
tomized models over large amounts of image-text pairs. In this work, we propose
to tackle CIR in a training-free manner via our Compositional Image Retrieval
through Vision-by-Language (CIReVL), a simple, yet human-understandable and
scalable pipeline that effectively recombines large-scale VLMs with large lan-
guage models (LLMs). By captioning the reference image using a pre-trained
generative VLM and asking a LLM to recompose the caption based on the textual
target modification for subsequent retrieval via e.g. CLIP, we achieve modular
language reasoning. In four ZS-CIR benchmarks, we find competitive, in-part
state-of-the-art performance - improving over supervised methods. Moreover,
the modularity of CIReVL offers simple scalability without re-training, allow-
ing us to both investigate scaling laws and bottlenecks for ZS-CIR while eas-
ily scaling up to in parts more than double of previously reported results. Fi-
nally, we show that CIReVL makes CIR human-understandable by composing
image and text in a modular fashion in the language domain, thereby making
it intervenable, allowing to post-hoc re-align failure cases. Code available at
github.com/ExplainableML/Vision_by_Language.

1 INTRODUCTION

Compositional Image Retrieval (CIR) necessitates a nuanced coupling between the image content
and the semantics of the textual query to retrieve a new image that accurately embodies the relevant
image elements and the modifications described in the textual query. To achieve this, previous works
require curated triplets (query image, modifying text, target image) to train a specific CIR system.
However, annotating such triplets is both difficult and labor-intensive. To tackle this problem, recent
research proposed Zero-Shot CIR (ZS-CIR) (Saito et al.,[2023}|Baldrati et al.,2023)). Based on large-
scale pre-trained vision-language models (VLMs) (e.g. CLIP (Radford et al.|[2021)), these methods
use image-caption pairs to train textual inversions (Gal et al.| [2023; |Cohen et al) 2022) mapping
images to text tokens. A static template merges tokens and textual modifications to obtain target
captions, performing CIR without explicit supervision. Thus, even when leveraging large-scale
VLMs, ZS-CIR methods still train additional mapping networks on large image-caption datasets.

In this work, we propose to achieve training-free ZS-CIR by leveraging ubiquitously available, off-
the-shelf models already trained with large-scale training data. Our Compositional Image Retrieval
through Vision-by-Language (CIReVL) follows the vision-by-language paradigm (Zeng et al.,
2023; |Zhu et al., 2023; [Berrios et al., 2023 [Levy et al.l 2023a), which uses language as an ab-
straction layer for reasoning about visual content. Specifically, CIReVL employs vision-language
models like BLIP-2 (Li et al.,|2023)) or CoCa (Yu et al.,[2022)) to generate a detailed description of the
query image. Subsequently, a LLM (s.a. Llama (Touvron et al.,|2023) or GPT (Brown et al.} 2020))
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crafts a caption for the desired target image, using both the generated description and the respective
textual query. Finally, a VLM like CLIP (Radford et al., 2021) retrieves the image. CIReVL ab-
stracts away the compositional nature of the problem into the language domain, converting ZS-CIR
into an inherently modular task comprising captioning, reasoning and cross-modal retrieval.

This opens up various benefits not available in traditional, trained ZS-CIR approaches. Beyond
not requiring additional adaptation resources, the training-free and modular nature offers the flex-
ibility for simple model changes and replacements, allowing us to scale up CIReVL using freely
available models. Consequently, while CIReVL already matches and even outperforms trained
methods on the common ZS-CIR benchmarks CIRCO (Baldrati et al., 2023)) and CIRR (Liu et al.,
2021) using comparable model architectures, simple plug-and-play of large retrieval models raises
improvements significantly, in parts more than doubling previous results. In addition, CIReVL is
modular and operates primarily in the language domain, as the outputs of the captioning module
and the LLM-generated modifications are textual, offering a degree of understanding over the com-
positional retrieval process to humans. This is further reflected in the ability for possible human
intervention on the retrieval process to fix or post-hoc improve results (Fig[). Finally, we show the
generality of CIReVL on domain conversion (Saito et al.| [2023) and conditional image similarity
(Vaze et al.,[2023), and ablation studies elucidate the role of each pipeline component.

Overall, our contributions are: 1) We explore training-free zero-shot compositional image retrieval,
proposing CIReVL, a new approach that matches or outperforms existing training-based methods on
four CIR benchmarks while only relying on off-the-shelf available pre-trained models. 2) We show
how the inherent modularity of CIReVL and its reasoning over the textual query in the language
domain facilitates a degree of human understanding over the compositional retrieval process, even
allowing for user-level intervention. 3) We conduct multiple additional studies to ablate pipeline
components and point to the importance of language-level reasoning over the textual query, while
highlighting the simple scalability of CIReVL through its modular, training-free nature.

2 RELATED WORK

Compositional Image Retrieval. The task of Compositional Image Retrieval has found significant
application in conditional search (Wu et al., 2021} Han et al., 2017} [Vo et al.| [2019), where users
perform interactive dialogue to refine a given query image toward retrieving specific items. Classical
techniques often employ custom models that project text-image pairs into a common embedding
space (Vo et al.| [2019; Baldrati et al.l |2022; |Chen et al., 2020; |(Chen & Bazzani, 2020; [Lee et al.,
2021} |Anwaar et al.l |2021) using contrastive objectives (Sohn, 2016} [Radford et al., 2021} Roth
et al.| 2022b) or cross-modal attention (Delmas et al., [2022) and is closely related to compositional
learning (Misra et al.| 2017} Mancini et al. [2021}; Karthik et al., [2022). With the advent of vision-
language foundation models (Bommasani et al., 2021;|Radford et al., 2021} Jia et al.| [2021)), interest
in CIR has surged, especially in zero-shot settings without task-specific models. Two prominent
directions exist: one using pseudo-tokens to represent reference images, which are then concatenated
with the reference caption (Saito et al.,|2023}; Baldrati et al., 2023} bai et al., 2024); the other trains
foundation models on curated triplets tailored for CIR (Liu et al., 2023} |Gu et al.l 2023} |Ventura
et al.} 2024; [Levy et al.,[2023b)). We explore a different pipeline by coupling VLMs with LLMs to
address CIR without any specialized training, in an effective and interpretable manner.

Vision-Language Models. Models like CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021}
have been trained on expansive datasets such as LAION-400M/5B (Schuhmann et al., 2021} |2022),
enabling them to map images and text into a shared embedding space. These models have seen wide-
ranging usage, from generative tasks (Rombach et al.||2022; Ramesh et al.| [2022; |Gafni et al., 2022
Liu et al.} 20225 (Chefer et al., [2023}; |[Karthik et al., |2023)) to open-vocabulary classification (Radford
et al.l 2021; Ilharco et al.; [Menon & Vondrick, 2023} |Pratt et al., |2023; |Udandarao et al., 2023}
Roth et al., 2023) and (cross-modal) retrieval (Bogolin et al., [2022} Bain et al., 2022} Roth et al.,
2022ai; [Wu et al., 2023). Further advancements include models like BLIP (L1 et al., [2022; 2023)
and Flava (Singh et al.|[2022), which extend beyond shared space projection to address other vision-
language tasks like captioning (Vinyals et al.l 2016)) and visual question answering (Antol et al.,
2015). While these models have been indirectly applied to CIR through specialized modules (Vo
et al., |2019; Baldrati et al.l [2022; [Delmas et al., [2022) and with fine-tuning (Gu et al., 2023)), our
work demonstrates that vision-language models alone, when partnered with an LLM, can suffice for
effective CIR without additional training.
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Figure 1: Compositional Image Retrieval through Vision-by-Language (CIReVL). Given an input
image and a text modifier, we use an off-the-shelf vision-language model to caption the image. A
LLM processes the generated caption and the text modifier to generate a description of the desired
target image. To obtain the final image, we use a vision-language model and perform text-to-image
retrieval. CIReVL is modular, training-free and human-understandable in natural language.

3 CIREVL METHODOLOGY

This section first details the specifics of the ZS-CIR task in §3.1} before presenting our proposed
approach, Compositional Image Retrieval through Vision-by-Language (CIReVL), in §3.2|

3.1 PRELIMINARIES

Let us define as Z and T the image and text space, respectively. For compositional image retrieval
(CIR), a text modifier ¢ € T describes hypothetical semantic changes on a query image () € Z,
whose closest realization Ié € D from some image database D = {I,,--- , I, } should be retrieved.
This inherently multi-modal task can be defined as a scoring task @ : Zx T xD — IR. While in stan-
dard CIR @ is learned via supervised training, common zero-shot CIR (ZS-CIR) approaches sidestep
this need by tuning specific modules to invert the query image into an associated text. Specifically,
they learn an inversion function ¢; : Z — Z mapping a given query image to a pre-defined text-
token embedding space Z. Practically, ¢; is trained over intermediate image representation of a
specific image encoder W (Saito et al., 2023 |[Baldrati et al., |2023)), often part of a large-scale
pre-trained vision-language representation system such as CLIP (Radford et al., 2021). Template
filling around the text modifier over the corresponding inverted embedding inv, = ¢;(¥;(Q))
is then used to aggregate the information into one target caption (e.g. “a photo of {inv,} that
{t}”). This target caption is then used for target image retrieval by VLMs like CLIP, encoding
it using the associated pre-trained text encoder W that projects the target caption and candidate
images I € D into a shared, searchable embedding space. The respective matching score is then
cos_sim(¥(I), ¥ (inv,)) with cosine similarity cos_sim.

While promising, such a pipeline exhibits certain shortcomings, in that one i) needs to train a specific
inversion module ¢; dependent on the chosen VLM and a separate image-caption dataset, ii) text
embedding vectors can not be ensured to be human-understandable and cannot be verified as a
correct description of the image, and iii) using rigid template filling does not allow for free-form
textual representations and semantically flexible target captions.

3.2 COMPOSITIONAL IMAGE RETRIEVAL THROUGH VISION-BY-LANGUAGE

We can alleviate all the aforementioned shortcomings through Compositional Image Retrieval
through Vision-by-Language (CIReVL) - a simple approach that recombines existing and publicly
available pre-trained VLMs and LLMs. Similar to existing ZS-CIR methods (Saito et al.| [2023;
Baldrati et al., 2023)), we build on CLIP as our retrieval system, however in a fashion that operates
entirely independent on the particular CLIP model choice. We also assume access to pre-trained
captioning models, s.a. readily available BLIP (Li et al.| [2022} 2023)) or CoCa (Yu et al.| [2022),
to provide a textual caption for a given image. Finally, we leverage a LLM for textual reason-
ing (Huang & Chang|, [2023)), available e.g. through Llama (Touvron et al., |2023), Vicuna (Chiang
et al.| 2023) or the GPT-framework (Brown et al.,|2020). We visualize our framework in Fig. m
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From text embeddings to captions. Textual inversion has two main issues. First, it relies on a
specifically trained image-to-token-embedding mapping, tailored to image representations produced
by a pre-defined, pre-trained encoder (e.g. CLIP). Second, predicted inversion tokens have no guar-
antee to be human-understandable. Both shortcomings are created by the learned token-generation
module, and can thus be tackled by replacing it with an alternative system. As traditional token inver-
sion methods rely on the existence of large-scale pre-trained models, a natural alternative is to find
solutions from the larger corpus of large-scale pre-trained models. Specifically, by replacing trained
textual inversion functions with an available image captioning system W through pre-trained gen-
erative VLMs such as BLIP, a simple solution for both problems can be found. Specifically, given
a query (), we obtain its textual representation as ¢, = W (Q) € T. As ¢, lives in the natural
language text domain 7, it remains possible for humans to reason over - allowing the user clearer
insights into the retrieval process and allowing for possible intervention, as we explore in §4.3]

From templates to reasoning targets. Using directly image captions ¢, is not sufficient as it does
not incorporate the essential context provided by the text modifier ¢. While a simple pre-defined
template may recombine these in specific, fixed ways, they have no flexibility to account for different
forms of textual modifiers and caption-forms most suitable to a particular task at hand. To address
this issue, we make use of the reasoning capabilities of existing LLMs. Rather than combining
cq and t in a fixed way using template filling, our goal is to obtain a unified target caption that
models the hypothetical effect of ¢ on the query image () as a change in the thus resulting image
caption c,. This can be done in various ways, but we found simple prompts p to encode sufficient
problem context already (see §A|for more details). In particular, given a LLM of choice ¥, we
generate an instruction-alterated image caption as cf] = Wg(pocyot), which queries the LLM with
a concatenation of the base prompt p, the generated image caption ¢, (prepended with "Image
Content : "), and the instruction ¢ (prepended with "Instruction: "ﬂ Example queries and
outputs are provided in §4.3] Note that the construction of the prompt is a one-time process requiring
minimal effort and annotation, which we found to translate well across all problems. In addition, as
the instruction-conditioning happens entirely in the language domain, a human-in-the-loop can fully
reason about the impact of the instruction on the retrieval process by comparing ¢, and cfz w.rt. t.

Compositional image retrieval. Given the adapted caption cg, CIReVL encodes the image-search
database D alongside cf] using a VLM (e.g. CLIP). The retrieved target /, ; is thus given as

U (DHTr(ct)
t q
Iq = argmax (D

rep [NWr(D - Yo (Il

where the final selected target image is the one most similar to the generated target caption. As
the image retrieval system is only introduced and utilized after the combination of query image
and instruction, it is entirely detached and modular. Consequently, it can be easily exchanged with
other ones depending on practical requirements and the desired trade-off between efficiency and
efficacy. Overall, this results in a ZS-CIR pipeline in which compositions are human understandable
as it operates entirely in the language domain, and the retrieval process exists as a clearly separated
module, without requiring training of any mapping function on top of it.

4 EXPERIMENTS

We first provide the experimental details in before showcasing the results of our CIReVL in
four different ZS-CIR tasks in §4.2] Finally, we provide an in-depth analysis of our method in §4.3]
highlighting it’s capacity as well as the impact of the various components.

4.1 IMPLEMENTATION DETAILS

For our experiments we use PyTorch (Paszke et al.| [2019), extending the public codebase of Bal-
drati et al.| (2023)), and using clusters of NVIDIA V100 and A100s. We experiment with different
ViT-variants (Dosovitskiy et al.,[2021) of CLIP, with weights taken from the official implementation
in (Radford et al.} 2021). We use the OpenCLIP (Ilharco et al.) models for the analysis on scal-
ing laws. As captioner, we leverage the open-source BLIP-2 (Li et al.| [2023) with a Flan-TSXXL

"For possible adaptation without training, in-context learning (see e.g. |[Dong et al.[{(2023)) can be leveraged.
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Table 1: Comparison on CIRCO and CIRR Test Data. On CIRCO, CIReVL significantly out-
performs even adaptive methods across retrieval models, while it achieves competitive results on
CIRR despite the noise in the benchmark. Its modularity allows for simple further scalability for
additional gains. (*) ViT-G/14 uses OpenCLIP weights (Ilharco et al.).

CIRCO + CIRR — \ CIRCO I CIRR
Metric mAP@k Recall@k R;@k
Arch \ Method k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=50 | k=1 k=2 k=3
Image-only 1.34 1.60 212 241 6.89 2299 33.68 59.23 | 21.04 41.04 60.31
Text-only 256 267 298 3.18 | 21.81 4522 5742 81.01 | 6224 81.13 90.70

ViT-B/32 | Image + Text | 2.65 325 414 454 || 11.71 3506 4894 7749 | 3277 56.89 74.96
PALAVRA 4.61 532 633 680 || 16.62 4349 5851 8395 |41.61 6530 80.94

SEARLE 935 994 11.13 11.84 || 2400 5342 6682 89.78 | 54.890 76.60 88.19
CIReVL 1494 1542 17.00 17.82 || 23.94 5251 66.0 86.95 | 60.17 80.05 90.19
Pic2Word 872 951 1064 11.29 || 23.90 51.70 65.30 87.80 - - -
ViT-L/14 | SEARLE 11.68 12773 1433 15.12 || 24.24 5248 66.29 88.84 | 53.76 75.01 88.19
CIReVL 18.57 19.01 20.89 21.80 || 24.55 5231 64.92 86.34 | 59.54 79.88 89.69
VIiT-G/14* | CIReVL | 26.77 2759 29.96 31.03 || 34.65 6429 7506 91.66 | 67.95 84.87 9321

Table 2: Comparison on FashionIQ Test Data. CIReVLis able to significantly outperform adap-
tive methods across all Fashion-IQ sub-benchmarks, with its inherent modularity allowing for further
simply scaling to achieve additional large gains. (*) OpenCLIP weights (Ilharco et al.).

Fashion-IQ — | Shirt Dress Toptee | Average
Backbone ‘ Method ‘ R@10 R@50 R@10 R@50 R@10 R@50 ‘ R@10 R@50
Image-only 6.92 14.23 4.46 12.19 6.32 13.77 5.90 13.37
Text-only 19.87 3499 1542 3505 2081 4049 1870  36.84

ViT-B/32 | Image + Text | 13.44 2625 13.83 30.88 17.08 31.67 | 1478  29.60
PALAVRA 2149 37.05 1725 3594 2055 38.76 | 19.76  37.25

SEARLE 2444  41.61 1854 3951 2570 4646 | 22.89 4253
CIReVL 2836 47.84 2529 4636 3121 53.85 | 2829 4935
Pic2Word 2620 43.60 20.00 40.20 2790 4740 | 2470 43.70
ViT-L/14 | SEARLE 26.89 4558 2048 43.13 2932 4997 | 2556 46.23
CIReVL 2949 4740 24779 4476 3136 53.65 | 2855 48.57
ViT-G/14* | CIReVL | 33.71 5142 2707 4953 3580 56.14 | 32.19 5236

language model (Chung et al., [2022)). Ablations consider also BLIP (Li et al., [2022)) and CoCa (Yu
et al., 2022)). As LLM we use gpt-3.5-turbo |[Brown et al.| (2020), but we experiment also with Vi-
cunal3B (Chiang et al.} 2023)), Llama2-70B (Touvron et al.,|2023)), and GPT-4 (OpenAl, [2023]).

Datasets and Baselines. We use the CIRR (Liu et al.| 2021), CIRCO (Baldrati et al.l 2023),
FashionIQ-(Wu et al.l [2021) and GeneCIS (Vaze et al., 2023) datasets which have all been used
for CIR. CIRR, the first natural image dataset for CIR, suffers from false negatives (Baldrati et al.,
2023), since it has only a single target image annotated. The recently introduced CIRCO dataset
ameliorates this by having multiple positive images for each query. The GeneCIS dataset (sourced
from MS-COCO (Lin et al., 2014} and Visual Attributes in the Wild (Pham et al.| 2021)) introduces
four task variations, retrieving or changing a specific attribute or object. Due to space constraints, we
report results on the ImageNet Domain benchmark (Saito et al., [2023)) in the appendix. Fashion-1Q
is a benchmark that is focused around retrieval in fashion settings. Following the original bench-
marks, we use Recall@k as the metric on the CIRR, GeneCIS, and Fashion-IQ. On the CIRCO
dataset, since there are multiple positives, we use the mean average precision (mnAP@k). We use
the ‘image-only’, ‘text-only’ and ‘image+text’ to denote directly performing retrieval with CLIP
using only the reference image, modifying instruction, as well as averaging the embeddings for the
reference image and modifying text. PALAVRA (Cohen et al.,2022), Pic2Word (Saito et al., 2023)),
SEARLE (Baldrati et al.,|2023)) are textual inversion methods either designed or adapted for ZS-CIR.

4.2 ZS-CIR BENCHMARK COMPARISONS

CIRCO. Our results in Tab. [1] list the performance on the hidden test set of CIRCO, accessible
through the submission server provided |Baldrati et al.|(2023). As can be seen, using the default ViT-
B/32 and ViT-L/14 CLIP variants, our approach significantly outperforms methods like Pic2Word,
SEARLE and PALAVRA (Cohen et al.,[2022). For instance, on ViT-L/14, we achieve a mAP@5 of
18.57% - notably improving over the 11.68% by the best performing, trained alternative SEARLE,
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Table 3: Comparison on GeneCIS Test Data. CIReVLis able to significantly outperform adaptive
methods across all Fashion-1Q sub-benchmarks, with its inherent modularity allowing for further

simply scaling to achieve additional large gains. (*) OpenCLIP weights (Ilharco et al.).

GeneCIS — | Focus Attribute Change Attribute Focus Object Change Object | Average
Backbone ‘ Method ‘ R@1 R@2 R@3 R@I R@2 R@3 R@l R@2 R@3 R@l R@2 R@3 ‘ R@1
Image Only 177309 419 119 208 288 93 182 262 72 167 249 11.5
Text Only 102 205 29.6 95 176 264 6.5 16.8 224 6.2 139 214 8.1
RN50x4 Image + Text 156 263 37.1 126 229 320 108 21.0 312 113 215 303 12.6
Combiner (CIRR) 15.1 27.7 398 12.1 22.8 31.8 13.5 254 36.7 15.4 28.0 39.6 14.0
Combiner (CC3M) | 19.0 31.0 11.5 16.6 275 365 147 259 36.1 16.8  29.1 39.7 16.8
CIReVL 19.1 313 415 147 263 370 132 234 327 163 287 379 15.8
VIT-B/32 ‘ SEARLE 189 306 412 130 238 337 122 230 333 136 238 333 ‘ 14.4

CIReVL ‘ 179 294 404 148 258 358 146 243 333 161 278 376 159
SEARLE ‘ 171 296 407 163 252 342 120 222 309 120 241 339 ‘ 14.4
|

CIReVL 195 31.8 420 144 260 352 123 218 305 172 289 376 159
ViT-G/14* | CIReVL 205 340 445 161 286 394 147 252 330 181 312 410 | 174

ViT-L/14 ‘
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Figure 2: Examples from the CIRCO validation set where our method retrieves the desired image.
We see that our method is able to perform this task for a wide variety of modifier texts.

and more than doubling the performance of Pic2Word, which achieves 8.72%. These are strongly
indicative results, as CIRCO constitutes the dataset with the cleanest annotations and - unlike other
datasets in this field - the inclusion of multiple positives for an inherently ambiguous problem, as
textual modifications of an image do not only have a single solution. These strong results thus
provide key evidence of the efficacy of our training-free, vision-by-language approach for ZS-CIR.

CIRR. For the hidden CIRR test set (accessible using a test server, see e.g. (2021)),
we provide results in Tab. [T} As previously noted, this dataset is very noisy, with results primarily
dependent on the modifying instruction, and the actual reference image having much less relation
to the target image (Saito et al., 2023} Baldrati et al., [2023)). Still, even on this benchmark, we are
able to match the performance of prior ZS-CIR methods (e.g. RQ1 = 24.55% for our method
versus 24.24% for SEARLE), without requiring any form of problem-specific training. The CIRR
benchmark also provides another evaluation where the correct image has to be retrieved from 6
curated samples. In this evaluation, our results surpass prior work by a significant margin (R;Q1 =
60.17% versus 54.89% for SEARLE), underscoring the versatility of our method.

Fashion-IQ. We provide the results on the validation set of the Fashion-IQ benchmark in Tab. [2]
We see that CIReVL is able to outperform prior zero-shot methods by significant margins (average
R@10 of 28.55% versus 25.56% for SEARLE). Additionally, we also see the benefits of scaling the
model size, with the average RQ10 improving to 32.19%. This also underscores how our approach
is able to adapt to diverse domains with minimal changes.

GeneCIS. The versatility of CIReVL is further underlined when transferring it to the GeneCIS
benchmark. Unlike CIRCO and CIRR, modifiers consists of a single word that has a different
interpretation for each task, e.g. focusing/changing a particular attribute or object. In this case,
without re-training any method, simple prompt modifications allow for convincing performance. In
particular, for the focus”-tasks, we simply task the LLM to retain the attribute/object listed in the
instruction. For "change”’-tasks, we simply ask it to replace the corresponding object in the caption.
As shown in Tab.[3] CIReVL nearly matches the performance of Combiner trained on a large filtered
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Figure 3: We analyze failure cases of our approach. Due to the interpretable nature, we can easily
attribute errors to captioning, reasoning or the text-image retrieval. We also find examples where the
model is penalized despite a plausible retrieval due to insufficient annotations in the dataset.

Reference image Initial Intervened

Initial Intervened

Instructions: “has the woman and the man with the roles Instructions: “is shot with the same style and most of the benche
switched.” empty.”

A . . . Initial Caption: “pigeons sitting on a bench in front of a buildi
Initial Caption: “a man adjusting a woman’s tie.” P pig g

Initial Modification: “a building with pigeons (...), with
only a few benches occupied.”

Intervened Caption: “a grayscale photo of people sitting on
benches in a park in front of buildings.”

Intervened Modification: “a man adjusting a woman’s tie.” Intervened Modification: “A black and white photo of empty
benches in a park with buildings in the background.”

Initial Modification: “a woman adjusting a man’s tie.”

Intervened Caption: “a woman adjusting a man’s tie.”

Figure 4: We demonstrate the possibility of user interventions to enhance the performance of our
method. For instance, by fixing the mistakes in the generated caption, we are able to correctly
retrieve the desired image without having to make any other changes.

version of the CC3M dataset (Sharma et al., 2018)) (16.8% Average RQ1 versus 15.9%), and surpass
the Combiner model finetuned on the CIRR dataset as well as other baselines. This is notable given
the diversity, but also specificity of the tasks, ranging from settings resembling standard image
retrieval (e.g. ’focus attribute”) to traditional CIR tasks instead (e.g. “change object”).

4.3 ABLATION STUDY AND PERFORMANCE ANALYSIS

In this section, we conduct a large number of analyses to provide a better understanding of our pro-
posed method through ablations and qualitative examples, and provide insights into performance
bottlenecks. This also includes scalability studies, and insights into the benefits of human under-
standability via natural language operations, further enabling the possibility to perform interventions
on the retrieval process in order to tackle failure cases.

On the importance of textual reasoning. Since our proposed method heavily relies on the LLM
to convert textual inputs to target captions, we study several LLMs to understand the effect they
play on the final performance. The results on the CIRCO validation set in Table []illustrate that the
reasoning is critical to the overall performance. Most notably, we perform a sanity-check where the
generated caption is used to fill a template as done in prior works (Saito et al.l 2023}, [Baldrati et al.}
[2023). This method (‘Captioning’) aims to test the necessity of using a LLM for textual reasoning
on this task. We see that this method is outperformed by all the LLMs that we tested (mAP@5 of
9.22%). This highlights the necessity of performing textual reasoning to generate the final target
caption, and the limits of static templates. For instance, both GPT-3.5-turbo and GPT-4 achieve
strong results (AP @5 of 13.33% and 15.63% respectively), with the improved capabilities of GPT-
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Table 4: Analysis of the impact of LLM and captioner choice. Comparison between different
LLMs on CIRCO validation reveals a positive relation between performance and reasoning capaci-
ties. For captioning models, most recent off-the-shelf models achieve strong results.

Arch | Captioner LLM | mAP@5 mAP@10 mAP@25 mAP@50
- 9.22 10.05 11.44 12.08
LLama2-70B 10.22 10.60 11.80 12.39
ViT-B/32 | BLIP-2 Vicuna-13B 12.65 13.17 14.48 15.20
GPT-3.5-Turbo 13.33 14.16 15.74 16.35
GPT-4 15.63 16.31 17.02 18.12
BLIP 13.1 13.33 15.08 15.92
ViT-B/32 BLIP-2  GPT-3.5-Turbo 13.33 14.16 15.74 16.35
CoCa 13.64 13.37 15.10 15.90

4 offering significant performance gains on top. When moving to publicly accessible LLMs such as
Llama2-70B and Vicuna-13B (10.22% and 12.65%), we find a fair drop in performance. For cases
where access to closed-source APIs such as GPT-3.5-turbo or GPT-4 is restricted, alternative usage
of public LLMs can thus still offer significant benefits, particularly when evaluating the differences
between Vicuna-13B and GPT-3.5-turbo.

On the importance of captioning quality. As our CIR TIFA Alignment Studies
framework builds on the generated reference image cap- Versus Versus

. . . Target Image LLM Caption
tion, we also ablate the importance of the correct caption-
ing model choice in Tab. ] which reports results on the 1.00 —|—

CIRCO validation split for faster turnaround. Interest-
ingly, we find that most state-of-the-art public captioning
models perform similarly well, with minor differences be-
tween BLIP versions, and slightly improved performance
of CoCa. To retain the generality of our approach, we

TIFA Score
=
Ut
=)

stick with BLIP-2 with a Flan-T5 language model since 0.25

the usage of a LLM decoder makes it a more generic tool

usable across a variety of domains. 0.00 ¢ L4 4
LLM Ref. Target  Retr.
Descr. Caption. Image Image

Reasoning Sanity Check by Measuring Text-Image
Alignment. We conduct a quantitative evaluation of our
reasoning component by assessing the text-image align-
ment in the LLM-modified descriptions using TIFA (Hu
et al., [2023). Unlike simpler metrics such as CLIP
score, TIFA offers a more accurate measure of cross-
modal alignment by converting it into a series of question-
answering tasks. Results are presented in Fig.[5} Com-
paring the alignment between our generated modified de-
scriptions and the generated plain image captions, we
clearly see much higher and more consistent average alignment through our modification. In ad-
dition, when looking at the alignment of our modified caption between the ground truth image and
the actually retrieved image by CLIP (ViT-B/32) in Fig.[5] we see that the alignment of the retrieved
image is actually notably lower than that of the ground truth image. Thus, while the CLIP similarity
is higher for the retrieved image, its actual alignment with the modified caption is lower. This means
that the standard CLIP backbone, even if the modified caption actually aligns well with the ground
truth image, can often fail to retrieve it. This indicates that the CLIP retrieval is a severe bottle-
neck (Thrush et al., 2022} [Hsieh et al., [2023; | Kamath et al.| [2023)), as the captioning and reasoning
together generate valid target captions that a sub-optimal retrieval system cannot match.

Figure 5: We use TIFA (Hu et al., [2023))
to compare alignment between LLM de-
scr. & base caption and target image,
and LLM descr. to target- and CLIP-
retrieved image. It shows the impact of
LLM reasoning over base captions, and
CLIP retrieval as essential bottleneck.

Investigating Scaling Laws for ZS-CIR. A critical benefit of the modular nature of our method is
that we can replace and scale each component, without re-training. In particular, we can simply uti-
lize our base model used for our benchmark comparisons in §4.2] and utilize a different CLIP model
for the final retrieval process. This allows us to investigate scaling laws as studied and investigated
in e.g. Kaplan et al.|(2020)); |Caballero et al.|(2023)); Cherti et al.|(2023) for the particular problem of
CIR, and investigate if scale can address the retrieval bottleneck. For this, we leverage CLIP variants
provided through the OpenCLIP project (Ilharco et al.)), with models ranging from around 150M to-
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Figure 6: Leveraging our modular CIReVL to study scaling laws. For model availability and con-
sistency, we use LAION-2B pretrained CLIP models provided through OpenCLIP (Ilharco et al.).

tal parameters to around 2.5B. On both CIRCO and CIRR, we see a clear log-linear relationship
between the model capacity and the performance as a result of simply upgrading our retrieval model
in size. This clearly highlights the impact of scale even to the complex setting of ZS-CIR, and allows
us to partly break the retrieval bottleneck shown above. As we can easily plug-and-play different
retrieval models, it also allows us to scale our overall pipeline, allowing us to boost the overall CIR
scores on the CIRR dataset up to RQ1 = 34.64% (c.f. 24.55% for the highest reported SEARLE
score), and up to mAPQ@Q5 = 26.77% on CIRCO (c.f. 11.68% for the highest reported SEARLE
score). These results provide clear evidence of our method allowing for a simple transition between
efficiency (with a smaller retrieval model) and efficacy with a larger one when needed. We also find
that our insights partly contrast those in |Vaze et al.|(2023), where only minimal gains from scaling
can be observed. Our results show that by incorporating conditioning through textual reasoning,
CIReVL better leverages the benefits of large retrieval models without expensive re-training.

Qualitative Examples. Fig. [2| visualizes successful Cl-retrievals with instructions impacting dif-
ferent semantic elements of the reference image such as viewpoint, color, object counts, background
changes, object insertion, object adaptation or picture manipulations such as zoom. This provides
further indication about the diverse applicability of our setup. Following that, Fig. [3] visualizes ex-
emplary failure cases. As our CIR process operates primarily in the language domain, it becomes
easy to understand the particular failure cases. For instance, we see some cases where the generated
Caption either does not correctly describe the image, or does not focus on the relevant aspect in the
image (e.g. ignoring the grayscale aspect of the image and focusing on the pigeons). We also observe
cases where the LLM does not generate an accurate description of the target image. Additionally,
there are also cases where despite the captioning and reasoning working correctly, the CLIP model
does not retrieve an accurate image. Finally, we also see ambiguous failure cases where the retrieved
target is debatable correct, but not labeled as such due to incomplete annotations (Ambiguity).

Performing User Interventions. Fortunately, by being able to break down the retrieval process,
we can easily perform user interventions when needed. Simple example scenarios are shown in
Fig. [ where the default modified caption results in incorrect retrievals. As a user, intervention
can happen at different stages of the retrieval process, modifying e.g. generated captions, utilized
instructions or the final LLM-generated caption. As a proof of concept, we showcase how inter-
vention on the base caption level can already result in correct search queries on the image database.
Simple human intervention can easily determine if a generated caption is incorrect, and simply re-
place it with an alternative. The rest of the pipeline can simply continue operating on top of this
intervention. As can be seen in Fig. {] intervening on the caption-level can already rectify various
errors. This once again sharply contrasts with existing work that relies on an end-to-end pipeline
with a rigid query template, where there is no possibility to alter the retrieval process.

5 CONCLUSION

In this work, we present a novel, training-free approach for Zero-Shot Compositional Image Re-
trieval (CIR). Utilizing off-the-shelf pre-trained models, our method not only achieves strong perfor-
mance across multiple CIR benchmarks but also, in some cases, doubles the performance of existing
state-of-the-art methods. The method’s inherent interpretability allows for user intervention, adding
an extra layer of flexibility. We also explore the impact of scaling laws on our method, revealing that
scaling the text-image retrieval component can substantially boost task performance. Collectively,
these contributions set the stage for future research in training-free Compositional Image Retrieval.
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A ADDITIONAL IMPLEMENTATION DETAILS

The prompt that we use draws upon the one used by [Liu et al.|(2023)) for curating a dataset curation.
Here, we write a similar prompt for the LLM to generate the edited description. We list the full
prompt below:

"I have an image. Given an instruction to edit the image,
carefully generate a description of the edited image. I
will put my image content beginning with ’Image Content:’.
The instruction I provide will begin with ’Instruction:’.
The edited description you generate should begin with
"Edited Description:’. Each time generate one instruction
and one edited description only."

Table 5: Comparison with supervised baselines on CIRR and FashionlQ validation sets. Combiner-
FIQ and Combiner-CIRR denote the models from [Baldrati et al.| (2022) trained on FashionIQ and
CIRR, respectively. We see that zero-shot methods generalize better across multiple datasets.

CIRR FashionlQ
Method R@1 R@5 R@Q10 R@50 R@10 RQ50

Combiner-FIQ [Baldrati et al.|(2022) 19.88 48.05 61.11 8551 3296 54.55
Combiner-CIRR |Baldrati et al.[(2022) 32.24 65.46 78.21 95.19 2091 4040
CIReVL 29.76 59.69 71.39 90.34 2829 49.35

B COMPARISON WITH SUPERVISED BASELINES

We provide a comparison to supervised CIR methods in Tab.[5] In particular, we compare our results
against the Combiner architecture (Baldrati et al.,[2022). We train the Combiner model on both the
Fashion-IQ and CIRR datasets. We see that while the Combiner model achieves strong results
when it has been fine-tuned on a particular dataset, it performs poorly on the other benchmarks. In
contrast, zero-shot methods are able to achieve strong performance across benchmarks, highlighting
the generalization capabilities of these models.

C EXPERIMENTS ON IMAGENET DOMAIN CONVERSION

We also test CIReVL on the ImageNet domain conversion experiment proposed in (Saito et al.|
2023). Here we use images from 200 classes of the original ImageNet dataset (Russakovsky et al.,
2015) as query, and for retrieval images of the same object but in the specified domain from
ImageNet-R (Hendrycks et al., 2021) Unlike the previous benchmarks, the task is to simply re-
trieve an image of the appropriate domain for the same semantic object category (i.e a cartoon of
a goldfish, with a natural goldfish reference image and the modifier "cartoon™). This requires
no reasoning over image semantics, as the modifier affects an independent domain change, with
significant improvements over Pic2Word or Combiner already be achieved by leveraging the final
description "a domain of a caption",asseenin Tab.[6] Our model in parts more than dou-
ble the performance of Pic2Word on this task (e.g. RQ1 = 19.2% versus 8.0% for a conversion to
the cartoon domain). These findings mainly reiterate that combining off-the-shelf pre-trained mod-
els - here CLIP and BLIP-2 - can be more effective than customized models operating on top of
pre-trained models.
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Table 6: Evaluation on ImageNet Domain Conversion experiment proposed in [Saito et al.
(2023). The goal is to retrieve an appropriate domain of the object specified in the query image.

| Cartoon Toy Origami Sculpture

| R@10 R@50 | R@10 R@50 | R@10 R@50 | R@1I0 R@50
Image-only 0.3 4.5 0.2 1.8 0.6 5.7 0.3 4.0
Text-only 0.2 1.1 0.8 3.7 0.8 24 0.4 2.0
Image+Text 2.2 13.3 2.0 10.3 1.2 9.7 1.6 11.6
Combiner (CIRR) (Baldrati et al.|[2022) 6.1 14.8 10.5 21.3 7.0 17.7 8.5 20.4
Pic2Word (Saito et al.|[2023) 8.0 21.9 13.5 25.6 8.7 21.6 10.0 23.8

\

CIReVL 19.2 928 | 302 413 | 222 431 | 234 45.0

16



	Introduction
	Related Work
	CIReVL Methodology
	Preliminaries
	Compositional Image Retrieval through Vision-by-Language

	Experiments
	Implementation Details
	ZS-CIR Benchmark Comparisons
	Ablation Study and Performance Analysis

	Conclusion
	Additional Implementation Details
	Comparison with Supervised baselines
	Experiments on ImageNet Domain Conversion

